MB81F64842D-102FN [FUJITSU]

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54;
MB81F64842D-102FN
型号: MB81F64842D-102FN
厂家: FUJITSU    FUJITSU
描述:

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54

时钟 动态存储器 光电二极管 内存集成电路
文件: 总45页 (文件大小:716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS05-11053-1E  
MEMORY  
CMOS  
4 × 2 M × 8 BIT  
SYNCHRONOUS DYNAMIC RAM  
MB81F64842D-75/-102/-102L  
CMOS 4-Bank × 2,097,152-Word × 8 Bit  
Synchronous Dynamic Random Access Memory  
DESCRIPTION  
The Fujitsu MB81F64842D is a CMOS Synchronous Dynamic Random Access Memory (SDRAM) containing  
67,108,864 memory cells accessible in a 8-bit format. The MB81F64842D features a fully synchronous operation  
referenced to a positive edge clock whereby all operations are synchronized at a clock input which enables high  
performance and simple user interface coexistence. The MB81F64842D SDRAM is designed to reduce the  
complexity of using a standard dynamic RAM (DRAM) which requires many control signal timing constraints, and  
may improve data bandwidth of memory as much as 5 times more than a conventional DRAM.  
The MB81F64842D is ideally suited for workstations, personal computers, laser printers, high resolution graphic  
adapters/accelerators and other applications where an extremely large memory and bandwidth are required and  
where a simple interface is needed.  
PRODUCT LINE & FEATURES  
MB81F64842D  
Parameter  
Reference Value  
@66MHz(CL=2)  
-75  
-102/-102L  
CL - tRCD - tRP  
3 - 3 - 3 clk min.  
133 MHz max.  
10 ns min.  
2 - 2 - 2 clk min.  
100 MHz max.  
10 ns min.  
2 - 2 - 2 clk min.  
66 MHz max.  
15ns min.  
Clock Frequency  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
Burst Mode Cycle Time  
7.5 ns min.  
6 ns max.  
10 ns min.  
10 ns min.  
8 ns max.  
6 ns max.  
Access Time from Clock  
Operating Current  
5.4 ns max.  
85 mA max.  
1 mA max.  
6 ns max.  
6 ns max.  
80 mA max.  
65 mA max.  
1 mA max.  
1 mA max.  
Power Down Mode Current (ICC2P)  
Self Refresh Current (ICC6)  
1 mA max.  
1 mA max.  
1 mA max./ 500 µA max.  
• Single +3.3 V Supply ±0.3 V tolerance  
LVTTL compatible I/O interface  
• 4 K refresh cycles every 64 ms  
• Four bank operation  
• Programmable burst type, burst length, and  
CAS latency  
• Auto-and Self-refresh (every 15.6 µs)  
• CKE power down mode  
• Burst read/write operation and burst  
read/single write operation capability  
• Output Enable and Input Data Mask  
MB81F64842D-75/-102/-102L  
PACKAGE  
54-pin plastic TSOP(II)  
Marking side  
(FPT-54P-M02)  
(Normal Bend)  
Package and Ordering Information  
– 54-pin plastic (400 mil) TSOP-II, order as MB81F64842D-×××FN (Standard version) or  
MB81F64842D-×××LFN (Low power version)  
2
MB81F64842D-75/-102/-102L  
PIN ASSIGNMENTS AND DESCRIPTIONS  
54-Pin TSOP(II)  
(TOP VIEW)  
<Normal Bend: FPT-54P-M02>  
VCC  
DQ0  
VCCQ  
N.C.  
DQ1  
VSSQ  
N.C.  
DQ2  
VCCQ  
N.C.  
DQ3  
VSSQ  
N.C.  
VCC  
VSS  
54  
53  
52  
1
2
3
4
5
6
7
8
DQ7  
VSSQ  
N.C.  
DQ6  
VCCQ  
N.C.  
DQ5  
VSSQ  
N.C.  
DQ4  
VCCQ  
N.C.  
VSS  
N.C.  
DQM  
CLK  
CKE  
N.C.  
A11  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
N.C.  
WE  
CAS  
RAS  
CS  
A13 (BA0)  
A12 (BA1)  
A10/AP  
A0  
A9  
A8  
A7  
A6  
A5  
A4  
VSS  
A1  
A2  
A3  
VCC  
(Marking side)  
Pin Number  
Symbol  
VCC, VCCQ  
DQ0 to DQ7  
VSS, VSSQ *  
N.C.  
Function  
1, 3, 9, 14, 27, 43, 49  
2, 5, 8, 11, 44, 47, 50, 53  
6, 12, 28, 41, 46, 52, 54  
Supply Voltage  
Data I/O  
Ground  
4, 7, 10, 13, 15, 36, 40, 42, 45, 48, 51  
No Connection  
Write Enable  
16  
17  
WE  
CAS  
Column Address Strobe  
Row Address Strobe  
Chip Select  
18  
RAS  
19  
CS  
20, 21  
22  
A13 (BA0), A12 (BA1) Bank Select (Bank Address)  
AP  
Auto Precharge Enable  
• Row: A0 to A11  
• Column: A0 to A8  
22, 23, 24, 25, 26, 29, 30, 31, 32, 33,  
34, 35  
A0 to A11  
Address Input  
37  
38  
39  
CKE  
CLK  
Clock Enable  
Clock Input  
DQ MASK  
DQM  
* : These pins are connected internally in the chip.  
3
MB81F64842D-75/-102/-102L  
BLOCK DIAGRAM  
Fig. 1 – MB81F64842D BLOCK DIAGRAM  
CLK  
CKE  
To each block  
BANK-3  
BANK-2  
BANK-1  
BANK-0  
CLOCK  
BUFFER  
RAS  
CS  
CONTROL  
SIGNAL  
LATCH  
CAS  
WE  
RAS  
CAS  
COMMAND  
DECODER  
WE  
DRAM  
CORE  
MODE  
REGISTER  
(4,096 × 512 × 8)  
A0 to A11,  
A10/AP  
ADDRESS  
BUFFER/  
REGISTER  
ROW  
ADDR.  
A12 (BA1)  
A13 (BA0)  
COL.  
ADDR.  
COLUMN  
ADDRESS  
COUNTER  
DQM  
I/O  
I/O DATA  
BUFFER/  
REGISTER  
VCC  
DQ0  
to  
DQ7  
VCCQ  
VSS/VSSQ  
4
MB81F64842D-75/-102/-102L  
FUNCTIONAL TRUTH TABLE Note *1  
COMMAND TRUTH TABLE Note *2, *3, and *4  
CKE  
A13,  
CS RAS CAS WE A12  
(BA)  
A8  
to  
A0  
A10  
Symbol  
Function  
Notes  
A11  
A9  
(AP)  
n-1  
H
H
H
H
H
H
H
H
H
H
H
n
X
X
X
X
X
X
X
X
X
X
X
Device Deselect  
No Operation  
*5 DESL  
*5 NOP  
BST  
H
L
L
L
L
L
L
L
L
L
L
X
H
H
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
V
V
V
V
V
V
X
L
X
X
X
X
X
X
X
V
X
X
L
X
X
X
L
X
X
X
X
X
X
X
V
X
X
V
X
X
X
V
V
V
V
V
X
X
V
Burst Stop  
Read  
*6 READ  
*6 READA  
*6 WRIT  
*6 WRITA  
*7 ACTV  
PRE  
H
H
L
Read with Auto-precharge  
Write  
L
H
L
L
Write with Auto-precharge  
Bank Active  
L
L
H
V
L
H
H
H
L
H
L
Precharge Single Bank  
Precharge All Banks  
Mode Register Set  
L
PALL  
L
L
H
L
*8,*9 MRS  
L
L
Notes: *1. V = Valid, L = Logic Low, H = Logic High, X = either L or H.  
*2. All commands assumes no CSUS command on previous rising edge of clock.  
*3. All commands are assumed to be valid state transitions.  
*4. All inputs are latched on the rising edge of clock.  
*5. NOP and DESL commands have the same effect on the part. Unless spcifically noted, NOP will  
represent both NOP and DESL command in later discriptions.  
*6. READ, READA, WRIT and WRITA commands should only be issued after the corresponding bank has  
been activated (ACTV command). Refer to STATE DIAGRAM.  
*7. ACTV command should only be issued after corresponding bank has been precharged (PRE or PALL  
command).  
*8. Required after power up. Refer to POWER-UP INITIALIZATION in page 19.  
*9. MRS command should only be issued after all banks have been precharged (PRE or PALL command).  
Refer to STATE DIAGRAM.  
5
MB81F64842D-75/-102/-102L  
DQM TRUTH TABLE  
CKE  
Function  
Symbol  
DQM  
n-1  
H
n
X
X
Data Write/Output Enable  
Data Mask/Output Disable  
ENBL  
MASK  
L
H
H
CKE TRUTH TABLE  
Current  
CKE  
A13,  
A9  
to  
A0  
A10  
(AP)  
Symbol  
Function  
Notes  
CS RAS CAS WE A12  
(BA)  
A11  
State  
n-1  
n
Bank Active Clock Suspend Mode Entry *1 CSUS  
Any  
H
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Clock Suspend Continue  
*1  
L
(Except Idle)  
Clock  
Suspend  
Clock Suspend Mode Exit  
L
H
X
X
X
X
X
X
X
X
Idle  
Idle  
Auto-refresh Command  
Self-refresh Entry  
*2 REF  
H
H
L
H
L
L
L
L
L
L
L
H
H
H
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
*2, *3 SELF  
H
H
L
L
H
X
H
X
H
X
H
X
H
X
H
X
Self Refresh Self-refresh Exit  
SELFX  
L
H
L
H
H
L
Idle  
Power Down Entry  
*3  
PD  
L
H
L
H
H
Power Down Power Down Exit  
L
H
Notes: *1. The CSUS command requires that at least one bank is active. Refer to STATE DIAGRAM.  
NOP or DESL commands should be issued after CSUS and PRE(or PALL) commands asserted at the  
same time.  
*2. REF and SELF commands should only be issued after all banks have been precharged (PRE or PALL  
command). Refer to STATE DIAGRAM.  
*3. SELF and PD commands should only be issued after the last read data have been appeared on DQ.  
6
MB81F64842D-75/-102/-102L  
OPERATION COMMAND TABLE (Applicable to single bank) Note *1  
Current  
State  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
Idle  
H
L
L
L
L
L
L
L
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
DESL  
NOP  
BST  
NOP  
NOP  
NOP  
H
L
BA, CA, AP READ/READA Illegal  
*2  
*2  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Illegal  
H
H
L
H
L
ACTV  
Bank Active after tRCD  
NOP  
L
PRE/PALL  
REF/SELF  
L
H
Auto-refresh or Self-refresh  
*3, *6  
*3, *7  
Mode Register Set  
(Idle after tRSC)  
L
L
L
L
MODE  
MRS  
Bank Active  
H
L
L
L
L
L
L
L
L
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
DESL  
NOP  
BST  
NOP  
NOP  
NOP  
H
L
BA, CA, AP READ/READA Begin Read; Determine AP  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Begin Write; Determine AP  
H
H
L
H
L
ACTV  
PRE/PALL  
REF/SELF  
MRS  
Illegal  
*2  
L
Precharge; Determine Precharge Type  
L
H
L
Illegal  
L
L
MODE  
Illegal  
(Continued)  
7
MB81F64842D-75/-102/-102L  
Current  
State  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
Read  
NOP (Continue Burst to End Bank  
Active)  
H
X
X
X
X
DESL  
NOP (Continue Burst to End Bank  
Active)  
L
L
L
H
H
H
H
H
L
H
L
X
X
NOP  
BST  
Burst Stop Bank Active  
Terminate Burst, New Read;  
Determine AP  
H
BA, CA, AP READ/READA  
Terminate Burst, Start Write;  
Determine AP  
L
L
L
H
L
L
L
H
H
L
H
L
BA, CA, AP  
BA, RA  
WRIT/WRITA  
ACTV  
*4  
Illegal  
*2  
Terminate Burst, Precharge Idle;  
Determine Precharge Type  
BA, AP  
PRE/PALL  
L
L
L
L
L
L
H
L
X
REF/SELF  
MRS  
Illegal  
Illegal  
MODE  
Write  
NOP (Continue Burst to End →  
Bank Active)  
H
X
X
X
X
DESL  
NOP (Continue Burst to End →  
Bank Active)  
L
L
L
H
H
H
H
H
L
H
L
X
X
NOP  
BST  
Burst Stop Bank Active  
Terminate Burst, Start Read;  
Determine AP  
*4  
*2  
H
BA, CA, AP READ/READA  
Terminate Burst, New Write;  
Determine AP  
L
L
L
H
L
L
L
H
H
L
H
L
BA, CA, AP  
BA, RA  
WRIT/WRITA  
ACTV  
Illegal  
Terminate Burst, Precharge;  
Determine Precharge Type  
BA, AP  
PRE/PALL  
L
L
L
L
L
L
H
L
X
REF/SELF  
MRS  
Illegal  
Illegal  
MODE  
(Continued)  
8
MB81F64842D-75/-102/-102L  
Current  
State  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
Read with  
Auto-  
precharge  
NOP (Continue Burst to End →  
Precharge Idle)  
H
L
X
H
X
H
X
H
X
DESL  
NOP (Continue Burst to End →  
Precharge Idle)  
X
X
NOP  
BST  
L
L
L
L
L
L
L
H
H
H
L
H
L
L
H
L
Illegal  
BA, CA, AP READ/READA Illegal  
*2  
*2  
*2  
*2  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Illegal  
H
H
L
H
L
ACTV  
PRE/PALL  
REF/SELF  
MRS  
Illegal  
Illegal  
Illegal  
Illegal  
L
L
H
L
L
L
MODE  
Write with  
Auto-  
precharge  
NOP (Continue Burst to End →  
Precharge Idle)  
H
L
X
H
X
H
X
H
X
DESL  
NOP (Continue Burst to End →  
Precharge Idle)  
X
X
NOP  
BST  
L
L
L
L
L
L
L
H
H
H
L
H
L
L
H
L
Illegal  
BA, CA, AP READ/READA Illegal  
*2  
*2  
*2  
*2  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Illegal  
H
H
L
H
L
ACTV  
PRE/PALL  
REF/SELF  
MRS  
Illegal  
Illegal  
Illegal  
Illegal  
L
L
H
L
L
L
MODE  
(Continued)  
9
MB81F64842D-75/-102/-102L  
Current  
State  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
Pre-  
charging  
H
L
L
L
L
L
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
DESL  
NOP  
BST  
NOP (Idle after tRP)  
NOP (Idle after tRP)  
NOP (Idle after tRP)  
H
L
BA, CA, AP READ/READA Illegal  
*2  
*2  
*2  
L
BA, CA, AP  
BA, RA  
WRIT/WRITA Illegal  
H
H
ACTV  
Illegal  
NOP (PALL may affect other  
bank)  
L
L
H
L
BA, AP  
PRE/PALL  
*5  
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
H
L
X
REF/SELF  
MRS  
Illegal  
MODE  
Illegal  
Bank  
Activating  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
DESL  
NOP  
NOP (Bank Active after tRCD)  
NOP (Bank Active after tRCD)  
NOP (Bank Active after tRCD)  
BST  
H
L
BA, CA, AP READ/READA Illegal  
*2  
*2  
*2  
*2  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Illegal  
H
H
L
H
L
ACTV  
PRE/PALL  
REF/SELF  
MRS  
Illegal  
Illegal  
Illegal  
Illegal  
L
L
H
L
L
L
MODE  
(Continued)  
10  
MB81F64842D-75/-102/-102L  
(Continued)  
Current  
State  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
Refreshing  
H
L
X
H
X
H
X
X
X
X
DESL  
NOP (Idle after tRC)  
NOP (Idle after tRC)  
NOP/BST  
READ/READA/  
WRIT/WRITA  
L
L
L
H
L
L
L
H
L
X
X
X
X
X
X
Illegal  
Illegal  
Illegal  
ACTV/  
PRE/PALL  
REF/SELF/  
MRS  
Mode  
Register  
Setting  
H
L
L
X
H
H
X
H
H
X
H
L
X
X
X
DESL  
NOP  
BST  
NOP (Idle after tRSC)  
NOP (Idle after tRSC)  
Illegal  
READ/READA/  
WRIT/WRITA  
L
L
H
L
L
X
X
X
X
Illegal  
Illegal  
ACTV/PRE/  
PALL/REF/  
SELF/MRS  
X
ABBREVIATIONS:  
RA = Row Address  
BA = Bank Address  
AP = Auto Precharge  
CA = Column Address  
Notes: *1. All entries in ORERATION COMMAND TABLE assume the CKE was High during the proceeding clock  
cycle and the current clock cycle.  
Illegal means don’t used command. If used, power up sequence be asserted after power shut down.  
*2. Illegal to bank in specified state; entry may be legal in the bank specified by BA, depending on the state  
of that bank.  
*3. Illegal if any bank is not idle.  
*4. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
Refer to TIMING DIAGRAM -11 & -12.  
*5. NOP to bank precharging or in idle state. May precharge bank specified by BA (and AP).  
*6. SELF command should only be issued after the last read data have been appeared on DQ.  
*7. MRS command should only be issued on condition that all DQ are in Hi-Z.  
11  
MB81F64842D-75/-102/-102L  
COMMAND TRUTH TABLE FOR CKE Note*1  
Current  
State  
CKE CKE  
CS RAS CAS WE  
Addr  
X
Function  
Notes  
n-1  
n
Self-  
refresh  
H
X
X
H
X
X
X
X
X
X
Invalid  
Exit Self-refresh  
L
L
H
H
X
(Self-refresh Recovery Idle after tRC)  
Exit Self-refresh  
(Self-refresh Recovery Idle after tRC)  
L
H
H
H
X
L
L
H
H
H
L
L
L
L
X
X
H
L
L
L
L
X
H
H
L
H
L
L
X
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
Illegal  
Illegal  
L
X
X
X
X
H
H
L
Illegal  
L
X
X
X
H
H
H
L
NOP (Maintain Self-refresh)  
Self-  
refresh  
Recovery  
L
X
H
H
H
H
H
L
Invalid  
H
H
H
H
H
H
Idle after tRC  
Idle after tRC  
Illegal  
X
X
X
Illegal  
X
X
Illegal  
X
Illegal  
*2  
(Continued)  
12  
MB81F64842D-75/-102/-102L  
Current  
State  
CKE CKE  
CS RAS CAS WE  
Addr  
Function  
Notes  
n-1  
H
L
n
X
H
H
L
Power  
Down  
X
H
L
X
L
L
L
H
L
L
L
L
H
L
L
L
L
L
L
X
X
X
H
X
L
X
X
H
X
X
L
X
X
H
X
X
X
L
X
Invalid  
X
Exit Power Down Mode Idle  
L
X
L
X
NOP (Maintain Power Down Mode)  
L
H
H
H
H
H
H
H
H
L
X
Illegal  
L
H
H
X
H
L
X
Illegal  
L
H
X
X
H
L
X
Illegal  
All  
Banks  
Idle  
H
H
H
H
H
H
H
H
H
H
H
H
L
X
X
X
H
L
MODE  
Refer to the Operation Command Table.  
MODE  
Refer to the Operation Command Table.  
MODE  
Refer to the Operation Command Table.  
L
X
Auto-refresh  
L
L
MODE  
Refer to the Operation Command Table.  
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
X
X
X
Power Down  
Power Down  
Illegal  
L
L
L
X
X
H
L
Illegal  
L
H
L
Illegal  
L
L
Self-refresh  
Illegal  
*3  
L
L
L
X
X
X
X
Invalid  
(Continued)  
13  
MB81F64842D-75/-102/-102L  
(Continued)  
Current  
State  
CKE CKE  
CS RAS CAS WE  
Addr  
Function  
Notes  
n-1  
n
Bank Active  
Bank  
Activating  
Read/Write  
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
Refer to the Operation Command Table.  
Begin Clock Suspend next cycle  
Invalid  
H
L
L
X
X
Read with  
Auto-  
precharge/  
Write with  
Auto-  
X
precharge  
Clock  
Suspend  
H
L
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Invalid  
Exit Clock Suspend next cycle  
Maintain Clock Suspend  
Invalid  
L
Any State  
Other Than  
Listed  
L
X
H
L
H
H
Refer to the Operation Command Table.  
Illegal  
Above  
Notes: *1. All entries in COMMAND TRUTH TABLE FOR CKE are specified at CKE(n) state and CKE input from  
CKE(n-1) to CKE(n) state must satisfy corresponding set up and hold time for CKE.  
*2. CKE should be held High for tRC period.  
*3. SELF command should only be issued after the last data have been appeared on DQ.  
14  
MB81F64842D-75/-102/-102L  
FUNCTIONAL DESCRIPTION  
SDRAM BASIC FUNCTION  
Three major differences between this SDRAM and conventional DRAMs are: synchronized operation, burst mode,  
and mode register.  
The synchronized operation is the fundamental difference. An SDRAM uses a clock input for the synchronization,  
where the DRAM is basically asynchronous memory although it has been using two clocks, RAS and CAS. Each  
operation of DRAM is determined by their timing phase differences while each operation of SDRAM is determined  
by commands and all operations are referenced to a positive clock edge. Fig. 2 shows the basic timing diagram  
differences between SDRAMs and DRAMs.  
The burst mode is a very high speed access mode utilizing an internal column address generator. Once a column  
addresses for the first access is set, following addresses are automatically generated by the internal column address  
counter.  
ThemoderegisteristojustifytheSDRAMoperationandfunctionintodesiredsystemconditions.MODEREGISTER  
TABLE shows how SDRAM can be configured for system requirement by mode register programming.  
CLOCK (CLK) and CLOCK ENABLE (CKE)  
All input and output signals of SDRAM use register type buffers. A CLK is used as a trigger for the register and  
internal burst counter increment. All inputs are latched by a positive edge of CLK. All outputs are validated by the  
CLK. CKE is a high active clock enable signal. When CKE = Low is latched at a clock input during active cycle, the  
next clock will be internally masked. During idle state (all banks have been precharged), the Power Down mode  
(standby) is entered with CKE = Low and this will make extremely low standby current.  
CHIP SELECT (CS)  
CS enables all commands inputs, RAS, CAS, and WE, and address input. When CS is High, command signals are  
negated but internal operation such as burst cycle will not be suspended. If such a control isn’t needed, CS can be  
tied to ground level.  
COMMAND INPUT (RAS, CAS and WE)  
Unlike a conventional DRAM, RAS, CAS, and WE do not directly imply SDRAM operation, such as Row address  
strobe by RAS. Instead, each combination of RAS, CAS, and WE input in conjunction with CS input at a rising edge  
of the CLK determines SDRAM operation. Refer to FUNCTIONAL TRUTH TABLE in page 5.  
ADDRESS INPUT (A0 to A11)  
Address input selects an arbitrary location of a total of 2,097,152 words of each memory cell matrix. A total of twenty  
one address input signals are required to decode such a matrix. SDRAM adopts an address multiplexer in order to  
reduce the pin count of the address line. At a Bank Active command (ACTV), twelve Row addresses are initially  
latched and the remainder of nine Column addresses are then latched by a Column address strobe command of  
either a Read command (READ or READA) or Write command (WRIT or WRITA).  
BANK SELECT (A12, A13)  
This SDRAM has four banks and each bank is organized as 2 M words by 8-bit.  
Bank selection by A13, A12 occurs at Bank Active command (ACTV) followed by read (READ or READA), write (WRIT  
or WRITA), and precharge command (PRE).  
15  
MB81F64842D-75/-102/-102L  
DATA INPUT AND OUTPUT (DQ0 to DQ7)  
Input data is latched and written into the memory at the clock following the write command input. Data output is  
obtained by the following conditions followed by a read command input:  
tRAC ; from the bank active command when tRCD (min) is satisfied. (This parameter is reference only.)  
tCAC ; from the read command when tRCD is greater than tRCD (min). (This parameter is reference only.)  
tAC ; from the clock edge after tRAC and tCAC.  
The polarity of the output data is identical to that of the input. Data is valid between access time (determined by  
the three conditions above) and the next positive clock edge (tOH).  
DATA I/O MASK (DQM)  
DQM is an active high enable input and has an output disable and input mask function. During burst cycle and when  
DQM = High is latched by a clock, input is masked at the same clock and output will be masked at the second clock  
later while internal burst counter will increment by one or will go to the next stage depending on burst type.  
BURST MODE OPERATION AND BURST TYPE  
The burst mode provides faster memory access. The burst mode is implemented by keeping the same Row address  
and by automatic strobing column address. Access time and cycle time of Burst mode is specified as tAC and tCK,  
respectively. The internal column address counter operation is determined by a mode register which defines burst  
type and burst count length of 1, 2, 4 or 8 bits of boundary. In order to terminate or to move from the current burst  
mode to the next stage while the remaining burst count is more than 1, the following combinations will be required:  
Current Stage  
Next Stage  
Method (Assert the following command)  
Burst Read  
Burst Read  
Read Command  
1st Step  
2nd Step  
Mask Command (Normally 3 clock cycles)  
Write Command after lOWD  
Burst Read  
Burst Write  
Burst Write  
Burst Write  
Burst Read  
Burst Write  
Burst Write  
Burst Read  
Precharge  
Precharge  
Write Command  
Read Command  
Precharge Command  
Precharge Command  
The burst type can be selected either sequential or interleave mode if burst length is 2, 4 or 8. The sequential mode  
is an incremental decoding scheme within a boundary address to be determined by count length, it assigns +1 to  
the previous (or initial) address until reaching the end of boundary address and then wraps round to least significant  
address (= 0). The interleave mode is a scrambled decoding scheme for A0 and A2. If the first access of column  
address is even (0), the next address will be odd (1), or vice-versa.  
(Continued)  
16  
MB81F64842D-75/-102/-102L  
(Continued)  
When the full burst operation is executed at single write mode, Auto-precharge command is valid only at write  
operation.  
The burst type can be selected either sequential or interleave mode. But only the sequential mode is usable to the  
full column burst. The sequential mode is an incremental decoding scheme within a boundary address to be  
determined by burst length, it assigns +1 to the previous (or initial) address until reaching the end of boundary  
address and then wraps round to least significant address (= 0).  
Starting Column  
Burst  
Address  
Sequential Mode  
Interleave  
Length  
A2 A1 A0  
X X 0  
X X 1  
X 0 0  
X 0 1  
X 1 0  
X 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 – 1  
0 – 1  
2
1 – 0  
1 – 0  
0 – 1 – 2 – 3  
0 – 1 – 2 – 3  
1 – 2 – 3 – 0  
1 – 0 – 3 – 2  
4
2 – 3 – 0 – 1  
2 – 3 – 0 – 1  
3 – 0 – 1 – 2  
3 – 2 – 1 – 0  
0 – 1 – 2 – 3 – 4 – 5 – 6 – 7  
1 – 2 – 3 – 4 – 5 – 6 – 7 – 0  
2 – 3 – 4 – 5 – 6 – 7 – 0 – 1  
3 – 4 – 5 – 6 – 7 – 0 – 1 – 2  
4 – 5 – 6 – 7 – 0 – 1 – 2 – 3  
5 – 6 – 7 – 0 – 1 – 2 – 3 – 4  
6 – 7 – 0 – 1 – 2 – 3 – 4 – 5  
7 – 0 – 1 – 2 – 3 – 4 – 5 – 6  
0 – 1 – 2 – 3 – 4 – 5 – 6 – 7  
1 – 0 – 3 – 2 – 5 – 4 – 7 – 6  
2 – 3 – 0 – 1 – 6 – 7 – 4 – 5  
3 – 2 – 1 – 0 – 7 – 6 – 5 – 4  
4 – 5 – 6 – 7 – 0 – 1 – 2 – 3  
5 – 4 – 7 – 6 – 1 – 0 – 3 – 2  
6 – 7 – 4 – 5 – 2 – 3 – 0 – 1  
7 – 6 – 5 – 4 – 3 – 2 – 1 – 0  
8
FULL COLUMN BURST AND BURST STOP COMMAND (BST)  
The full column burst is an option of burst length and available only at sequential mode of burst type. This full column  
burst mode is repeatedly access to the same column. If burst mode reaches end of column address, then it wraps  
round to first column address (= 0) and continues to count until interrupted by the news read (READ) /write (WRIT),  
precharge (PRE), or burst stop (BST) command. The selection of Auto-precharge option is illegal during the full  
column burst operation except write command at BURST READ & SINGLE WRITE mode.  
The BST command is applicable to terminate the burst operation. If the BST command is asserted during the burst  
mode, its operation is terminated immediately and the internal state moves to Bank Active.  
When read mode is interrupted by BST command, the output will be in High-Z.  
For the detail rule, please refer to TIMING DIAGRAM – 8.  
When write mode is interrupted by BST command, the data to be applied at the same time with BST command will  
be ignored.  
BURST READ & SINGLE WRITE  
The burst read and single write mode provides single word write operation regardless of its burst length. In this  
mode, burst read operation does not be affected by this mode.  
17  
MB81F64842D-75/-102/-102L  
PRECHARGE AND PRECHARGE OPTION (PRE, PALL)  
SDRAM memory core is the same as conventional DRAMs’, requiring precharge and refresh operations. Precharge  
rewrites the bit line and to reset the internal Row address line and is executed by the Precharge command (PRE).  
With the Precharge command, SDRAM will automatically be in standby state after precharge time (tRP).  
The precharged bank is selected by combination of AP and A12, A13 when Precharge command is asserted. If AP  
= High, all banks are precharged regardless of A12, A13 (PALL). If AP = Low, a bank to be selected by A12, A13 is  
precharged (PRE).  
The auto-precharge enters precharge mode at the end of burst mode of read or write without Precharge command  
assertion.  
This auto precharge is entered by AP = High when a read or write command is asserted. Refer to FUNCTIONAL  
TRUTH TABLE.  
AUTO-REFRESH (REF)  
Auto-refresh uses the internal refresh address counter. The SDRAM Auto-refresh command (REF) generates  
Precharge command internally. All banks of SDRAM should be precharged prior to the Auto-refresh command. The  
Auto-refresh command should also be asserted every 16 µs or a total 4096 refresh commands within a 64 ms period.  
SELF-REFRESH ENTRY (SELF)  
Self-refresh function provides automatic refresh by an internal timer as well as Auto-refresh and will continue the  
refresh function until cancelled by SELFX.  
The Self-refresh is entered by applying an Auto-refresh command in conjunction with CKE = Low (SELF). Once  
SDRAM enters the self-refresh mode, all inputs except for CKE will be “don’t care” (either logic high or low level  
state) and outputs will be in a High-Z state. During a self-refresh mode, CKE = Low should be maintained. SELF  
command should only be issued after last read data has been appeared on DQ.  
Note: When the burst refresh method is used, a total of 4096 auto-refresh commands within 4 ms must be asserted  
prior to the self-refresh mode entry.  
SELF-REFRESH EXIT (SELFX)  
To exit self-refresh mode, apply minimum tCKSP after CKE brought high, and then the No Operation command (NOP)  
or the Deselect command (DESL) should be asserted within one tRC period. CKE should be held High within one  
tRC period after tCKSP. Refer to Timing Diagram-16 for the detail.  
It is recommended to assert an Auto-refresh command just after the tRC period to avoid the violation of refresh period.  
Note: When the burst refresh method is used, a total of 4096 auto-refresh commands within 4 ms must be asserted  
after the self-refresh exit.  
MODE REGISTER SET (MRS)  
The mode register of SDRAM provides a variety of different operations. The register consists of four operation fields;  
Burst Length, Burst Type, CAS latency, and Operation Code. Refer to MODE REGISTER TABLE.  
The mode register can be programmed by the Mode Register Set command (MRS). Each field is set by the address  
line. Once a mode register is programmed, the contents of the register will be held until re-programmed by another  
MRS command (or part loses power). MRS command should only be issued on condition that all DQ is in Hi-Z.  
The condition of the mode register is undefined after the power-up stage. It is required to set each field after  
initialization of SDRAM. Refer to POWER-UP INITIALIZATION below.  
18  
MB81F64842D-75/-102/-102L  
POWER-UP INITIALIZATION  
The SDRAM internal condition after power-up will be undefined. It is required to follow the following Power On  
Sequence to execute read or write operation.  
1. Apply power and start clock. Attempt to maintain either NOP or DESL command at the input.  
2. Maintain stable power, stable clock, and NOP condition for a minimum of 100 µs.  
3. Precharge all banks by Precharge (PRE) or Precharge All command (PALL).  
4. Assert minimum of 2 Auto-refresh command (REF).  
5. Program the mode register by Mode Register Set command (MRS).  
In addition, it is recommended DQM and CKE to track VCC to insure that output is High-Z state. The Mode Register  
Set command (MRS) can be set before 2 Auto-refresh command (REF).  
19  
MB81F64842D-75/-102/-102L  
Fig. 2 – BASIC TIMING FOR CONVENTIONAL DRAM VS SYNCHRONOUS DRAM  
<SDRAM>  
Active  
Precharge  
Read/Write  
CLK  
CKE  
H
H
H
tSI  
tHI  
CS  
RAS  
CAS  
WE  
H : Read  
L : Write  
Address  
DQ  
BA (A13, A12)  
CA  
BA (A13, A12)  
RA  
BA (A13, A12)  
AP (A10)  
CASLatency=2  
Burst Length = 4  
<Conventional DRAM>  
Row Address Select  
Column Address Select  
Precharge  
RAS  
CAS  
DQ  
20  
MB81F64842D-75/-102/-102L  
Fig. 3 – STATE DIAGRAM (Simplified for Single BANK Operation State Diagram)  
MRS  
SELF  
MODE  
REGISTER  
SET  
SELF  
REFRESH  
SELFX  
IDLE  
REF  
CKE\(PD)  
CKE  
AUTO  
REFRESH  
POWER  
DOWN  
CKE\(CSUS)  
CKE  
BANK  
ACTIVE  
SUSPEND  
BANK  
ACTIVE  
BST  
BST  
READ  
WRIT  
READ  
WRIT  
WRITA  
READA  
CKE\(CSUS)  
CKE  
WRITE  
SUSPEND  
READ  
SUSPEND  
CKE\(CSUS)  
CKE  
READ  
WRIT  
WRITE  
READ  
WRITA  
READA  
READA  
WRITA  
CKE\(CSUS)  
CKE  
WRITE WITH  
AUTO  
PRECHARGE  
READ WITH  
AUTO  
PRECHARGE  
CKE\(CSUS)  
CKE  
WRITE  
SUSPEND  
READ  
SUSPEND  
PRE or  
PALL  
PRE or  
PALL  
PRE or PALL  
POWER  
ON  
PRECHARGE  
POWER  
APPLIED  
DEFINITION OF ALLOWS  
Manual  
Input  
Automatic  
Sequence  
Note: CKE\ means CKE goes Low-level from High-level.  
21  
MB81F64842D-75/-102/-102L  
BANK OPERATION COMMAND TABLE  
MINIMUM CLOCK LATENCY OR DELAY TIME FOR SINGLE BANK OPERATION  
Second  
*4  
*4  
command  
(same  
bank)  
First  
command  
MRS  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
ACTV  
READ  
READA  
WRIT  
WRITA  
PRE  
tRCD  
tRCD  
tRCD  
tRCD  
tRAS  
tRAS  
1
*5  
*5  
*4  
*4  
1
1
1
1
1
1
1
*1  
*2  
BL+  
tRP  
*4  
*4  
*2  
*2  
*7  
BL+  
tRP  
BL+  
tRP  
BL+  
tRP  
BL+  
tRP  
BL+  
tRP  
*4  
*4  
tWR  
tWR  
1
1
tDPL  
tDPL  
1
*2  
*4  
*4  
*2  
*2  
BL-1  
+ tDAL  
BL-1  
+ tDAL  
BL-1  
+ tDAL  
BL-1  
+ tDAL  
BL-1  
+ tDAL  
BL-1  
+ tDAL  
*2  
*3  
*4  
*2  
*2  
*6  
tRP  
tRP  
tRC  
tRC  
tRP  
tRP  
tRC  
tRC  
1
1
1
1
tRP  
tRP  
tRC  
tRC  
tRP  
tRP  
tRC  
tRC  
1
1
*3  
*6  
PALL  
REF  
tRC  
tRC  
tRC  
SELFX  
tRC  
tRC  
tRC  
Notes: *1. If tRP(min) CL × tCK, minimum latency is a sum of (BL + CL) × tCK.  
*2. Assume all banks are in Idle state.  
*3. Assume output is in High-Z state.  
*4. Assume tRAS(min) is satisfied.  
*5. Assume no I/O conflict.  
*6. Assume after the last data have been appeared on DQ.  
*7. If tRP(min) (CL-1) × tCK, minimum latency is a sum of (BL + CL-1) × tCK.  
Illegal Command  
22  
MB81F64842D-75/-102/-102L  
MULTI BANK OPERATIVE COMMAND TABLE  
MINIMUM CLOCK LATENCY OR DELAY TIME FOR MULTI BANK OPERATION  
Second  
*5  
*5,*6  
*5  
*5, *6  
command  
(other  
bank)  
First  
command  
MRS  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
*2  
*7  
*7  
*7  
*10  
*6  
*7  
*6  
*7  
*7  
ACTV  
READ  
READA  
WRIT  
WRITA  
PRE  
tRRD  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
tRAS  
1
*2  
*4  
*10  
*6  
1 *10  
*6  
*6  
*6  
1
1
1
*1  
*2  
BL+  
tRP  
*2  
*4  
*6  
*6  
*6  
*6  
*6  
*2  
*2  
*9  
BL+  
tRP  
1
1 *10  
1
BL+  
tRP  
BL+  
tRP  
*2  
*4  
*6  
1
1
1
1
tDPL  
1
*2  
*2  
*4  
*6  
*7  
*6  
*7  
*6  
*6  
*6  
*2  
*2  
BL-1  
+ tDAL  
1
1
1
1
BL-1  
+ tDAL  
BL-1  
+ tDAL  
BL-1  
+ tDAL  
*2  
*3  
*2  
*4  
*7  
*7  
*6  
*7  
*7  
*2  
*2  
*8  
tRP  
tRP  
tRC  
tRC  
1
1
1
1
1
1
tRP  
tRP  
tRC  
tRC  
tRP  
tRP  
tRC  
tRC  
1
1
*3  
*8  
PALL  
REF  
tRP  
tRC  
tRC  
1
tRC  
tRC  
tRC  
SELFX  
tRC  
tRC  
tRC  
Notes: *1. If tRP(min) CL × tCK, minimum latency is a sum of (BL + CL) × tCK.  
*2. Assume bank of the object is in Idle state.  
*3. Assume output is in High-Z state.  
*4. tRRD(min) of other bank (second command will be asserted) is satisfied.  
*5. Assume other bank is in active, read or write state.  
*6. Assume tRAS(min) is satisfied.  
*7. Assume other banks are not in READA/WRITA state.  
*8. Assume after the last data have been appeared on DQ.  
*9. If tRP(min) (CL-1) × tCK, minimum latency is a sum of (BL + CL-1) × tCK.  
*10. Assume no I/O conflict.  
Illegal Command  
23  
MB81F64842D-75/-102/-102L  
MODE REGISTER TABLE  
MODE REGISTER SET  
A13  
0
A12  
0
A11  
0
A10  
0
A9  
A8  
0
A7  
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
ADDRESS  
Op-  
code  
MODE  
REGISTER  
CL  
BT  
BL  
A5  
Burst Length  
A6  
A4  
CAS Latency  
A2  
A1  
A0  
BT = 1 *2  
BT = 0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
Reserved  
2
2
4
3
4
Reserved  
Reserved  
Reserved  
Reserved  
8
8
Reserved  
Reserved  
Reserved  
Full Column  
Reserved  
Reserved  
Reserved  
Reserved  
A9  
Op-code  
A3  
Burst Type  
0
1
Burst Read & Burst Write  
Burst Read & Single Write *1  
0
1
Sequential (Wrap round, Binary-up)  
Interleave (Wrap round, Binary-up)  
Notes: *1. When A9 = 1, burst length at Write is always one regardless of BL value.  
*2. BL = 1 and Full Column are not applicable to the interleave mode.  
24  
MB81F64842D-75/-102/-102L  
ABSOLUTE MAXIMUM RATINGS (See WARNING)  
Parameter  
Voltage of VCC Supply Relative to VSS  
Voltage at Any Pin Relative to VSS  
Short Circuit Output Current  
Power Dissipation  
Symbol  
VCC, VCCQ  
VIN, VOUT  
IOUT  
Value  
–0.5 to +4.6  
–0.5 to +4.6  
±50  
Unit  
V
V
mA  
W
PD  
1.3  
Storage Temperature  
TSTG  
–55 to +125  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
(Referenced to VSS)  
Parameter  
Notes  
Symbol  
VCC, VCCQ  
VSS, VSSQ  
VIH  
Min.  
3.0  
0
Typ.  
3.3  
0
Max.  
3.6  
Unit  
V
Supply Voltage  
0
V
Input High Voltage  
Input Low Voltage  
Ambient Temperature  
*1  
*2  
2.0  
–0.5  
0
VCC + 0.5  
0.8  
V
VIL  
V
TA  
70  
°C  
Notes:  
VIH  
Pulse width 5 ns  
4.6 V  
VIL max  
VIL  
50% of pulse amplitude  
VIH  
VIH min  
50% of pulse amplitude  
1.5V  
Pulse width 5 ns  
VIL  
*2. Undershoot limit: VIL (min)  
*1. Overshoot limit: VIH (max)  
= VSS –1.5 V for pulse width <= 5 ns acceptable,  
pulse width measured at 50% of pulse amplitude.  
= 4.6 V for pulse width <= 5 ns acceptable,  
pulse width measured at 50% of pulse amplitude.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device's electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
CAPACITANCE  
(TA = 25°C, f = 1 MHz)  
Parameter  
Symbol  
CIN1  
Min.  
2.5  
Typ.  
Max.  
Unit  
pF  
Input Capacitance, Except for CLK  
Input Capacitance for CLK  
I/O Capacitance  
5.0  
4.0  
6.5  
CIN2  
2.5  
pF  
CI/O  
4.0  
pF  
25  
MB81F64842D-75/-102/-102L  
DC CHARACTERISTICS  
(At recommended operating conditions unless otherwise noted.) Note *1, *2 , and *3  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min.  
2.4  
Max.  
Output High Voltage  
VOH(DC) IOH = –2 mA  
VOL(DC) IOL = 2 mA  
0 V VIN VCC;  
V
V
Output Low Voltage  
0.4  
Input Leakage Current (Any Input)  
ILI  
All other pins not under  
test = 0 V  
–5  
–5  
5
µA  
µA  
0 V VIN VCC;  
Data out disabled  
Output Leakage Current  
ILO  
5
Burst Length = 1  
tRC = min  
tCK = min  
One bank active  
Output pin open  
Addresses changed up to  
one time during tCK (min)  
0 V VIN VIL max  
VIH min VIN VCC  
MB81F64842D-75  
85  
80  
MB81F64842D-102  
/-102L  
Operating Current  
(Average Power  
Supply Current)  
ICC1S  
mA  
*4  
65  
Reference Value  
@66MHz(CL=2)  
CKE = VIL  
All banks idle  
tCK = min  
Power down mode  
0 V VIN VIL max  
VIH min VIN VCC  
ICC2P  
1.0  
mA  
mA  
CKE = VIL  
All banks idle  
CLK = VIH or VIL  
Power down mode  
0 V VIN VIL max  
VIH min VIN VCC  
MB81F64842D-75  
/-102  
1.0  
0.5  
ICC2PS  
MB81F64842D-102L  
MB81F64842D-75  
Precharge Standby  
Current  
(Power Supply  
Current)  
CKE = VIH  
15  
15  
All banks idle, tCK = 15 ns  
NOP command only,  
Input signals (except to  
CMD) are changed one  
time during 30 ns  
0 V VIN VIL max  
VIH min VIN VCC  
MB81F64842D-102  
/-102L  
ICC2N  
mA  
mA  
*4  
Reference Value  
@66MHz(CL=2)  
15  
CKE = VIH  
All banks idle  
CLK =VIH or VIL  
Input signal are stable  
0 V VIN VIL max  
VIH min VIN VCC  
ICC2NS  
2
(Continued)  
26  
MB81F64842D-75/-102/-102L  
(Continued)  
Value  
Parameter  
Symbol  
Condition  
CKE = VIL  
Any bank active  
tCK = min  
Unit  
Min.  
Max.  
MB81F64842D-75  
/-102  
2
ICC3P  
mA  
0 V VIN VIL max  
VIH min VIN VCC  
MB81F64842D-102L  
1
1
CKE = VIL  
Any bank active  
CLK = VIH or VIL  
0 V VIN VIL max  
VIH min VIN VCC  
ICC3PS  
mA  
mA  
CKE = VIH  
Any bank active  
tCK = 15 ns  
NOP command only,  
Input signals (except to  
CMD) are changed one  
time during 30 ns  
0 V VIN VIL max  
VIH min VIN VCC  
Active Standby  
Current  
(Power Supply  
Current)  
MB81F64842D-75  
25  
25  
MB81F64842D-102  
/-102L  
ICC3N  
*4  
25  
2
Reference Value  
@66MHz(CL=2)  
CKE = VIH  
Any bank active  
CLK = VIH or VIL  
Input signals are stable  
0 V VIN VIL max  
VIH min VIN VCC  
ICC3NS  
mA  
mA  
tCK = min  
MB81F64842D-75  
135  
100  
Burst Length = 4  
Output pin open  
All-banks active  
Gapless data  
0 V VIN VIL max  
VIH min VIN VCC  
Burst mode Current MB81F64842D-102  
(Average Power  
Supply Current)  
/-102L  
ICC4  
*4  
70  
Reference Value  
@66MHz(CL=2)  
MB81F64842D-75  
150  
140  
Auto-refresh;  
tCK = min  
tRC = min  
0 V VIN VIL max  
VIH min VIN VCC  
Refresh Current #1 MB81F64842D-102  
(Average Power  
Supply Current)  
/-102L  
ICC5  
mA  
*4  
100  
1
Reference Value  
@66MHz(CL=2)  
MB81F64842D-75  
Self-refresh;  
tCK = min  
CKE 0.2 V  
0 V VIN VIL max  
VIH min VIN VCC  
mA  
µA  
Refresh Current #2  
(Average Power  
Supply Current)  
/-102  
ICC6  
MB81F64842D-102L  
500  
Notes: *1. All voltage are referenced to VSS.  
*2. DC characteristics are measured after following the POWER-UP INITIALIZATION procedure.  
*3. ICC depends on the output termination or load conditions, clock cycle rate, signal clocking rate.  
The specified values are obtained with the output open and no termination register.  
*4. This value is for reference only.  
27  
MB81F64842D-75/-102/-102L  
AC CHARACTERISTICS  
(At recommended operating conditions unless otherwise noted.) Note *1, *2, and *3  
*4  
ReferenceValue  
@66MHz(CL=2)  
MB81F64842D  
-75  
MB81F64842D  
-102/-102L  
Parameter  
Notes  
Symbol  
Unit  
Min.  
10  
Max.  
Min.  
10  
10  
3
Max.  
Min.  
15  
10  
3
Max.  
CL = 2  
CL = 3  
tCK2  
tCK3  
tCH  
tCL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Period  
7.5  
2.5  
2.5  
1.5  
0.8  
Clock High Time  
Clock Low Time  
Input Setup Time  
Input Hold Time  
*5  
6
6
8
*5  
*5  
*5  
3
3
tSI  
2
2
tHI  
1
1
Access Time  
from Clock  
(tCK = min)  
CL = 2  
CL = 3  
tAC2  
tAC3  
tLZ  
*5,*6,*7  
*5  
0
0
5.4  
6
6
6
Output in Low-Z  
0
3
6
8
CL = 2  
CL = 3  
CL = 2  
CL = 3  
tHZ2  
tHZ3  
Output in High-Z  
*5,*8  
3
3
2.7  
3
5.4  
6
6
Output Hold Time  
*5,*7  
tOH  
3
3
2.7  
Time between Auto-Refresh  
tREFI  
15.6  
15.6  
15.6  
µs  
command interval  
Time between Refresh  
Transition Time  
*4  
tREF  
tT  
64  
10  
64  
10  
64  
10  
ms  
ns  
0.5  
0.5  
0.5  
CKE Setup Time  
for Power Down  
Exit Time  
*5  
tCKSP  
1.5  
2
2
ns  
28  
MB81F64842D-75/-102/-102L  
BASE VALUES FOR CLOCK COUNT/LATENCY  
*4  
MB81F64842D  
-75  
MB81F64842D  
-102/-102L  
Reference  
Value  
@66MHz(CL=2)  
Parameter  
Notes  
Symbol  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
CL=3 CL=2  
RAS Cycle Time  
*9  
t
RC  
67.5  
22.5  
45  
70  
20  
50  
20  
10  
70  
20  
50  
20  
10  
80  
30  
50  
30  
10  
ns  
ns  
RAS Precharge Time  
RAS Active Time  
tRP  
tRAS  
tRCD  
tWR  
110000  
110000  
110000 ns  
RAS to CAS Delay Time  
Write Recovery Time  
22.5  
7.5  
ns  
ns  
RAS to RAS Bank Active Delay  
Time  
tRRD  
tDPL  
15  
15  
20  
10  
20  
10  
20  
10  
ns  
ns  
ns  
Data-in to Precharge Lead Time  
1 cyc  
+ tRP  
1 cyc  
+ tRP  
1 cyc  
+ tRP  
CL=2  
tDAL2  
Data-in to Active/  
Refresh Command  
2 cyc  
+ tRP  
2 cyc  
+ tRP  
2 cyc  
+ tRP  
Period  
CL=3  
tDAL3  
tRSC  
ns  
ns  
Mode Resister Set Cycle Time  
15  
20  
20  
20  
CLOCK COUNT FORMULA Note *10  
Base Value  
Clock ≥  
(Round off a whole number)  
Clock Period  
29  
MB81F64842D-75/-102/-102L  
LATENCY - FIXED VALUES  
(The latency values on these parameters are fixed regardless of clock period.)  
*4  
MB81F64842D  
-75  
MB81F64842D  
-102/-102L  
Reference  
Value  
Parameter  
Notes Symbol  
Unit  
@66MHz(CL=2)  
CKE to Clock Disable  
lCKE  
lDQZ  
lDQD  
1
2
0
1
2
0
1
2
0
cycle  
cycle  
cycle  
DQM to Output in High-Z  
DQM to Input Data Delay  
Last Output to Write Command  
Delay  
lOWD  
lDWD  
2
0
2
0
2
0
cycle  
cycle  
Write Command to Input Data  
Delay  
CL = 2  
lROH2  
lROH3  
lBSH2  
lBSH3  
lCCD  
2
3
2
3
1
1
2
3
2
3
1
1
2
3
2
3
1
1
cycle  
cycle  
cycle  
cycle  
cycle  
cycle  
Precharge to Output  
in High-Z Delay  
CL = 3  
CL = 2  
CL = 3  
Burst Stop Command to  
Output in High-Z Delay  
CAS to CAS Delay (min)  
CAS Bank Delay (min)  
lCBD  
Notes: *1. AC characteristics are measured after following the POWER-UP INITIALIZATION procedure.  
*2. AC characteristics assume tT = 1 ns and 50 pF of capacitive load.  
*3. 1.4Visthereferencelevelformeasuringtimingofinputsignals. Transitiontimesaremeasuredbetween  
VIH (min) and VIL (max). (See Fig. 5)  
*4. This value is for reference only.  
*5. If input signal transition time (tT) is longer than 1 ns; [(tT/2) –0.5] ns should be added to tAC (max), tHZ  
(max), and tCKSP (min) spec values, [(tT/2) –0.5] ns should be subtracted from tLZ (min), tHZ (min), and  
tOH (min) spec values, and (tT –1.0) ns should be added to tCH (min), tCL (min), tSI (min), and tHI (min)  
spec values.  
*6. tAC also specifies the access time at burst mode .  
*7. tAC and tOH are the specs value under AC test load circuit shown in Fig. 4.  
*8. Specified where output buffer is no longer driven.  
*9. Actual clock count of tRC (lRC) will be sum of clock count of tRAS (lRAS) and tRP (lRP).  
*10. All base values are measured from the clock edge at the command input to the clock edge for the next  
command input. All clock counts are calculated by a simple formula: clock count equals base value  
divided by clock period (round off to a whole number).  
30  
MB81F64842D-75/-102/-102L  
Fig. 4 – OUTPUT LOAD CIRCUIT  
Output  
CL = 50 pF  
LVTTL  
Note: By adding appropriate correlation factors to the test conditions, tAC and tOH measured when the output  
is coupled to the Output Load Circuit are within specifications.  
31  
MB81F64842D-75/-102/-102L  
Fig. 5 – TIMING DIAGRAM, SETUP, HOLD AND DELAY TIME  
tCK  
tCH  
tCL  
2.4 V  
1.4 V  
CLK  
0.4 V  
tSI  
tHI  
2.4 V  
0.4 V  
Input  
(Control,  
Addr. & Data)  
1.4 V  
tAC  
tHZ  
tOH  
tLZ  
2.4 V  
0.4 V  
Output  
1.4 V  
Note: Reference level of input signal is 1.4 V for LVTTL.  
Access time is measured at 1.4 V for LVTTL.  
Fig. 6 – TIMING DIAGRAM, DELAY TIME FOR POWER DOWN EXIT  
Don’t Care  
CLK  
CKE  
1 clock (min)  
tCKSP (min)  
Don’t Care  
NOP  
NOP  
ACTV  
Command  
32  
MB81F64842D-75/-102/-102L  
Fig. 7 – TIMING DIAGRAM, PULSE WIDTH  
CLK  
tRC, tRP, tRAS, tRCD, tWR, tREF,  
tDPL, tDAL, tRSC, tRRD, tCKSP  
Input  
COMMAND  
COMMAND  
(Control)  
Note: These parameters are a limit value of the rising edge of the clock from one command input to next input. tCKSP is the  
latency value from the rising edge of CKE.  
Measurement reference voltage is 1.4 V.  
Fig. 8 – TIMING DIAGRAM, ACCESS TIME  
CLK  
READ  
COMMAND  
tAC  
tAC  
tAC  
(CL 1) × tCK  
Q (valid)  
Q (valid)  
Q (valid)  
DQ  
(OUTPUT)  
33  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAMS  
TIMING DIAGRAM – 1 : CLOCK ENABLE - READ AND WRITE SUSPEND (@ BL = 4)  
CLK  
CKE  
*1  
*1  
ICKE (1 clock)  
ICKE (1 clock)  
*2  
*2  
CLK  
(Internal)  
*2  
(NO CHANGE)  
*2  
(NO CHANGE)  
DQ  
(Read)  
Q1  
D1  
Q2  
Q3  
Q4  
D4  
*3  
*3  
WRITTEN  
DQ  
(Write)  
NOT  
WRITTEN  
NOT  
D2  
D3  
Notes: *1. The latency of CKE (lCKE) is one clock.  
*2. During read mode, burst counter will not be incremented/decremented at the next clock of CSUS command. Output  
data remain the same data.  
*3. During the write mode, data at the next clock of CSUS command is ignored.  
TIMING DIAGRAM – 2 : CLOCK ENABLE - POWER DOWN ENTRY AND EXIT  
CLK  
tCKSP  
(min)  
1 clock  
(min)  
CKE  
*4  
*1  
*2  
*3  
*3  
Command  
NOP  
PD(NOP)  
DON’T CARE  
tREF (max)  
NOP  
NOP  
ACTV  
Notes: *1. Precharge command (PRE or PALL) should be asserted if any bank is active and in the burst mode.  
*2. Precharge command can be posted in conjunction with CKE after the last read data have been appeared on DQ.  
*3. It is recommended to apply NOP command in conjunction with CKE.  
*4. The ACTV command can be latched after tCKSP (min) + 1 clock (min).  
34  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAM – 3 : COLUMN ADDRESS TO COLUMN ADDRESS INPUT DELAY  
CLK  
RAS  
CAS  
ICCD  
(1 clock)  
ICCD  
ICCD  
ICCD  
tRCD (min)  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
ROW  
ADDRESS  
Address  
Note: CAS to CAS delay can be one or more clock period.  
TIMING DIAGRAM – 4 : DIFFERENT BANK ADDRESS INPUT DELAY  
CLK  
tRRD (min)  
RAS  
CAS  
ICBD  
(1 clock)  
tRCD (min) or more  
ICBD  
tRCD (min)  
ROW  
ADDRESS  
ROW  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
Address  
A12, A13(BA)  
Bank 0  
Bank 3  
Bank 0  
Bank 3  
Bank 0  
Bank 3  
Note: CAS Bank delay can be one or more clock period.  
35  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAM – 5 : DQM - INPUT MASK AND OUTPUT DISABLE (@ BL = 4)  
CLK  
DQM  
(@ Read)  
IDQZ (2 clocks)  
DQ  
(@ Read)  
Q1  
Q2  
Hi-Z  
Q4  
End of burst  
DQM  
(@ Write)  
IDQD (same clock)  
DQ  
(@ Write)  
D1  
MASKED  
D3  
D4  
End of burst  
TIMING DIAGRAM – 6 : PRECHARGE TIMING (APPLIED TO THE SAME BANK)  
CLK  
tRAS (min)  
PRECHARGE  
ACTV  
Command  
Note: PRECHARGE means ‘PRE’ or ‘PALL.  
36  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAM – 7 : READ INTERRUPTED BY PRECHARGE (EXAMPLE @ CL = 2, BL = 4)  
CLK  
Command  
DQ  
PRECHARGE  
IROH (2 clocks)  
Q1  
Hi-Z  
Command  
DQ  
PRECHARGE  
IROH (2 clocks)  
Q2  
Hi-Z  
Q1  
Command  
DQ  
PRECHARGE  
IROH (2 clocks)  
Q3  
Hi-Z  
Q1  
Q2  
Command  
DQ  
PRECHARGE  
No effect (end of burst)  
Q3 Q4  
Q1  
Q2  
Note: In case of CL = 2, the lROH is 2 clocks.  
In case of CL = 3, the lROH is 3 clocks.  
PRECHARGE means ‘PRE’ or ‘PALL.  
37  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAM – 8 : READ INTERRUPTED BY BURST STOP (EXAMPLE @ BL = Full Column)  
CLK  
Command  
(CL = 2)  
BST  
Qn  
lBSH (2 clocks)  
Hi-Z  
Qn–2  
Qn–1  
Qn+1  
DQ  
BST  
Command  
(CL = 3)  
lBSH (3 clocks)  
Hi-Z  
DQ  
Qn-2  
Qn-1  
Qn  
Qn+1  
Qn+2  
TIMING DIAGRAM – 9 : WRITE INTERRUPTED BY BURST STOP (EXAMPLE @ CL = 2)  
CLK  
Command  
DQ  
BST  
COMMAND  
Masked  
by BST  
LAST Dn  
38  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAM – 10 : WRITE INTERRUPTED BY PRECHARGE (EXAMPLE @ CL = 3)  
CLK  
ACTV  
PRECHARGE  
tDPL (min)  
Command  
tRP (min)  
MASKED  
by Precharge  
DQ  
LAST Dn  
Dn-1  
Note: The precharge command (PRE) should only be issued after the tDPL of final data input is satisfied.  
PRECHARGE means ‘PRE’ or ‘PALL.  
TIMING DIAGRAM – 11 : READ INTERRUPTED BY WRITE (EXAMPLE @ CL = 3, BL = 4)  
CLK  
IOWD (2 clocks)  
READ  
WRIT  
Command  
DQM  
*1  
*2  
*3  
IDQZ (2 clocks)  
IDWD (same clock)  
DQ  
Q1  
D1  
D2  
Masked  
Notes: *1. First DQM makes high-impedance state High-Z between last output and first input data.  
*2. Second DQM makes internal output data mask to avoid bus contention.  
*3. Third DQM in illustrated above also makes internal output data mask. If burst read ends (final data output) at or after the  
second clock of burst write, this third DQM is required to avoid internal bus contention.  
39  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAM – 12 : WRITE TO READ TIMING (EXAMPLE @ CL = 3, BL = 4)  
CLK  
tWR (min)  
Command  
WRIT  
READ  
DQM  
DQ  
(CL-1) × tCK  
tAC (max)  
D3  
D1  
D2  
Q1  
Q2  
Masked  
by READ  
Note: Read command should be issued after tWR of final data input is satisfied.  
40  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAM – 13 : READ WITH AUTO-PRECHARGE  
(EXAPLE @ CL = 2, BL = 2 Applied to same bank)  
CLK  
tRAS (min)  
tRP (min)  
ACTV  
READA  
NOP or DESL  
ACTV  
Command  
*1  
2 clocks  
*2  
(same value as BL)  
BL+tRP (min)  
DQM  
DQ  
Q1  
Q2  
Notes: *1. Precharge at Read with Auto-precharge command (READA) is started from number of clocks that is the same as  
Burst Length (BL) after the READA command is asserted.  
*2. Next ACTV command should be issued after BL+tRP (min) from READA command.  
TIMING DIAGRAM – 14 : WRITE WITH AUTO-PRECHARGE *1, *2, *3  
(EXAMPLE @ CL = 2, BL = 2 Applied to same bank)  
tRAS (min)  
CLK  
tDPL (min) *4  
tDAL (min)  
*5  
BL+tRP (min)  
Command  
ACTV  
WRITA  
NOP or DESL  
ACTV  
DQM  
DQ  
D1  
D2  
Notes: *1. Even if the final data is masked by DQM, the precharge does not start the clock of final data input.  
*2. Once auto precharge command is asserted, no new command within the same bank can be issued.  
*3. Auto-precharge command doesn’t affect at full column burst operation except Burst READ & Single Write.  
*4. Precharge at write with Auto-precharge is started after the tDPL from the end of burst.  
*5. Next command should be issued after BL+ tRP (min) at CL = 2, BL+1+tRP (min) at CL = 3 from WRITA command.  
41  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAM – 15 : AUTO-REFRESH TIMING  
CLK  
*3  
*4  
*3  
*3  
*1  
*3  
Command  
REF  
NOP  
NOP  
NOP  
REF  
NOP  
Command  
tRC (min)  
tRC (min)  
*2  
DON’T CARE  
*2  
DON’T CARE  
BA  
A12, A13 (BA)  
Notes: *1. All banks should be precharged prior to the first Auto-refresh command (REF).  
*2. Bank select is ignored at REF command. The refresh address and bank select are selected by internal refresh counter.  
*3. Either NOP or DESL command should be asserted during tRC period while Auto-refresh mode.  
*4. Any activation command such as ACTV or MRS command other than REF command should be asserted after tRC from the  
last REF command.  
TIMING DIAGRAM – 16 : SELF-REFRESH ENTRY AND EXIT TIMING  
CLK  
tCKSP (min)  
tSI (min)  
CKE  
*4  
tRC (min)  
*2  
*3  
*1  
SELF  
DON’T CARE  
SELFX  
Command  
NOP  
NOP  
NOP  
Command  
Notes: *1. Precharge command (PRE or PALL) should be asserted if any bank is active prior to Self-refresh Entry command (SELF).  
*2. The Self-refresh Exit command (SELFX) is latched after tCKSP (min). It is recommended to apply NOP command in  
conjunction with CKE.  
*3. Either NOP or DESL command can be used during tRC period.  
*4. CKE should be held high within one tRC period after tCKSP.  
42  
MB81F64842D-75/-102/-102L  
TIMING DIAGRAM – 17 : MODE REGISTER SET TIMING  
CLK  
tRSC (min)  
MRS  
NOP or DESL  
ACTV  
Command  
Address  
ROW  
ADDRESS  
MODE  
Note: The Mode Register Set command (MRS) should only be asserted after all banks have been precharged.  
43  
MB81F64842D-75/-102/-102L  
PACKAGE DIMENSION  
54-pin plastic TSOP(II)  
(FPT-54P-M02)  
*: Resin protrusion. (Each side: 0.15 (.006) MAX)  
54  
28  
Details of "A" part  
0.15(.006)  
0.25(.010)  
0.15(.006)  
MAX  
"A"  
INDEX  
0.40(.016)  
MAX  
1
27  
LEAD No.  
*22.22±0.10  
(.875±.004)  
1.15±0.05  
(.045±.002)  
11.76±0.20  
(.463±.008)  
(Mounting height)  
0.32 +00..0078  
.013 +..000033  
10.16±0.10  
(.400±.004)  
0.125±0.05  
(.005±.002)  
M
0.16(.006)  
0.50±0.10  
(.020±.004)  
10.76±0.20  
(.424±.008)  
0.80(.0315)  
TYP  
0.10(.004)  
20.80(.819)REF  
0.05(.002)MIN  
(STAND OFF)  
Dimensions in mm (inches)  
C
1997 FUJITSU LIMITED F54003S-1C-1  
44  
MB81F64842D-75/-102/-102L  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
All Rights Reserved.  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: 81(44) 754-3763  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: 81(44) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and  
Fax: (408) 922-9179  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
measurement equipment, personal or household devices, etc.).  
CAUTION:  
Fax: (408) 922-9179  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded  
(such as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have an inherent chance of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
Fax: (65) 281-0220  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for  
export of those products from Japan.  
http://www.fmap.com.sg/  
F9910  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB81F64842D-102LFN

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81G163222--10TQ

Synchronous Graphics RAM, 512KX32, 7ns, CMOS, PQFP100, PLASTIC, TQFP-100
FUJITSU

MB81G163222--80TQ

Synchronous Graphics RAM, 512KX32, 7ns, CMOS, PQFP100, PLASTIC, TQFP-100
FUJITSU

MB81G83222-010PQ

暂无描述
FUJITSU

MB81G83222-015PQ

Synchronous Graphics RAM, 256KX32, 12ns, CMOS, PQFP100, PLASTIC, QFP-100
FUJITSU

MB81N261647A-22FN

DDR DRAM, 16MX16, 0.85ns, CMOS, PDSO66
FUJITSU

MB81N261647A-24FN

DDR DRAM, 16MX16, 0.9ns, CMOS, PDSO66
FUJITSU

MB81N261647A-30FN

DDR DRAM, 16MX16, 1ns, CMOS, PDSO66
FUJITSU
FUJITSU

MB81N26167B-50FN

16MX16 DDR DRAM, 0.75ns, PDSO66, 0.400 INCH, PLASTIC, TSOP2-66
FUJITSU

MB81N26167B-55FN

16M X 16 DDR DRAM, 0.75 ns, PDSO66, 0.400 INCH, PLASTIC, TSOP2-66
FUJITSU

MB81N26167B-60FN

16MX16 DDR DRAM, 0.85ns, PDSO66, 0.400 INCH, PLASTIC, TSOP2-66
FUJITSU