MB84VZ064G-70PBS [FUJITSU]

Memory Circuit, Flash+SRAM, 4MX16, CMOS, PBGA107, PLASTIC, FBGA-107;
MB84VZ064G-70PBS
型号: MB84VZ064G-70PBS
厂家: FUJITSU    FUJITSU
描述:

Memory Circuit, Flash+SRAM, 4MX16, CMOS, PBGA107, PLASTIC, FBGA-107

静态存储器 内存集成电路
文件: 总69页 (文件大小:983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB84VZ064G-70  
Data Sheet  
July 2003  
The following document specifies Spansion memory products that are now offered by both Advanced Micro Devices  
and Fujitsu. Although the document is marked with the name of the company that originally developed the specifi-  
cation, these products will be offered to customers of both AMD and Fujitsu.  
Continuity of Specifications  
There is no change to this datasheet as a result of offering the device as a Spansion product. Any changes that  
have been made are the result of normal datasheet improvement and are noted in the document revision summary,  
where supported. Future routine revisions will occur when appropriate, and changes will be noted in a revision sum-  
mary.  
Continuity of Ordering Part Numbers  
AMD and Fujitsu continue to support existing part numbers beginning with “Am” and “MBM”. To order these prod-  
ucts, please use only the Ordering Part Numbers listed in this document.  
For More Information  
Please contact your local AMD or Fujitsu sales office for additional information about Spansion memory solutions.  
Publication Number 26829 Revision A Amendment 0 Issue Date October 25, 2002  
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS05-50502-1E  
4 Stacked MCP (Multi-Chip Package) FLASH & FLASH & FCRAM & SRAM  
CMOS  
64M (×16) FLASH MEMORY & 64M (×16) FLASH MEMORY &  
64M (×16) Mobile FCRAMTM & 8M (×16) STATIC RAM  
MB84VZ064G-70  
FEATURES  
• Power Supply Voltage of 2.7 V to 3.1 V  
High Performance  
70 ns maximum access time (Flash_1or Flash_2)  
70 ns maximum access time (FCRAM)  
70 ns maximum access time (SRAM)  
Operating Temperature  
–30 °C to +85 °C  
• Package 107-ball BGA  
(Continued)  
PRODUCT LINEUP  
Flash_1 or Flash_2  
FCRAM  
SRAM  
+0.1 V  
+0.1 V  
+0.1 V  
–0.3 V  
Supply Voltage (V)  
VCCf_1*/VCCf_2* = 3.0 V  
VCCr* = 3.0 V  
VCCs* = 3.0 V  
–0.3 V  
–0.3 V  
Max Address Access Time (ns)  
Max CE Access Time (ns)  
Max OE Access Time (ns)  
70  
70  
30  
70  
70  
40  
70  
70  
35  
* : All of VCCf_1, VCCf_2, VCCr and VCCs must be the same level when either part is being accessed.  
PACKAGE  
107-ball plastic FBGA  
BGA-107P-M01  
MB84VZ064G-70  
(Continued)  
1. FLASH MEMORY_1 and FLASH MEMORY_2  
Simultaneous Read/Write Operations (Dual Bank)  
FlexBankTM*1  
Bank A : 8 Mbit (8 KB × 8 and 64 KB × 15)  
Bank B : 24 Mbit (64 KB × 48)  
Bank C : 24 Mbit (64 KB × 48)  
Bank D : 8 Mbit (8 KB × 8 and 64 KB × 15)  
Two virtual Banks are chosen from the combination of four physical banks.  
Host system can program or erase in one bank, and then read immediately and simultaneously from the other  
bank with zero latency between read and write operations.  
Read-while-erase  
Read-while-program  
• Minimum 100,000 Program/Erase Cycles  
Sector Erase Architecture  
Sixteen 4 Kword and one hundred twenty-six 32 Kword sectors in word.  
Any combination of sectors can be concurrently erased. It also supports full chip erase.  
HiddenROM Region  
256 byte of HiddenROM, accessible through a new “HiddenROM Enable” command sequence  
Factory serialized and protected to provide a secure electronic serial number (ESN)  
WP/ACC Input Pin  
AtVIL, allowsprotectionofoutermost2× 8Kbytesonbothendsofbootsectors, regardlessofsectorprotection/  
unprotection status  
At VIH, allows removal of boot sector protection  
At VACC, increases program performance  
Embedded EraseTM*3 Algorithms  
Automatically preprograms and erases the chip or any sector  
Embedded ProgramTM*3 Algorithms  
Automatically writes and verifies data at specified address  
• Data Polling and Toggle Bit Feature for Detection of Program or Erase Cycle Completion  
Ready/Busy Output (RY/BY_1 or RY/BY_2)  
Hardware method for detection of program or erase cycle completion  
Automatic Sleep Mode  
When addresses remain stable, the device automatically switches itself to low power mode.  
Low VCCf write Inhibit 2.5 V  
Program Suspend/Resume  
Suspends the program operation to allow a read in another byte  
Erase Suspend/Resume  
Suspends the erase operation to allow a read data and/or program in another sector within the same device  
• Please Refer to “MBM29DL64DF” Datasheet in Detailed Function.  
(Continued)  
2
MB84VZ064G-70  
(Continued)  
2. FCRAM *3  
• Power Dissipation  
Operating : 25 mA Max  
Standby  
: 200 µA Max  
• Power Down Mode  
Sleep  
NAP  
: 10 µA Max  
: 65 µA Max  
16M Partial : 85 µA Max  
• Power Down Control by CE2r  
• Byte Write Control: LB(DQ7 to DQ0), UB(DQ15 to DQ8)  
• 8 words Address Access Capability  
3. SRAM  
• Power Dissipation  
Operating: 50 mA Max  
Standby : 15 µA Max  
• Power Down Features using CE1s and CE2s  
• Data Retention Supply Voltage: 1.5 V to 3.1 V  
• CE1s and CE2s Chip Select  
• Byte Data Control: LB (DQ7 to DQ0), UB (DQ15 to DQ8)  
*1 : FlexBankTM is a trademark of Fujitsu Limited, Japan.  
*2 : Embedded EraseTM and Embedded ProgramTM are trademarks of Advanced Micro Devices, Inc.  
*3 : FCRAMTM is a trademark of Fujitsu Limited, Japan.  
3
MB84VZ064G-70  
PIN ASSIGNMENT  
(Top View)  
Marking Side  
A10  
E10  
N.C.  
E9  
J10  
N.C.  
J9  
M10  
N.C.  
F10  
N.C.  
F9  
G10  
N.C.  
G9  
H10  
N.C.  
H9  
B10  
N.C.  
B9  
C10  
N.C.  
C9  
D10  
N.C.  
D9  
K10  
N.C.  
K9  
L10  
N.C.  
L9  
N.C.  
A9  
M9  
N.C.  
N.C.  
B8  
N.C.  
C8  
A15  
D8  
A21  
E8  
N.C.  
F8  
A16  
G8  
VCCf_1  
H8  
VSS  
J8  
N.C.  
K8  
N.C.  
L8  
N.C.  
N.C.  
A11  
C7  
A12  
D7  
A13  
E7  
A14  
F7  
PE  
DQ15  
H7  
DQ7  
J7  
DQ14  
K7  
N.C.  
L7  
G7  
B7  
N.C.  
B6  
A8  
A19  
D6  
A9  
A10  
F6  
DQ6  
G6  
DQ13  
H6  
DQ12  
J6  
DQ5  
K6  
N.C.  
L6  
C6  
E6  
N.C.  
B5  
WE  
C5  
CE2r  
D5  
A20  
E5  
N.C.  
F5  
CE2s  
G5  
DQ4  
H5  
VCCr  
J5  
N.C.  
K5  
N.C.  
L5  
CEf_2 WP/ACC RESET_1 RY/BY_1  
CE1s  
F4  
VCCs  
G4  
DQ3  
H4  
VCCf_1  
J4  
DQ11  
K4  
VCCf_2  
L4  
E4  
A18  
E3  
B4  
RY/BY_2  
B3  
C4  
LB  
D4  
UB  
D3  
A6  
A17  
F3  
DQ1  
G3  
DQ9  
H3  
DQ10  
J3  
DQ2  
K3  
VSS  
L3  
C3  
VSS  
B2  
A7  
A5  
E2  
A4  
VSS  
G2  
OE  
DQ0  
J2  
DQ8  
K2  
RESET_2  
L2  
D2  
A3  
M2  
A2  
N.C.  
A1  
F2  
H2  
C2  
N.C.  
N.C.  
N.C.  
C1  
A2  
E1  
A1  
A0  
CEf_1  
H1  
CE1r  
J1  
N.C.  
K1  
N.C.  
L1  
F1  
G1  
M1  
D1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
(BGA-107P-M01)  
4
MB84VZ064G-70  
PIN DESCRIPTION  
Input/  
Output  
Pin name  
Description  
A18 to A0  
A21 to A19  
DQ15 to DQ0  
CEf_1  
CEf_2  
CE1r  
I
Address Inputs (Common)  
I
Address Inputs (FCRAM & Flash_1 & Flash_2 )  
Data Inputs/Outputs (Common)  
Chip Enable (Flash_1)  
I/O  
I
I
Chip Enable (Flash_2)  
I
Chip Enable (FCRAM)  
CE1s  
I
Chip Enable (SRAM)  
CE2r  
I
Chip Enable (FCRAM)  
CE2s  
I
Chip Enable (SRAM)  
OE  
I
Output Enable (Common)  
WE  
I
Write Enable (Common)  
RY/BY_1  
RY/BY_2  
UB  
O
Ready/Busy Output (Flash_1) Open Drain Output  
Ready/Busy Output (Flash_2) Open Drain Output  
Upper Byte Control (FCRAM & SRAM)  
Lower Byte Control (FCRAM & SRAM)  
Hardware Reset Pin/Sector Protection Unlock (Flash_1)  
Hardware Reset Pin/Sector Protection Unlock (Flash_2)  
Write Protect / Acceleration (Flash_1 & Flash_2)  
Partial Enable (FCRAM)  
O
I
LB  
I
RESET_1  
RESET_2  
WP/ACC  
PE  
I
I
I
I
N.C.  
No Internal Connection  
VSS  
Power  
Power  
Power  
Power  
Power  
Device Ground (Common)  
VCCf_1  
VCCf_2  
VCCr  
Device Power Supply (Flash_1)  
Device Power Supply (Flash_2)  
Device Power Supply (FCRAM)  
Device Power Supply (SRAM)  
VCCs  
5
MB84VZ064G-70  
BLOCK DIAGRAM  
VCCf_1  
VSS  
A21 to A0  
RY/BY_1  
64 M bit  
Flash Memory_1  
RESET_1  
CEf_1  
VCCf_2  
VSS  
A21 to A0  
RY/BY_2  
64 M bit  
Flash Memory_2  
WP/ACC  
RESET_2  
CEf_2  
DQ15 to DQ0  
VCCr  
VSS  
A21 to A0  
64 M bit  
FCRAM  
LB  
UB  
WE  
OE  
CE1r  
CE2r  
PE  
VCCs  
VSS  
A18 to A0  
8 M bit  
SRAM  
CE1s  
CE2s  
6
MB84VZ064G-70  
DEVICE BUS OPERATIONS  
WP/  
A20 DQ7 DQ15  
Operation*1,*2  
CEf_1 CEf_2 CE1r CE2r CE1s CE2s  
RESET_1 RESET_2 ACC  
OE WE LB UB PE to  
A0  
to  
to  
12  
DQ0 DQ8  
*
H
X
H
X
X
L
X
L
High-Z High-Z  
H
H
H
L
H
H
H
H
L
H
L
H
H
X
H
X
H
X
X
X
X
H
X
H
H
H
H
X
Full Standby  
X*10  
H
X
H
X
X
H
X
H
H
H
H
H
H
H
H
L
L
H
Output Disable*3  
H
High-Z High-Z  
X
H
X
H
X
H
X
H
X
H
X
H
X
H
X
X
L
X
L
X
L
X
L
X
L
X
L
X
L
H
X
H
H
X
X
H
L
Read from Flash_1*4  
Read from Flash_2*4  
Write to Flash _1  
Valid  
Valid  
Valid  
Valid  
Valid  
H
L
H
H
H
H
H
L
L
H
H
L
X
X
X
X
X
X
X
X
H
H
H
H
H
DOUT  
DOUT  
DIN  
DOUT  
DOUT  
DIN  
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
H
L
H
L
H
H
L
H
H
L
DIN  
DIN  
Write to Flash_2  
Read from FCRAM*5  
H
H L*9 L*9  
DOUT  
DIN  
DOUT  
DIN  
L
H
L
L
L
H
X
L
X
L
H
H
H
H
Valid High-Z DIN  
High-Z  
DIN  
H
L
DIN  
DIN  
H
H
L
H
H
L
H
H
X
Write to FCRAM  
L
H
L
L
Valid High-Z DIN  
High-Z  
DOUT  
DOUT  
High-Z  
DIN  
H
L
DIN  
DOUT  
L
Valid High-Z  
DOUT  
Read from SRAM  
Write to SRAM  
H
H
H
H
H
H
H
H
H
H
L
H
L
H
L
L
H
H
H
H
X
X
H
L
L
DIN  
Valid High-Z  
DIN  
L
H
H
L
L
DIN  
High-Z  
H
(Continued)  
7
MB84VZ064G-70  
(Continued)  
WP/  
A20  
OE WE LB UB PE to  
A0  
DQ7 DQ15  
Operation*1,*2  
CEf_1 CEf_2 CE1r CE2r CE1s CE2s  
RESET_1 RESET_2 ACC  
to  
to  
12  
DQ0 DQ8  
*
Flash_1 Temporary  
Sector Group  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
VID  
X
X
X
Unprotection*6  
Flash_ 2 Temporary  
Sector Group  
Unprotection*6  
X
VID  
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
H
X
H
X
X
L
X
L
Flash_1 Hardware  
Reset  
X
X
X
X
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
X
L
X
X
Flash_2 Hardware  
Reset  
X
Flash_1 or 2 Boot  
Block Sector Write  
Protection  
X
H
X
H
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
H
X
H
L
H
X
H
X
X
L
X
L
FCRAM Power  
Down Program  
Valid  
*11  
High-Z High-Z  
High-Z High-Z  
X
FCRAM NO READ*7  
H
X
H
X
L
H
L
L
H
X
H
X
H
X
H
X
Valid  
X
H
X
H
X
X
X
FCRAM Power  
Down*8  
X
X
X
X
X
X
Legend: L = VIL, H = VIH, X = VIL or VIH. See DC Characteristics for voltage levels.  
*1 : Other operations except for indicated this column are inhibited.  
*2 : Do not apply for a following state two or more on the same time;  
1) CEf_1 = VIL, 2)CEf_2 = VIL, 3) CE1r = VIL and CE2r = VIH, 4) CE1s = VIL and CE2s = VIH  
*3 : FCRAM Output Disable condition should not be kept longer than 1 µs.  
*4 : WE can be VIL if OE is VIL, OE at VIH initiates the write operations.  
*5 : FCRAM LB, UB control at Read operation is not supported.  
*6 : It is also used for the extended sector group protections.  
*7 : The FCRAM Power Down Program can be performed one time after compliance of Power-UP timings and it  
should not be re-programmed after regular Read or Write.  
*8 : FCRAM Power Down mode can be entered from Standby state and all DQ pins are in High-Z state.  
IPDr current and data retention depends on the selection of Power Down Program.  
*9 : Either or both LB and UB must be Low for FCRAM Read Operation.  
*10 : Can be either VIL or VIH but must be valid before Read or Write.  
*11 : See “FCRAM Power Down Program Key Table” in “64 M FCRAM CHARACTERISTICS for MCP”.  
*12 : Protect “ outer most “ 2 × 8K bytes ( 4 words ) on both ends of the boot block sectors.  
8
MB84VZ064G-70  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Unit  
Parameter  
Symbol  
Min  
Max  
Storage Temperature  
Tstg  
–55  
–30  
+125  
°C  
°C  
V
Ambient Temperature with Power Applied  
TA  
+85  
VCCf_1 + 0.3  
VCCf_2 + 0.3  
VCCr + 0.3  
VCCs + 0.3  
V
Voltage with Respect to Ground All pins  
except RESET_1 or RESET_2, WP/ACC *1  
VIN, VOUT  
–0.3  
V
V
VCCf_1,VCCf_2,  
VCCr, VCCs  
VCCf_1/VCCf_2/VCCr/VCCs Supply *1  
–0.3  
+3.3  
V
RESET_1 or RESET_2 *2  
WP/ACC *3  
VIN  
VIN  
–0.5  
–0.5  
+ 13.0  
+10.5  
V
V
*1 : Minimum DC voltage on input or I/O pins is –0.3 V. During voltage transitions, input or I/O pins may undershoot  
VSS to –1.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is VCCf_1 + 0.3 V or  
VCCf_2 + 0.3 V or VCCr + 0.3 V or VCCs + 0.3 V. During voltage transitions, input or I/O pins may overshoot to  
VCCf_1 + 2.0 V or VCCf_2 + 2.0 V or VCCr + 1.0 V or VCCs + 2.0 V for periods of up to 20 ns.  
*2 : Minimum DC input voltage on RESET_1 or RESET_2 pin is –0.5 V. During voltage transitions RESET_1 or  
RESET_2 pins may undershoot VSS to –2.0 V for periods of up to 20 ns.  
Voltage difference between input and supply voltage (VIN-VCCf_1 or VCCf_2) does not exceed +9.0 V.  
Maximum DC input voltage on RESET_1 or RESET_2 pins is +13.0 V which may overshoot to +14.0 V for  
periods of up to 20 ns.  
*3 : Minimum DC input voltage on WP/ACC pin is –0.5 V. During voltage transitions, WP/ACC pin may undershoot  
Vss to –2.0 V for periods of up to 20 ns. Maximum DC input voltage on WP/ACC pin is +10.5 V which may  
overshoot to +12.0 V for periods of up to 20 ns, when VCCf_1 or VCCf_2 is applied.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Min  
Max  
Ambient Temperature  
TA  
–30  
+85  
°C  
V
VCCf_1/VCCf_2/VCCr/VCCs Supply  
Voltages  
VCCf_1,VCCf_2,VCCr,VCCs  
+2.7  
+3.1  
Note: Operating ranges define those limits between which the functionality of the device is guaranteed.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
9
MB84VZ064G-70  
ELECTRICAL CHARACTERISTICS  
1. DC Characteristics  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Min Typ Max  
Input Leakage Current  
Output Leakage Current  
ILI  
VIN = VSS to VCCf_1,VCCr,VCCs  
VOUT = VSS to VCCf_1,VCCr,VCCs  
–1.0  
–1.0  
+1.0 µA  
+1.0 µA  
ILO  
RESET Inputs Leakage  
Current  
VCCf= VCCf Max,  
RESET = 12.5 V  
ILIT  
35  
µA  
tCYCLE =5 MHz  
18  
4
mA  
mA  
Flash VCC Active Current  
(Read) *1  
CEf = VIL,  
OE = VIH  
ICC1f  
tCYCLE =1 MHz  
Flash VCC Active Current  
(Program/Erase) *2  
ICC2f  
ICC3f  
ICC4f  
ICC5f  
IACC  
CEf = VIL, OE = VIH  
CEf = VIL, OE = VIH  
CEf = VIL, OE = VIH  
CEf = VIL, OE = VIH  
35  
53  
53  
40  
20  
mA  
mA  
mA  
mA  
mA  
Flash VCC Active Current  
(Read-While-Program) *5  
Flash VCC Active Current  
(Read-While-Erase) *5  
Flash VCC Active Current  
(Erase-Suspend-Program)  
WP/ACC Acceleration  
Program Current  
VCCf = VCCf Max,  
WP/ACC = VACC Max  
VCCr = VCCr Max,  
tRC / tWC =Min  
25  
3
FCRAM VCC Active Current  
ICC1r  
CE1r = VIL, CE2r = VIH,  
VIN = VIH or VIL, IOUT = 0 mA  
mA  
mA  
tRC / tWC =1 µs  
VCCs = VCCs Max,  
CE1s = VIL, CE2s = VIH  
SRAM VCC Active Current  
SRAM VCC Active Current  
ICC1s  
ICC2s  
tCYCLE =10 MHz  
50  
tCYCLE =10 MHz  
tCYCLE =1 MHz  
50  
10  
mA  
mA  
CE1s = 0.2 V,  
CE2s = VCCs – 0.2 V  
VCCf = VCCf Max, CEf = VCCf ± 0.3 V,  
RESET = VCCf ± 0.3 V,  
WP/ACC = VCCf ± 0.3 V  
Flash VCC Standby Current  
ISB1f  
ISB2f  
1 *7  
1 *7  
5 *7  
5 *7  
µA  
µA  
Flash VCC Standby Current  
(RESET)  
VCCf = VCCf Max, RESET = VSS ± 0.3 V,  
WP/ACC = VCCf ± 0.3 V  
VCCf = VCCf Max, CEf = VSS ± 0.3 V,  
RESET = VCCf ± 0.3 V,  
WP/ACC = VCCf ± 0.3 V,  
Flash VCC Current (Automatic  
Sleep Mode) *3  
ISB3f  
1 *7  
5 *7  
µA  
VIN = VCCf ± 0.3 V or VSS ± 0.3 V  
(Continued)  
10  
MB84VZ064G-70  
(Continued)  
Parameter  
Value  
Unit  
Symbol  
Conditions  
Min  
Typ  
Max  
VCCr = VCCr Max,CE1r > VCCr – 0.2 V,  
CE2r > VCCr – 0.2 V,  
VIN < 0.2 V or VCCr – 0.2 V  
FCRAM VCC Standby Current  
ISB1r  
200  
µA  
Sleep  
IPDSr  
IPDNr  
10  
65  
µA  
µA  
VCCr = VCCr Max,  
FCRAM VCC Power Down  
Current  
CE1r > VCCr – 0.2 V,  
CE2r < 0.2 V,  
NAP  
16 M  
Partial  
VIN Cycle time = tRC Min  
IPD8r  
ISB1s  
85  
15  
µA  
µA  
SRAM VCC Standby  
Current  
CE1s > VCCs – 0.2 V,  
CE2s > VCCs – 0.2 V  
SRAM VCC Standby  
Current  
ISB2s CE2s < 0.2 V  
15  
µA  
Input Low Level  
Input High Level  
VIL  
–0.3  
2.2  
0.5  
V
V
VCC + 0.3 *6  
VIH  
Voltage for Sector Protection,  
and Temporary Sector  
VID  
11.5  
8.5  
12.5  
9.5  
V
V
Unprotection (RESET) *4  
Voltage for WP/ACC Sector  
Protection/Unprotection and  
Program Acceleration *4  
VACC  
9.0  
VOLf  
VOLr  
VCCf = VCCf Min, IOL=4.0 mA  
Flash  
0.45  
0.4  
0.4  
V
V
V
V
V
V
Output Low Voltage Level  
Output High Voltage Level  
VCCr = VCCr Min, IOL =1.0 mA FCRAM  
VOLs VCCs = VCCs Min, IOL=1.0 mA SRAM  
VOHf VCCf = VCCf Min, IOH=–0.1 mA  
Flash VCCf 0.4  
VOHr VCCr = VCCr Min, IOH =–0.5 mA FCRAM  
VOHs VCCs = VCCs Min, IOH=–0.5 mA SRAM  
2.2  
2.2  
Flash Low VCCf Lock-Out  
Voltage  
VLKO  
2.3  
2.4  
2.5  
V
Legend: Flash means Flash_1 or Flash_2, VCCf means VCCf_1 or VCCf_2, VSSf means VSSf_1 or VSSf_2, CEf means  
CEf_1 or CEf _2, RESET means RESET_1 or RESET_2  
*1: The ICC current listed includes both the DC operating current and the frequency dependent component.  
*2: ICC active while Embedded Algorithm (program or erase) is in progress.  
*3: Automatic sleep mode enables the low power mode when address remains stable for 150 ns.  
*4: Applicable for only VCCf applying.  
*5: Embedded Alogorithm (program or erase) is in progress. (@5 MHz)  
*6: VCC indicates lower of VCCf_1 or VCCf_2 or VCCs or VCCr.  
*7: Actual Standby Current is twice of what is indicated in the table, due to two Flash memory chips embedment  
with in one device.  
11  
MB84VZ064G-70  
2. AC Characteristics  
• CE Timing  
Symbol  
Value  
Parameter  
Condition  
Unit  
JEDEC  
Standard  
tCCR  
Min  
0
Max  
CE Recover Time  
CE Hold Time  
ns  
ns  
tCHOLD  
3
CE1r, CE1s High to WE Invalid time  
for Standby Entry  
tCHWX  
10  
ns  
Timing Diagram for alternating RAM to Flash_1 or Flash_2  
CEf  
tCCR  
tCCR  
CE1r or  
CE1s  
WE  
tCHWX  
tCHOLD  
tCCR  
tCCR  
CE2r or  
CE2s  
• Flash_1 Characteristics  
Please refer to “64M FLASH MEMORY CHARACTERISTICS for MCP” part. In this part, Flash means  
Flash_1, VCCf means VCCf_1, VSSf means VSSf_1, CEf means CEf _1, RESET means RESET_1  
• Flash_2 Characteristics  
Please refer to “64M FLASH MEMORY CHARACTERISTICS for MCP” part. In this part, Flash means  
Flash_2, VCCf means VCCf_2, VSSf means VSSf_2, CEf means CEf _2, RESET means RESET_2  
• FCRAM Characteristics  
Please refer to “64M FCRAM CHARACTERISTICS for MCP” part.  
• SRAM Characteristics,  
Please refer to “8M SRAM CHARACTERISTICS for MCP” part.  
12  
MB84VZ064G-70  
64M FLASH MEMORY CHARACTERISTICS for MCP  
1. Flexible Sector-erase Architecture on Flash Memory  
• Sixteen 4 K words, and one hundred twenty-six 32 K words.  
• Individual-sector, multiple-sector, or bulk-erase capability.  
Word Mode  
200000h  
Word Mode  
000000h  
SA0 : 8KB (4KW)  
001000h  
SA71 : 64KB (32KW)  
208000h  
SA1 : 8KB (4KW)  
002000h  
SA72 : 64KB (32KW)  
210000h  
SA2 : 8KB (4KW)  
003000h  
SA73 : 64KB (32KW)  
218000h  
SA3 : 8KB (4KW)  
004000h  
SA74 : 64KB (32KW)  
220000h  
SA4 : 8KB (4KW)  
005000h  
SA75 : 64KB (32KW)  
228000h  
SA5 : 8KB (4KW)  
006000h  
SA76 : 64KB (32KW)  
230000h  
SA6 : 8KB (4KW)  
007000h  
SA77 : 64KB (32KW)  
238000h  
SA7 : 8KB (4KW)  
008000h  
SA78 : 64KB (32KW)  
240000h  
SA8 : 64KB (32KW)  
010000h  
SA79 : 64KB (32KW)  
248000h  
SA9 : 64KB (32KW)  
018000h  
SA80 : 64KB (32KW)  
250000h  
Bank A  
SA10 : 64KB (32KW)  
SA11 : 64KB (32KW)  
SA12 : 64KB (32KW)  
SA13 : 64KB (32KW)  
SA14 : 64KB (32KW)  
SA15 : 64KB (32KW)  
SA16 : 64KB (32KW)  
SA17 : 64KB (32KW)  
SA18 : 64KB (32KW)  
SA19 : 64KB (32KW)  
SA20 : 64KB (32KW)  
SA21 : 64KB (32KW)  
SA22 : 64KB (32KW)  
SA23 : 64KB (32KW)  
SA24 : 64KB (32KW)  
SA25 : 64KB (32KW)  
SA26 : 64KB (32KW)  
SA27 : 64KB (32KW)  
SA28 : 64KB (32KW)  
SA29 : 64KB (32KW)  
SA30 : 64KB (32KW)  
SA31 : 64KB (32KW)  
SA32 : 64KB (32KW)  
SA33 : 64KB (32KW)  
SA34 : 64KB (32KW)  
SA35 : 64KB (32KW)  
SA36 : 64KB (32KW)  
SA37 : 64KB (32KW)  
SA38 : 64KB (32KW)  
SA39 : 64KB (32KW)  
SA40 : 64KB (32KW)  
SA41 : 64KB (32KW)  
SA42 : 64KB (32KW)  
SA43 : 64KB (32KW)  
SA44 : 64KB (32KW)  
SA45 : 64KB (32KW)  
SA46 : 64KB (32KW)  
SA47 : 64KB (32KW)  
SA48 : 64KB (32KW)  
SA49 : 64KB (32KW)  
SA50 : 64KB (32KW)  
SA51 : 64KB (32KW)  
SA52 : 64KB (32KW)  
SA53 : 64KB (32KW)  
SA54 : 64KB (32KW)  
SA55 : 64KB (32KW)  
SA56 : 64KB (32KW)  
SA57 : 64KB (32KW)  
SA58 : 64KB (32KW)  
SA59 : 64KB (32KW)  
SA60 : 64KB (32KW)  
SA61 : 64KB (32KW)  
SA62 : 64KB (32KW)  
SA63 : 64KB (32KW)  
SA64 : 64KB (32KW)  
SA65 : 64KB (32KW)  
SA66 : 64KB (32KW)  
SA67 : 64KB (32KW)  
SA68 : 64KB (32KW)  
SA69 : 64KB (32KW)  
SA70 : 64KB (32KW)  
SA81 : 64KB (32KW)  
258000h  
020000h  
028000h  
030000h  
038000h  
040000h  
048000h  
050000h  
058000h  
060000h  
068000h  
070000h  
078000h  
080000h  
088000h  
090000h  
098000h  
0A0000h  
0A8000h  
0B0000h  
0B8000h  
0C0000h  
0C8000h  
0D0000h  
0D8000h  
0E0000h  
0E8000h  
0F0000h  
0F8000h  
100000h  
108000h  
110000h  
118000h  
120000h  
128000h  
130000h  
138000h  
140000h  
148000h  
150000h  
158000h  
160000h  
168000h  
170000h  
178000h  
180000h  
188000h  
190000h  
198000h  
1A0000h  
1A8000h  
1B0000h  
1B8000h  
1C0000h  
1C8000h  
1D0000h  
1D8000h  
1E0000h  
1E8000h  
1F0000h  
1F8000h  
1FFFFFh  
SA82 : 64KB (32KW)  
260000h  
SA83 : 64KB (32KW)  
268000h  
SA84 : 64KB (32KW)  
270000h  
SA85 : 64KB (32KW)  
278000h  
SA86 : 64KB (32KW)  
280000h  
SA87 : 64KB (32KW)  
288000h  
SA88 : 64KB (32KW)  
290000h  
SA89 : 64KB (32KW)  
298000h  
SA90 : 64KB (32KW)  
2A0000h  
SA91 : 64KB (32KW)  
2A8000h  
SA92 : 64KB (32KW)  
2B0000h  
SA93 : 64KB (32KW)  
2B8000h  
SA94 : 64KB (32KW)  
2C0000h  
SA95 : 64KB (32KW)  
2C8000h  
SA96 : 64KB (32KW)  
2D0000h  
SA97 : 64KB (32KW)  
2D8000h  
SA98 : 64KB (32KW)  
2E0000h  
Bank C  
SA99 : 64KB (32KW)  
2E8000h  
SA100 : 64KB (32KW)  
2F0000h  
SA101 : 64KB (32KW)  
2F8000h  
SA102 : 64KB (32KW)  
300000h  
SA103 : 64KB (32KW)  
308000h  
SA104 : 64KB (32KW)  
310000h  
SA105 : 64KB (32KW)  
318000h  
SA106 : 64KB (32KW)  
320000h  
SA107 : 64KB (32KW)  
328000h  
SA108 : 64KB (32KW)  
330000h  
SA109 : 64KB (32KW)  
338000h  
SA110 : 64KB (32KW)  
340000h  
SA111 : 64KB (32KW)  
348000h  
SA112 : 64KB (32KW)  
350000h  
SA113 : 64KB (32KW)  
358000h  
SA114 : 64KB (32KW)  
360000h  
SA115 : 64KB (32KW)  
368000h  
SA116 : 64KB (32KW)  
370000h  
Bank B  
SA117 : 64KB (32KW)  
378000h  
SA118 : 64KB (32KW)  
380000h  
SA119 : 64KB (32KW)  
388000h  
SA120 : 64KB (32KW)  
390000h  
SA121 : 64KB (32KW)  
398000h  
SA122 : 64KB (32KW)  
3A0000h  
SA123 : 64KB (32KW)  
3A8000h  
SA124 : 64KB (32KW)  
3B0000h  
SA125 : 64KB (32KW)  
3B8000h  
SA126 : 64KB (32KW)  
3C0000h  
SA127 : 64KB (32KW)  
3C8000h  
Bank D  
SA128 : 64KB (32KW)  
3D0000h  
SA129 : 64KB (32KW)  
3D8000h  
SA130 : 64KB (32KW)  
3E0000h  
SA131 : 64KB (32KW)  
3E8000h  
SA132 : 64KB (32KW)  
3F0000h  
SA133 : 64KB (32KW)  
3F8000h  
SA134 : 8KB (4KW)  
3F9000h  
SA135 : 8KB (4KW)  
3FA000h  
SA136 : 8KB (4KW)  
3FB000h  
SA137 : 8KB (4KW)  
SA138 : 8KB (4KW)  
SA139 : 8KB (4KW)  
SA140 : 8KB (4KW)  
3FC000h  
3FD000h  
3FE000h  
3FF000h  
3FFFFFh  
SA141 : 8KB (4KW)  
Sector Architecture  
13  
MB84VZ064G-70  
FlexBankTM Architecture Table  
Volume  
Bank 1  
Bank  
Bank 2  
Combination  
Splits  
Volume  
Combination  
1
2
3
4
8 Mbit  
Bank A  
56 Mbit  
40 Mbit  
40 Mbit  
56 Mbit  
Remainder (Bank B, C, D)  
Remainder (Bank A, C, D)  
Remainder (Bank A, B, D)  
Remainder (Bank A, B, C)  
24 Mbit  
24 Mbit  
8 Mbit  
Bank B  
Bank C  
Bank D  
Example of Virtual Banks Combination Table  
Bank 1  
Volume Combination  
Bank 2  
Volume Combination  
Bank  
Splits  
Sector Size  
Sector Size  
Bank B  
+
8 × 8 Kbyte/4 Kword  
8 × 8 Kbyte/4 Kword  
1
2
3
4
8 Mbit  
16 Mbit  
24 Mbit  
32 Mbit  
Bank A  
+
56 Mbit  
48 Mbit  
Bank C  
+
Bank D  
+
15 × 64 Kbyte/32 Kword  
111 × 64 Kbyte/32 Kword  
Bank A  
+
Bank D  
16 × 8 Kbyte/4 Kword  
Bank B  
+
Bank C  
+
96 × 64 Kbyte/32 Kword  
30 × 64 Kbyte/32 Kword  
Bank A  
+
Bank C  
+
16 × 8 Kbyte/4 Kword  
Bank B  
48 × 64 Kbyte/32 Kword 40 Mbit  
+
78 × 64 Kbyte/32 Kword  
Bank D  
Bank A  
+
8 × 8 Kbyte/4 Kword  
Bank C  
+
8 × 8 Kbyte/4 Kword  
+
32 Mbit  
+
Bank B  
63 × 64 Kbyte/32 Kword  
Bank D  
63 × 64 Kbyte/32 Kword  
Note : When multiple sector erase over several banks is operated, the system cannot read out of the bank to which  
a sector being erased belongs. For example, suppose that erasing is taking place at both Bank A and Bank B,  
neither Bank A nor Bank B is read out (they would output the sequence flag once they were selected.)  
Meanwhile the system would get to read from either Bank C or Bank D.  
Simultaneous Operation Table  
Case  
Bank 1 Status  
Read mode  
Bank 2 Status  
Read mode  
1
2
3
4
5
6
7
Read mode  
Autoselect mode  
Program mode  
Erase mode *  
Read mode  
Read mode  
Read mode  
Autoselect mode  
Program mode  
Erase mode *  
Read mode  
Read mode  
* : By writing erase suspend command on the bank address of sector being erased, the erase operation gets  
suspended so that it enables reading from or programming the remaining sectors.  
Note: Bank 1 and Bank 2 are divided for the sake of convenience at Simultaneous Operation. Actually, the Bank  
consists of 4 banks, Bank A, Bank B, Bank C and Bank D. Bank Address (BA) meant to specify each of the  
Banks.  
14  
MB84VZ064G-70  
Sector Address Table  
Sector Address  
Address Range  
Word Mode  
Bank  
Sector  
Bank Address  
A21  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A20  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A19  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A18  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A17  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A16  
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A15  
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A14  
0
0
A13  
0
0
A12  
0
1
SA0  
SA1  
000000h to 000FFFh  
001000h to 001FFFh  
002000h to 002FFFh  
003000h to 003FFFh  
004000h to 004FFFh  
005000h to 005FFFh  
006000h to 006FFFh  
007000h to 007FFFh  
008000h to 00FFFFh  
010000h to 017FFFh  
018000h to 01FFFFh  
020000h to 027FFFh  
028000h to 02FFFFh  
030000h to 037FFFh  
038000h to 03FFFFh  
040000h to 047FFFh  
048000h to 04FFFFh  
050000h to 057FFFh  
058000h to 05FFFFh  
060000h to 067FFFh  
068000h to 06FFFFh  
070000h to 077FFFh  
078000h to 07FFFFh  
SA2  
0
1
0
SA3  
0
1
1
SA4  
1
0
0
SA5  
1
0
1
SA6  
1
1
0
SA7  
1
1
1
SA8  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
Bank A  
(Continued)  
15  
MB84VZ064G-70  
Sector Address  
Address Range  
Word Mode  
Bank  
Sector  
Bank Address  
A21  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A20  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A19  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A18  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A17  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A16  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A15  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A14  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
A13  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
A12  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
080000h to 087FFFh  
088000h to 08FFFFh  
090000h to 097FFFh  
098000h to 09FFFFh  
0A0000h to 0A7FFFh  
0A8000h to 0AFFFFh  
0B0000h to 0B7FFFh  
0B8000h to 0BFFFFh  
0C0000h to 0C7FFFh  
0C8000h to 0CFFFFh  
0D0000h to 0D7FFFh  
0D8000h to 0DFFFFh  
0E0000h to 0E7FFFh  
0E8000h to 0EFFFFh  
0F0000h to 0F7FFFh  
0F8000h to 0FFFFFh  
100000h to 107FFFh  
108000h to 10FFFFh  
110000h to 117FFFh  
118000h to 11FFFFh  
120000h to 127FFFh  
128000h to 12FFFFh  
130000h to 137FFFh  
138000h to 13FFFFh  
140000h to 147FFFh  
148000h to 14FFFFh  
150000h to 157FFFh  
158000h to 15FFFFh  
160000h to 167FFFh  
168000h to 16FFFFh  
170000h to 177FFFh  
178000h to 17FFFFh  
180000h to 187FFFh  
188000h to 18FFFFh  
190000h to 197FFFh  
198000h to 19FFFFh  
1A0000h to 1A7FFFh  
1A8000h to 1AFFFFh  
1B0000h to 1B7FFFh  
1B8000h to 1BFFFFh  
1C0000h to 1C7FFFh  
1C8000h to 1CFFFFh  
1D0000h to 1D7FFFh  
1D8000h to 1DFFFFh  
1E0000h to 1E7FFFh  
1E8000h to 1EFFFFh  
1F0000h to 1F7FFFh  
1F8000h to 1FFFFFh  
Bank B  
(Continued)  
16  
MB84VZ064G-70  
Sector Address  
Address Range  
Word Mode  
Bank  
Sector  
Bank Address  
A21  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A20  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A19  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A18  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A17  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A16  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A15  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A14  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
A13  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
A12  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
200000h to 207FFFh  
208000h to 20FFFFh  
210000h to 217FFFh  
218000h to 21FFFFh  
220000h to 227FFFh  
228000h to 22FFFFh  
230000h to 237FFFh  
238000h to 23FFFFh  
240000h to 247FFFh  
248000h to 24FFFFh  
250000h to 257FFFh  
258000h to 25FFFFh  
260000h to 267FFFh  
268000h to 26FFFFh  
270000h to 277FFFh  
278000h to 27FFFFh  
280000h to 287FFFh  
288000h to 28FFFFh  
290000h to 297FFFh  
298000h to 29FFFFh  
2A0000h to 2A7FFFh  
2A8000h to 2AFFFFh  
2B0000h to 2B7FFFh  
2B8000h to 2BFFFFh  
2C0000h to 2C7FFFh  
2C8000h to 2CFFFFh  
2D0000h to 2D7FFFh  
2D8000h to 2DFFFFh  
2E0000h to 2E7FFFh  
2E8000h to 2EFFFFh  
2F0000h to 2F7FFFh  
2F8000h to 2FFFFFh  
300000h to 307FFFh  
308000h to 30FFFFh  
310000h to 317FFFh  
318000h to 31FFFFh  
320000h to 327FFFh  
328000h to 32FFFFh  
330000h to 337FFFh  
338000h to 33FFFFh  
340000h to 347FFFh  
348000h to 34FFFFh  
350000h to 357FFFh  
358000h to 35FFFFh  
360000h to 367FFFh  
368000h to 36FFFFh  
370000h to 377FFFh  
378000h to 37FFFFh  
Bank C  
(Continued)  
17  
MB84VZ064G-70  
(Continued)  
Sector Address  
Address Range  
Word Mode  
Bank  
Sector  
Bank Address  
A21  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A20  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A19  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A18  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A17  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
A16  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
A15  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
A14  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
A13  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
A12  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
380000h to 387FFFh  
388000h to 38FFFFh  
390000h to 397FFFh  
398000h to 39FFFFh  
3A0000h to 3A7FFFh  
3A8000h to 3AFFFFh  
3B0000h to 3B7FFFh  
3B8000h to 3BFFFFh  
3C0000h to 3C7FFFh  
3C8000h to 3CFFFFh  
3D0000h to 3D7FFFh  
3D8000h to 3DFFFFh  
3E0000h to 3E7FFFh  
3E8000h to 3EFFFFh  
3F0000h to 3F7FFFh  
3F8000h to 3F8FFFh  
3F9000h to 3F9FFFh  
3FA000h to 3FAFFFh  
3FB000h to 3FBFFFh  
3FC000h to 3FCFFFh  
3FD000h to 3FDFFFh  
3FE000h to 3FEFFFh  
3FF000h to 3FFFFFh  
Bank D  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
18  
MB84VZ064G-70  
Sector Group Addresses Table  
Sector Group  
SGA0  
A21  
0
0
0
0
0
0
0
0
A20  
0
0
0
0
0
0
0
0
A19  
0
0
0
0
0
0
0
0
A18  
0
0
0
0
0
0
0
0
A17  
0
0
0
0
0
0
0
0
A16  
0
0
0
0
0
0
0
0
0
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
1
1
1
1
1
1
1
1
A15  
0
0
0
0
0
0
0
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
0
1
1
1
1
1
1
1
1
A14  
0
0
0
0
1
1
1
1
A13  
0
0
1
1
0
0
1
1
A12  
0
1
0
1
0
1
0
1
Sectors  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SGA1  
SGA2  
SGA3  
SGA4  
SGA5  
SGA6  
SGA7  
X
X
X
SGA8  
0
0
0
0
0
SA8 to SA10  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SGA9  
SGA10  
SGA11  
SGA12  
SGA13  
SGA14  
SGA15  
SGA16  
SGA17  
SGA18  
SGA19  
SGA20  
SGA21  
SGA22  
SGA23  
SGA24  
SGA25  
SGA26  
SGA27  
SGA28  
SGA29  
SGA30  
SGA31  
SGA32  
SGA33  
SGA34  
SGA35  
SGA36  
SGA37  
SGA38  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
SA11 to SA14  
SA15 to SA18  
SA19 to SA22  
SA23 to SA26  
SA27 to SA30  
SA31 to SA34  
SA35 to SA38  
SA39 to SA42  
SA43 to SA46  
SA47 to SA50  
SA51 to SA54  
SA55 to SA58  
SA59 to SA62  
SA63 to SA66  
SA67 to SA70  
SA71 to SA74  
SA75 to SA78  
SA79 to SA82  
SA83 to SA86  
SA87 to SA90  
SA91 to SA94  
SA95 to SA98  
SA99 to SA102  
SA103 to SA106  
SA107 to SA110  
SA111 to SA114  
SA115 to SA118  
SA119 to SA122  
SA123 to SA126  
SA127 to SA130  
X
X
X
SGA39  
1
1
1
1
1
SA131 to SA133  
SGA40  
SGA41  
SGA42  
SGA43  
SGA44  
SGA45  
SGA46  
SGA47  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
19  
MB84VZ064G-70  
Flash Memory Autoselect Codes Table  
Type  
A21 to A12  
BA  
A6  
L
A3  
L
A2  
L
A1  
L
A0  
L
Code (HEX)  
04h  
Manufacture’s Code  
Device Code  
BA  
L
L
L
L
H
L
227Eh  
2202h  
BA  
L
H
H
H
H
H
H
Extended Device  
Code *2  
BA  
L
H
2201h  
Sector Group  
Protection  
Sector Group  
Addresses  
L
L
L
H
L
01h*1  
Legend: L = VIL, H = VIH. See DC Characteristics for voltage levels.  
*1 : Outputs 01h at protected sector group addresses and outputs 00h at unprotected sector group addresses.  
*2 : A read cycle at address (BA) 01h outputs device code. When 227Eh was output, this indicates that there will  
require two additional codes, called Extended Device Codes. Therefore the system may continue reading out  
these Extended Device Codes at the address of (BA) 0Eh, as well as at (BA) 0Fh.  
20  
MB84VZ064G-70  
Flash Memory Command Definitions Table  
Fourth Bus  
Read/Write  
Cycle  
First Bus  
Second Bus  
Third Bus  
Fifth Bus  
Sixth Bus  
Bus  
Write  
Cycles  
Req’d  
Command  
Sequence  
Write Cycle Write Cycle  
Write Cycle  
Write Cycle Write Cycle  
Addr. Data Addr. Data Addr. Data Addr. Data Addr. Data Addr. Data  
Read/Reset  
Read/Reset  
1
3
XXXh F0h  
RD*9  
555h AAh 2AAh 55h  
555h AAh 2AAh 55h  
555h AAh 2AAh 55h  
555h  
(BA*8)  
555h  
F0h RA*5  
Autoselect  
Program  
3
4
1
90h  
A0h  
PA*6 PD*10  
555h  
Program  
Suspend  
BA*8  
B0h  
Program  
Resume  
1
6
6
BA*8 30h  
Chip Erase  
555h AAh 2AAh 55h  
555h AAh 2AAh 55h  
555h  
555h  
80h 555h AAh 2AAh 55h 555h 10h  
Sector  
Erase  
SA*7  
80h 555h AAh 2AAh 55h  
30h  
Erase  
Suspend  
1
1
BA*8 B0h  
30h  
Erase  
Resume  
BA*8  
Extended  
Sector  
Group  
Protection*2  
4
XXXh 60h SPA*11 60h SPA*11 40h SPA*11 SD*12  
Set to  
Fast Mode  
3
2
2
1
3
4
4
555h AAh 2AAh 55h  
555h  
20h  
Fast  
Program*1  
PA*6 PD*10  
XXXh A0h  
4
Reset from  
Fast Mode*1  
*
BA*8 90h XXXh  
(BA*8)  
F0h  
Query  
98h  
55h  
HiddenROM  
Entry  
555h AAh 2AAh 55h  
555h AAh 2AAh 55h  
555h AAh 2AAh 55h  
555h  
555h  
88h  
A0h  
(HRA*13)  
PA*6  
HiddenROM  
Program*3  
PD*10  
(HRBA*14)  
555h  
HiddenROM  
Exit*3  
90h XXXh 00h  
(Continued)  
21  
MB84VZ064G-70  
(Continued)  
*1 : This command is valid during Fast Mode.  
*2 : This command is valid while RESET = VID.  
*3 : This command is valid during HiddenROM mode.  
*4 : The data “00h” is also acceptable.  
*5 : RA  
*6 : PA  
= Address of the memory location to be read  
= Address of the memory location to be programmed Addresses are latched on the falling edge of the  
write pulse.  
*7 : SA  
= Address of the sector to be erased. The combination of A21, A20, A19, A18, A17, A16, A15, A14, A13, and A12  
will uniquely select any sector.  
*8 : BA  
*9 : RD  
*10 : PD  
= Bank Address (A21, A20, A19)  
= Data read from location RA during read operation.  
= Data to be programmed at location PA. Data is latched on the rising edge of write pulse.  
*11 : SPA = Sector group address to be protected. Set sector group address and (A6, A3, A2, A1, A0) = (0, 0, 0, 1, 0).  
*12 : SD  
= Sector group protection verify data. Output 01h at protected sector group addresses and output 00h at  
unprotected sector group addresses.  
*13 : HRA = Address of the HiddenROM area: 000000h to 00007Fh  
*14 : HRBA = Bank Address of the HiddenROM area (A21 = A20 = A19 = VIL)  
Notes : Address bits A21 to A11 = X = “H” or “L” for all address commands except or Program Address (PA),  
Sector Address (SA), and Bank Address (BA), and Sector Group Address (SPA).  
Bus operations are defined in DEVICE BUS OPERATION.  
The system should generate the following address patterns: 555h or 2AAh to addresses A10 to A0  
Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.  
The command combinations not described in this table are illegal.  
22  
MB84VZ064G-70  
2. AC Characteristics  
• Read Only Operations Characteristics (Flash)  
Symbol  
Value (Note)  
Parameter  
Read Cycle Time  
Condition  
Unit  
JEDEC  
Standard  
Min  
Max  
tAVAV  
tRC  
70  
ns  
ns  
CEf = VIL  
OE = VIL  
Address to Output Delay  
tAVQV  
tACC  
70  
Chip Enable to Output Delay  
Output Enable to Output Delay  
Chip Enable to Output High-Z  
Output Enable to Output High-Z  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tCEf  
tOE  
tDF  
tDF  
OE = VIL  
70  
30  
25  
25  
ns  
ns  
ns  
ns  
Output Hold Time From Addresses,  
CEf or OE, Whichever Occurs First  
tAXQX  
tOH  
0
ns  
µs  
RESET Pin Low to Read Mode  
tREADY  
20  
Note: Test Conditions– Output Load:1 TTL gate and 30 pF  
Input rise and fall times: 5 ns  
Input pulse levels: 0.0 V to VCCf  
Timing measurement reference level  
Input: 0.5 × VCCf  
Output: 0.5 × VCCf  
23  
MB84VZ064G-70  
• Read Operation Timing Diagram (Flash)  
tRC  
Address  
Address Stable  
tACC  
CEf  
tOE  
tDF  
OE  
tOEH  
WE  
tOH  
tCE  
High-Z  
High-Z  
Outputs Valid  
Outputs  
• Hardware Reset/Read Operation Timing Diagram (Flash)  
tRC  
Address  
Address Stable  
tACC  
CEf  
tRH  
tRP  
tRH  
tCE  
RESET  
Outputs  
tOH  
High-Z  
Outputs Valid  
24  
MB84VZ064G-70  
Write/Erase/Program Operations (Flash)  
Symbol  
Standard  
Value  
Unit  
Parameter  
JEDEC  
tAVAV  
Min  
70  
0
Typ  
Max  
Write Cycle Time  
tWC  
tAS  
ns  
ns  
Address Setup Time  
tAVWL  
Address Setup Time to OE Low During Toggle Bit  
Polling  
tASO  
tAH  
12  
30  
0
ns  
ns  
ns  
Address Hold Time  
tWLAX  
Address Hold Time from CEf or OE High During  
Toggle Bit Polling  
tAHT  
Data Setup Time  
Data Hold Time  
tDVWH  
tWHDX  
tDS  
tDH  
25  
0
ns  
ns  
ns  
Output  
Read  
0
Enable Hold  
Time  
tOEH  
Toggle and Data Polling  
10  
ns  
CEf High During Toggle Bit Polling  
OE High During Toggle Bit Polling  
Read Recover Time Before Write  
Read Recover Time Before Write  
CEf Setup Time  
tCEPH  
tOEPH  
tGHWL  
tGHEL  
tCS  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
s
tGHWL  
tGHEL  
0
tELWL  
0
WE Setup Time  
tWLEL  
tWS  
0
CEf Hold Time  
tWHEH  
tEHWH  
tWLWH  
tELEH  
tCH  
0
WE Hold Time  
tWH  
0
Write Pulse Width  
tWP  
35  
35  
20  
20  
CEf Pulse Width  
tCP  
Write Pulse Width High  
CEf Pulse Width High  
Programming Operation  
Sector Erase Operation *1  
VCCf Setup Time  
tWHWL  
tEHEL  
tWPH  
tCPH  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH2  
tVCS  
6
0.5  
50  
500  
500  
4
µs  
ns  
ns  
µs  
µs  
Rise Time to VID *2  
tVIDR  
tVACCR  
tVLHT  
tWPP  
Rise Time to VACC *3  
Voltage Transition Time *2  
Write Pulse Width *2  
100  
(Continued)  
25  
MB84VZ064G-70  
(Continued)  
Symbol  
JEDEC Standard  
Value  
Typ  
Parameter  
Unit  
Min  
4
Max  
OE Setup Time to WE Active *2  
CEf Setup Time to WE Active *2  
Recover Time from RY/BY  
tOESP  
tCSP  
tRB  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
4
0
RESET Pulse Width  
tRP  
500  
200  
RESET High Level Period Before Read  
Program/Erase Valid to RY/BY Delay  
Delay Time from Embedded Output Enable  
Erase Time-out Time  
tRH  
tBUSY  
tEOE  
tTOW  
tSPD  
90  
70  
50  
Erase Suspend Transition Time  
20  
*1: This does not include preprogramming time.  
*2: This timing is for Sector Group Protection operation.  
*3: This timing is for Accelerated Program operation.  
26  
MB84VZ064G-70  
• Write Cycle (WE control) (Flash)  
3rd Bus Cycle  
Data Polling  
PA  
555h  
PA  
Address  
tWC  
tRC  
tAS  
tAH  
CEf  
tCS  
tCH  
tCE  
OE  
tOE  
tWP  
tWPH  
tWHWH1  
tGHWL  
WE  
tOH  
tDF  
tDH  
tDS  
A0h  
PD  
DOUT  
DOUT  
DQ7  
Data  
Notes : PA is address of the memory location to be programmed.  
PD is data to be programmed at word address.  
DQ7 is the output of the complement of the data written to the device.  
DOUT is the output of the data written to the device.  
Figure indicates last two bus cycles out of four bus cycle sequence.  
27  
MB84VZ064G-70  
• Write Cycle (CEf control) (Flash)  
3rd Bus Cycle  
Data Polling  
PA  
555h  
tWC  
PA  
Address  
WE  
tAS  
tAH  
tWS  
tWH  
OE  
tCPH  
tCP  
tWHWH1  
tGHEL  
CEf  
tDS  
tDH  
A0h  
PD  
DOUT  
DQ7  
Data  
Notes : PA is address of the memory location to be programmed.  
PD is data to be programmed at word address.  
DQ7 is the output of the complement of the data written to the device.  
DOUT is the output of the data written to the device.  
Figure indicates last two bus cycles out of four bus cycle sequence.  
28  
MB84VZ064G-70  
• AC Waveforms Chip/Sector Erase Operations (Flash)  
555h  
tWC  
2AAh  
555h  
555h  
2AAh  
SA*  
Address  
CEf  
tAS  
tAH  
tCS  
tCH  
OE  
tWP  
tWPH  
tGHWL  
WE  
tDS  
tDH  
30h for Sector Erase  
10h  
AAh  
55h  
80h  
AAh  
55h  
Data  
VCCf  
tVCS  
* : SA is the sector address for Sector Erase. Addresses = 555h (Word) for Chip Erase.  
29  
MB84VZ064G-70  
• AC Waveforms for Data Polling during Embedded Algorithm Operations (Flash)  
CEf  
tCH  
tDF  
tOE  
OE  
tOEH  
WE  
tCE  
*
High-Z  
High-Z  
DQ7 =  
Data  
Data  
DQ7  
DQ7  
Valid Data  
tWHWH1 or 2  
DQ6 to DQ0 =  
Output Flag  
DQ6 to DQ0  
Valid Data  
DQ6 to DQ0  
RY/BY  
tEOE  
tBUSY  
* : DQ7 = Valid Data (the device has completed the Embedded operation) .  
30  
MB84VZ064G-70  
• AC Waveforms for Toggle Bit during Embedded Algorithm Operations (Flash)  
Address  
CEf  
tAHT tASO  
tAHT tAS  
tCEPH  
WE  
tOEPH  
tOEH  
tOEH  
OE  
tOE  
tCE  
tDH  
*
Stop  
Output  
Valid  
Toggle  
Data  
Toggle  
Data  
Toggle  
Data  
DQ 6/DQ2  
Data  
Toggling  
tBUSY  
RY/BY  
* : DQ6 stops toggling (the device has completed the Embedded operation).  
31  
MB84VZ064G-70  
• Bank-to-bank Read/Write Timing Diagram (Flash)  
Read  
Command  
Read  
Command  
Read  
Read  
tRC  
tWC  
tRC  
tWC  
tRC  
tRC  
BA2  
BA2  
(PA)  
BA2  
(PA)  
Address  
CEf  
BA1  
BA1  
BA1  
(555h)  
tACC  
tCE  
tAS  
tAS  
tAH  
tAHT  
tOE  
tCEPH  
OE  
WE  
DQ  
tDF  
tGHWL  
tOEH  
tWP  
tDS  
tDH  
tDF  
Valid  
Output  
Valid  
Valid  
Output  
Valid  
Valid  
Output  
Status  
Intput  
Intput  
(A0h)  
(PD)  
Note : This is example of Read for Bank 1 and Embedded Algorithm (program) for Bank 2.  
BA1 : Address corresponding to Bank 1  
BA2 : Address corresponding to Bank 2  
32  
MB84VZ064G-70  
• RY/BY Timing Diagram during Write/Erase Operations (Flash)  
CEf  
Rising edge of the last WE signal  
WE  
Entire programming  
or erase operations  
RY/BY  
tBUSY  
• RESET, RY/BY Timing Diagram (Flash)  
WE  
RESET  
tRP  
tRB  
RY/BY  
tREADY  
33  
MB84VZ064G-70  
• Temporary Sector Unprotection (Flash)  
VCCf  
tVIDR  
tVCS  
tVLHT  
VID  
VIH  
RESET  
CEf  
WE  
tVLHT  
tVLHT  
Program or Erase Command Sequence  
Unprotection period  
RY/BY  
• Acceleration Mode Timing Diagram (Flash)  
VCCf  
tVACCR  
tVCS  
tVLHT  
VACC  
VIH  
WP/ACC  
CEf  
WE  
tVLHT  
tVLHT  
Program Command Sequence  
Acceleration period  
RY/BY  
34  
MB84VZ064G-70  
• Extended Sector Group Protection (Flash)  
VCCf  
tVCS  
tVLHT  
RESET  
tWC  
tWC  
tVIDR  
Address  
SPAX  
SPAX  
SPAY  
A6, A3,  
A2, A0  
A1  
CEf  
OE  
TIME-OUT  
tWP  
WE  
60h  
60h  
40h  
01h  
60h  
Data  
tOE  
SPAX : Sector Group Address to be protected  
SPAY : Next Sector Group Address to be protected  
TIME-OUT : Time-Out window = 250 µs (Min)  
35  
MB84VZ064G-70  
3. Erase and Programming Performance (Flash)  
Value  
Parameter  
Unit  
Remarks  
Min  
Typ  
0.5  
6
Max  
2.0  
Sector Erase Time  
s
Excludes programming time prior to erasure  
Word Programming Time  
Chip Programming Time  
Erase/Program Cycle  
100  
200  
µs Excludes system-level overhead  
s
Excludes system-level overhead  
100,000  
cycle  
Typical Erase conditions TA = +25°C, VCCf_1 & VCCf_2 = 2.9 V  
Typical Program conditions TA = +25°C, VCCf_1 & VCCf_2 = 2.9 V  
Data= Checker  
36  
MB84VZ064G-70  
64M FCRAM CHARACTERISTICS for MCP  
1. FCRAM Power Down Program Key Table  
Basic Key Table  
Definition  
A16  
A17  
A19  
A20  
A21  
KEY  
Mode Select  
Area Select  
A19  
A20  
L
A21  
AREA  
L
L
L
X
X
H
BOTTOM *2  
RESERVED  
RESERVED  
TOP *3  
H
L
H
H
H
A16  
A17  
MODE  
NAP *4  
L
L
L
H
L
RESERVED  
16 M Partial  
SLEEP *4, *5  
H
H
H
Available Key Table  
A16  
A17  
A19  
A20  
A21  
Data Retention  
MODE  
NAP  
Area  
Mode Select  
Area Select  
L
H
H
H
L
L
X
L
X
L
X
L
None  
Bottom 16 M only  
Top 16 M only  
None  
16M Partial  
SLEEP  
L
H
X
H
X
H
X
H
*1 : The Power Down Program can be performed one time after compliance of Power-up timings and  
it should not be re-programmed after regular Read or Write.  
Unspecified addresses, A15 to A0, can be either High or Low during the programming.  
The RESERVED key should not be used.  
*2 : BOTTOM area is from the lowest address location. (i.e., A20 to A0 = L)  
*3 : TOP area is from the highest address location. (i.e., A20 to A0 = H)  
*4 : NAP and SLEEP do not retain the data and Area Select is ignored.  
*5 : Default state. Power Down Program to this SLEEP mode can be omitted.  
37  
MB84VZ064G-70  
2. AC Characteristics  
READ Operation (FCRAM)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
Read Cycle Time  
tRC  
tCE  
70  
5
65  
40  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable Access Time  
Output Enable Access Time  
Address Access Time  
*1,*3  
*1  
tOE  
tAA  
*1,*4  
*1  
Output Data Hold Time  
tOH  
CE1r Low to Output Low-Z  
OE Low to Output Low-Z  
CE1r High to Output High-Z  
OE High to Output High-Z  
Address Setup Time to CE1r Low  
tCLZ  
5
*2  
tOLZ  
0
*2  
tCHZ  
–5  
25  
10  
–5  
10  
70  
45  
–5  
–5  
–5  
–5  
25  
45  
12  
25  
12  
20  
20  
*2  
tOHZ  
tASC  
*2  
*5  
tASO  
tASO(ABS)  
tBSC  
*3,*6  
*7  
Address Setup Time to OE  
LB / UB Setup Time to CE1r Low  
LB / UB Setup Time to OE Low  
Address Invalid Time  
*5  
tBSO  
tAX  
5
*4,*8  
*4  
Address Hold Time from CE1r Low  
Address Hold Time from OE Low  
Address Hold Time from CE1r High  
Address Hold Time from OE High  
LB / UB Hold Time from CE1r High  
LB / UB Hold Time from OE High  
CE1r Low to OE Low Delay Time  
OE Low to CE1r High Delay Time  
CE1r High Pulse Width  
tCLAH  
tOLAH  
tCHAH  
tOHAH  
tCHBH  
tOHBH  
tCLOL  
tOLCH  
tCP  
*4,*9  
1000  
*3,*6,*9,*10  
*9  
tOP  
1000  
*6,*9,*10  
*7  
OE High Pulse Width  
tOP(ABS)  
(Continued)  
38  
MB84VZ064G-70  
(Continued)  
*1 : The output load is 30 pF.  
*2 : The output load is 5 pF.  
*3 : The tCE is applicable if OE is brought to Low before CE1r goes Low and is also applicable if actual value of  
both or either tASO or tCLOL is shorter than specified value.  
*4 : Applicable only to A1 and A0 when both CE1r and OE are kept at Low for the address access.  
*5 : Applicable if OE is brought to Low before CE1r goes Low.  
*6 : The tASO, tCLOL(Min) and tOP(Min) are reference values when the access time is determined by tOE.  
If actual value of each parameter is shorter than specified minimum value, tOE become longer by the amount  
of subtracting actual value from specified minimum value.  
For example, if actual tASO, tASO(actual), is shorter than specified minimum value, tASO(Min), during OE control  
access (i.e., CE1r stays Low), the tOE become tOE(Max) + tASO(Min) – tASO(actual).  
*7 : The tASO(ABS) and tOP(ABS) is the absolute minimum value during OE control access.  
*8 : The tAX is applicable when both A1 and A0 are switched from previous state.  
*9 : If actual value of either tCLOL or tOP is shorter than specified minimum value, both tOLAH and tOLCH become  
tRC(Min) – tCLOL(actual) or tRC(Min) – tOP(actual).  
*10 : Maximum value is applicable if CE1r is kept at Low.  
39  
MB84VZ064G-70  
• WRITE Operation (FCRAM)  
Parameter  
Value  
Symbol  
Unit Remarks  
Min  
Max  
Write Cycle Time  
tWC  
tAS  
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
*1  
*2  
*2  
Address Setup Time  
Address Hold Time  
CE1r Write Setup Time  
CE1r Write Hold Time  
WE Setup Time  
tAH  
35  
0
tCS  
1000  
1000  
tCH  
0
tWS  
0
WE Hold Time  
tWH  
0
LB and UB Setup Time  
LB and UB Hold Time  
OE Setup Time  
tBS  
–5  
–5  
0
tBH  
tOES  
tOEH  
tOEH(ABS)  
tOHCL  
tOHAH  
tCW  
1000  
1000  
*3  
*3, *4  
*5  
25  
12  
–5  
–5  
45  
45  
10  
10  
15  
0
OE Hold Time  
OE High to CE1r Low Setup Time  
OE High to Address Hold Time  
CE1r Write Pulse Width  
WE Write Pulse Width  
CE1r Write Recovery Time  
WE Write Recovery Time  
Data Setup Time  
*6  
*7  
*1, *8  
*1, *8  
*1, *9  
*1, *3, *9  
tWP  
tWRC  
tWR  
1000  
tDS  
Data Hold Time  
tDH  
CE1r High Pulse Width  
tCP  
12  
*9  
*1 : Minimum value must be equal or greater then the sum of actual tCW (or tWP) and tWRC (or tWR).  
*2 : New write address is valid from either CE1r or WE is bought to High.  
*3 : The tOEH is specified from end of tWC(Min). The tOEH(Min) is a reference value when the access time is determined  
by tOE.  
If actual value, tOEH(actual) is shorter than specified minimum value, tOE become longer by the amount of  
subtracting actual value from specified minimum value.  
*4 : The tOEH(Max) is applicable if CE1r is kept at Low and both WE and OE are kept at High.  
*5 : The tOEH(ABS) is the absolute minimum value if write cycle is terminated by WE and CE1r stays Low.  
*6 : tOHCL(Min) must be satisfied if read operation is not performed prior to write operation.  
In case OE is disabled after tOHCL(Min), WE Low must be asserted after tRC(Min) from CE1r Low.  
In other words, read operation is initiated if tOHCL (Min) is not satisfied.  
*7 : Applicable if CE1r stays Low after read operation.  
*8 : tCW and tWP is applicable if write operation is initiated by CE1r and WE, respectively.  
*9 : tWRC and tWR is applicable if write operation is terminated by CE1r and WE, respectively.  
The tWR(Min) can be ignored if CE1r is brought to High together or after WE is brought to High.  
In such case, the tCP(Min) must be satisfied.  
40  
MB84VZ064G-70  
• Power Down and Power Down Program Parameters (FCRAM)  
Value  
Remarks  
Parameter  
Symbol  
Unit  
Min  
10  
Max  
CE2r Low Setup Time for Power Down Entry  
CE2r Low Hold Time after Power Down Entry  
tCSP  
ns  
ns  
tC2LP  
70  
CE1r High Hold Time following CE2r High after  
Power Down Exit (SLEEP mode only)  
tCHH  
tCHHN  
tCHS  
350  
1
µs  
µs  
ns  
CE1r High Setup Time following CE2r High after  
Power Down Exit (Except for SLEEP mode)  
CE1r High Setup Time following CE2r High after  
Power Down Exit  
10  
CE1r High to PE Low Setup Time  
PE Power Down Program Pulse Width  
PE High to CE1r Low Hold Time  
Address Setup Time to PE High  
Address Setup Time from PE High  
tEPS  
tEP  
70  
70  
70  
15  
0
ns  
ns  
ns  
ns  
ns  
*
*
*
*
*
tEPH  
tEAS  
tEAH  
* : Applicable to Down Program.  
• Other Timing Parameters (FCRAM)  
Parameter  
Value  
Symbol  
Unit  
Remarks  
Min  
Max  
CE1r High to OE Invalid Time for Standby Entry  
CE1r High to WE Invalid Time for Standby Entry  
tCHOX  
tCHWX  
10  
ns  
ns  
10  
*1  
CE2r Low Hold Time after Power-up  
CE2r High Hold Time after Power-up  
tC2LH  
tC2HL  
50  
50  
µs  
µs  
*2  
*3  
CE1r High Hold Time following CE2r High after  
Power-up  
tCHH  
350  
1
µs  
*2  
*4  
Input Transition Time  
tT  
25  
ns  
*1: It may write some data into any address location if tCHWX is not satisfied.  
*2: Must satisfy tCHH(Min) after tC2LH(Min).  
*3: Requires Power Down mode entry and exit after tC2HL.  
*4: The input Transition Time (tT) at AC testing is 5 ns as shown in below. If actual tT is longer than 5 ns, it may  
violate AC specification of some timing parameters.  
• AC Test Conditions (FCRAM)  
Remarks  
Symbol  
VIH  
Description  
Input High Level  
Test Setup  
Value  
2.3  
0.4  
1.3  
5
Unit  
V
VCCr = 2.7 V to 3.1 V  
VCCr = 2.7 V to 3.1 V  
VCCr = 2.7 V to 3.1 V  
Between VIL and VIH  
VIL  
Input Low Level  
V
VREF  
tT  
Input Timing Measurement Level  
Input Transition Time  
V
ns  
41  
MB84VZ064G-70  
• READ Timing #1 (OE Control Access) (FCRAM)  
tRC  
tRC  
Address  
Address Valid  
Address Valid  
tOHAH  
tCE  
tASO  
tOHAH  
CE1r  
tOLCH  
tOP  
tOE  
tCLOL  
tOE  
OE  
tASO  
tBSO  
tOHBH  
tBSO  
tOHBH  
LB / UB  
tOHZ  
tOHZ  
tOLZ  
tOH  
tOLZ  
tOH  
DQ  
(Output)  
Valid Data Output  
Valid Data Output  
Note : CE2r, PE and WE must be High for entire read cycle.  
Either or both LB and UB must be Low when both CE1r and OE are Low.  
42  
MB84VZ064G-70  
• READ Timing #2 (CE1r Control Access) (FCRAM)  
tRC  
tRC  
Address  
CE1r  
Address Valid  
Address Valid  
tCHAH  
tASC  
tCE  
tCHAH  
tASC  
tCE  
tCP  
OE  
tBSC  
tCHBH  
tBSC  
tCHBH  
LB / UB  
tCHZ  
tOH  
tCHZ  
tOH  
tCLZ  
tCLZ  
DQ  
(Output)  
Valid Data Output  
Valid Data Output  
Note : CE2r, PE and WE must be High for entire read cycle.  
Either or both LB and UB must be Low when both CE1r and OE are Low.  
43  
MB84VZ064G-70  
• READ Timing #3 (Address Access after OE Control Access) (FCRAM)  
tRC  
tRC  
Address  
(A21 to A3)  
Address Valid  
Address Valid (No change)  
Address  
(A2 to A0)  
Address Valid  
Address Valid  
tOHAH  
tASO  
tOLAH  
tAA  
tAX  
CE1r  
tOE  
tOHZ  
OE  
tBSO  
tOHBH  
LB / UB  
tOLZ  
tOH  
tOH  
DQ  
(Output)  
Valid Data Output  
Valid Data Output  
Note : CE2r, PE and WE must be High for entire read cycle.  
Either or both LB and UB must be Low when both CE1r and OE are Low.  
44  
MB84VZ064G-70  
• READ Timing #4 (Address Access after CE1r Control Access) (FCRAM)  
tRC  
tRC  
Address  
(A21 to A3)  
Address Valid  
Address Valid (No change)  
Address  
(A2 to A0)  
Address Valid  
Address Valid  
tCHAH  
tASC  
tCLAH  
tAA  
tAX  
CE1r  
tCE  
tCHZ  
OE  
tBSC  
tCHBH  
LB / UB  
tOH  
tOH  
tCLZ  
DQ  
(Output)  
Valid Data Output  
Valid Data Output  
Note : CE2r, PE and WE must be High for entire read cycle.  
Either or both LB and UB must be Low when both CE1r and OE are Low.  
45  
MB84VZ064G-70  
• WRITE Timing #1 (CE1r Control) (FCRAM)  
tWC  
Address  
CE1r  
Address Valid  
tAS  
tAH  
tAS  
tCW  
tWRC  
tWS  
tBS  
tWH  
tBH  
tWS  
WE  
tBS  
UB, LB  
tOHCL  
OE  
tDS  
tDH  
DQ  
(Input)  
Valid Data Input  
Note : CE2r and PE must be High for write cycle.  
46  
MB84VZ064G-70  
• WRITE Timing #2-1 (WE Control, Single Write Operation) (FCRAM)  
tWC  
Address  
CE1r  
WE  
Address Valid  
tOHAH  
tAS  
tAH  
tAS  
tCH  
tCP  
tOHCL  
tCS  
tWP  
tWR  
tOHBH  
tBS  
tBH  
UB, LB  
OE  
tOES  
tOHZ  
tDS  
tDH  
DQ  
(Input)  
Valid Data Input  
Note : CE2r and PE must be High for write cycle.  
47  
MB84VZ064G-70  
• WRITE Timing #2-2 (WE Control, Continuous Write Operation) (FCRAM)  
tWC  
Address  
CE1r  
WE  
Address Valid  
tOHAH  
tAS  
tAH  
tAS  
tOHCL  
tCS  
tWP  
tWR  
tBH  
tBS  
tBH  
tBS  
UB, LB  
OE  
tOES  
tOHZ  
tDS  
tDH  
DQ  
(Input)  
Valid Data Input  
Note : CE2r and PE must be High for write cycle.  
48  
MB84VZ064G-70  
• READ / WRITE Timing #1-1 (CE1r Control) (FCRAM)  
tWC  
Address  
CE1r  
Write Address  
Read Address  
tCHAH  
tAS  
tAH  
tASC  
tCP  
tWRC  
tCW  
tWS  
tCLOL  
tBSO  
tWH  
tBH  
tWH  
tWS  
WE  
tCHBH  
tBS  
UB, LB  
OE  
tOHCL  
tCHZ  
tDH  
tOH  
tDS  
tOLZ  
DQ  
Read Data Output  
Write Data Input  
Note : Write address is valid from either CE1r or WE of last falling edge.  
49  
MB84VZ064G-70  
• READ / WRITE Timing #1-2 (CE1r Control) (FCRAM)  
tRC  
Address  
CE1r  
Read Address  
Write Address  
tASC  
tCHAH  
tAS  
tWRC  
tWRC(Min)  
tWH  
tCP  
tWS  
tCE  
tWH  
tWS  
WE  
UB, LB  
OE  
tBH  
tBSC  
tCHBH  
tBS  
tOEH  
tOHCL  
tCHZ  
tDH  
tCLZ  
tOH  
DQ  
Write Data Input  
Read Data Output  
Note : The tOEH is specified from the time satisfied both tWRC and tWR(Min).  
50  
MB84VZ064G-70  
• READ(OE Control) / WRITE(WE Control) Timing #2-1 (FCRAM)  
tWC  
Address  
Read Address  
Write Address  
tOHAH  
tAS  
tAH  
tASO  
CE1r  
WE  
Low  
tWP  
tWR  
tOEH  
tBSO  
tOHBH  
tBS  
tBH  
UB, LB  
OE  
tOES  
tOHZ  
tOLZ  
tOH  
tDS  
tDH  
DQ  
Read Data Output  
Write Data Input  
Note : CE1r can be tied to Low for WE and OE controlled operation.  
When CE1r is tied to Low, output is exclusively controlled by OE.  
51  
MB84VZ064G-70  
• READ(OE Control) / WRITE(WE Control) Timing #2-2  
tRC  
Address  
CE1r  
Read Address Valid  
Write Address  
tOHAH  
tAS  
tASO  
tOEH  
tBSO  
Low  
tWR  
WE  
tOHBH  
tBH  
tBS  
UB, LB  
OE  
tOES  
tOE  
tOHZ  
tOH  
tDH  
tOLZ  
DQ  
Write Data Input  
Read Data Output  
Note : CE1r can be tied to Low for WE and OE controlled operation.  
When CE1r is tied to Low, output is exclusively controlled by OE.  
• Power Down Program Timing (FCRAM)  
CE1r  
tEPS  
tEP  
tEPH  
PE  
tEAS  
tEAH  
Address  
(A21 to A16)  
KEY  
Note: CE2r must be High for Power Down Programming.  
Any other inputs not specified above can be either High or Low.  
52  
MB84VZ064G-70  
• Power Down Entry and Exit Timing (FCRAM)  
CE1r  
tCHS  
CE2r  
tCSP  
tC2LP  
tCHH (tCHHN)  
High-Z  
DQ  
Power Down Entry  
Power Down Mode  
Power Down Exit  
Note: This Power Down mode can be also used for Power-up #2 below except that tCHHN can not be used at Power-  
up timing.  
• Power-up Timing #1 (FCRAM)  
CE1r  
tCHS  
tC2LH  
tCHH  
CE2r  
VCCr  
VCCr Min  
0V  
Note: The tC2LH specifies after VCCr reaches specified minimum level.  
• Power-up Timing #2 (FCRAM)  
CE1r  
tCHS  
tCSP  
tC2HL  
tC2LP  
tCHH  
CE2r  
tC2HL  
VCCr  
VCCr Min  
0V  
Note: The tC2HL specifies from CE2r Low to High transition after VCCr reaches specified minimum level.  
CE1r must be brought to High prior to or together with CE2r Low to High transition.  
53  
MB84VZ064G-70  
• Standby Entry Timing after Read or Write (FCRAM)  
CE1r  
tCHOX  
tCHWX  
OE  
WE  
Active (Read)  
Standby  
Active (Write)  
Standby  
Note : Both tCHOX and tCHWX define the earliest entry timing for Standby mode. If either of timing is not satisfied, it  
takes tRC (Min) period from either last address transition of A1 and A0, or CE1r Low to High transition.  
54  
MB84VZ064G-70  
3. Data Retention Low VCCr Characteristics (FCRAM)  
Value  
Unit  
Parameter  
Symbol  
VDR  
Test Conditions  
Min  
Max  
VCCr Data Retention Supply  
Voltage  
CE1r = CE2r VCCr – 0.2 V or  
CE1r = CE2r = VIH  
2.3  
3.1  
V
2.3 V VCCr 2.7 V,  
IDR  
VIN = VIH* or VIL,  
1.5  
mA  
CE1r = CE2r = VIH*, IOUT=0 mA  
VCCr Data Retention Supply  
Current  
2.3 V VCCr 2.7 V,  
IDR1  
VIN 0.2 V or VIN VCCr – 0.2 V,  
CE1r = CE2r VCCr – 0.2 V, IOUT =0 mA  
0
150  
µA  
2.7 V VCCr 3.1 V  
at data retention entry  
Data Retention Setup Time  
tDRS  
ns  
2.7 V VCCr 3.1 V  
after data retention  
Data Retention Recovery Time  
tDRR  
200  
0.2  
ns  
VCCr Voltage Transition Time  
* : 2.0 V VIH VCCr + 0.3 V  
• Data Retention Timing  
V/t  
V/µs  
tDRS  
tDRR  
3.1 V  
VCCr  
2.7 V  
V/t  
V/t  
CE2r  
2.3 V  
CE2r and CE1r  
>VCCr - 0.2 V or VIH* Min  
CE1r  
0.4 V  
VSS  
Data Retention Mode  
Data bus must be in High-Z at data retention entry.  
* : 2.0 V VIH VCCr + 0.3 V  
55  
MB84VZ064G-70  
8M SRAM CHARACTERISTICS for MCP  
1. AC Characteristics  
• Read Cycle (SRAM)  
Value  
Parameter  
Symbol  
Unit  
Min  
70  
5
Max  
Read Cycle Time  
tRC  
tAA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time  
70  
70  
70  
35  
70  
Chip Enable (CE1s) Access Time  
Chip Enable (CE2s) Access Time  
Output Enable Access Time  
tCO1  
tCO2  
tOE  
LB, UB to Output Valid  
tBA  
Chip Enable (CE1s Low and CE2s High) to Output Active  
Output Enable Low to Output Active  
LB, UB Enable Low to Output Active  
Chip Enable (CE1s High or CE2s Low) to Output High-Z  
Output Enable High to Output High-Z  
LB, UB Output Enable to Output High-Z  
Output Data Hold Time  
tCOE  
tOEE  
tBE  
0
0
tOD  
10  
25  
25  
25  
tODO  
tBD  
tOH  
Note: Test Conditions–Output Load:1 TTL gate and 30 pF  
Input rise and fall times: 5 ns  
Input pulse levels: 0.0 V to 3.0 V  
Timing measurement reference level  
Input: 0.5 × VCCs  
Output: 0.5 × VCCs  
56  
MB84VZ064G-70  
• Read Cycle (SRAM)  
tRC  
Address  
CE1s  
tAA  
tOH  
tCO1  
tCOE  
tOD  
tCO2  
CE2s  
tOD  
tOE  
OE  
tODO  
tOEE  
LB, UB  
tBA  
tBD  
tBE  
tCOE  
DQ  
Valid Data Output  
Note: WE remains HIGH for the read cycle.  
57  
MB84VZ064G-70  
• Write Cycle (SRAM)  
Parameter  
Value  
Symbol  
Unit  
Min  
70  
50  
55  
55  
55  
0
Max  
25  
Write Cycle Time  
tWC  
tWP  
tCW  
tAW  
tBW  
tAS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Pulse Width  
Chip Enable to End of Write  
Address valid to End of Write  
LB, UB to End of Write  
Address Setup Time  
Write Recovery Time  
WE Low to Output High-Z  
WE High to Output Active  
Data Setup Time  
tWR  
tODW  
tOEW  
tDS  
0
0
30  
0
Data Hold Time  
tDH  
58  
MB84VZ064G-70  
• Write Cycle*1 (WE control) (SRAM)  
tWC  
Address  
tAS  
tWP  
tWR  
WE  
CE1s  
CE2s  
tAW  
tCW  
tCW  
tBW  
LB, UB  
tOEW  
tODW  
DOUT  
*2  
*4  
*3  
*4  
tDS  
tDH  
DIN  
Valid Data Input  
*1 : If OE is HIGH during the write cycle, the outputs will remain at high impedance.  
*2 : If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the output  
will remain at high impedance.  
*3 : If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the output  
will remain at high impedance.  
*4 : Because I/O signals may be in the output state at this Time, input signals of reverse polarity  
must not be applied.  
59  
MB84VZ064G-70  
• Write Cycle *1 (CE1s control) (SRAM)  
tWC  
Address  
tAS  
tWP  
tWR  
WE  
tAW  
tCW  
CE1s  
CE2s  
tCW  
tBW  
LB, UB  
tBE  
tCOE  
tODW  
DOUT  
tDS  
tDH  
DIN  
*2  
*2  
Valid Data Input  
*1 : If OE is HIGH during the write cycle, the outputs will remain at high impedance.  
*2 : Because I/O signals may be in the output state at this Time, input signals of reverse polarity  
must not be applied.  
60  
MB84VZ064G-70  
• Write Cycle *1 (CE2s Control) (SRAM)  
tWC  
Address  
tAS  
tWP  
tWR  
WE  
tCW  
CE1s  
CE2s  
tAW  
tCW  
tBW  
LB, UB  
tBE  
tCOE  
tODW  
DOUT  
tDS  
tDH  
DIN  
*2  
Valid Data Input  
*2  
*1 : If OE is HIGH during the write cycle, the outputs will remain at high impedance.  
*2 : Because I/O signals may be in the output state at this Time, input signals of reverse polarity  
must not be applied.  
61  
MB84VZ064G-70  
• Write Cycle *1 (LB, UB Control) (SRAM)  
tWC  
Address  
WE  
tWP  
tWR  
tCW  
CE1s  
CE2s  
tCW  
tAW  
tBW  
tAS  
LB, UB  
tBE  
tCOE  
tODW  
DOUT  
tDS  
tDH  
*2  
Valid Data Input  
*2  
DIN  
*1 : If OE is HIGH during the write cycle, the outputs will remain at high impedance.  
*2 : Because I/O signals may be in the output state at this Time, input signals of reverse polarity must  
not be applied.  
62  
MB84VZ064G-70  
2. Data Retention Characteristics (SRAM)  
Parameter  
Value  
Unit  
Symbol  
Min  
1.5  
Typ  
Max  
3.1  
15  
Data Retention Supply Voltage  
VDH  
IDDS2  
tCDR  
tR  
V
Standby Current  
VDH = 3.0 V  
µA  
ns  
ns  
Chip Deselect to Data Retention Mode Time  
Recovery Time  
0
tRC  
Note : tRC: Read cycle time  
• CE1s Controlled Data Retention Mode*1  
VCCs  
Data Retention Mode  
2.7 V  
*2  
*2  
VIH  
VDH  
VCCS – 0.2 V  
tCDR  
tR  
CE1s  
VSS  
*1 : In CE1s controlled data retention mode, input level of CE2s should be fixed Vccs to VCCs–0.2 V or VSS to 0.2 V  
during data retention mode. Other input and input/output pins can be used between –0.3 V to VCCs+0.3 V.  
*2 : When CE1s is operating at the VIH Min. level, the standby current is given by ISB1s during the transition of VCCs  
from Vccs Max to VIH Min level.  
63  
MB84VZ064G-70  
• CE2s Controlled Data Retention Mode*  
VCCs  
2.7 V  
VDH  
Data Retention Mode  
VIH  
tCDR  
tR  
CE2s  
VIL  
0.2 V  
VSS  
* : In CE2s controlled data retention mode, input and input/output pins can be used between – 0.3 V to Vccs + 0.3 V.  
64  
MB84VZ064G-70  
PIN CAPACITANCE  
Value  
Typ  
Parameter  
Symbol  
Condition  
Unit  
Min  
Max  
30  
Input Capacitance  
CIN  
COUT  
CIN2  
VIN = 0  
VOUT = 0  
VIN = 0  
pF  
pF  
pF  
Output Capacitance  
Control Pin Capacitance  
35  
35  
Note: Test conditions TA = +25°C, f = 1.0 MHz  
HANDLING OF PACKAGE  
Please handle this package carefully since the sides of package create acute angles.  
CAUTION  
The high voltage (VID) cannot apply to address pins and control pins except RESET_1 or RESET_2. Exception  
is when autoselect and sector group protect function are used, then the high voltage (VID) can be applied to  
RESET_1 or RESET_2.  
Without the high voltage (VID) , sector group protection can be achieved by using “Extended Sector Group  
Protection” command.  
65  
MB84VZ064G-70  
ORDERING INFORMATION  
MB84VZ064G  
-70  
PBS  
PACKAGE TYPE  
PBS = 107-ball BGA  
SPEED OPTION  
DEVICE NUMBER/DESCRIPTON  
64Mega-bit (4M x 16bit) Dual Operation Flash Memory  
64Mega-bit (4M x 16bit) Dual Operation Flash Memory  
3.0 V-only Read, Program, and Erase  
64Mega-bit (2M x 16bit) FCRAM  
8Mega-bit (256K x 16bit) SRAM  
66  
MB84VZ064G-70  
PACKAGE DIMENSION  
107-ball plastic FBGA  
(BGA-107P-M01)  
10.00±0.10(.394±.004)  
0.20(.008)  
S
B
1.25 +00..1105  
B
(SEATED HIGHT)  
(STAND OFF)  
.049 +..000046  
0.40(.016)  
REF  
0.80(.031)  
REF  
0.10±0.05  
(.004±.002)  
10  
9
8
7
6
5
4
3
2
1
0.80(.031)  
REF  
A
9.00±0.10  
(.354±.004)  
0.40(.016)  
REF  
0.08(.003)  
S
M
L K J H G F E D C B A  
INDEX-MARK AREA  
S
107-ø0.40 +00..0150  
107-ø.016 +..000024  
0.20(.008)  
S A  
M
0.08(.003)  
S
A
B
0.08(.003)  
S
C
2002 FUJITSU LIMITED B107001S-c-1-1  
Dimensions in mm (inches)  
67  
MB84VZ064G-70  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0302  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB84VZ128A

Memory IC
FUJITSU

MB84VZ128B-70PBS

Memory Circuit, 8MX16, CMOS, PBGA115, PLASTIC, FBGA-115
SPANSION

MB84VZ128B-70PBS-E1

Memory Circuit, 8MX16, CMOS, PBGA115, PLASTIC, FBGA-115
SPANSION

MB84VZ128C-70PBS

Memory Circuit, 8MX16, CMOS, PBGA115, PLASTIC, FBGA-115
SPANSION

MB84VZ128C-70PBS

Memory Circuit, Flash+PSRAM+SRAM, Hybrid, PBGA115
FUJITSU

MB84VZ128C-70PBS-E1

Memory Circuit, 8MX16, CMOS, PBGA115, PLASTIC, FBGA-115
SPANSION

MB8501E064AD-60DG

EDO DRAM Module, 1MX64, 60ns, CMOS, PDMA168
FUJITSU

MB8501E064AD-70DG

EDO DRAM Module, 1MX64, 70ns, CMOS, PDMA168
FUJITSU

MB8501S064AC-100DG

Synchronous DRAM Module, 1MX64, 8.5ns, CMOS, PDMA168
FUJITSU

MB8501S064AC-67DG

Synchronous DRAM Module, 1MX64, 9ns, CMOS, PDMA168
FUJITSU

MB8501S064AC-84DG

Synchronous DRAM Module, 1MX64, 8.5ns, CMOS, PDMA168
FUJITSU

MB8501S064AD-100DG

Synchronous DRAM Module, 1MX64, 8.5ns, CMOS, PDMA144
FUJITSU