MB89899PF [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89899PF
型号: MB89899PF
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器和处理器 外围集成电路 时钟
文件: 总51页 (文件大小:639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12524-3E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89890 Series  
MB89898/899/P899/PV890  
OUTLINE  
The MB89890 series is a line of single-chip microcontrollers containing a great variety of peripheral functions  
such as dual clock control systems, 4-stage operating speed controller, DTMF signal generator, timer, PWM timer,  
serial interface, modem, A/D converter and external interrupt, as well as compact instruction set.  
FEATURES  
• F2MC-8L family CPU core  
• Dual clock control system  
• Maximum memory size: 64 Kbytes  
• Minimum execution time: 0.5 µs at 8 MHz  
• Interrupt processing time: 4.5 µs at 8 MHz  
• I/O ports: max. 85 ports  
• 21-bit time-base counter  
• 8-bit PWM timer  
• DTMF generator  
• 8/16-bit timer  
• 8-bit serial I/O  
• Serial I/O with 1-byte buffer  
• A/D converter  
• Modem timer (pulse-width counter)  
• Modem signal output  
(Continued)  
PACKAGE  
100-pin Plastic QFP  
100-pin Ceramic MQFP  
(FPT-100P-M06)  
(MQP-100C-P01)  
MB89890 Series  
(Continued)  
• External interrupt: 16 channels  
• Power-on reset function  
• Low-power consumption modes (subclock mode, watch mode, sleep mode, stop mode)  
• CMOS technology  
PRODUCT LINEUP  
Part number  
MB89898  
MB89899  
MB89P899  
MB89PV890  
Item  
Classification  
Piggyback/  
evaluation product  
(for development)  
Mass-produced products  
(mask ROM products)  
One-time product  
OTPROM product  
ROM size  
RAM size  
48 K × 8 bits  
60 K × 8 bits  
60 K × 8 bits  
60 K × 8 bits  
(external ROM)  
(internal mask ROM) (internal mask ROM) (internal OTPROM)  
1.5 K × 8 bits 2.0 K × 8 bits  
Instruction bit  
length  
8 bits  
Instruction length  
Data bit length  
1 to 3 bytes  
1, 8, 16 bits  
The number of  
instructions  
136  
Clock generator  
Internal  
Minimum  
execution time  
0.5 µs at 8 MHz to 8 µs at 8 MHz, 61 µs at 32.768 kHz  
4.5 µs at 8 MHz to 72 µs at 8 MHz, 549.3 µs at 32.768 kHz  
Interrupt  
processing time  
Ports  
General-purpose output ports (N-ch open-drain):  
General-purpose output ports (CMOS):  
General-purpose I/O ports (N-ch open-drain):  
General-purpose I/O ports (CMOS):  
Total:  
21 (8)  
8 (0)  
8 (6)  
48 (29)  
85 (43)  
( ) indicate  
shared function  
ports.  
PWM timer  
8 bits × 1 channel  
Timer/counter  
Serial I/O  
8 bits × 2 channels or 16 bits × 1 channel  
8-bit serial I/O (with 1-byte buffer) × 1  
8 bits × 8 channels  
A/D converter  
DTMF generator  
CCITT all-tone output capable (1 to 0(10), *, #, A to D)  
Single-tone output capable  
Soft modem  
receiving timer  
5-bit noise reduction circuit + pulse-width measurement timer  
(Continued)  
2
MB89890 Series  
(Continued)  
Part number  
MB89899  
MB89P899  
MB89PV890  
MB89898  
Item  
Soft modem  
transmitting  
circuit  
approximately 1208 bps, approximately 2415 bps modem output  
External interrupt  
Time-base timer  
Watch prescaler  
Standby mode  
Process  
16  
21 bits  
15 bits  
Watch mode, subclock mode, sleep mode, stop mode  
CMOS  
Operating  
voltage*  
2.2 V to 6.0 V  
2.7 V to 6.0 V  
MBM27C512-20TV  
EPROM for use  
* : Varies with conditions such as operating frequencies.  
PACKAGE AND CORRESPONDING MODELS  
MB89898  
Package  
MB89899  
MB89PV890  
MB89P899  
FPT-100P-M06  
MQP-100C-P01  
×
×
: Available  
× : Not available  
Note: For more information about each package, see External Dimensions”.  
DIFFERENCES AMONG MODELS  
1. Memory Size  
Before evaluating using the piggyback model, verify its difference from the model that will actually be used.  
2. Current Consumption  
• In the case of the MB89PV890, added is the current consumed by the EPROM which is connected to the top  
socket.  
• When operated at low speed the product with an OTPROM (EPROM) will consume more current than the  
product with a mask ROM. However, the same is current consumption in sleep/stop mode.  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary with product. Before using  
options, check Mask Options”. Take particular care on the following points:  
• Options are fixed on the MB89PV890.  
• Pull-up resistor options on the MB89P899 are in 2-bit units for P00 to P07, P10 to P17, P60 to P67, P90 to  
P97, and PA0 to PA7. Options are in 1-bit units for P40 to P44, P70 to P77, P80 to P87.  
3
MB89890 Series  
PIN ASSIGNMENT  
(Top view)  
VCC  
X1A  
X0A  
MOD0  
MOD1  
X0  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P97/INT27  
P96/INT26  
P95/INT25  
P94/INT24  
P93/INT23  
P92/INT22  
P91/INT21  
P90/INT20  
P87  
P86  
P85  
P84  
P83  
X1  
VSS  
RST  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P82  
P81  
P80  
P77  
P76  
P75/BSO2  
P74/BSI2  
P73/BSK2  
VSS  
P72/SO2  
P71/SI2  
P70/SK2  
P67/BSO1  
P66/BSI1  
P65/BSK1  
P64  
P63/MSKO  
(FPT-100P-M06)  
4
MB89890 Series  
(Top view)  
VCC  
X1A  
X0A  
MOD0  
MOD1  
X0  
P97/INT27  
P96/INT26  
P95/INT25  
P94/INT24  
P93/INT23  
P92/INT22  
P91/INT21  
P90/INT20  
P87  
P86  
P85  
P84  
P83  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
X1  
VSS  
O7  
O8  
01  
N.C.  
A0  
RST  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CE  
A10  
OE  
N.C.  
A11  
A9  
A1  
P82  
P81  
P80  
P77  
A2  
A3  
P76  
P75/BSO2  
P74/BSI2  
P73/BSK2  
VSS  
P72/SO2  
P71/SI2  
P70/SK2  
P67/BSO1  
P66/BSI1  
P65/BSK1  
P64  
A4  
A5  
A8  
A6  
P63/MSKO  
(MQP-100C-P01)  
• Pin assignment on package top (MB89PV890 only)  
Pin no.  
101  
Pin name  
N.C.  
A15  
A12  
A7  
Pin no.  
109  
Pin name  
A2  
Pin no.  
117  
Pin name  
N.C.  
O4  
Pin no.  
125  
Pin name  
OE  
102  
110  
A1  
118  
126  
N.C.  
A11  
A9  
103  
111  
A0  
119  
O5  
127  
104  
112  
N.C.  
O1  
120  
O6  
128  
105  
A6  
113  
121  
O7  
129  
A8  
106  
A5  
114  
O2  
122  
O8  
130  
A13  
A14  
VCC  
107  
A4  
115  
O3  
123  
CE  
131  
108  
A3  
116  
VSS  
124  
A10  
132  
N.C.: Internally connected. Do not use.  
5
MB89890 Series  
PIN DESCRIPTION  
Pin no.  
Pin name  
Circuit type  
Function  
QFP*1, MQP*2  
6
X0  
A
Crystal oscillator pins (8 MHz)  
7
X1  
3
X0A  
B
C
Crystal oscillator pins (32.768 kHz)  
2
X1A  
4
5
MOD0  
MOD1  
RST  
Operation mode select pins  
Connect to VSS (GND) when using.  
9
D
E
E
G
F
Reset input pin  
10 to 17  
18 to 25  
26 to 33  
39  
P00 to P07  
P10 to P17  
P20 to P27  
P30/PWM  
General-purpose I/O ports  
General-purpose I/O ports  
General-purpose I/O ports  
General-purpose I/O port  
Also serves as an 8-bit PWM.  
40  
41  
P31/BUZR  
P32/MSKI  
F
F
F
F
General-purpose I/O port  
Also serves as a buzzer output.  
General-purpose I/O port  
Also serves as a modem timer.  
42,  
43  
P33,  
P34  
General-purpose I/O ports  
44,  
45,  
46  
P35/SK1,  
P36/SI1,  
P37/SO1  
General-purpose I/O ports  
Also serve as an 8-bit serial I/O output 1.  
34 to 38  
85 to 92  
P40 to P44  
J
General-purpose I/O ports  
P50/AN00 to  
P57/AN07  
H
General-purpose output ports  
Also serve as an analog input.  
47,  
48,  
49  
P60/TMO1,  
P61/TMO2,  
P62/TCLK  
F
F
General-purpose I/O ports  
Also serve as an 8/16-bit timer.  
51  
P63/MSKO  
General-purpose I/O port  
Also serves as a modem output.  
52  
P64  
F
F
General-purpose I/O port  
53,  
54,  
55  
P65/BSK1,  
P66/BSI1,  
P67/BSO1  
General-purpose I/O ports  
Also serve as a serial I/O output 1 with 1-byte buffer.  
56,  
57,  
58  
P70/SK2,  
P71/SI2,  
P72/SO2  
I
General-purpose I/O ports  
Also serve as an 8-bit serial I/O output 2.  
(Continued)  
*1: FPT-100P-M06  
*2: MQP-100C-P01  
6
MB89890 Series  
(Continued)  
Pin no.  
Pin name  
Circuit type  
Function  
QFP*1, MQP*2  
60,  
61,  
62  
P73/BSK2,  
P74/BSI2,  
P75/BSO2  
I
General-purpose I/O ports  
Also serve as a serial I/O output 2 with 1-byte buffer.  
63,  
64  
P76,  
P77  
I
General-purpose I/O ports  
65 to 72  
73 to 80  
P80 to P87  
J
General-purpose output ports  
P90/INT20 to  
P97/INT27  
F
General-purpose I/O ports  
External interrupt input is hysteresis input.  
81,  
82,  
83  
PA0/INT28,  
PA1/INT29,  
PA2/INTA  
F
F
General-purpose I/O ports  
External interrupt input is hysteresis input.  
96,  
97 to 100  
PA3/INTB,  
PA4/INT0 to  
PA7/INT3  
General-purpose I/O ports  
External interrupt input is hysteresis input.  
95  
1, 50  
8, 59  
93  
DTMF  
VCC  
K
DTMF signal output pin  
Power supply pin  
VSS  
Power supply (GND) pin  
Power supply pin  
VCC (AVCC)  
VSS (AVSS)  
AVR  
84  
Power supply GND pin  
A/D converter reference input pin  
94  
*1: FPT-100P-M06  
*2: MQP-100C-P01  
7
MB89890 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
Main clock  
• Oscillator feedback resistor: approximately  
2 Mat 5 V  
X1  
X0  
N-ch  
P-ch  
P-ch  
N-ch  
Main clock control signal  
B
Subclock  
• Oscillator feedback resistor: approximately  
4.5 Mat 5 V  
X1A  
N-ch  
X0A  
P-ch  
P-ch  
N-ch  
Subclock control signal  
C
D
• Output pull-up resistor (P-ch)  
At approximately 50 k/5 V  
• Hysteresis input  
R
P-ch  
N-ch  
E
• CMOS output  
• CMOS input  
• Pull-up resistor optional  
R
P-ch  
P-ch  
N-ch  
(Continued)  
8
MB89890 Series  
(Continued)  
Type  
Circuit  
Remarks  
F
• CMOS output  
• Hysteresis input  
• Pull-up resistor optional  
R
P-ch  
P-ch  
N-ch  
G
H
• CMOS output  
P-ch  
N-ch  
• N-ch open-drain output  
• Analog input  
P-ch  
N-ch  
Analog input  
I
• N-ch open-drain output  
• Hysteresis input  
• Pull-up resistor optional  
R
P-ch  
N-ch  
(Continued)  
9
MB89890 Series  
(Continued)  
Type  
Circuit  
Remarks  
J
• N-ch open-drain output  
• Pull-up resistor optional  
R
P-ch  
N-ch  
K
• DTMF analog output  
OPAMP  
10  
MB89890 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although operation is assured within the rated range of VCC power supply voltage, a rapid fluctuation of the  
voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC  
is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple  
fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60  
Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as  
when power is switched.  
6. Precautions when Using an External Clock  
When an external clock is used, oscillation stabilization time is required for even power-on reset (optional) and  
release from stop mode.  
11  
MB89890 Series  
PROGRAMMING TO THE EPROM ON THE MB89P899  
The MB89P899 is a one-time PROM version of the MB89890 series.  
1. Features  
• 60-Kbyte PROM on chip  
• Option can be set using the EPROM programmer.  
• Equivalency to the MBM27C1001, in EPROM mode (when programmed with the EPROM programmer),  
supports 4-byte programming mode.  
2. Memory Space  
Memory space in each mode such as 60-Kbyte PROM, option area is diagrammed below.  
Single chip  
EPROM mode  
Address  
(Corresponding addresses  
on the EPROM programmer)  
00000H  
00080H  
00000H  
I/O  
RAM  
2 KB  
Not available  
Option area  
00880H  
00FE4H  
Not available  
Option area  
00FE4H  
00FFCH  
01000H  
00FFCH  
01000H  
PROM  
60 KB  
PROM  
60 KB  
0FFFFH  
1FFFFH  
0FFFFH  
Not available  
3. Programming to the EPROM  
In EPROM mode the MB89P899 functions equivalent to the MBM27C1001. This allows the EPROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
When the operating ROM area for a single chip is 60 Kbytes (01000H to 0FFFFH ) the EPROM can be programmed  
as follows:  
• Programming procedure  
(1) Set the EPROM programmer to MBM27C1001.  
(2) Load program data into the EPROM programmer at 01000H to 0FFFFH.  
Load option data into addresses 00FE4H to 00FFCH. (For information about each corresponding options,  
see “7. Setting OTPROM Options.”)  
(3) Program to 00FE4H to 00FFCH, and 01000H to 0FFFFH with the EPROM programmer.  
12  
MB89890 Series  
4. Recommended Screening Conditions  
High-Temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
Due to its nature, bit programming test can’t be conducted as Fujitsu delivery test. For this reason, a programming  
yield of 100% cannot be assured at all times.  
6. EPROM Programmer Socket Adapter  
Compatible socket adapter  
Part number  
Package  
Sun Hayato Co., Ltd.  
QFP-100 ROM-100QF-32DP-8LA  
MB89P899  
Inquiry: Sun Hayato Co., Ltd.:TEL (81)-3-3986-0403  
FAX (81)-3-5396-9106  
13  
MB89890 Series  
7. Setting OTPROM Options  
The programming procedure is the same as that for the program data. Options can be set by programming  
values at the addresses shown on the memory map. The relationship between bits and options is shown on  
the following bit map.  
• PROM Option Bitmap  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Single/  
double clock  
1: 2 clock  
sytems  
Bit 3  
Reset  
output  
1: Yes  
0: No  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Power-on Oscillation stabilization  
reset  
1: Yes  
0: No  
time  
11 218/FCH 10 216/FCH  
01 212/FCH 00 23/FCH  
Readable  
Readable  
Readable  
00FE4H  
and writable and writable and writable  
0: 1 clcok  
system  
P17, P16  
Pull-up  
1: No  
P15, P14  
Pull-up  
1: No  
P13, P12  
Pull-up  
1: No  
P11, P10  
Pull-up  
1: No  
P07, P06 P05, P04 P03, P02  
P01, P00  
Pull-up  
1: No  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
00FE8H  
00FECH  
00FF0H  
00FF4H  
00FF8H  
00FFCH  
1: Yes  
1: Yes  
0: Yes  
0: Yes  
0: Yes  
P67, P66  
Pull-up  
1: No  
P65, P64  
Pull-up  
1: No  
P63, P62  
Pull-up  
1: No  
P61, P60  
Pull-up  
1: No  
P37, P36 P35, P34 P33, P32  
P31, P30  
Pull-up  
1: No  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
PA7, PA6  
Pull-up  
1: No  
PA5, PA4  
Pull-up  
1: No  
PA3, PA2  
Pull-up  
1: No  
PA1, PA0  
Pull-up  
1: No  
P97, P96 P95, P94 P93, P92  
P91, P90  
Pull-up  
1: No  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
P44  
P43  
P42  
P41  
P40  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable  
Readable  
Readable  
and writable and writable and writable  
P77  
P76  
P75  
P74  
P73  
P72  
P71  
P70  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P87  
P86  
P85  
P84  
P83  
P82  
P81  
P80  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Notes: Note that option area address values are equivalent to every fourth address to accommodate 4-byte  
programming mode.  
Each bit is set to ‘1’ as the initialized value, therefore the pull-up option is not selected.  
14  
MB89890 Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C512-20TV  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato  
Co., Ltd.) listed below.  
Package  
Adapter socket part mumber  
LCC-32 (Rectangle) ROM-32LC-28DP-YG  
Inquiry: Sun Hayato Co., Ltd.:TEL (81)-3-3986-0403  
FAX (81)-3-5396-9106  
3. Memory Space  
MB89PV890  
MBM27C512-20TV  
0000H  
I/O  
0080H  
0100H  
Register  
0200H  
RAM  
2 KB  
0880H  
1000H  
FFFFH  
1000H  
External ROM  
60 KB  
EPROM  
60 KB  
FFFFH  
4. Programming Procedure  
(1) Set the EPROM programmer to MBM27C512-20TV.  
(2) Load program data into the EPROM programmer at 1000H to FFFFH.  
(3) Program to 1000H to FFFFH with the EPROM programmer.  
15  
MB89890 Series  
BLOCK DIAGRAM  
CMOS I/O port 3  
Timebase timer  
8-bit  
PWM timer  
P30/PWM  
P31/BUZR  
Reset circuit  
(watchdog)  
RST  
Buzzer output  
Modem timer  
P32/MSKI  
P33  
Oscillator  
(max. 8 MHz)  
X0  
X1  
P34  
8-bit  
serial I/O  
P35/SK1  
P36/SI1  
P37/SO1  
Clock control  
X0A  
X1A  
Oscillator  
(32.768 kHz)  
5
N-ch open-drain output port 4  
N-ch open-drain output port 5  
P40 to P44  
8
8
8
P00 to P07  
P10 to P17  
P20 to P27  
CMOS I/O port 0  
CMOS I/O port 1  
CMOS output port 2  
8
8
8-bit  
P50/AN00  
to P57/AN07  
A/D converter  
CMOS I/O port 6  
P60/TMO1  
P61/TMO2  
P62/TCLK  
8/16-bit timer  
Modem output  
P63/MSKO  
P64  
P65/BSK1  
P66/BSI1  
P67/BSO1  
8-bit serial I/O  
with 1-byte buffer  
RAM  
1.5 Kbytes or 2.0 Kbytes  
P70/SK2  
P71/SI2  
P72/SO2  
P73/BSK2  
P74/BSI2  
P75/BSO2  
P76  
F2MC-8L  
CPU  
P77  
N-ch open-drain I/O port 7  
N-ch open-drain output port 8  
CMOS I/O pots 9, A  
ROM  
48 Kbytes or 60 Kbytes  
8
P80 to P87  
DTMF  
8
4
4
DTMF generator  
P90/INT20  
to P97/INT27  
PA0/INT28  
to PA3/INTB  
PA4/INT0  
12  
External interrupt 2  
The other pins  
VCC × 2,VSS × 2  
MOD0, MOD1  
AVCC, AVR, AVSS  
to PA7/INT3  
4
External interrupt 1  
16  
MB89890 Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89890 series offer 64 Kbytes of memory for storing all of I/O, data, and program  
areas. The I/O area is allocated from the lowest address. The data area is allocated immediately above the I/  
O area. The data area can be divided into register, stack, and direct areas, according to the application. The  
program area is allocated from exactly the opposite end, that is, near the highest address. The tables of interrupt  
reset vectors and vector call instructions are allocated from the highest address within the program area. The  
memory space of the MB89890 series is structured as illustrated below:  
Memory Space  
MB89898  
I/O  
MB89899  
I/O  
MB89P899  
I/O  
MB89PV890  
I/O  
0000H  
0000H  
0000H  
0000H  
007FH  
0080H  
007FH  
0080H  
007FH  
0080H  
007FH  
0080H  
00FFH  
0100H  
00FFH  
0100H  
00FFH  
0100H  
00FFH  
0100H  
Register  
Register  
Register  
Register  
01FFH  
0200H  
01FFH  
0200H  
01FFH  
0200H  
01FFH  
0200H  
RAM  
RAM  
RAM  
RAM  
1.5 KB  
2.0 KB  
2.0 KB  
2.0 KB  
067FH  
0680H  
087FH  
0880H  
087FH  
0880H  
087FH  
0880H  
0FFFH  
1000H  
0FFFH  
1000H  
0FFFH  
1000H  
3FFFH  
4000H  
ROM  
48 KB  
ROM  
60 KB  
ROM  
60 KB  
External ROM  
60 KB  
FFFFH  
FFFFH  
FFFFH  
FFFFH  
17  
MB89890 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated hardware registers in the CPU and general-purpose  
memory registers. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit-long register for indicating the instruction storage positions  
A 16-bit-long temporary register for arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit-long register which is used for arithmetic operations with the accumulator  
When the instruction is an 8-bit data processing instruction, the lower byte is used.  
Index register (IX):  
Extra pointer (EP) :  
Stack pointer (SP) :  
Program status (PS) :  
A 16-bit-long register for index modification  
A 16-bit-long pointer for indicating a memory address  
A 16-bit-long pointer for indicating a stack area  
A 16-bit-long register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
indeterminate  
T
: Temporary accumulator indeterminate  
IX  
: Index register  
: Extra pointer  
: Stack pointer  
: Program status  
indeterminate  
indeterminate  
indeterminate  
EP  
SP  
PS  
I-flag = 0, IL1, 0 = 11  
The other bit values are indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR) (see the diagram below).  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
Vacancy Vacancy Vacancy  
PS  
RP  
H
IL1, 0  
N
V
C
RP  
CCR  
18  
MB89890 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.  
Cleared to ‘0’ otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’. Cleared  
to ‘0’ at the reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
0
1
2
3
High  
0
1
1
0
1
1
Low  
N-flag: Set to ‘1’ if the highest bit becomes ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ otherwise.  
Z-flag: Set to ‘1’ when an arithmetic operation results in ‘0’. Cleared to ‘0’ otherwise.  
V-flag: Set to ‘1’ if the complement on ‘2’ overflows as a result of an arithmetic operation. Cleared to ‘0’ if the  
overflow does not occur.  
C-flag: Set to ‘1’ when a carry or borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to ‘0’  
otherwise. Set to the shift-out value in the case of a shift instruction.  
19  
MB89890 Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit-long register for storing data  
The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 32 banks can be used. The bank currently in use is indicated by the register  
bank pointer (RP).  
Register Bank Configuraiton  
This address = 0100H + 2 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
20  
MB89890 Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Write/read  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
Port 1 data direction register  
Port 2 data register  
Vacancy  
(R/W)  
(W)  
PDR1  
DDR1  
(R/W)  
PDR2  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
SCC  
SMC  
System clock control register  
Standby control register  
Watchdog control register  
Time-base timer control register  
Watch prescaler control register  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
Buzzer register  
WDTC  
TBTC  
WPCR  
PDR3  
DDR3  
PDR4  
BZCR  
PDR5  
Port 5 data register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
PDR6  
DDR6  
PDR7  
Port 6 data register  
Port 6 direction register  
Port 7 data register  
Vacancy  
(R/W)  
PDR8  
Port 8 data register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
PDR9  
DDR9  
PDRA  
DDRA  
SMR  
Port 9 data register  
Port 9 data direction register  
Port A data register  
Port A data direction register  
Serial mode register  
Serial data register  
PWM control register  
PWM compare register  
SDR  
CNTR  
COMR  
(Continued)  
21  
MB89890 Series  
(Continued)  
Address  
20H  
Write/read  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
Register name  
DTMC  
Register description  
DTMF control register  
21H  
DTMD  
DTMF data register  
22H  
SBMR  
Serial mode register with1-byte buffer  
Serial flag register with1-byte buffer  
Serial write register with1-byte buffer  
Serial read register with1-byte buffer  
Serial data register with1-byte buffer  
Timer 2 control register  
Timer 1 control register  
Timer 2 data register  
23H  
SBFR  
SBUFW  
SBUFR  
SBDR  
24H  
(R)  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
(R)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
T2CR  
T1CR  
T2DR  
T1DR  
Timer 1 data register  
MODC  
MODA  
Modem output control register  
Modem output data register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
ADC1  
ADC2  
ADCD  
EIE1  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register  
External interrupt 1 enable register  
External interrupt 1 flag register  
External interrupt 2 enable register  
External interrupt 2 flag register  
Modem timer control 1 register  
Modem timer control 2 register  
Modem timer “H” level data register  
Modem timer “L” level data register  
Vacancy  
EIF1  
EIE2  
EIF2  
MDC1  
MDC2  
MLDH  
MLDL  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
(R/W)  
SSEL  
Serial I/O port switching register  
Vacancy  
Vacancy  
(Continued)  
22  
MB89890 Series  
(Continued)  
Address  
Write/read  
Register name  
Register description  
40H to 7BH  
7CH  
Vacancy  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level register 1  
Interrupt level register 2  
Interrupt level register 3  
Vacancy  
7DH  
7EH  
7FH  
Note: Do not use vacancies.  
23  
MB89890 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VSS + 7.0  
V
V
AVCC  
Set VCC = AVCC*  
Power supply voltage  
AVR must not exceed “AVCC +  
0.3 V”.  
AVR  
VI  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VCC + 0.3  
V
V
Except P40 to P44, P70 to P77,  
P80 to P87  
Input voltage  
P40 to P44, P70 to P77,  
P80 to P87  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VCC + 0.3  
20  
V
V
Output voltage  
VO  
IOL  
“L” level maximum output  
current  
mA Peak value  
Specified by the average value  
of 1 hour.  
“L” level average output current  
IOLAV  
IOL  
IOLAV  
IOH  
10  
mA  
“L” level total maximum output  
current  
120  
40  
mA Peak value  
“L” level total average output  
current  
Specified by the average value  
of 1 hour.  
mA  
“H” level maximum output  
current  
–20  
–10  
–60  
–20  
mA Peak value  
Specified by the average value  
of 1 hour.  
“H” level average output current  
IOHAV  
IOH  
IOHAV  
mA  
“H” level total maximum output  
current  
mA Peak value  
“H” level total average output  
current  
Specified by the average value  
of 1 hour.  
mA  
Power consumption  
Operating temperature  
Storage temperature  
PD  
200  
+85  
mW  
°C  
TA  
–20  
–55  
Tstg  
+150  
°C  
* : Use AVCC and VCC set to the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
24  
MB89890 Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
2.2*  
6.0  
V
V
See Figure 1.  
VCC  
AVCC  
Retains the RAM state in the  
stop mode  
Power supply voltage  
Operating temperature  
1.5  
6.0  
AVR  
TA  
2.0  
AVCC  
+85  
V
–20  
°C  
* : This value varies with the DTMF generator assurance range.  
Figure 1 Operation Assurance Range  
6
: Highest gear speed  
: Lowest gear speed  
5
Operation assurance range  
4
3
2
1
1
2
3
4
5
6
7
8
9
10  
Main clock operating frequency (MHz)  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All  
the device’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside  
these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representative beforehand.  
25  
MB89890 Series  
3. DC Characteristics  
(AVCC = VCC = 5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
P00 to P07, P10 to P17  
VCC + 0.3  
VIH  
0.7 VCC  
V
P30 to P37, P60 to P67,  
P90 to P97, PA0 to PA7,  
RST, MOD0, MOD1,  
X0, X0A  
“H” level input  
voltage  
VIHS  
0.8 VCC  
VSS 0.3  
VSS 0.3  
VCC + 0.3  
0.3 VCC  
0.2 VCC  
V
V
V
P00 to P07, P10 to P17  
VIL  
P30 to P37, P60 to P67,  
P90 to P97, PA0 to PA7,  
RST, MOD0, MOD1,  
X0, X0A  
“L” level input  
voltage  
VILS  
P40 to P47, P70 to P77,  
P80 to P87  
N-ch open-  
drain  
VSS 0.3  
VSS 0.3  
VSS + 7.0  
VCC + 0.3  
V
Open-drain  
output pin  
applied voltage  
VD  
N-ch open-  
drain  
P50 to P57  
V
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P60 to P67, P90 to P97,  
PA0 to PA7  
“H” level output  
voltage  
VOH  
IOH = –2.0 mA  
IOL = 4.0 mA  
2.4  
V
V
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P60 to P67, P90 to P97,  
PA0 to PA7  
VOL1  
0.4  
“L” level output  
voltage  
RST  
VOL2  
VOL3  
IOL = 4.0 mA  
IOL = 8.0 mA  
0.4  
0.6  
V
V
P40 to P44, P70 to P77,  
P80 to P87  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P44, P50 to P57,  
Input leakage  
current  
P60 to P67, P70 to P77, 0.45 V < VI < VCC  
P80 to P87, P90 to P97,  
PA0 to PA7, MOD0,  
(Hi-z output  
leakage  
current)  
ILI  
±5  
µA  
MOD1  
(Continued)  
26  
MB89890 Series  
(Continued)  
(AVCC = VCC = 5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
FCH = 4 MHz  
VCC = 5.0 V  
in the main  
clock  
Highest  
mA  
6
9
gear speed  
operation  
FCH = 4 MHz  
VCC = 3.0 V  
in the main  
clock  
Lowest  
mA  
1.2  
13  
3
1.8  
26  
5
gear speed  
operation  
ICC  
FCH = 8 MHz  
VCC = 5.0 V  
in the main  
clock  
Highest  
mA  
gear speed  
operation  
FCH = 8 MHz  
VCC = 3.0 V  
in the main  
clock  
Lowest  
mA  
gear speed  
Power supply  
current  
operation  
VCC  
FCH = 4 MHz  
VCC = 5.0 V  
in the main  
sleep mode  
Highest  
mA  
2.5  
4
4
8
gear speed  
ICCS1  
FCH = 8 MHz  
VCC = 5.0 V  
in the main  
sleep mode  
Highest  
mA  
gear speed  
FCL =  
32.768 kHz  
VCC = 3.0 V  
in the  
subclock  
sleep mode  
ICCS2  
15  
2.5  
µA  
TA = +25°C  
VCC = 3.0 V  
in the  
ICCH1  
1
µA  
subclock  
stop mode  
(Continued)  
27  
MB89890 Series  
(Continued)  
(AVCC = VCC = 5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
TA = +85°C  
VCC = 3.0 V  
in the  
ICCH2  
1
10  
µA  
subclock  
stop mode  
FCL =  
32.768 kHz  
VCC = 3.0 V  
in the  
subclock  
operation  
ICSB  
50  
75  
µA  
µA  
FCL =  
32.768 kHz  
VCC = 3.0 V  
in the watch  
mode  
ICCT  
8
15  
12  
3.4  
31  
FCH = 4 MHz  
VCC = 5.0 V  
in the main  
clock  
VCC  
Highest  
mA  
gear speed  
operation  
Power supply  
current  
FCH = 4 MHz  
VCC = 3.0 V  
in the main  
clock  
Lowest  
mA  
2.3  
17  
gear speed  
operation  
ICCD  
FCH = 8 MHz  
VCC = 5.0 V  
in the main  
clock  
Highest  
mA  
gear speed  
operation  
FCH = 8 MHz  
VCC = 3.0 V  
in the main  
clock  
Lowest  
mA  
6
11  
gear speed  
operation  
When A/D  
mA conversion  
is operating  
IA  
1.5  
3.5  
AVCC  
FCH = 8 MHz  
When A/D  
conversion  
is not  
operating  
IAH  
1
5
µA  
Other than AVCC,  
AVSS, VCC, and VSS  
Input capacitance CIN  
10  
pF  
28  
MB89890 Series  
4. AC Characteristics  
(1) Reset Timing  
(VCC = +5.0 V±10%, VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
RST “H” pulse width  
tZLZH  
tZHZL  
48 tXCYL  
24 tXCYL  
ns  
ns  
Note: tXCYL is the oscillation cycle input to the X0.  
tZLZH  
tZHZL  
RST  
0.8 VCC  
0.2 VCC  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
(VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Min. Max.  
Symbol Condition  
Unit  
Remarks  
Parameter  
Power supply rising time  
Power supply cut-off time  
tR  
1
50  
ms  
ms  
Power-on reset function only  
Due to repeated operations  
tOFF  
Note: Make sure that power supply rises within the selected oscillation stabilization time selected.  
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is  
recommended.  
tOFF  
tR  
2.0 V  
0.2 V  
0.2 V  
0.2 V  
V
CC  
29  
MB89890 Series  
(3) Clock Timing  
(VCC = +5.0 V±10%, VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Clock frequency  
Clock cycle time  
Min.  
1
Typ.  
Max.  
8
FCH  
X0, X1  
MHz Main clock  
kHz Subclock  
ns Main clock  
µs Subclock  
FCL  
X0A, X1A  
X0, X1  
32.768  
tHCYL  
tLCYL  
125  
1000  
X0A, X1A  
30.5  
PWH  
PWL  
X0  
20  
15.2  
ns External clock  
Input clock pulse width  
PWLH  
PWLL  
X0A  
X0  
µs External clock  
tCR1  
tCF1  
24  
ns  
Input clock rising/falling  
time  
External clock  
ns  
tCR2  
tCF2  
X0A  
200  
30  
MB89890 Series  
X0 and X1 Timing and Conditions of Applied Voltage  
tHCYL  
0.8 VCC  
X0  
0.2 VCC  
PWH  
PWL  
tCF1  
tCR1  
Main Clock Conditions  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
FCH  
C1  
FCH  
C0  
X0A and X1A Timing and Conditions of Applied Voltage  
tLCYL  
0.8 VCC  
X0A  
0.2 VCC  
PWHL  
PWLL  
tCF2  
tCR2  
Subclock Conditions  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0A  
X1A  
X0A  
X1A  
Rd  
Open  
FCL  
FCL  
C0  
C1  
31  
MB89890 Series  
(4) Instruction Cycle  
Symbol  
Value  
Unit  
Remarks  
Parameter  
(4/FCH) tinst = 0.5 µs when  
operating at FCH = 8 MHz  
4/FCH, 8/FCH, 16/FCH, 64/FCH  
µs  
Instruction cycle  
(minimum execution time)  
tinst  
tinst = 61.036 µs when operating at  
FCL = 32.768 kHz  
2/FCL  
µs  
*1: When operating at the main clock, tinst varies with the execution time (gear) setting, within the following range:  
Min. = 4/FCH, Max. = 64/FCH.  
*2: When operating at the subclock, tinst = 2/FCL.  
(5) Recommended Resonator Manufacturers  
Sample Application of Piezoelectric Resonator (FAR Series)  
X0  
X1  
FAR*1  
C1*2  
C2*2  
*1: Fujitsu Acoustic Resonator  
Temperature  
characteristics of  
FAR frequency  
Initial deviation of  
FAR frequency  
(TA = +25°C)  
Loading  
FAR part number  
(built-in capacitor type)  
Frequency (MHz)  
capacitors*2  
(TA = –20°C to +60°C)  
3.58  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
FAR-C4 A-03580- 01  
FAR-C4 G-10000- 05  
Inquiry: FUJITSU LIMITED  
Built-in  
10.00  
32  
MB89890 Series  
Sample Application of Ceramic Resonator  
X0  
X1  
C1  
C2  
Mask ROM products  
Resonator  
manufacturer  
Resonator  
Frequency (MHz)  
C1 (pF)  
C2 (pF)  
R
CSA8.00MTZ  
CST8.00MTW  
30  
30  
Not required  
Not required  
Murata Mfg. Co., Ltd.  
8.00  
Built-in  
Built-in  
Inquiry: Murata Mfg. Co., Ltd  
• Murata Electronics North America. Inc.: TEL 1-404-436-1300  
• Murata Europe Mnagement GmbH: TEL 49-911-66870  
• Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233  
33  
MB89890 Series  
(6) Serial I/O Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
2 tinst*  
–200  
200  
Max.  
Serial clock cycle time  
SCK ↓ → SO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
SCK  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Internal shift  
clock mode  
Valid SI SCK ↑  
SCK ↑ → valid SI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK ↓ → SO time  
200  
1 tinst*  
1 tinst*  
0
SCK  
External shift  
clock mode  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Valid SI SCK ↑  
200  
ns  
ns  
2 × tXCYL  
2 × tXCYL  
SCK ↑ → valid SI hold time  
200  
* : For information on tinst, see “(4) Instruction Cycle.”  
Internal Shift Clock Mode  
tSCYC  
2.4 V  
SCK  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
SO  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
SI  
0.2 VCC  
External Shift Clock Mode  
tSLSH  
tSHSL  
0.8 VCC  
0.8 VCC  
SCK  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SO  
SI  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
34  
MB89890 Series  
(7) Peripheral Input Timing  
Parameter  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Symbol  
Pin  
Unit Remarks  
Min.  
Max.  
Peripheral input “H” level pulse  
width  
INT20 to INTA  
INT0 to INT3  
tILIH  
tIHIL  
2 tinst*  
µs  
µs  
Peripheral input “L” level pulse  
width  
INT20 to INTA  
INT0 to INT3  
2 tinst*  
* : For information on tinst, see “(4) Instruction Cycle.”  
tILIH  
tIHIL  
INT20 to INTA  
INT0 to INT3  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
35  
MB89890 Series  
(8) Electrical Characteristics of DTMF Generator  
(AVSS = VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Typ.  
5.0  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Operating voltage range  
2.5  
6.0  
V
Defined when  
the DTMF pin  
kis connected to  
a pull-down  
VCC = 2.5 V to 6.0  
V
Output load requirements  
RO  
20  
resistor.  
DTMF output offset voltage  
(at signal output)  
VMOF  
VCC = 5.0 V  
VCC = 5.0 V  
0.4  
V
When the  
DTMF pin is  
open.  
DTMF output amplitude  
(ROW single tone)  
VMFOR  
–16.3 –14.0 –12.5 dBm  
Difference between  
COLUMN and ROW levels  
RO = 200 kΩ  
RMF  
1.6  
2.0  
2.4  
7
dB  
%
Distortion ratio  
Output Level Measurement Circuit  
VCC  
X0  
0.1 µF  
Lowpass filter  
16.0 kHz  
DTMF  
Audio analizer  
Output level  
8 MHz  
RO  
X1  
–48 dB/oct  
VSS  
36  
MB89890 Series  
5. A/D Converter Electrical Characteristics  
Pin  
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)  
Value  
Symbol  
Remarks  
Parameter  
Condition  
Unit  
name  
Min.  
Typ.  
Max.  
8
Resolution  
bit  
Total error  
±1.5  
±1.0  
LSB  
LSB  
Linearity error  
Differential linearity  
error  
±0.9  
LSB  
mV  
AVR =  
AVCC = 5.0 V  
AVSS – 1.5  
LSB  
AVSS + 0.5  
LSB  
AVSS + 1.5  
LSB  
Zero transition  
voltage  
1 LSB =  
AVR/256  
V0T  
AVR – 1.5  
LSB  
AVR – 1.5  
LSB  
AVR + 1.5  
LSB  
Full-scale transition  
voltage  
VFST  
mV  
LSB  
µs  
Interchannel disparity  
0.5  
A/D mode conversion  
time  
44 tinst*  
Sense mode  
conversion time  
12 tinst*  
µs  
Analog port input  
current  
IAIN  
10  
µA  
AN0to  
AN7  
Analog input voltage  
Reference voltage  
0.0  
0.0  
AVR  
AVCC  
V
V
When  
starting A/D  
conversion  
IR  
100  
300  
1
µA  
µA  
AVR  
Reference voltage  
supply current  
AVR =  
AVCC = 5.0 V  
When  
starting A/D  
conversion  
IRH  
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
6. A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable by the A/D converter  
When the number of bits is 8, analog voltage can be divided into 28 = 256.  
• Linearity error (unit: LSB)  
The deviation of the straight line connecting the zero transition point (“0000 0000” “0000 0001”) with the  
full-scale transition point (“1111 1111” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
37  
MB89890 Series  
Digital output  
Theoretical conversion value  
1111 1111  
1111 1110  
Actual conversion value  
(1 LSB × N + VOT)  
AVR  
256  
1 LSB =  
VNT – (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V( N + 1 ) T – VNT  
– 1  
Differential linearity error =  
Total error =  
1 LSB  
Linearity error  
VNT – (1 LSB × N + 1 LSB)  
1 LSB  
0000 0010  
0000 0001  
0000 0000  
VOT  
VNT  
V(N + 1)T  
VFST  
Analog input  
7. Notes on Using A/D Converter  
• Input impedance of the analog input pins  
The A/D converter used for the MB89890 series contains a sample hold circuit as illustrated below to fetch  
analog input voltage into the sample hold capacitor for eight instruction cycles after starting A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 10 k).  
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of approx.  
0.1 µF for the analog input pin.  
Analog Input Equivalent Circuit  
Sample hold circuit  
.
C = 33 pF  
.
Analog input pin  
Comparator  
If the analog input  
impedance is higher  
than 10 k, it is  
recommended to  
connect an external  
capacitor of approx.  
0.1 µF.  
.
R = 6 kΩ  
.
Close for 8 instruction cycles after starting  
A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVR – AVSS |, the greater the error would become relatively.  
• Order of turning on A/D converter and analog input  
Make sure to turn on the digital power supply (VCC) before or at the same time with turning on the A/D converter  
power supply (AVCC, AVSS) and application of AN00 to AN07.  
To turn off the power, turn off the A/D converter power supply (AVCC, AVSS) and stop the analog input (AN00  
to AN07) before or at the same time with turning off the digital power supply (VCC).  
38  
MB89890 Series  
ELECTRICAL CHARACTERISTICS  
(1) “L” Level Output Voltage  
(2) “H” Level Output Voltage  
VOL vs. IOL  
V OL (V)  
V CC – VOH vs. IOL  
V CC = 2.2 V  
V CC – V OH (V)  
1.1  
V CC = 2.2 V  
V CC = 2.5 V  
V CC = 2.5 V  
1.1  
T A = +25°C  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V CC = 3.0 V  
V CC = 4.0 V  
V CC = 3.0 V  
V CC = 5.0 V  
V CC = 6.0 V  
V CC = 4.0 V  
V CC = 5.0 V  
V CC = 6.0 V  
T A = +25°C  
10  
I OL (mA)  
0
–.5  
–1.0 –1.5 –2.0 –2.5 –3.0  
I OH (mA)  
0
1
2
3
4
5
6
7
8
9
(3) “H” Level Input Voltage/“L” Level Input Voltage (4) “H” Level Input Voltage/“L” Level Input Voltage  
(CMOS Input)  
(Hysteresis Input)  
V IN vs. V CC  
V IN vs. V CC  
V IN (V)  
5.0  
V IN (V)  
5.0  
T A = +25°C  
4.5  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
–0  
T A = +25°C  
4.0  
V IHS  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
–0  
V ILS  
.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00  
V CC (V)  
.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00  
V CC (V)  
V IHS : “H” level input voltage threshold as  
hysteresis input  
V ILS : “L” level input voltage threshold as  
hysteresis input  
39  
MB89890 Series  
(5) Power Supply Current (External Clock)  
Characteristics of Current Consumption  
in the Main Clock Operation  
Characteristics of Current Consumption  
in the DTMF and Main Clock Operation  
I CC (mA)  
10  
I CC vs. V CC  
I CCD vs. V CC  
I CCD (mA)  
12  
11  
Dividing  
-by-4  
Dividing  
-by-4  
T A = +25°C  
F CH = 8 MHz  
9
8
7
6
5
4
3
2
T A = +25°C  
F CH = 8 MHz  
10  
9
8
7
6
5
4
3
2
1
0
Dividing  
-by-8  
Dividing  
-by-8  
Dividing  
-by-16  
Dividing  
-by-16  
Dividing  
Dividing  
-by-64  
-by-64  
1
0
2
3
4
5
6
4
2
3
5
6
V CC (V)  
V CC (V)  
Characteristics of Current Consumption  
in the Main Sleep Mode  
Characteristics of Current Consumption  
in the Subclock Operation  
I CCS vs. V CC  
I CCS (mA)  
10  
I CCSB vs. V CC  
I CCSB (µA)  
10  
T A = +25°C  
F CH = 8 MHz  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
T A = +25°C  
F CL = 32.768 KHz  
Dividing  
-by-4  
2
1
2
1
0
2.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
3
3.5  
4
4.5  
5
5.5  
6
V CC (V)  
V CC (V)  
Characteristics of Current Consumption  
in the Watch Mode  
Characteristics of Current Consumption  
in the Subclock Stop  
I CCT vs. V CC  
I CCT (µA)  
30  
I CCH vs. V CC  
I CCH (A)  
2.0  
T A = +25°C  
F CL = 32.768 KHz  
T A = +25°C  
F CL = 32.768 KHz  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
25  
20  
15  
10  
5
0.2  
0.0  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V CC (V)  
V CC (V)  
40  
MB89890 Series  
(6) Pull-up Resistance  
R PULL vs. VCC  
R PULL (k)  
1000  
T A = +25°C  
300  
100  
50  
10  
0
1
2
3
4
5
6
7
V CC (V)  
41  
MB89890 Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
T
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
TH  
TL  
IX  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
CCR  
RP  
Ri  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
42  
MB89890 Series  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
The number of instructions  
The number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
43  
MB89890 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
F0  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
44  
MB89890 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
C
A
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
45  
MB89890 Series  
(Continued)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
46  
MB89890 Series  
INSTRUCTION MAP  
47  
MB89890 Series  
MASK OPTIONS  
Part number  
MB89898/9  
MB89P899  
MB89PV890  
No.  
Specifying not  
possible  
Specify when  
ordering masking  
Specify with EPROM  
programmer  
Specifying procedure  
Pull-up resistors  
P00 to P07  
P10 to P17  
P30 to P37  
P40 to P44  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA7  
Select by single pin  
P00 to P07  
P10 to P17  
P30 to P37  
P40 to P44  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA7  
Select by 2-pin pair  
P00 to P07  
P10 to P17  
P30 to P37  
P60 to P67  
P90 to P97  
PA0 to PA7  
Select by single pin  
P40 to P44  
P70 to P77  
Fixed to no  
pull-up resistor  
1
P80 to P87  
Set in the above  
combinations  
Set in the above  
combinations  
Power-on reset (POR)  
Power-on reset provided  
No power-on reset  
Fixed to  
power-on reset  
optional  
2
3
Selectable  
Selectable  
Selectable  
WTM1 WTM0  
Selectable  
WTM1 WTM0  
Selection of the oscillation  
stabilization time (OSC)  
The oscillation stabilization time  
initial value can be set with  
WTM1 bit and WTM0 bit.  
0
0
1
1
0:  
1:  
0:  
1:  
23/FCH  
212/FCH  
216/FCH  
218/FCH  
0
0
1
1
0:  
1:  
0:  
1:  
23/FCH  
212/FCH  
216/FCH  
218/FCH  
Fixed to oscillator  
stabilization 218/FCH  
Reset pin output (RST)  
Reset output provided  
No reset output  
Fixed to reset  
output optional  
4
5
Selectable  
Selectable  
Selectable  
Selectable  
Selection of clock mode (CLK)  
Double clock mode  
Single clock mode  
Fixed to double  
clock mode  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89898PF  
MB89899PF  
MB89P899PF  
100-pin Plastic QFP  
(FPT-100P-M06)  
100-pin Ceramic MQFP  
(MQP-100C-P01)  
MB89PV890CF  
48  
MB89890 Series  
PACKAGE DIMENSION  
100-pin Plastic QFP  
(FPT-100P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
0.05(.002)MIN  
(STAND OFF)  
80  
51  
81  
50  
12.35(.486)  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
16.30±0.40  
(.642±.016)  
REF  
INDEX  
31  
100  
"A"  
1
30  
LEAD No.  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.13(.005)  
Details of "A" part  
0.25(.010)  
0.30(.012)  
"B"  
0.10(.004)  
0
10°  
0.18(.007)MAX  
0.53(.021)MAX  
18.85(.742)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED F100008-3C-2  
49  
MB89890 Series  
100-pin Ceramic MQFP  
(MQP-100C-P01)  
17.20±0.40 SQ  
(.677±.016)  
2.70(.106)MAX  
(Mounting height)  
12.00 +00..1300 SQ  
0.05(.002)MIN  
(STAND OFF)  
.472 +..000142  
36  
25  
Details of "A" part  
37  
24  
0.15(.006)  
0.20(.008)  
8.80  
(.346)  
REF  
13.60±0.40  
(.535±.016)  
0.15(.006)MAX  
0.50(.020)MAX  
INDEX  
48  
13  
"A"  
Details of "B" part  
1
12  
LEAD No.  
0.15 +00..0015  
.006 +..0000024  
0.80(.0315)TYP  
0.30±0.06  
(.012±.002)  
M
0.16(.006)  
0~10°  
"B"  
1.80±0.30  
(.071±.012)  
0.15(.006)  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED F48026S-1C-1  
50  
MB89890 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-88, Japan  
Tel: (044) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: (044) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document presented  
as examples of semiconductor device applications, and are not  
intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the  
use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, U.S.A.  
Tel: (408) 922-9000  
Fax: (408) 922-9179  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
Fax: (408) 922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
Fax: (65) 281-0220  
http://www.fmap.com.sg/  
F9711  
FUJITSU LIMITED Printed in Japan  
51  

相关型号:

MB89913

8-bit Proprietary Microcontroller
FUJITSU

MB89913P-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89913PF

8-bit Proprietary Microcontroller
FUJITSU

MB89915

8-bit Proprietary Microcontroller
FUJITSU

MB89915P-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89915PF

8-bit Proprietary Microcontroller
FUJITSU

MB8991X

8-bit Proprietary Microcontroller
FUJITSU

MB89920

8-bit Proprietary Microcontroller
FUJITSU

MB89923

8-bit Proprietary Microcontroller
FUJITSU

MB89923PF

8-bit Proprietary Microcontroller
FUJITSU

MB89925

8-bit Proprietary Microcontroller
FUJITSU

MB89925PF

8-bit Proprietary Microcontroller
FUJITSU