MB90653A [FUJITSU]

16-bit Proprietary Microcontroller; 16位微控制器专有
MB90653A
型号: MB90653A
厂家: FUJITSU    FUJITSU
描述:

16-bit Proprietary Microcontroller
16位微控制器专有

微控制器
文件: 总120页 (文件大小:1567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-13607-3E  
16-bit Proprietary Microcontroller  
CMOS  
F2MC-16L MB90650A Series  
MB90652A/653A/P653A/654A/F654A  
DESCRIPTION  
The MB90650A series are 16-bit microcontrollers designed for high speed real-time processing in consumer  
product applications such as controlling celluar phones, CD-ROMs, or VTRs. Based on the F2MC*1-16L CPU  
core, an F2MC-16L is used as the CPU. This CPU includes high-level language-support instructions and robust  
task switching instructions, and additional addressing modes. In order to reduce the consumption current, dual-  
clock (main/sub) is used. Furthermore, low consumption power supply is achieved by using stop mode, sleep  
mode, watch mode, pseudo-watch mode, CPU intermittent operation mode.  
Microcontrollers in this series have built-in peripheral resources including 10-bit A/D converter, 8-bit D/A  
converter, UART, 8/16-bit PPG, 8/16-bit up/down counter/timer, I2C interface*2, 8/16-bit I/O timer (input capture,  
output compare, and 16-bit free-run timer).  
*1:F2MC stands for FUJITSU Flexible Microcontroller.  
*2:Purchase of Fujitsu I2C components conveys a license under the Philips I2C Patent Rights to use these  
components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined  
by Philips.  
FEATURES  
F2MC-16L CPU  
• Minimum execution time: 62.5 ns/4 MHz oscillation (Uses PLL clock multiplication) maximum multiplier = 4  
• Instruction set optimized for controller applications  
Object code compatibility with F2MC-16(H)  
(Continued)  
PACKAGE  
100-pin plastic LQFP  
100-pin plastic QFP  
(FPT-100P-M05)  
(FPT-100P-M06)  
MB90650A Series  
(Continued)  
Wide range of data types (bit, byte, word, and long word)  
Improved instruction cycles provide increased speed  
Additional addressing modes: 23 modes  
High code efficiency  
Access methods (bank access, linear pointer)  
High precision operations are enhanced by use of a 32-bit accumulator  
Extended intelligent I/O service (access area extended to 64 Kbytes)  
Maximum memory space: 16 Mbytes  
• Enhanced high level language (C) and multitasking support instructions  
Use of a system stack pointer  
Enhanced pointer indirect instructions  
Barrel shift instructions  
• Improved execution speed: Four byte instruction queue  
• Powerful interrupt function  
• Automatic data transfer function that does not use instruction (extended I2OS)  
2
MB90650A Series  
PRODUCT LINEUP  
Part number  
MB90652A  
MB90P653A  
MB90V650A  
MB90654A  
MB90F654A  
MB90653A  
Item  
Mask ROM  
product  
Classification  
Mask ROM product  
64 Kbytes  
3 Kbytes  
2.2 V to 3.6 V  
OTPROM product For evaluation  
128 Kbytes  
5 Kbytes  
2.7 V to 5.5 V  
340  
FLASH product  
ROM size  
RAM size  
256 Kbytes  
8 Kbytes  
Power supply  
voltage  
2.2 V to 3.6 V 2.4 V to 3.6 V  
CPU functions  
The number of instructions:  
Instruction bit length:  
Instruction length:  
8/16 bits  
1 to 7 bytes  
1/4/8/16/32 bits  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
62.5 ns/4 MHz (PLL multiplier = 4)  
1.0 µs/16 MHz (minimum)  
Ports  
I/O ports (N-channel open-drain):  
I/O ports (CMOS):  
4
75 (Input pull-up resistors available: 24/  
Can be set as N-channel open-drain: 8)  
79  
Total:  
A/D converter  
D/A converter  
Analog inputs : 8 channels  
10-bit resolution  
Conversion time : minimum  
Analog inputs: 8 channels  
10-bit resolution  
Conversion time : minimum 12.25  
Analog inputs : 8 channels  
10-bit resolution  
Conversion time : minimum  
6.13 µs/16 MHz  
6.13 µs/16 MHz  
µs/8 MHz  
2 channels (independent),  
8-bit resolution, R-2R type  
8/16-bit up/down  
counter/timer  
16 bits × 1 channel/8 bits × 2 channels selectable  
Includes reload and compare functions.  
I2C interface  
1 channel  
Master mode/slave mode available  
UART  
1 channel  
Clock synchronous communication  
Clock asynchronous communication  
I/O extended serial  
interface  
8 bits × 2 channels  
LSB-first or MSB-first operation selecable  
8/16-bit PPG  
8 bits × 2 channels/16 bits × 1 channel selectable  
16-bit I/O timer  
1 channel  
(Input capture × 2 channels, output compare × 4 channels, and free-run timer × 1 channel)  
DTP/external  
interrupt  
8 inputs  
Timer functions  
DTMF generator  
Timebase timer (18-bit)/watchdog timer (18-bit)/watch timer (15-bit)  
Supports every ITU-T (CCITT) tone for output (Internal 16 MHz shall be used for  
DTMF generator).  
Low-power  
consumption modes  
CPU intermittent operation mode, sub clock mode, stop mode, sleep mode,  
watch mode, pseudo-watch mode  
PLL function  
Selectable multiplier: 1/2/3/4  
(Set a multiplier that does not exceed the assured operation frequency range.)  
Other  
VPP is shared with  
the MD2 pin  
(for EPROM  
programming)  
Package  
FPT-100P-M05, FPT-100P-M06  
PGA-256C-A02 FPT-100P-M05, FPT-100P-M06  
Notes: • MB90V650A device is assured only when operate with the tools, under the condition of power supply  
voltage: 2.7 V to 3.3 V, operating temparature: 0°C to 70°C and operating frequency: 1.5 MHz to 8MHz  
• For more information about each package, see seciton “PACKAGE DIMENSIONS”.  
3
MB90650A Series  
PIN ASSIGNMENT  
(Top view)  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
RST  
P22/A18  
P23/A19  
P24/A20  
P25/A21  
P26/A22  
P27/A23  
P30/ALE  
P31/RD  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PA1/OUT1  
PA0/OUT0  
P97/IN1  
P96/IN0  
P95/ZIN1  
P94/BIN1  
P93/AIN1/IRQ7  
P92/ZIN0  
P91/BIN0  
P90/AIN0/IRQ6  
P67/PPG11  
P66/PPG10  
P65/CKOT  
P64/PPG01  
P63/PPG00  
P62/SCK2  
P61/SOT2  
P60/SIN2  
DTMF  
VSS  
P32/WRL  
P33/WRH  
P34/HRQ  
P35/HAK  
P36/RDY  
P37/CLK  
P40/SIN0  
P41/SOT0  
P42/SCK0  
P43/SIN1  
P44/SOT1  
VCC2  
P86/OUT3  
P85/IRQ5  
P84/IRQ4  
P83/IRQ3  
P82/IRQ2  
P45/SCK1  
P46/ADTG  
P47  
P70/SDA  
(FPT-100P-M05)  
4
MB90650A Series  
(Top view)  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P30  
P31  
/
/
/
/
/
/
/
/
/
/
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
ALE  
RD  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
X0A  
X1A  
PA2  
RST  
PA1  
/
OUT2  
/
OUT1  
PA0  
/OUT0  
IN1  
IN0  
P97  
P96  
P95  
P94  
P93  
P92  
P91  
P90  
P67  
P66  
P65  
P64  
P63  
P62  
P61  
P60  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
9
ZIN1  
BIN1  
AIN1  
ZIN0  
BIN0  
AIN0  
PPG11  
PPG10  
CKOT  
PPG01  
PPG00  
SCK2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSS  
/
/
IRQ7  
IRQ6  
P32  
P33  
P34  
P35  
P36  
P37  
P40  
P41  
P42  
P43  
P44  
/
/
/
/
/
/
/
/
/
/
/
WRL  
WRH  
HRQ  
HAK  
RDY  
CLK  
SIN0  
SOT0  
SCK0  
SIN1  
SOT1  
SOT2  
SIN2  
VCC  
2
DTMF  
P45  
/
SCK1  
P86  
P85  
P84  
P83  
P82  
/
/
/
/
/
OUT3  
IRQ5  
IRQ4  
IRQ3  
IRQ2  
P46  
P47  
P70  
P71  
P72  
/
ADTG  
/
/
SDA  
SCL  
TEST  
MD2  
DVRH  
(FPT-100P-M06)  
5
MB90650A Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
Function  
LQFP*1  
80  
QFP*2  
82  
X0  
A
A
B
B
D
Crystal oscillator pin  
Crystal oscillator pin  
81  
83  
X1  
77  
79  
X1A  
X0A  
Crystal oscillatort pins (32 kHz)  
Crystal oscillatort pins (32 kHz)  
78  
80  
47 to 49 49 to 51 MD0 to MD2  
Operating mode selection pins  
Connect directly to VCC or VSS.  
50  
75  
52  
77  
TEST  
RST  
D
Test input pin  
This pin must always be fixed to “H”.  
C
E
Reset input pin  
83 to 90 85 to 92 P00 to P07  
General-purpose I/O ports  
(STBC) Pull-up resistors can be set (RD07 to RD00 = “1”) using the  
pull-up resistor setting register (RDR0).  
The setting does not apply for ports set as outputs (D07 to D00  
= “1”: invalid at the output setting).  
AD00 to AD07  
In external bus mode, the pins function as the lower data I/O or  
lower address outputs (AD00 to AD07).  
91 to 98 93 to 100 P10 to P17  
E
General-purpose I/O ports  
(STBC) Pull-up resistors can be set (RD17 to RD10 = “1”) using the  
pull-up resistor setting register (RDR1).  
The setting does not apply for ports set as outputs (D17 to D10  
= “1”: invalid at the output setting).  
AD08 to AD15  
In 16-bit external bus mode, the pins function as the upper data  
I/O or middle address outputs (AD08 to AD15).  
99,  
100,  
1 to 6  
1,  
2,  
3 to 8  
P20,  
P21,  
P22 to P27  
I
General-purpose I/O ports  
(STBC) In external bus mode, pins for which the corresponding bit in  
the HACR register is “0” function as the P20 to P27 pins.  
A16,  
A17,  
A18 to A23  
In external bus mode, pins for which the corresponding bit in  
the HACR register is “1” function as the upper address output  
pins (A16 to A23).  
7
8
9
P30  
I
General-purpose I/O port  
(STBC) Functions as the ALE pin in external bus mode.  
ALE  
P31  
Functions as the address latch enable signal.  
10  
12  
I
General-purpose I/O port  
(STBC) Functions as the RD pin in external bus mode.  
RD  
Functions as the read strobe output (RD).  
10  
P32  
I
General-purpose I/O port  
(STBC) Functions as the WRL pin in external bus mode if the WRE bit  
in the ECSR register is “1”.  
WRL  
Functions as the lower data write strobe output (WRL).  
(Continued)  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
6
MB90650A Series  
Pin no.  
Circuit  
type  
Pin name  
P33  
Function  
LQFP*1  
QFP*2  
11  
12  
13  
14  
15  
16  
13  
I
General-purpose I/O port  
(STBC) Functions as the WRH pin in 16-bit external bus mode if the  
WRE bit in the ECSR register is “1”.  
WRH  
P34  
Functions as the upper data write strobe output (WRH).  
14  
15  
16  
17  
18  
I
General-purpose I/O port  
(STBC) Functions as the HRQ pin in external bus mode if the HDE bit  
in the ECSR register is “1”.  
HRQ  
P35  
Functions as the hold request input pin (HRQ).  
I
General-purpose I/O port  
(STBC) Functions as the HAK pin in external bus mode if the HDE bit in  
the ECSR register is “1”.  
HAK  
P36  
Functions as the hold acknowledge output (HAK) pin.  
I
General-purpose I/O port  
(STBC) Functions as the RDY pin in external bus mode if the RYE bit in  
the ECSR register is “1”.  
RDY  
P37  
Functions as the external ready input (RDY) pin.  
I
General-purpose I/O port  
(STBC) Functions as the CLK pin in external bus mode if the CKE bit in  
the ECSR register is “1”.  
CLK  
P40  
Functions as the machine cycle clock output (CLK) pin.  
H
General-purpose I/O port  
(STBC) When UART0 is operating, the data at the pin is used as the  
serial input (SIN0).  
Can be set as an open-drain output port (OD40 = “1”) by the  
open-drain control register (ODR4).  
The setting does not apply for ports set as inputs (D40 = “0”:  
invalid at the input setting).  
SIN0  
P41  
Functions as the UART0 serial input (SIN0).  
17  
19  
G
General-purpose I/O port  
(STBC) Functions as the SOT0 pin if the SOE bit in the UMC register is  
“1”.  
Can be set as an open-drain output port (OD41 = “1”) by the  
open-drain control register (ODR4).  
The setting does not apply for ports set as inputs (D41 = “0”:  
invalid at the input setting).  
SOT0  
Functions as the UART0 serial data output pin (SOT0).  
(Continued)  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
7
MB90650A Series  
Pin no.  
Circuit  
type  
Pin name  
Function  
LQFP*1  
QFP*2  
18  
20  
P42  
H
General-purpose I/O port  
(STBC) When UART0 is operating in external shift clock mode, the  
data at the pin is used as the clock input (SCK0).  
Also, functions as the SCK0 pin if the SOE bit in the UMC  
register is “1”.  
Can be set as an open-drain output port (OD42 = “1”) by the  
open-drain control register (ODR4).  
The setting does not apply for ports set as inputs (D42 = “0”:  
invalid at the input setting).  
SCK0  
P43  
Functions as the UART0 serial clock I/O pin (SCK0).  
19  
20  
21  
22  
H
General-purpose I/O port  
(STBC) When I/O extended serial is operating, the data at the pin is  
used as the serial input (SIN1).  
Can be set as an open-drain output port (OD43 = “1”) by the  
open-drain control register (ODR4).  
The setting does not apply for ports set as inputs (D43 = “0”:  
invalid at the input setting).  
SIN1  
P44  
Functions as the serial input for I/O extended serial data.  
G
General-purpose I/O port  
(STBC) Functions as the SOT1 pin if the SOE bit in the UMC register is  
“1”.  
Can be set as an open-drain output port (OD44 = “1”) by the  
open-drain control register (ODR4).  
The setting does not apply for ports set as inputs (D44 = “0”:  
invalid at the input setting).  
SOT1  
P45  
Functions as the output pin (SOT1) for I/O extended serial  
data.  
22  
24  
H
General-purpose I/O port  
(STBC) When I/O extended serial is operating in external shift clock  
mode, the data at the pin is used as the clock input (SCK1).  
Also, functions as the SCK1 pin if the SOE bit in the UMC  
register is “1”.  
Can be set as an open-drain output port (OD45 = “1”) by the  
open-drain control register (ODR4).  
The setting does not apply for ports set as inputs (D45 = “0”:  
invalid at the input setting).  
SCK1  
P46  
Functions as the I/O extended serial clock I/O pin (SCK1).  
23  
24  
25  
26  
G
General-purpose I/O port  
(STBC) Can be set as an open-drain output port (OD46 = “1”) by the  
open-drain control register (ODR4).  
The setting does not apply for ports set as inputs (D46 = “0”:  
invalid at the input setting).  
ADTG  
P47  
Functions as the external trigger input pin for the A/D  
converter.  
K
Open-drain type general-purpose I/O port  
(NMOS/H)  
(STBC)  
(Continued)  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
8
MB90650A Series  
Pin no.  
LQFP*1 QFP*2  
Circuit  
type  
Pin name  
Function  
36 to 39, 38 to 41, P50 to P53,  
41 to 44 43 to 46 P54 to P57  
L
General-purpose I/O ports  
(STBC)  
AN0 to AN3,  
AN4 to AN7  
The pins are used as analog inputs (AN0 to AN7) when the A/D  
converter is operating.  
57  
58  
59  
60  
P60  
F
General-purpose I/O port  
(STBC) A pull-up resistor can be set (RD60 = “1”) using the pull-up  
resistor setting register (RDR6).  
The setting does not apply for ports set as outputs (D60 = “1”:  
invalid at the output setting).  
SIN2  
P61  
Functions as a data input pin (SIN2) for I/O extended serial.  
E
General-purpose I/O port  
(STBC) Function as the SOT2 pin if the SOE bit in the UMC register is  
“1”.  
A pull-up resistor can be set (RD61 = “1”) using the pull-up  
resistor setting register (RDR6).  
The setting does not apply for ports set as outputs (D61 = “1”:  
invalid at the output setting).  
SOT2  
P62  
Functions as an output pin (SOT2) for I/O extended serial data.  
59  
61  
F
General-purpose I/O port  
(STBC) When I/O extended serial is operating in external shift clock  
mode, the data at the pin is used as the clock input (SCK2).  
Also, functions as the SCK2 pin if the SOE bit in the UMC  
register is “1”.  
A pull-up resistor can be set (RD62 = “1”) using the pull-up  
resistor setting register (RDR6).  
The setting does not apply for ports set as outputs (D62 = “1”:  
invalid at the output setting).  
SCK2  
P63  
Functions as the I/O extended serial clock I/O pin (SCK2).  
60  
61  
62  
63  
E
General-purpose I/O port  
(STBC) A pull-up resistor can be set (RD63 = “1”) using the pull-up  
resistor setting register (RDR6).  
The setting does not apply for ports set as outputs (D63 = “1”:  
invalid at the output setting).  
PPG00  
P64  
Functions as the PPG00 output when PPG output is enabled.  
E
General-purpose I/O port  
(STBC) A pull-up resistor can be set (RD64 = “1”) using the pull-up  
resistor setting register (RDR6).  
The setting does not apply for ports set as outputs (D64 = “1”:  
invalid at the output setting).  
PPG01  
Functions as the PPG01 output when PPG output is enabled.  
(Continued)  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
9
MB90650A Series  
Pin no.  
Circuit  
type  
Pin name  
Function  
LQFP*1  
QFP*2  
62  
64  
P65  
E
General-purpose I/O port  
(STBC) A pull-up resistor can be set (RD65 = “1”) using the pull-up  
resistor setting register (RDR6).  
The setting does not apply for ports set as outputs (D65 = “1”:  
invalid at the output setting).  
CKOT  
P66  
Functions as the CKOT output when CKOT is operating.  
63  
64  
25  
26  
65  
66  
27  
28  
E
General-purpose I/O port  
(STBC) A pull-up resistor can be set (RD66 = “1”) using the pull-up  
resistor setting register (RDR6).  
The setting does not apply for ports set as outputs (D66 = “1”:  
invalid at the output setting).  
PPG10  
P67  
Functions as the PPG10 output when PPG output is enabled.  
E
General-purpose I/O port  
(STBC) A pull-up resistor can be set (RD67 = “1”) using the pull-up  
resistor setting register (RDR6).  
The setting does not apply for ports set as outputs (D67 = “1”:  
invalid at the output setting).  
PPG11  
P70  
Functions as the PPG11 output when PPG output is enabled.  
K
Open-drain type I/O port  
(NMOS/H)  
(STBC)  
I2C interface data I/O pin  
SDA  
This function is valid when I2C interface operations are  
enabled.  
Set port output to Hi-Z (PDR = 1) during I2C interface  
operations.  
P71  
SCL  
K
Open-drain type I/O port  
(NMOS/H)  
(STBC)  
I2C interface clock I/O pin  
This function is valid when I2C interface operations are  
enabled.  
Set port output to Hi-Z (PDR = 1) during I2C interface  
operations.  
27  
30  
29  
32  
P72  
P73  
K
Open-drain type I/O port  
(STBC)  
M
Open-drain type I/O port  
(STBC) Functions as a D/A output pin when DAE0 = “1” in the D/A  
control register (DACR).  
DA00  
P74  
Functions as D/A output 0 when the D/A converter is operating.  
31  
45  
33  
47  
M
General-purpose I/O port  
(STBC) Functions as a D/A output pin when DAE1 = “1” in the D/A  
control register (DACR).  
DA01  
P80  
Functions as D/A output 1 when the D/A converter is operating.  
J
General-purpose I/O port  
IRQ0  
Functions as external interrupt request I/O 0.  
(Continued)  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
10  
MB90650A Series  
Pin no.  
Circuit  
type  
Pin name  
P81  
Function  
LQFP*1  
QFP*2  
46  
51  
52  
53  
54  
55  
48  
J
J
J
J
J
I
General-purpose I/O port  
IRQ1  
P82  
Functions as external interrupt request I/O 1.  
General-purpose I/O port  
53  
54  
55  
56  
57  
IRQ2  
P83  
Functions as external interrupt request I/O 2.  
General-purpose I/O port  
IRQ3  
P84  
Functions as external interrupt request I/O 3.  
General-purpose I/O port  
IRQ4  
P85  
Functions as external interrupt request I/O 4.  
General-purpose I/O port  
IRQ5  
P86  
Functions as external interrupt request I/O 5.  
General-purpose I/O port  
(STBC) This applies in all cases.  
Event output for channel 3 of the output compare  
General-purpose I/O port  
OUT3  
P90  
65  
67  
J
AIN0  
IRQ6  
P91  
Input to channel 0 of the 8/16-bit up/down counter/timer  
Functions as an interrupt request input.  
General-purpose I/O port  
66  
67  
68  
68  
69  
70  
J
(STBC)  
BIN0  
P92  
Input to channel 0 of the 8/16-bit up/down counter/timer  
General-purpose I/O port  
J
(STBC)  
ZIN0  
P93  
Input to channel 0 of the 8/16-bit up/down counter/timer  
General-purpose I/O port  
J
AIN1  
IRQ7  
P94  
Input to channel 1 of the 8/16-bit up/down counter/timer  
Functions as an interrupt request input.  
General-purpose I/O port  
69  
70  
71  
72  
73  
71  
72  
73  
74  
75  
J
(STBC)  
BIN1  
P95  
Input to channel 1 of the 8/16-bit up/down counter/timer  
General-purpose I/O port  
J
(STBC)  
ZIN1  
P96  
Input to channel 1 of the 8/16-bit up/down counter/timer  
General-purpose I/O port  
J
(STBC)  
IN0  
Trigger input for channel 0 of the input capture  
General-purpose I/O port  
P97  
J
(STBC)  
IN1  
Trigger input for channel 1 of the input capture  
General-purpose I/O port  
PA0  
I
(STBC)  
OUT0  
Event output for channel 0 of the output compare  
(Continued)  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
11  
MB90650A Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
LQFP*1  
QFP*2  
74  
76  
PA1  
I
General-purpose I/O port  
(STBC)  
OUT1  
PA2  
Event output for channel 1 of the output compare  
General-purpose I/O port  
76  
78  
I
(STBC)  
OUT2  
VCC1  
VCC2  
VSS  
Event output for channel 2 of the output compare  
Power supply (3.0 V) input pin  
82  
21  
84  
23  
Power supply (3.0 V/5.0 V) input pin  
Power supply (0.0 V) input pin  
9,  
40,  
79  
11,  
42,  
81  
32  
33  
34  
35  
28  
29  
56  
34  
35  
36  
37  
30  
31  
58  
AVCC  
N
A/D converter power supply pin  
AVRH  
AVRL  
AVSS  
A/D converter external reference power supply pin  
A/D converter external reference power supply pin  
A/D converter power supply pin  
DVRH  
DVSS  
D/A converter external reference power supply pin  
D/A converter power supply pin  
DTMF  
DTMF output pin  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
Note: STBC = Incorporates standby control  
NMOS = N-ch open-drain output  
12  
MB90650A Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Oscillation feedback resistance :  
Approx. 1 MΩ  
X1  
X0  
Standby control signal  
B
• Oscillation feedback resistance :  
Approx. 10 MΩ  
X1A  
X0A  
Standby control signal  
Hysteresis input  
Hysteresis input  
CTL  
C
• Hysteresis input with pull-up  
Resistance approx. 50 kΩ  
R
R
R
D
E
• Hysteresis input port  
• Incorporates pull-up resistor control  
(for input)  
• CMOS level I/O  
Resistance approx. 50 kΩ  
CMOS  
R
F
• Incorporates pull-up resistor control  
(for input)  
CTL  
• CMOS level output  
• Hysteresis input  
Resistance approx. 50 kΩ  
Hysteresis input  
R
(Continued)  
13  
MB90650A Series  
Type  
Circuit  
Remarks  
• CMOS level I/O  
G
• Incorporates open-drain control  
Open-drain control  
signal  
CMOS  
R
H
• CMOS level output  
• Hysteresis input  
• Incorporates open-drain control  
Open-drain control  
signal  
Hysteresis input  
R
I
• CMOS level I/O  
CMOS  
R
J
• CMOS level output  
• Hysteresis input  
Hysteresis input  
R
K
L
• Hysteresis input  
• N-ch open-drain output  
Digital output  
Hysteresis input  
R
• CMOS level I/O  
• Analog input  
CMOS  
R
Analog input  
(Continued)  
14  
MB90650A Series  
(Continued)  
Type  
Circuit  
Remarks  
M
• CMOS level I/O  
• Analog output  
• Shared with D/A outputs  
D/A output  
CMOS  
R
N
• DTMF analog output  
R
R
R
15  
MB90650A Series  
HANDLING DEVICES  
1. Preventing Latch-up  
Latch-up occurs in a CMOS IC if a voltage greater than VCC or less than VSS is applied to an input or output pin  
or if the voltage applied between VCC and VSS exceeds the rating.  
If latch-up occurs, the power supply current increases rapidly resulting in thermal damage to circuit elements.  
Therefore, ensure that maximum ratings are not exceeded in circuit operation.  
For the same reason, also ensure that the analog supply voltage does not exceed the digital supply voltage.  
2. Treatment of Unused Pins  
Leaving unused input pins unconnected can cause misoperation. Always pull-up or pull-down unused pins.  
3. External Reset Input  
To reliably reset the controller by inputting an “L” level to the RST pin, ensure that the “L” level is applied for at  
least five machine cycles. Take particular note when using an external clock input.  
4. VCC and VSS Pins  
Ensure that all VCC pins are at the same voltage. The same applies for the VSS pins.  
5. Precautions when Using an External Clock  
Drive the X0 pin only when using an external clock.  
• Using an external clock  
MB90650A Series  
X0  
X1  
6. A/D Converter Power Supply and the Turn-on Sequence for Analog Inputs  
Always turn off the A/D converter power supply (AVCC, AVRH, AVRL) and analog inputs (AN0 to AN7) before  
turning off the digital power supply (VCC).  
When turning the power on or off, ensure that AVRH does not exceed AVCC.  
Also, when using the analog input pins as input ports, ensure that the input voltage does not exceed AVCC.  
7. Turn-on Sequence for D/A Converter Power Supply  
Always turn on the D/A converter power supply (DVR), after turning off the digital power supply (VCC).  
And in the turning off the power supply sequence always turn off the digital power supply (VCC) after turning off  
the D/A converter power supply (DVR).  
16  
MB90650A Series  
8. Initializing  
In this device there are some kinds of inner resisters which are initializid only by power on reset. It is possible  
to initialize these resisters by turning on the power supply again.  
9. Power Supply Pins  
When there are several VCC and VSS pins, those pins that should have the same electric potential are connected  
within the device when the device is designed in order to prevent misoperation, such as latchup. However, all  
of those pins must be connected to the power supply and ground externally in order to reduce unnecessary  
emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the  
total output current standards.  
In addition, give a due consideration to the connection in that current supply be connected to VCC and VSS with  
the lowest possible impedance.  
Finally, it is recommended to connect a capacitor of about 0.1 µF between VCC and VSS near this device as a  
bypass capacitor.  
10.Crystal Oscillation Circuit  
Noise in the vicinity of the X0 and X1 pins will cause this device to operate incorrectly. Design the printed circuit  
board so that the bypass capacitor connecting X0, X1 and the crystal oscillator (or ceramic oscillator) to ground  
is located as close to the device as possible, and that the wiring does not closs the other wirings.  
In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded  
by ground provides stable operation, such an arrangement is strongly recommended.  
11. About 2 Power Supplies  
The MB90650A series usually uses the 3-V power supply as the main power source. With Vcc1 = 3 V and Vcc2  
= 5 V, however, it can interface with P20 to P27, P30 to P37, P40 to P47, and P70 to P72 for the 5-V power  
supply separately from the 3-V power supply. Note, however, that the analog power supplies such as A/D and  
D/A can be used only as 3-V power supplies.  
17  
MB90650A Series  
PROGRAMMING FOR MB90P653A  
In EPROM mode, the MB90P653A functions equivalent to the MBM27C1000/1000A. This allows the EPROM  
to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter (do not  
use the electronic signature mode).  
1. Program Mode  
When shipped from Fujitsu, and after each erasure, all bits (128 K × 8 bits) in the MB90P653A are in the “1”  
state. Data is written to the ROM by selectively programming “0” into the desired bit locations. Bits cannot be  
set to “1” electrically.  
2. Programming Procedure  
(1) Set the EPROM programmer to MBM27C1000/1000A.  
(2) Load program data into the EPROM programmer at 00000H to 1FFFFH.  
Note that ROM addresses FE0000H to FFFFFFH in the operation mode in the MB90P653A series assign to  
00000H to 1FFFFH in the EPROM mode (on the EPROM programmer).  
Normal operating mode  
EPROM mode  
FFFFFF H  
1FFFF H  
00000 H  
PROM  
PROM  
FE0000 H  
010000 H  
PROM  
Mirror  
004000 H  
000000 H  
The 00 bank PROM mirror is 48 Kbytes. (This is a mirror for FF4000H to FFFFFFH.)  
(3) Mount the MB90P653A on the adapter socket, then fit the adapter socket onto the EPROM programmer.  
When mounting the device and the adapter socket, pay attention to their mounting orientations.  
(4) Start programming the program data to the device.  
(5) If programming has not successfully resulted, connect a capacitor of approx. 0.1 µF between VCC and GND,  
between VPP and GND.  
Note: The mask ROM products (MB90653A, MB90652A) does not support EPROM mode. Data cannot, therefore,  
be read by the EPROM programmer.  
18  
MB90650A Series  
3. EPROM Programmer Socket Adapter  
MB90652APFV MB90653APFV MB90P653APFV  
MB90P653APF  
Part no.  
Package  
MB90652APF MB90653APF  
QFP-100  
LQFP-100  
Compatible  
socket  
adapter  
ROM-100SQF-32DP-16L  
ROM-100QF-32DP-16L  
Sun Hayato  
Co., Ltd.  
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
4. Recommended Screening Conditions  
High temperature aging is recommended as the pre-assembly screening procedure.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yeild  
MB90P653A cannot be write tested for all bits due to their nature. Therefore the write yield cannot always be  
guaranteed to be 100%.  
19  
MB90650A Series  
6. EPROM Mode Pin Assignments  
• MBM27C1000/1000A compatible pins  
MBM27C1000/1000A  
MB90P653A  
Pin no.  
MBM27C1000/1000A  
MB90P653A  
Pin no. Pin name  
Pin no.  
Pin name  
VPP  
Pin name  
MD2  
P32  
P17  
P14  
P27  
P26  
P25  
P24  
P23  
P22  
P21  
P20  
P00  
P01  
P02  
VSS  
Pin no.  
32  
Pin name  
VCC  
1
2
VCC  
P33  
OE  
31  
PGM  
N.C.  
A14  
3
A15  
A12  
A07  
A06  
A05  
A04  
A03  
A02  
A01  
A00  
D00  
D01  
D02  
GND  
30  
4
29  
P16  
P15  
P10  
P11  
P13  
P30  
P12  
P31  
P07  
P06  
P05  
P04  
P03  
5
28  
A13  
6
27  
A08  
7
26  
A09  
8
25  
A11  
9
24  
A16  
10  
11  
12  
13  
14  
15  
16  
23  
A10  
CE  
22  
21  
D07  
D06  
D05  
D04  
D03  
20  
19  
18  
17  
• Non-MBM27C1000/1000A compatible pins  
Power supply, GND connection pins  
Pin no.  
Pin name  
Treatment  
Classification  
Pin no.  
Pin name  
MD0  
MD1  
X0  
HST  
VCC  
DVRH  
See  
Connect a pull-up  
resistor of 4.7 k.  
Power supply  
“PIN ASSIGNMENT”  
X0A  
P34  
P35  
P36  
RST  
AVRL  
AVSS  
DVSS  
VV  
X1 to X1A  
OPEN  
AVCC  
AVRH  
P37  
See  
GND  
See “PIN  
ASSIGN-  
MENT”  
“PIN ASSIGNMENT”  
P40 to P47  
P50 to P57  
P60 to P67  
P70 to P74  
P80 to P86  
P90 to P97  
PA0 to PA2  
N.C.  
Connect a pull-up  
resistor of about  
1 Mto each pin.  
TEST  
20  
MB90650A Series  
BLOCK DIAGRAM  
CPU  
Clock control  
circuit  
X0, X1  
RST  
X0A, X1A  
5
F2MC-16L family core  
Interrupt controller  
RAM  
ROM  
2
2
PPG00, PPG01  
PPG10, PPG11  
8/16-bit PPG  
(Output switching) × 1 channel  
8/16-bit up/down  
counter/timer  
8 bits × 2 channels  
(16 bits × 1 channel)  
2
2
AIN0, AIN1  
BIN0, BIN1  
ZIN0, ZIN1  
2
Communications prescaler  
UART  
SIN0  
SOT0  
SCK0  
CKOT  
Prescaler  
6
IRQ0 to IRQ5  
IRQ6, IRQ7  
2
2
2
SIN1, SIN2  
DTP/external interrupt  
I/O extended serial  
SOT1, SOT2  
SCK1, SCK2  
interface × 2 channels  
2
16-bit I/O timers  
2
IN0, IN1  
16-bit input capture × 2 channels  
AVCC  
AVRH, AVRL  
AVSS  
2
4
16-bit output compare × 4 channels  
16-bit free-run timer × 1 channel  
OUT1 to OUT3  
A/D converter  
(10 bits)  
ADTG  
AN0 to AN7  
8
DTMF  
DTMF  
2
DA00, DA01  
DVRH  
DVSS  
SCL  
SDA  
D/A converter  
(8 bits)  
I2C interface  
I/O ports  
8
8
8
8
8
8
8
5
7
8
3
Other pins  
P00 P10 P20 P30 P40 P50 P60 P70 P80 P90 PA0  
to to to to to to to to to to to  
P07 P17 P27 P37 P47 P57 P67 P74 P86 P97 PA2  
TEST, AD00 to AD15,  
A16 to A23, ALE, RD,  
WRL, WRH, HRQ,  
P00 to P07 (8 pins) : Incorporates a pull-up resistor setting register (for input)  
P10 to P17 (8 pins) : Incorporates a pull-up resistor setting register (for input)  
P60 to P67 (8 pins) : Incorporates a pull-up resistor setting register (for input)  
P40 to P46 (7 pins) : Incorporates an open-drain setting register  
P47, P70 to P72 (4 pins) : Open-drain  
HAK, RDY, CLK, N.C.,  
MD0 to MD2, VCC, VSS  
21  
MB90650A Series  
MEMORY MAP  
• MB90652, MB90653, MB90P653  
Single chip mode  
FFFFFFH  
Internal ROM/external bus mode External ROM/external bus mode  
ROM area  
ROM area  
Address #1  
FE0000H  
010000H  
ROM area  
ROM area  
(FF bank image)  
(FF bank image)  
Address #2  
004000H  
002000H  
Address #3  
RAM  
Registers  
RAM  
Registers  
RAM  
Registers  
000100H  
0000C0H  
Peripherals  
Peripherals  
Peripherals  
000000H  
*
*
*
Address #3  
Type  
MB90652  
MB90653  
Address #2  
004000H  
004000H  
004000H  
Address #1  
FF0000H  
FE0000H  
000CFFH  
0014FFH  
0014FFH  
MB90P653  
FE0000H  
: Internal access memory  
: External access memory  
: No access  
* : Address #1, #2, and #3 are different owing to their devices respectively.  
Notes: While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit  
effective use of the C compiler’s small model. Because the lower 16 bits are the same, it is possible to  
reference tables in ROM without declaring the “far” specification in the pointer.  
For example, to access to 00C000H is to access to the ROM content of FFC000H in practice.  
Because the ROM area of FF bank exceeds 48 Kbytes, all the area can be seen in bank 00.  
So, the image for FF4000H to FFFFFFH can be seen in bank 00, while FE0000H to FF3FFFH can only be  
seen in bank FF and FE.  
22  
MB90650A Series  
• MB90654A, MB90F654A  
FFFFFFH  
ROM area  
010000H  
ROM area  
ROM area  
(FF bank image)  
(FF bank image)  
002100H  
Registers  
Registers  
Registers  
RAM  
RAM  
RAM  
000100H  
0000C0H  
Peripherals  
Peripherals  
Peripherals  
000000H  
Address #3  
0020FFH  
Type  
MB90654A*  
Address #2  
004000H  
Address #1  
FC0000H  
MB90F654A*  
004000H  
FC0000H  
0020FFH  
: Internal access memory  
: External access memory  
: No access  
* : In the MB90654A and MB90F654A, RAM area 2000H is 2100H.  
Notes: While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit  
effective use of the C compiler’s small model. Because the lower 16 bits are the same, it is possible to  
reference tables in ROM without declaring the “far” specification in the pointer.  
For example, to access to 00C000H is to access to the ROM content of FFC000H in practice.  
Because the ROM area of FF bank exceeds 48 Kbytes, all the area can be seen in bank 00.  
So, the image for FF4000H to FFFFFFH can be seen in bank 00, while FE0000H to FF3FFFH can only be  
seen in bank FF and FE.  
23  
MB90650A Series  
F2MC-16L CPU PROGRAMMING MODEL  
Dedicated registers  
Accumulator  
AH  
AL  
USP  
SSP  
PS  
User stack pointer  
System stack pointer  
Processor status  
PC  
Program counter  
USPCU  
SSPCU  
USPCL  
SSPCL  
User stack upper register  
System stack upper register  
User stack lower register  
System stack lower register  
Direct page register  
DPR  
Program bank register  
Data bank register  
PCB  
DTB  
USB  
SSB  
ADB  
User stack bank register  
System stack bank register  
Additional data bank register  
8 bits  
16 bits  
32 bits  
General-purpose registers  
Maximum 32 banks  
R7  
R5  
R3  
R1  
R6  
RW7  
RW6  
RW5  
RW4  
RL3  
RL2  
RL1  
RL0  
R4  
R2  
R0  
RW3  
RW2  
RW1  
RW0  
000180H + RP × 10H →  
16 bits  
Processor status (PS)  
ILM  
RP  
I
S
T
N
Z
V
C
CCR  
24  
MB90650A Series  
I/O MAP  
Register Read/  
Address  
Register  
Resource name  
Initial value  
name  
PDR0  
PDR1  
PDR2  
PDR3  
PDR4  
PDR5  
PDR6  
PDR7  
PDR8  
PDR9  
PDRA  
write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00H  
01H  
Port 0 data register  
Port 1 data register  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
Port 9  
Port A  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
1XXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
–––XX111B  
–XXXXXXXB  
XXXXXXXXB  
–––––XXXB  
02H  
Port 2 data register  
Port 3 data register  
Port 4 data register  
Port 5 data register  
Port 6 data register  
Port 7 data register  
Port 8 data register  
Port 9 data register  
Port A data register  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH to 0FH  
10H  
(Reserved area)  
DDR0  
Port 0 direction register  
Port 1 direction register  
Port 2 direction register  
Port 3 direction register  
Port 4 direction register  
Port 5 direction register  
Port 6 direction register  
Port 7 direction register  
Port 8 direction register  
Port 9 direction register  
Port A direction register  
Port 4 pin register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
Port 9  
Port A  
Port 4  
Port 0  
Port 1  
Port 6  
Port 5, A/D  
00000000B  
00000000B  
00000000B  
00000000B  
–0000000B  
00000000B  
00000000B  
–––00–––B  
–0000000B  
00000000B  
–––––000B  
–0000000B  
00000000B  
00000000B  
00000000B  
11111111B  
00000000B  
00000100B  
11H  
DDR1  
DDR2  
DDR3  
DDR4  
DDR5  
DDR6  
DDR7  
DDR8  
DDR9  
DDRA  
ODR4  
RDR0  
RDR1  
RDR6  
ADER  
SMR0  
SCR0  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
Port 0 resistance register  
Port 1 resistance register  
Port 6 resistance register  
Analog input enable register  
Serial mode register 0  
Serial control register 0  
21H  
UART0  
Serial input register/  
serial output register 0  
SIDR/  
SODR0  
22H  
R/W  
XXXXXXXXB  
(Continued)  
25  
MB90650A Series  
Register Read/  
Address  
Register  
Resource name  
Initial value  
name  
write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
23H  
24H  
Serial status register 0  
SSR0  
UART0  
00001–00B  
––––0000B  
00000010B  
XXXXXXXXB  
0–––1111B  
––––0000B  
00000010B  
XXXXXXXXB  
Serial mode control status register 0  
Serial mode control status register 0  
Serial data register 0  
SMCS0  
SMCS0  
SDR0  
I/O extended serial  
interface 0  
25H  
26H  
Communications prescaler  
27H  
Clock division control register  
Serial mode control status register 1  
Serial mode control status register 1  
Serial data register 1  
CDCR  
SMCS1  
SMCS1  
SDR1  
28H  
I/O extended serial  
interface 1  
29H  
2AH  
2BH to 2FH  
30H  
(Reserved area)  
Interrupt/DTP enable register  
Interrupt/DTP source register  
ENIR  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
31H  
EIRR  
DTP/external interrupts  
32H  
Request level setting register  
ELVR  
R/W  
33H  
34H to 35H  
36H  
(Reserved area)  
Control status register 1  
Control status register 2  
Data register 1  
ADCS1  
00000000B  
00000000B  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
–––––––0B  
–––––––0B  
R/W  
R
37H  
ADCS2  
ADCR1  
ADCR2  
DAT0  
A/D converter  
D/A converter  
38H  
39H  
Data register 2  
3AH  
D/A converter data register 0  
D/A converter data register 1  
D/A control register channel 0  
D/A control register channel 1  
R/W  
R/W  
R/W  
R/W  
3BH  
DAT1  
3CH  
DACR0  
DACR1  
3DH  
Clock output control  
register  
3EH  
Clock control register  
CLKR  
R/W  
––––0000B  
3FH  
40H  
41H  
42H  
43H  
(Reserved area)  
Reload register lower channel 0  
Reload register upper channel 0  
Reload register lower channel 1  
Reload register upper channel 1  
PRLL0  
R/W  
R/W  
R/W  
R/W  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
PRLH0  
PRLL1  
PRLH1  
PPG0 operation mode control register  
channel 0  
8/16-bit PPG  
44H  
45H  
PPGC0  
PPGC1  
PPGOE  
R/W  
R/W  
R/W  
0X000XX1B  
0X000001B  
00000000B  
PPG1 operation mode control register  
channel 1  
PPG0, PPG1 output control register  
channel 0, channel 1  
46H  
47H to 4FH  
(Reserved area)  
16-bit I/O timer output  
compare (channel 0 to  
channel 3)  
50H  
Lower compare register channel 0  
OCCP0  
R/W  
XXXXXXXXB  
(Continued)  
26  
MB90650A Series  
Register Read/  
Address  
Register  
Resource name  
Initial value  
name  
write  
51H  
52H  
Upper compare register channel 0  
Lower compare register channel 1  
Upper compare register channel 1  
Lower compare register channel 2  
Upper compare register channel 2  
Lower compare register channel 3  
Upper compare register channel 3  
Compare control status register channel 0  
Compare control status register channel 1  
Compare control status register channel 2  
Compare control status register channel 3  
OCCP0  
R/W  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
0000––00B  
–––00000B  
0000––00B  
–––00000B  
OCCP1  
OCCP2  
OCCP3  
R/W  
R/W  
R/W  
53H  
54H  
55H  
16-bit I/O timer  
Output compare  
(channel 0 to channel 3)  
56H  
57H  
58H  
OCS0  
OCS1  
OCS2  
OCS3  
R/W  
R/W  
R/W  
R/W  
59H  
5AH  
5BH  
5CH to 5FH  
60H  
(Reserved area)  
R
Lower input capture register channel 0  
Upper input capture register channel 0  
Lower input capture register channel 1  
Upper input capture register channel 1  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
00000000B  
IPCP0  
61H  
R
R
16-bit I/O timer  
Input capture  
(channel 0, channel 1)  
62H  
IPCP1  
63H  
R
64H  
Input capture control status register ICS0, 1  
R/W  
65H  
(Reserved area)  
66H  
Lower timer data register  
Upper timer data register  
Timer control status register  
TCDTL  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
16-bit I/O timer  
Free-run timer  
67H  
TCDTH  
TCCS  
68H  
69H to 6FH  
70H  
(Reserved area)  
Up/down count register channel 0  
Up/down count register channel 1  
Reload compare register channel 0  
Reload compare register channel 1  
Counter status register channel 0  
UDCR0  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
R
71H  
UDCR1  
RCR0  
RCR1  
CSR0  
8/16-bit up/down  
counter/timer  
72H  
W
73H  
74H  
R/W  
75H  
(Reserved area)  
76H  
CCRL0  
00001000B  
00000000B  
00000000B  
Counter control register channel 0  
Counter status register channel 1  
R/W  
R/W  
8/16-bit up/down  
counter/timer  
77H  
CCRH0  
CSR1  
78H  
79H  
(Reserved area)  
CCRL1 R/W  
8/16-bit up/down  
counter/timer  
7AH  
Counter control register channel 1  
00000000B  
(Continued)  
27  
MB90650A Series  
Register Read/  
Address  
Register  
Resource name  
Initial value  
name  
write  
8/16-bit up/down  
counter/timer  
7BH  
Counter control register channel 1  
CCRH1  
R/W  
X0001000B  
7CH to 7FH  
80H  
(Reserved area)  
I2C bus status register  
I2C bus control register  
I2C bus clock control register  
I2C bus address register  
I2C bus data register  
IBSR  
R
00000000B  
00000000B  
––0XXXXXB  
XXXXXXXB  
XXXXXXXXB  
81H  
IBCR  
ICCR  
IADR  
IDAR  
R/W  
R/W  
R/W  
R/W  
I2C interface  
82H  
83H  
84H  
85H to 87H  
88H  
(Reserved area)  
DTMF control register  
DTMF data register  
DTMC  
DTMD  
00000000B  
000X0000B  
89H  
8A to 9EH  
(Reserved area) (Accessing 90H to 9EH is prohibited)  
Delayed interrupt generation/  
release register  
Delayed interrupt  
generation module  
9FH  
A0H  
A1H  
DIRR  
R/W  
R/W  
R/W  
–––––––0B  
00011000B  
11111100B  
Low-power consumption mode  
control register  
Low-power consumption  
mode  
LPMCR  
CKSCR  
Low-power consumption  
mode  
Clock selection register  
A2H to A4H  
A5H  
(Reserved area)  
Auto-ready function selection register  
External bus pin control circuit  
ARSR  
W
0011––00B  
00000000B  
External address output control  
register  
HACR  
W
External bus pin control circuit  
A6H  
A7H  
A8H  
Bus control signal selection register ECSR  
W
External bus pin control circuit 0000*00–B  
Watchdog timer control register  
Timebase timer control register  
Watch timer control register  
WDTC  
TBTC  
WTC  
R/W  
R/W  
R/W  
Watchdog timer  
Timebase timer  
Watch timer  
XXXXX111B  
1––00000B  
1X–00000B  
A9H  
AAH  
ABH to AFH  
(Reserved area)  
(Continued)  
28  
MB90650A Series  
(Continued)  
Register Read/  
Address  
Register  
Resource name  
Initial value  
name  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
B0H  
B1H  
Interrupt control register 00  
Interrupt control register 01  
Interrupt control register 02  
Interrupt control register 03  
Interrupt control register 04  
Interrupt control register 05  
Interrupt control register 06  
Interrupt control register 07  
Interrupt control register 08  
Interrupt control register 09  
Interrupt control register 10  
Interrupt control register 11  
Interrupt control register 12  
Interrupt control register 13  
Interrupt control register 14  
Interrupt control register 15  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
B2H  
B3H  
B4H  
B5H  
B6H  
B7H  
Interrupt controller  
B8H  
B9H  
BAH  
BBH  
BCH  
BDH  
BEH  
BFH  
C0H to FFH  
(External area)  
About Programming  
R/W : Readable and writable  
R
: Read only  
W : Write only  
Explanation of initial values  
0: The initial value of this bit is “0”.  
1: The initial value of this bit is “1”.  
* : The initial value of this bit is “0” or “1”.  
X: The initial value of this bit is undefined.  
–: This bit is not used. The initial value is undefined.  
Note: Areas below address 0000FFH not listed in the table are reserved areas. These addresses are accessed by  
internal access. No access signals are output on the external bus.  
29  
MB90650A Series  
INTERRUPT VECTOR AND INTERRUPT CONTROL REGISTER ASSIGNMENTS TO  
INTERRUPT SOURCES  
Interrupt vector  
Number Address  
Interrupt control register  
I2OS  
support  
Interrupt source  
Number  
Address  
Reset  
×
×
×
#08  
#09  
#10  
#11  
#12  
#13  
#14  
#15  
#16  
#17  
#18  
#19  
#20  
#21  
FFFFDCH  
FFFFD8H  
FFFFD4H  
FFFFD0H  
FFFFCCH  
FFFFC8H  
FFFFC4H  
FFFFC0H  
FFFFBCH  
FFFFB8H  
FFFFB4H  
FFFFB0H  
FFFFACH  
FFFFA8H  
INT 9 instruction  
Exception  
A/D converter  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
0000B0H  
0000B1H  
0000B2H  
0000B3H  
0000B4H  
Timebase timer interval interrupt  
DTP/external interrupt 0 (External interrupt 0)  
16-bit free-run timer (I/O timer) overflow  
I/O extended serial interface 1  
DTP/external interrupt 1 (External interrupt 1)  
I/O extended serial interface 2  
DTP/external interrupt 2 (External interrupt 2)  
DTP/external interrupt 3 (External interrupt 3)  
8/16-bit PPG 0 counter borrow  
8/16-bit up/down counter/timer 0 compare  
×
ICR05  
0000B5H  
8/16-bit up/down counter/timer 0  
underflow/overflow, up/down invert  
#22  
FFFFA4H  
8/16-bit PPG 1 counter borrow  
#23  
#24  
#25  
#26  
#27  
#28  
#29  
FFFFA0H  
FFFF9CH  
FFFF98H  
FFFF94H  
FFFF90H  
FFFF8CH  
FFFF88H  
ICR06  
ICR07  
ICR08  
0000B6H  
0000B7H  
0000B8H  
DTP/external interrupt 4/5 (External interrupt 4/5)  
Output compare (channel 2) match (I/O timer)  
Output compare (channel 3) match (I/O timer)  
Watch prescaler  
×
DTP/external interrupt 6 (External interrupt 6)  
8/16-bit up/down counter/timer 1 compare  
ICR09  
0000B9H  
8/16-bit up/down counter/timer 1  
underflow/overflow, up/down invert  
#30  
FFFF84H  
Input capture (channel 0) read (I/O timer)  
Input capture (channel 1) read (I/O timer)  
Output compare (channel 0) match (I/O timer)  
Output compare (channel 1) match (I/O timer)  
Completion of flash memory write/erase  
DTP/external interrupt 7 (External interrupt 7)  
UART0 receive complete  
#31  
#32  
#33  
#34  
#35  
#36  
#37  
#39  
#41  
#42  
FFFF80H  
FFFF7CH  
FFFF78H  
FFFF74H  
FFFF70H  
FFFF6CH  
FFFF68H  
FFFF60H  
FFFF58H  
FFFF54H  
ICR10  
ICR11  
ICR12  
0000BAH  
0000BBH  
0000BCH  
×
ICR13  
ICR14  
0000BDH  
0000BEH  
UART0 transmit complete  
I2C interface  
×
×
ICR15  
0000BFH  
Delayed interrupt generation module  
: Indicates that the interrupt request flag is cleared by the I2OS interrupt clear signal.  
: Indicates that the interrupt request flag is cleared by the I2OS interrupt clear signal (stop request present).  
: Indicates that the interrupt request flag is not cleared by the I2OS interrupt clear signal.  
Note: For resources in which two interrupt sources share the same interrupt number, the I2OS interrupt clear signal  
clears both interrupt request flags.  
30  
MB90650A Series  
PERIPHERAL RESOURCES  
1. Parallel Ports  
(1) I/O Ports  
Each port pin can be specified as either an input or output by its corresponding direction register when the pin  
is not set for use by a peripheral. When a port is set as an input, reading the data register always reads the  
value corresponding to the pin level. When a port is set as an output, reading the data register reads the data  
register latch value. The same applies when reading using a read-modify-write instruction.  
When used as control outputs, reading the data register reads the control output value, irrespective of the  
direction register value.  
Note that if a read-modify-write instruction (set bit or similar instruction) is used to set output data in the data  
register before switching a pin from input to output, the instruction reads the input level at the pin and not the  
data register latch value.  
• Block diagram  
Data register read  
Pin  
Data register  
Data register write  
Direction register  
Direction register write  
Direction register read  
31  
MB90650A Series  
(2) Port Direction Registers  
Port 0 data register (PDR0)  
bit 7  
P07  
bit 6  
P06  
bit 5  
P05  
bit 4  
P04  
bit 3  
P03  
bit 2  
P02  
bit 1  
P01  
bit 0  
P00  
Initial value  
Access  
R/W*  
Address : 000000H  
XXXXXXXXB  
Port 1 data register (PDR1)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
P10  
Initial value  
Access  
R/W*  
Address : 000001H  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
XXXXXXXXB  
Port 2 data register (PDR2)  
Initial value  
Access  
R/W*  
bit 7  
P27  
bit 6  
P26  
bit 5  
P25  
bit 4  
P24  
bit 3  
P23  
bit 2  
P22  
bit 1  
P21  
bit 0  
P20  
Address : 000002H  
XXXXXXXXB  
Port 3 data register (PDR3)  
Initial value  
Access  
R/W*  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
P30  
Address : 000003H  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
XXXXXXXXB  
Port 4 data register (PDR4)  
bit 7  
P47  
bit 6  
P46  
bit 5  
P45  
bit 4  
P44  
bit 3  
P43  
bit 2  
P42  
bit 1  
P41  
bit 0  
P40  
Initial value  
Access  
R/W*  
Address : 000004H  
1XXXXXXXB  
Port 5 data register (PDR5)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
P50  
Initial value  
Access  
R/W*  
Address : 000005H  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
XXXXXXXXB  
Port 6 data register (PDR6)  
bit 7  
P67  
bit 6  
P66  
bit 5  
P65  
bit 4  
P64  
bit 3  
P63  
bit 2  
P62  
bit 1  
P61  
bit 0  
P60  
Initial value  
Access  
R/W*  
Address : 000006H  
XXXXXXXXB  
Port 7 data register (PDR7)  
Initial value  
- - - XX111B  
Access  
R/W*  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
P70  
Address : 000007H  
P74  
P73  
P72  
P71  
Port 8 data register (PDR8)  
Initial value  
Access  
R/W*  
bit 7  
bit 6  
P86  
bit 5  
P85  
bit 4  
P84  
bit 3  
P83  
bit 2  
P82  
bit 1  
P81  
bit 0  
P80  
Address : 000008H  
- XXXXXXXB  
Port 9 data register (PDR9)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
P90  
Initial value  
Access  
R/W*  
Address : 000009H  
P97  
P96  
P95  
P94  
P93  
P92  
P91  
XXXXXXXXB  
Port A data register (PDRA)  
Initial value  
- - - - - XXXB  
Access  
R/W*  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PA2  
bit 1  
PA1  
bit 0  
PA0  
Address : 00000AH  
R/W : Readable and writable  
X
: Unused  
: Indeterminate  
* : The operation of reading or writing to I/O ports is slightly different from reading or writing to memory, as follows.  
• Input mode  
Read: Reads the corresponding pin level.  
Write: Writes to the output latch.  
• Output mode  
Read: Reads the value of the data register latch.  
Write: The value is output from the corresponding pin.  
32  
MB90650A Series  
(3) Port Direction Registers  
Port 0 direction register (DDR0)  
bit 7  
D07  
bit 6  
D06  
bit 5  
D05  
bit 4  
D04  
bit 3  
D03  
bit 2  
D02  
bit 1  
D01  
bit 0  
D00  
Initial value  
Access  
R/W*  
Address : 000010H  
00000000B  
Port 1 direction register (DDR1)  
Initial value  
Access  
R/W*  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
D10  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
00000000B  
Address : 000011H  
Port 2 direction register (DDR2)  
Initial value  
Access  
R/W*  
bit 7  
D27  
bit 6  
D26  
bit 5  
D25  
bit 4  
D24  
bit 3  
D23  
bit 2  
D22  
bit 1  
D21  
bit 0  
D20  
00000000B  
Address : 000012H  
Port 3 direction register (DDR3)  
Initial value  
Access  
R/W*  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
D30  
Address : 000013H  
D37  
D36  
D35  
D34  
D33  
D32  
D31  
00000000B  
Port 4 direction register (DDR4)  
Initial value  
Access  
R/W*  
bit 7  
bit 6  
D46  
bit 5  
D45  
bit 4  
D44  
bit 3  
D43  
bit 2  
D42  
bit 1  
D41  
bit 0  
D40  
Address : 000014H  
Port 5 direction register (DDR5)  
-0000000B  
Initial value  
Access  
R/W*  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
D50  
D57  
D56  
D55  
D54  
D53  
D52  
D51  
00000000B  
Address : 000015H  
Port 6 direction register (DDR6)  
Initial value  
Access  
R/W*  
bit 7  
D67  
bit 6  
D66  
bit 5  
D65  
bit 4  
D64  
bit 3  
D63  
bit 2  
D62  
bit 1  
D61  
bit 0  
D60  
00000000B  
Address : 000016H  
Port 7 direction register (DDR7)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Initial value  
---00--- B  
Access  
R/W*  
D74  
D73  
Address : 000017H  
Port 8 direction register (DDR8)  
Initial value  
Access  
R/W*  
bit 7  
bit 6  
D86  
bit 5  
D85  
bit 4  
D84  
bit 3  
D83  
bit 2  
D82  
bit 1  
D81  
bit 0  
D80  
-0000000B  
Address : 000018H  
Port 9 direction register (DDR9)  
Initial value  
Access  
R/W*  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
D90  
Address : 000019H  
Port A direction register (DDRA)  
D97  
D96  
D95  
D94  
D93  
D92  
D91  
00000000B  
Initial value  
-----000B  
Access  
R/W*  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
DA2  
bit 1  
DA1  
bit 0  
DA0  
Address : 00001AH  
R/W : Readable and writable  
: Unused  
33  
MB90650A Series  
(Continued)  
* : The operation of reading or writing to I/O ports is slightly different from reading or writing to memory, as follows.  
• Input mode  
Read: Reads the corresponding pin level.  
Write: Writes to the output latch.  
• Output mode  
Read: Reads the value of the data register latch.  
Write: The value is output from the corresponding pin.  
When pins are used as ports, the register bits control the corresponding pins as follows.  
0: Input mode  
1: Output mode  
Bits are set to “0” by a reset.  
• P47, P70 to P72  
No DDR for this port. Data is always available in this port, so when using P70 and P71 as I2C pin, set PDR  
value to “1”. (Otherwise when using P70 and P71 by themselves, turn off the I2C.)  
As this port is open-drain output style, so when using this port as an input port, in order to turn off the output  
transister, set the output data resister value to “1” and add the pull up resister to the external pin.  
34  
MB90650A Series  
(4) Port Resistance Registers  
• Register configuration  
Port 0 resistance register (RDR0)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value Access  
00000000 R/W  
Address : 00001C  
H
H
H
RD07 RD06 RD05 RD04 RD03 RD02 RD01 RD00  
B
Port 1 resistance register (RDR1)  
Initial value Access  
00000000 R/W  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 00001D  
Port 6 resistance register (RDR6)  
B
RD17 RD16 RD15 RD14 RD13 RD12 RD11 RD10  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value Access  
00000000 R/W  
Address : 00001E  
RD67 RD66 RD65 RD64 RD63 RD62 RD61 RD60  
B
R/W : Readable and writable  
• Block diagram  
Pull-up resistor (approx. 50 k)  
Port I/O  
Data register  
Direction register  
Resistance register  
Notes: Input resistance register R/W  
Controls the pull-up resistor in input mode.  
0: Pull-up resistor disconnected in input mode.  
1: Pull-up resistor connected in input mode.  
The setting has no meaning in output mode (pull-up resistor disconnected).  
The direction register (DDR) sets input or output mode.  
The pull-up resistor is disconnected in hardware standby or stop mode (SPL = 1) (high impedance).  
This function is disabled when using an external bus mode. In this case, do not write to this register.  
35  
MB90650A Series  
(5) Port Pin Register  
• Register configuration  
Port 4 pin register (ODR4)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value Access  
R/W  
Address : 00001B  
H
OD46 OD45 OD44 OD43 OD42 OD41 OD40 -0000000  
B
R/W : Readable and writable  
: Unused  
• Block diagram  
Port I/O  
Data register  
Direction register  
Pin register  
Notes: Pin register R/W  
Performs open-drain control in output mode.  
0: Operate as a standard output port in output mode.  
1: Operate as an open-drain output port in output mode.  
The setting has no meaning in input mode (output Hi-z).  
The direction register (DDR) sets input or output mode.  
This function is disabled when using an external bus mode. In this case, do not write to this register.  
(6) Analog Input Enable Register  
• Register configuration  
Analog input enable register (ADER)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
ADE7 ADE6 ADE5 ADE4 ADE3 ADE2 ADE1 ADE0  
R/W R/W R/W R/W R/W  
bit 8  
Initial value Access  
R/W  
Address : 00001F  
H
11111111  
B
R/W  
R/W  
R/W  
R/W : Readable and writable  
Controls each port 5 pin as follows.  
0: Port input mode  
1: Analog input mode  
Set to “1” by a reset.  
36  
MB90650A Series  
2. UART  
The UART is a serial I/O port that can be used for CLK asynchronous (start-stop synchronization) or CLK  
synchronous communications. The UART has the following features.  
• Full duplex, double buffered  
• Supports asynchronous (start-stop synchronization) and CLK synchronous data transfer  
• Supports multi-processor mode  
• Built-in dedicated baud rate generator  
Asynchronous : 9615 bps, 31250 bps, 4808 bps, 2404 bps and 1202 bps  
For a 6, 8, 10, 12, or 16 MHz  
CLK synchronous : 1 Mbps, 500 kbps, 250 kbps, 125 kbps, 115.2 kbps and 62.5 kbps  
clock.  
• Supports flexible baud rate setting using an external clock  
• Error detect function (parity, framing, and overrun)  
• NRZ type transmission signal  
• Intelligent I/O service support  
(1) Register Configuration  
bit 15  
bit 8 bit 7  
bit 0  
CDCR  
SCR  
SMR  
SSR  
SIDR (R) /SODR (W)  
8 bits  
8 bits  
Serial mode register 0 (SMR0)  
bit 7  
MD1 MD0  
R/W R/W  
bit 6  
bit 5  
bit 4  
bit 3  
CS0 Reserved SCKE SOE  
R/W R/W R/W R/W  
bit 2  
bit 1  
bit 0  
Initial value  
Address : 000020H  
Serial control register 0 (SCR0)  
CS2  
R/W  
CS1  
R/W  
00000000B  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 000021H  
PEN  
R/W  
P
SBL  
R/W  
CL  
A/D  
REC RXE  
TXE  
R/W  
00000100B  
R/W  
R/W  
R/W  
W
R/W  
Serial input register/serial output register 0 (SIDR/SODR0)  
Initial value  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
D3  
bit 2  
D2  
bit 1  
D1  
bit 0  
D0  
Address : 000022H  
Serial status register 0 (SSR0)  
D7  
D6  
D5  
D4  
XXXXXXXXB  
R/W  
R/W  
R/W  
R/W  
R/W R/W  
R/W R/W  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Initial value  
PE  
R
ORE FRE RDRF TDRE  
RIE  
TIE  
00001-00B  
Address : 000023H  
Clock division control register (CDCR)  
R
R
R
R
R
/W  
R/W  
Initial value  
0---1111B  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
MD  
DIV3 DIV2 DIV1 DIV0  
R/W R/W R/W R/W  
Address : 000027H  
R/W  
R/W : Readable and writable  
R
W
: Read only  
: Write only  
— : Unused  
: Indeterminate  
X
37  
MB90650A Series  
(2) Block Diagram  
Control signals  
Reception interrupt  
(to CPU)  
SCK0, SCK1  
Dedicated baud rate generator  
16-bit timer 0  
Transmission clock  
pulses  
Transmission interrupt  
(to CPU)  
(Connected internally)  
Clock select  
circuit  
Reception clock  
pulses  
External clock  
Transmission control  
Reception control  
circuit  
circuit  
Start bit detection  
circuit  
Transmission start  
circuit  
SIN0  
Reception bit  
counter  
Transmission bit  
counter  
Transmission parity  
counter  
Reception parity  
counter  
SOT0, SOT1  
Reception status  
determination circuit  
Reception shifter  
End of  
Transmission shifter  
Start of  
transmission  
Reception error  
reception  
occurrence signal  
for I2OS  
SODR  
SIDR  
(to CPU)  
Internal data bus  
MD1  
MD0  
CS2  
CS1  
CS0  
PEN  
P
PE  
ORE  
FRE  
SBL  
SMR  
register  
SCR  
register  
SSR  
register  
CL  
RDRF  
TDRE  
A/D  
REC  
RXE  
TXE  
SCKE  
SOE  
RIE  
TIE  
Control signals  
38  
MB90650A Series  
3. I/O Extended Serial Interface  
I/O extended serial interface consists of an 8-bit serial I/O interface that can perform clock synchronous data  
transfer. Either LSB-first or MSB-first data transfer can be selected.  
The following two serial I/O operation modes are available.  
• Internal shift clock mode: Data transfer is synchronized with the internal clock.  
• External shift clock mode: Data transfer is synchronized with the clock input from the external pin (SCK). By  
manipulating the general-purpose port that shares the external pin (SCK), this  
mode also enables the data transfer operation to be driven by CPU instructions.  
(1) Register Details  
Serial mode control status register 0, 1 (SMCS0, SMCS1)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 000025H  
000029H  
SMD2 SMD1 SMD0 SIE SIR BUSY STOP STRT  
00000010B  
R/W  
bit 7  
R/W  
bit 6  
R/W  
bit 5  
R/W R/W*1  
R
R/W R/W*2  
bit 1 bit 0  
Initial value  
bit 4  
bit 3  
bit 2  
Address : 000024H  
000028H  
- - - - 0 0 0 0 B  
MODE BDS SOE SCOE  
R/W  
R/W  
R/W  
R/W  
Serial data register 0, 1 (SDR0, SDR1)  
Initial value  
bit 7  
D7  
bit 6  
D6  
bit 5  
D5  
bit 4  
D4  
bit 3  
D3  
bit 2  
D2  
bit 1  
D1  
bit 0  
D0  
Address : 000026H  
00002AH  
XXXXXXXXB  
R/W  
R/W  
R/W  
R/W R/W  
R/W  
R/W R/W  
R/W : Readable and writable  
: Read only  
— : Unused  
R
X
: Indeterminate  
*1: Only “0” can be written.  
*2: Only “1” can be written. Reading always returns “0”.  
This register controls the transfer operation mode of the serial I/O. The following describes the function of each bit.  
bit 3: Serial mode selection bit (MODE)  
This bit selects the conditions for starting operation from the halted state. Changing the mode during  
operation is prohibited  
MODE  
Operation  
Start when STRT is set to “1”. [Initial value]  
0
1
Start on reading from or writing to the serial data register.  
The bit is initialized to “0” by a reset. The bit is readable and writable. Set to “1” when using the intelligent I/O  
service.  
bit 2: Transfer direction selection bit (BDS: Bit Direction Select)  
Selects as follows at the time of serial data input and output whether the data are to be transferred in  
the order from LSB to MSB or vice versa.  
MODE  
Operation  
0
1
LSB-first [Initial value]  
MSB-first  
39  
MB90650A Series  
(2) Block Diagram  
Internal data bus  
(MSB-first) D0 to D7  
SIN1, SIN2  
D7 to D0 (LSB-first)  
Transfer direction selection  
Read  
Write  
SDR (Serial data register)  
SOT1, SOT2  
SCK1, SCK2  
Control circuit  
Shift clock counter  
Internal clock  
2
1
0
SMD2 SMD1 SMD0 SIE  
SIR BUSY STOP STRT MODE BDS SOE SCOE  
Interrupt  
request  
Internal data bus  
40  
MB90650A Series  
4. A/D Converter  
The A/D converter converts analog input voltages to digital values. The A/D converter has the following features.  
• Conversion time: Minimum of 5.2 µs per channel (for a 16 MHz machine clock)  
• Uses RC-type successive approximation conversion with a sample and hold circuit.  
• 10-bit resolution  
• Eight program-selectable analog input channels  
Single conversion mode:  
Scan conversion mode:  
Selectively convert a one channel.  
Continuously convert multiple channels. Maximum of 8 program-  
selectable channels.  
Continuous conversion mode : Repeatedly convert specified channels.  
Stop conversion mode: Convert one channel then halt until the next activation. (Enables  
synchronization of the conversion start timing.)  
• An A/D conversion completion interrupt request to the CPU can be generated on the completion of A/D  
conversion. This interrupt can activate I2OS to transfer the result of A/D conversion to memory and is suitable  
for continuous operation.  
• Activation by software, external trigger (falling edge), or timer (rising edge) can be selected.  
(1) Register Configuration  
bit 15  
bit 8 bit 7  
bit 0  
ADCS2  
ADCS1  
ADCR2  
8 bits  
ADCR1  
8 bits  
Control status register 1 (ADCS1)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
Address : 000036  
H
MD1 MD0 ANS2 ANS1 ANS0 ANE2 ANE1 ANE0  
00000000  
B
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
bit 8  
Control status register 2 (ADCS2)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
BUSY INT INTE PAUS STS1 STS0 STRT  
Address : 000037  
H
DA  
00000000  
B
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Data register 1 (ADCR1)  
Data register 2 (ADCR2)  
Initial value  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address : 000038  
H
7
6
5
4
3
2
1
0
XXXXXXXX  
B
R
R
R
R
R
R
R
R
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 000039  
H
R
R
R
R
R
R
9
8
XXXXXXXX  
B
R
R
: Readable and writable  
: Read only  
: Indeterminate  
R/W  
R
X
41  
MB90650A Series  
(2) Block Diagram  
AVCC  
AVRH  
AVRL  
AVSS  
D/A converter  
MPX  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
Successive  
approximation register  
Comparator  
Sample and  
hold circuit  
Data register  
ADCR1, ADCR2  
A/D control register 1  
A/D control register 2  
ADCS1, ADCS2  
Trigger activation  
ADTG  
Timer activation  
PPG01  
Operating clock  
Prescaler  
φ
42  
MB90650A Series  
5. D/A Converter  
D/A converter is an R-2R type D/A converter with 8-bit resolution. The device contains two D/A converters. The  
D/A control register controls the output of the two D/A converters independently.  
(1) Register Configuration  
D/A converter data register 0 (DAT0)  
Initial value  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address : 00003AH  
D/A converter data register 1 (DAT1)  
DA07 DA06 DA05 DA04 DA03 DA02 DA01 DA00  
XXXXXXXXB  
R/W  
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
bit 8  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
Address : 00003BH  
D/A control register channel 0 (DACR0)  
DA17 DA16 DA15 DA14 DA13 DA12 DA11 DA10  
XXXXXXXXB  
R/W  
bit 7  
R/W  
bit 6  
R/W  
bit 5  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
Initial value  
-------0 B  
Address : 00003CH  
D/A control register channel 1 (DACR1)  
DAE0  
R/W  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Initial value  
-------0 B  
Address : 00003DH  
DAE1  
R/W  
R/W : Readable and writable  
— : Unused  
X
: Indeterminate  
43  
MB90650A Series  
(2) Block Diagram  
Internal data bus  
DA DA DA DA DA DA DA DA  
17 16 15 14 13 12 11 10  
DA DA DA DA DA DA DA DA  
07 06 05 04 03 02 01 00  
DVR  
DVR  
DA17  
DA07  
2R  
2R  
R
R
DA16  
DA06  
2R  
R
2R  
R
DA15  
DA11  
DA05  
DA01  
2R  
R
2R  
R
DA10  
DA00  
2R  
2R  
2R  
2R  
DAE1  
Standby control  
DAE0  
Standby control  
DA output  
channel 1  
DA output  
channel 0  
44  
MB90650A Series  
6. 8/16-bit PPG  
8/16-bit PPG is an 8-bit reload timer module. The block performs PPG output in which the pulse output is  
controlled by the operation of the timer.  
The hardware consists of two 8-bit down-counters, four 8-bit reload registers, one 16-bit control register, two  
external pulse output pins, and two interrupt outputs. The PPG has the following functions.  
• 8-bit PPG output in two channels independent operation mode:  
Two independent PPG output channels are available.  
• 16-bit PPG output operation mode : One 16-bit PPG output channel is available.  
• 8 + 8-bit PPG output operation mode : Variable-period 8-bit PPG output operation is available by using the  
output of channel 0 as the clock input to channel 1.  
• PPG output operation :  
Outputs pulse waveforms with variable period and duty ratio. Can be  
used as a D/A converter in conjunction with an external circuit.  
(1) Register Configuration  
PPG0 operation mode control register channel 0 (PPGC0)  
Initial value  
0X000XX1  
bit 7  
bit 6  
bit 5  
PE00 PIE0 PUF0  
R/W R/W R/W  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Reserved  
Address : 000044  
H
PEN0  
R/W  
B
B
B
PPG1 operation mode control register channel 1 (PPGC1)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
Initial value  
0X000001  
bit 8  
Address : 000045  
H
PEN1  
R/W  
PE10 PIE1 PUF1 MD1 MD0 Reserved  
R/W  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
PPG0, PPG1 output control register channel 0, channel 1 (PPGOE)  
bit 7 bit 6 bit 5  
Initial value  
00000000  
bit 0  
Address : 000046  
H
PCS2 PCS1 PCS0 PCM2 PCM1 PCM0 PE11 PE01  
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reload register upper channel 0, channel 1 (PRLH0, PRLH1)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
Initial value  
bit 8  
R/W  
Address : 000041  
H
H
XXXXXXXX  
B
000043  
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
Reload register lower channel 0, channel 1 (PRLL0, PRLL1)  
Initial value  
XXXXXXXX  
bit 7  
R/W  
bit 6  
bit 5  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
R/W  
Address : 000040  
H
H
B
000042  
R/W R/W  
R/W : Readable and writable  
: Indeterminate  
X
45  
MB90650A Series  
(2) Block Diagram  
• 8/16-bit PPG (channel 0)  
PPG00 output enable  
PPG01 output enable  
PPG00  
PPG01  
Peripheral clock divided by 16  
Peripheral clock divided by 8  
Peripheral clock divided by 4  
Peripheral clock divided by 2  
Peripheral clock  
A/D converter  
PPG0  
output latch  
Invert  
Clear  
PEN0  
S
R
Q
PCNT (Down-counter)  
Reload  
IRQ  
Count clock  
selection  
Channel 1-borrow  
Timebase counter output  
Main clock divided by 512  
L/H selector  
L/H select  
PRLL0  
PRLH0  
PRLBH0  
PIE0  
PUF0  
L-side data bus  
H-side data bus  
PPGC0  
(Operation mode control)  
46  
MB90650A Series  
• 8/16-bit PPG (channel 1)  
PPG10 output enable  
PPG10  
PPG11  
Peripheral clock divided by 16  
Peripheral clock divided by 8  
Peripheral clock divided by 4  
Peripheral clock divided by 2  
Peripheral clock  
PPG11 output enable  
UART  
PPG1  
output latch  
Invert  
Clear  
Count clock  
selection  
PEN1  
S
Q
R
PCNT (Down-counter)  
Reload  
IRQ  
Channel 0-borrow  
Timebase counter output  
Main clock divided by 512  
L/H selector  
L/H select  
PRLL1  
PRLH1  
PRLBH1  
PIE  
PUF  
L-side data bus  
H-side data bus  
PPGC1  
(Operation mode control)  
47  
MB90650A Series  
7. 8/16-bit Up/Down Counter/Timer  
8/16-bit up/down counter/timer is an up/down counter/timer and consists of six event input pins, two 8-bit up/  
down counters, two 8-bit reload/compare registers, and their control circuits.  
(1) Main Functions  
• The 8-bit count register can count in the range 0 to 256 (or 0 to 65535 in 1 × 16-bit operation mode).  
• The count clock selection can select between four different count modes.  
Count modes  
Timer mode  
Up/down counter mode  
Phase difference count mode (× 2)  
Phase difference count mode (× 8)  
• Two different internal count clocks are available in timer mode.  
Count clock (at 16 MHz operation)  
125 ns (8 MHz: Divide by 2)  
0.5 µs (1 MHz: Divide by 8)  
• In up/down count mode, you can select which edge to detect on the external pin input signal.  
Detected edge  
Detect falling edges  
Detect rising edges  
Detect both rising and falling edges  
Edge detection disabled  
• Phase difference count mode is suitable for motor encoder counting. By inputting the A, B, and Z phase outputs  
from the encoder, a high-precision rotational angle, speed, or similar count can be implemented simply.  
• Two different functions can be selected for the ZIN pin.  
ZIN pin  
Counter clear function  
Gate function  
• Compare and reload functions are available and can be used either independently or together. A variable-  
width up/down count can be performed by activating both functions.  
Compare/reload function  
Comparefunction(Outputaninterruptwhenacompare  
occurs.)  
Compare function (Output an interrupt and clear the  
counter when a compare occurs.)  
Reload function (Output an interrupt and reload when  
an underflow occurs.)  
Compare/reload function  
(Output an interrupt and clear the counter when a  
compare occurs. Output an interrupt and reload when  
an underflow occurs.)  
Compare/reload disabled  
• Whether or not to generate an interrupt when a compare, reload (underflow), or overflow occurs can be set  
independently.  
• The previous count direction can be determined from the count direction flag.  
• An interrupt can be generated when the count direction changes.  
48  
MB90650A Series  
(2) Register Configuration  
bit 15  
bit 8 bit 7  
bit 0  
UDCR1  
RCR1  
UDCR0  
RCR0  
CSR0  
(Reversed area)  
CCRH0  
CCRL0  
CSR1  
(Reversed area)  
CCRH1  
8 bits  
CCRL1  
8 bits  
Up/down count register channel 0 (UDCR0)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
Address : 000070  
H
D07  
R
D06  
R
D05  
R
D04  
R
D03  
R
D02  
R
D01  
R
D00  
R
00000000  
B
Up/down count register channel 1 (UDCR1)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 000071  
H
H
H
D17  
R
D16  
R
D15  
R
D14  
R
D13  
R
D12  
R
D11  
R
D10  
R
00000000  
B
Reload compare register channel 0 (RCR0)  
Initial value  
bit 7  
D07  
W
bit 6  
D06  
W
bit 5  
D05  
W
bit 4  
D04  
W
bit 3  
D03  
W
bit 2  
D02  
W
bit 1  
D01  
W
bit 0  
D00  
W
Address : 000072  
00000000  
B
Reload compare register channel 1 (RCR1)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 000073  
D17  
W
D16  
W
D15  
W
D14  
W
D13  
W
D12  
W
D11  
W
D10  
W
00000000  
B
Counter status register channel 0, channel 1 (CSR0, CSR1)  
Initial value  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address : 000074  
H
H
00000000  
B
CSTR CITE UDIE CMPF OVFF UDFF UDF1 UDF0  
000078  
R/W  
R/W  
R/W R/W  
R/W  
R/W  
R
R
Counter control register channel 0, channel 1 (CCRL0, CCRL1)  
bit 7  
bit 6  
bit 5 bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
Address : 000076  
00007A  
H
H
00001000  
00000000  
B
CTUT UCRE RLDE UDCC CGSC CGE1 CGE0  
B
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
Counter control register channel 0 (CCRH0)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 000077  
H
00000000  
B
M16E CDCF CFIE CLKS CMS1 CMS0 CES1 CES0  
R/W  
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
Counter control register channel 1 (CCRH1)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Initial value  
X0001000  
Address : 00007B  
H
B
CDCF CFIE CLKS CMS1 CMS0 CES1 CES0  
R/W R/W R/W R/W R/W R/W R/W  
: Readable and writable  
: Read only  
: Write only  
R/W  
R
W
X
: Unused  
:
Indeterminate  
49  
MB90650A Series  
(3) Block Diagram  
• 8/16-bit up/down counter/timer (channel 0)  
Internal data bus  
8 bits  
RCR0 (Reload/compare register 0)  
CGE1 CGE0 C/GS  
CTUT  
Reload control  
ZIN0  
Edge or level detection  
UCRE  
RLDE  
UDCC  
Counter clear  
8 bits  
UDCR0 (Up/down count register 0)  
Carry  
CMPF  
CES1 CES0  
CMS1 CMS0  
UDFF OVFF  
CITE UDIE  
Count clock  
UDF1 UDF0 CDCF CFIE  
AIN0  
BIN0  
Up/down count  
clock selection  
Interrupt output  
Prescaler  
CLKS  
CSTR  
50  
MB90650A Series  
• 8/16-bit up/down counter/timer (channel 1)  
Internal data bus  
8 bits  
RCR1 (Reload/compare register 1)  
CGE1 CGE0 C/GS  
Edge or level detection  
CTUT  
Reload control  
ZIN1  
UCRE  
RLDE  
Counter clear  
8 bits  
UDCR1 (Up/down count register 1)  
UDCC  
CMPF  
UDFF OVFF  
CMS1 CMS0 CES1 CES0 EN16  
Carry  
CITE UDIE  
Count clock  
UDF1 UDF0 CDCF CFIE  
Interrupt output  
AIN1  
BIN1  
Up/down count  
clock selection  
Prescaler  
CSTR  
CLKS  
51  
MB90650A Series  
8. Clock Output Control Register  
Clock output control register outputs the divided machine clock.  
(1) Register Configuration  
Clock control register (CLKR)  
Initial value  
----0000B  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
CKEN FRQ2 FRQ1 FRQ0  
R/W R/W R/W R/W  
bit 2  
bit 1  
bit 0  
Address : 00003EH  
R/W : Readable and writable  
— : Unused  
bit 3: Clock output enable bit (CKEN)  
MODE  
Operation  
0
1
Operate as a standard port.  
Operate as the clock output.  
bit 2 to bit 0: Clock output frequency select bit (FRQ2 to FRQ0)  
FRQ2  
FRQ1  
FRQ0  
Output clock  
φ/21  
φ = 16 MHz  
125 ns  
250 ns  
500 ns  
1 µs  
φ = 8 MHz  
250 ns  
500 ns  
1 µs  
φ = 4 MHz  
500 ns  
1 µs  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
φ/22  
φ/23  
2 µs  
φ/24  
2 µs  
4 µs  
φ/25  
2 µs  
4 µs  
8 µs  
φ/26  
4 µs  
8 µs  
16 µs  
32 µs  
64 µs  
φ/27  
8 µs  
16 µs  
32 µs  
φ/28  
16 µs  
52  
MB90650A Series  
9. DTP/External Interrupts  
The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F2MC-16L  
CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the  
requests to the F2MC-16L CPU to activate the intelligent I/O service or interrupt processing. Two request levels  
(“H” and “L”) are provided for the intelligent I/O service. For external interrupt requests, generation of interrupts  
on a rising or falling edge as well as on “H” and “L” levels can be selected, giving a total of four types.  
(1) Register Configuration  
Interrupt/DTP enable register (ENIR)  
bit 7  
bit 6  
bit 5  
bit 4  
EN4  
bit 3  
EN3  
bit 2  
EN2  
bit 1  
EN1  
bit 0  
Initial value  
Address : 000030H  
Interrupt/DTP source register (EIRR)  
EN7  
R/W  
EN6  
R/W  
EN5  
R/W  
EN0  
R/W  
00000000B  
R/W R/W  
R/W R/W  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 000031H  
Request level setting register (ELVR)  
ER7  
R/W  
ER6  
R/W  
ER5  
R/W  
ER4  
ER3  
ER2  
ER1  
ER0  
R/W  
00000000B  
R/W R/W  
R/W R/W  
Initial value  
bit 7  
bit 6  
bit 5  
bit 4  
LA2  
bit 3  
LB1  
bit 2  
LA1  
bit 1  
LB0  
bit 0  
00000000B  
Address : 000032H  
LB3  
R/W  
LA3  
R/W  
LB2  
R/W  
LA0  
R/W  
R/W R/W  
R/W R/W  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 000033H  
LB7  
R/W  
LA7  
R/W  
LB6  
R/W  
LA6  
LB5  
LA5  
LB4  
LA4  
R/W  
00000000B  
R/W R/W  
R/W R/W  
R/W : Readable and writable  
(2) Block Diagram  
4
4
4
8
Interrupt/DTP enable register  
Request F/F  
4
Gate  
Edge detect circuit  
Request input  
Interrupt/DTP source register  
Request level setting register  
53  
MB90650A Series  
10. 16-bit I/O Timer  
The 16-bit I/O timer consists of one 16-bit free-run timer, two output compare, and two input capture modules.  
Based on the 16-bit free-run timer, these functions can be used to generate two independent waveform outputs  
and to measure input pulse widths and external clock periods.  
• Register configuration  
16-bit free-run timer  
bit 15  
bit 0  
TCDTL : 000066H  
TCDTH : 000067H  
TCDT  
Timer data register lower, upper (TCDTL, TCDTH)  
Timer control status register (TCCS)  
TCCS : 000068H  
TCCS  
16-bit output compare  
bit 15  
bit 0  
OCCP0 : 000050H, 51H  
OCCP1 : 000052H, 53H  
OCCP2 : 000054H, 55H  
OCCP3 : 000056H, 57H  
Compare register channel 0 to channel 3  
lower, upper (OCCP0 to OCCP3)  
OCCP  
OCS  
OCS0 : 000058H  
OCS1 : 000059H  
OCS2 : 00005AH  
OCS3 : 00005BH  
Compare control status register  
channel 0 to channel 3 (OCS0 to OCS3)  
16-bit input capture  
bit 15  
bit 0  
IPCP0 : 000060H, 61H  
IPCP1 : 000062H, 63H  
Input capture register channel 0, channel 1  
lower, upper (IPCP0, IPCP1)  
IPCP  
ICS0, 1 : 000064H  
ICS  
Input capture control status register (ICS0, 1)  
• Block diagram  
Control logic  
16-bit timer  
Interrupt  
16-bit free-run timer  
Clear  
Output compare 0  
OUT0  
OUT1  
OUT2  
OUT3  
Compare register 0  
Output compare 1  
Compare register 1  
Output compare 2  
Compare register 2  
Output compare 3  
TQ  
TQ  
TQ  
TQ  
Compare register 3  
Input capture 0  
IN0  
IN1  
Capture register 0  
Capture register 1  
Edge selection  
Edge selection  
54  
MB90650A Series  
(1) 16-bit Free-run Timer  
The 16-bit free-run timer consists of a 16-bit up-counter, a control register, and a prescaler. The output of the  
timer/counter is used as the base time for the input capture and output compare.  
• The operating clock for the counter can be selected from four different clocks.  
Four internal clocks (φ/4, φ/16, φ/32, φ/64)  
• Interrupts can be generated when a counter value overflow or compare match with compare register 0 occurs  
(the appropriate mode must be set for a compare match).  
• The counter can be initialized to 0000H by a reset, software clear, or compare match with compare register 0.  
• Register details  
Upper timer data register (TCDTH)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
T08  
R/W  
Address : 000067H  
T15  
T14  
T13  
T12  
T11  
T10  
T09  
00000000B  
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
Lower timer data register (TCDTL)  
Initial value  
bit 7  
bit 6  
T06  
bit 5  
T05  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
T00  
R/W  
Address : 000066H  
T07  
T04  
T03  
T02  
T01  
00000000B  
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W : Readable and writable  
The count value of the 16-bit free-run timer can be read from this register. The count is cleared to “0000B” by a  
reset. Writing to this register sets the timer value. However, only write to the register when the timer is halted  
(STOP = “1”). Always use word access.  
The 16-bit free-run timer is initialized by the following.  
• Reset  
• The clear bit (CLR) of the control status register  
• A match between the timer/counter value and compare register 0 of the output compare (if the appropriate  
mode is set)  
• Block diagram  
φ
Interrupt request  
IVF IVFE STOP MODE CLR CLK1 CLK0  
Divider  
Comparator 0  
Clock  
16-bit up-counter  
Count value output T15 to T00  
55  
MB90650A Series  
(2) Output Compare  
The output compare consists of two 16-bit compare registers, compare output latches, and control registers.  
The modules can invert the output level and generate an interrupt when the 16-bit free-run timer value matches  
the compare register value.  
• The four compare registers can be operated independently.  
Each compare register has a corresponding output pin and interrupt flag.  
• The four compare registers can be paired to control the output pins.  
Invert the output pins using the four compare registers.  
• Initial values can be set for the output pins.  
• An interrupt can be generated when a compare match occurs.  
• Register configuration  
Upper compare register channel 0 to channel 3 (OCCP0 to OCCP3)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Initial value  
OCCP0 : 000051H  
OCCP1 : 000053H  
OCCP2 : 000055H  
OCCP3 : 000057H  
XXXXXXXXB  
C15  
R/W  
C14  
R/W  
C13  
C12  
C11  
R/W  
C10  
R/W  
C09  
R/W  
C08  
R/W  
R/W R/W  
Lower compare register channel 0 to channel 3 (OCCP0 to OCCP3)  
bit 7  
bit 6  
bit 5  
bit 4  
C04  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
OCCP0 : 000050H  
OCCP1 : 000052H  
OCCP2 : 000054H  
OCCP3 : 000056H  
XXXXXXXXB  
C07  
R/W  
C06  
R/W  
C05  
C03  
R/W  
C02  
R/W  
C01  
R/W  
C00  
R/W  
R/W R/W  
Compare control status register channel 0 to channel 3 (OCS0 to OCS3)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Initial value  
---00000B  
OCS1 : 000059H  
OCS3 : 00005BH  
CMOD OTE1 OTE0 OTDI OTD0  
R/W  
bit 4  
R/W  
R/W  
R/W  
bit 1  
R/W  
bit 0  
bit 7  
bit 6  
bit 5  
bit 3  
bit 2  
Initial value  
0000--00B  
OCS0 : 000058H  
OCS2 : 00005AH  
ICP1 ICP0 ICE1 ICE0  
R/W R/W R/W R/W  
CST1 CST0  
R/W R/W  
R/W: Readable and writable  
— : Unused  
X
: Indeterminate  
56  
MB90650A Series  
• Block diagram  
16-bit timer/counter value (T15 to T00)  
OUT0  
OTEO  
TQ  
Compare control  
(OUT2)  
Compare register 0 (2)  
CMOD  
TQ  
16-bit timer/counter value (T15 to T00)  
OUT1  
(OUT3)  
OTE1  
Compare control  
Compare register 1 (3)  
ICP1 ICP0 ICE1 ICE0  
Compare 1 interrupt (3)  
Compare 0 interrupt (2)  
Controller  
Control blocks  
57  
MB90650A Series  
(3) Input Capture  
The input capture consists of two independent external input pins, their corresponding capture registers, and  
a control register. The value of the 16-bit free-run timer can be stored in the capture register and an interrupt  
generated when the specified edge is detected on the signal from the external input pin.  
• The edge to detect on the external input signal is selectable.  
Detection of rising edges, falling edges, or either edge can be specified.  
• The two input capture channels can operate independently.  
• An interrupt can be generated on detection of the specified edge on the external input signal.  
The input capture interrupt can activate the intelligent I/O service.  
• Register details  
Input capture register channel 0, channel 1 (IPCP0, IPCP1)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
IPCP0 : 000061H  
IPCP1 : 000063H  
CP15 CP14 CP13 CP12 CP11 CP10 CP09 CP08  
XXXXXXXXB  
R
R
R
R
R
R
R
R
Initial value  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IPCP0 : 000060H  
IPCP1 : 000062H  
CP07 CP06 CP05 CP04 CP03 CP02 CP01 CP00 XXXXXXXXB  
R
R
R
R
R
R
R
R
Input capture control status register (ICS0, 1)  
Initial value  
00000000B  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ICP1 ICP0 ICE1 ICE0 EG11 EG10 EG01 EG00  
R/W R/W R/W R/W R/W R/W R/W R/W  
R/W : Readable and writable  
000064H  
R
X
: Read only  
: Indeterminate  
The 16-bit free-run timer value is stored in these registers when the specified edge is detected on the input  
waveform from the corresponding external pin. (Always use word access. Writing is prohibited.)  
• Block diagram  
IN0  
Capture data register 0  
16-bit timer/counter value (T15 to T00)  
Capture data register 1  
Edge detection  
EG11 EG10 EG01 EG00  
IN1  
Edge detection  
ICP1 ICP0 ICE1 ICE0  
Interrupt  
Interrupt  
58  
MB90650A Series  
11. Watchdog Timer, Timebase Timer, and Watch Timer  
The watchdog timer consists of a 2-bit watchdog counter that uses the carry signal from the 18-bit timebase  
timer or the 15-bit watch timer as aclock source, a control register, and a watchdog reset controller.  
The timebase timer consists of an 18-bit timer and a circuit that controls interval interrupts. Note that the timebase  
timer uses the main clock, regardless of the setting of the MCS bit and SCS bit in CKSCR.  
The watch timer consists of a 15-bit timer and a circuit that controls interval interrupts. Note that the watch timer  
uses the sub clock, regardless of the setting of the MCS bit SCS bit in CKSCR.  
(1) Register Configuration  
Watchdog timer control register (WDTC)  
Initial value  
WRST ERST SRST WTE WT1 WT0 XXXXX111B  
bit 7  
PONR  
R
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address : 0000A8H  
R
R
R
W
W
W
Timebase timer control register (TBTC)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
TBIE TBOF TBR TBC1 TBC0  
R/W R/W R/W R/W  
Address : 0000A9H Reserved  
1--00000B  
W
Watch timer control register (WTC)  
Initial value  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address : 0000AAH  
WDCS SCE WTIE WTOF WTR WTC2 WTC1 WTC0 1X000000B  
R/W R/W R/W R/W R/W R/W  
R
R
R/W : Readable and writable  
R
W
: Read only  
: Write only  
— : Unused  
: Indeterminate  
X
59  
MB90650A Series  
(2) Block Diagram  
Main clock  
TBTC  
TBC1  
212  
Clock input  
214  
Selector  
216  
Timebase timer  
219  
TBC0  
212 214 216 219  
TBTRES  
TBR  
S
R
TBIE  
AND  
Q
TBOF  
Timebase  
interrupt  
WDTC  
Watchdog reset  
generator  
2-bit counter  
WT1  
WT0  
Selector  
OF  
WDGRST  
To internal reset  
generator  
CLR  
CLR  
WTE  
WTC  
AND  
SCM  
WDCS  
Power-on reset  
sub clock stops  
S
R
SCE  
Q
210 213 214 215  
Watch timer  
Clock input  
210  
213  
214  
215  
WTC1  
WTC0  
Selector  
WTR  
WTIE  
WTRES  
S
Sub clock  
AND  
Q
R
WTOF  
Timer  
interrupt  
WDTC  
PONR  
From power-on generation  
WRST  
ERST  
SRST  
RST pin  
From RST bit in  
the STBYC register  
60  
MB90650A Series  
12. I2C Interface  
The I2C interface is a serial I/O port that supports the Inter-IC bus and operates as a master/slave device on  
the I2C bus. This module has the following features:  
• Master/slave transmission/reception  
• Arbitration function  
• Clock synchronization function  
• Slave address/general call address detection function  
• Transfer direction detection function  
• Start condition repeat generation and detection function  
• Bus error detection function  
(1) Register Configuration  
I2C bus status register (IBSR)  
Initial value  
bit 7  
BB  
R
bit 6  
RSC  
R
bit 5  
AL  
R
bit 4  
LRB  
R
bit 3  
TRX  
R
bit 2  
bit 1  
bit 0  
FBT  
R
Address : 000080H  
AAS GCA  
00000000B  
R
R
I2C bus control register (IBCR)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
BER BEIE SCC MSS ACK GCAA INTE  
bit 8  
INT  
Address : 000081H  
00000000B  
R/W  
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
I2C bus clock control register (ICCR)  
Initial value  
bit 7  
bit 6  
bit 5  
EN  
bit 4  
bit 3  
bit 2  
bit 1  
CS1  
R/W  
bit 0  
CS0  
R/W  
Address : 000082H  
CS4  
R/W  
CS3  
R/W  
CS2  
R/W  
--0XXXXXB  
R/W  
I2C bus address register (IADR)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 000083H  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
-XXXXXXXB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
I2C bus data register (IDAR)  
Initial value  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D0  
Address : 000084H  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
XXXXXXXXB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W : Readable and writable  
R
X
: Read only  
: Unused  
: Indeterminate  
61  
MB90650A Series  
(2) Block Diagram  
ICCR  
EN  
I2C enable  
Peripheral clock  
Clock divider 1  
ICCR  
CS4  
5
6
7
8
Clock selection 1  
CS3  
CS2  
CS1  
CS0  
Clock divider 2  
Sync  
2 4 8 16 32 64 128 256  
Shift clock generation  
Clock selection 2  
Shift clock edge  
change timing  
IBSR  
BB  
Bus busy  
Repeat start  
Last bit  
RSC  
LRB  
TRX  
FBT  
AL  
Start/stop  
condition generation  
Error  
Transmit/receive  
First byte  
Arbitration lost detection  
IBCR  
BER  
SCL  
SDA  
BEIE  
INTE  
INT  
IRQ  
Interrupt request  
End  
IBCR  
SCC  
Start  
Master  
MSS  
ACK  
Start/stop  
condition generation  
ACK enable  
GC-ACK enable  
GCAA  
IDAR  
IBSR  
AAS  
Slave  
Slave address  
comparison  
Global call  
GCA  
IADR  
62  
MB90650A Series  
13. External Bus Pin Control Circuit  
The external bus pin control circuit controls the external bus pins required to extend the CPU’s address/data  
bus outside the device.  
(1) Register Configuration  
Auto-ready function selection register (ARSR)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Address : 0000A5H  
ICR1 ICR0 HMR1 HMR0  
LMR1 LMR0  
0011--00B  
W
W
W
W
W
W
External address output control register (HACR)  
Initial value  
00000000B  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
E16  
W
Address : 0000A6H  
E23  
W
E22  
W
E21  
W
E20  
W
E19  
W
E18  
W
E17  
W
Bus control signal selection register (ECSR)  
Initial value  
0000*00-B  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
CKE RYE HDE ICBS HMBS WRE LMBS  
bit 8  
Address : 0000A7H  
W
W
W
W
W
W
W
: Write only  
: Unused  
: “1” or “0”  
W
*
(2) Block Diagram  
P3  
P2  
P1  
P3  
P0  
P0  
P0 data  
P0 direction  
RB  
Data control  
Address control  
Access control  
Access control  
63  
MB90650A Series  
14. Low-power Consumption Mode (CPU Intermittent Operation Function, Oscillation  
Stabilization Delay Time, Clock Multiplier Function)  
The following are the operating modes: PLL clock mode, PLL sleep mode, PLL watch mode, pseudo-watch  
mode, main clock mode, main sleep mode, main watch mode, main stop mode, sub clock mode, sub sleep  
mode, sub watch mode, and sub stop mode. Aside from the PLL clock mode, all of the other operating modes  
are low-power consumption modes.  
In main clock mode and main sleep mode, the main clock (main OSC oscillation clock) and the sub clock (sub  
OSC oscillation clock) operate. In these modes, the main clock divided by 2 is used as the operation clock, the  
sub clock (sub OSC oscillation clock) is used as the timer clock, and the PLL clock (VCO oscillation clock) is  
stopped.  
In sub clock mode and sub sleep mode, only the sub clock operates. In these modes, the sub clock is used as  
the operation clock, and the main clock and PLL clock are stopped.  
In PLL sleep mode and main sleep mode, only the CPU’s operation clock is stopped; all clocks other than the  
CPU clock operate.  
In pseudo-watch mode, only the watch timer and timebase timer operate.  
In PLL watch mode, main watch mode, and sub watch mode, only the watch timer operates. In this mode, only  
the sub clock is used for operation, while the main clock and the PLL clock are stopped (the difference between  
the PLL watch mode, the main watch mode and the sub watch mode is that it resumes operation after an interrupt  
in the PLL clock mode, the main clock mode, and the sub clock mode respectively, and there is no reference  
concerning about clock mode operation).  
The main stop mode, sub stop mode, and hardware standby mode stop oscillation, making it possible to retain  
data while consuming the least amount of power. (The difference between the main stop mode and the sub stop  
mode is that it resumes operation in the main clock mode and the sub clock mode respectively, and there is no  
reference concerning about stop mode operation).  
The CPU intermittent operation function intermittently runs the clock supplied to the CPU when accessing  
registers, on-chip memory, on-chip resources, and the external bus. Processing is possible with lower power  
consumption by reducing the execution speed of the CPU while supplying a high-speed clock and using on-chip  
resources.  
The PLL clock multiplier can be selected as either 2, 4, 6, or 8 by setting the CS1 and CS0 bits. These clocks  
are divided by 2 to be used as a machine clock.  
The WS1 and WS0 bits can be used to set the main clock oscillation stabilization delay time for when stop mode  
is woken up.  
64  
MB90650A Series  
(1) Register Configuration  
Low-power consumption mode control register (LPMCR)  
Initial value  
bit 7  
bit 6  
SLP  
W
bit 5  
SPL  
R/W  
bit 4  
RST TMD CG1 CG0  
R/W R/W  
bit 3  
bit 2  
bit 1  
bit 0  
Address : 0000A0  
H
STP  
W
00011000  
B
W
W
Clock selection register (CKSCR)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
SCM MCM WS1 WS0 SCS MCS CS1  
bit 8  
Address : 0000A1  
H
CS0  
R/W  
11111100  
B
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
: Readable and writable  
: Read only  
: Write only  
R/W  
R
W
: Unused  
65  
MB90650A Series  
(2) Block Diagram  
Low-power consumption control circuit and clock generator  
CKSCR  
Sub clock divided by 4  
(OSC oscillation)  
Sub clock  
SCM  
SCS  
switching control  
CKSCR  
MCM  
Main clock  
(OSC oscillation)  
PLL multiplier  
circuit  
MCS  
1
2
3
4
CPU  
CPU clock  
system clock  
generation  
CKSCR  
CS1  
1/2 S  
CPU  
0/9/17/33  
intermittent cycle selection  
Clock selector  
CS0  
LPMCR  
CG1  
CPU intermittent  
operation function  
Cycle count  
CG0  
selection circuit  
Peripheral  
clock  
Peripheral clock  
generation  
LPMCR  
SLP  
SCM  
SLEEP  
Standby  
controller  
Main OSC stop  
Sub OSC stop  
STP  
MSTP  
STOP  
TMD  
RST  
cancel  
Interrupt request  
or RST  
CKSCR  
WS1  
Clock input  
Timebase timer  
212 214 216 219  
24  
Oscillation  
213  
215  
218  
stabilization  
delay time  
selector  
WS0  
LPMCR  
SPL  
Pin Hi-Z  
Pin high-impedance controller  
RST pin  
LPMCR  
RST  
Internal reset  
generator  
Internal RST  
To watchdog timer  
WDGRST  
66  
MB90650A Series  
State transition diagram for clock selection (1)  
Power-on  
Main PLL  
×
Main  
<2>  
SCS = 1, MSC = 0  
SCM = 1, MCM = 1  
CS1/0 = ××  
SCS = 1, MCS = 1  
SCM = 1, MCM = 1  
CS1/0 = ××  
<1>  
<3>  
<7>  
PLL1 Main  
PLL 1 multiplier  
SCS = 1, MSC = 0  
SCM = 1, MCM = 0  
CS1/0 = 00  
SCS = 0 or MCS = 0  
SCM = 1, MCM = 0  
<4>  
<6>  
<7> CS1/0 = 00  
<7>  
Sub PLL×  
PLL2  
Main  
PLL 2 multiplier  
SCS = 1, MSC = 0  
SCM = 1, MCM = 0  
CS1/0 = 01  
SCS = 1, MCS = 0  
SCM = 0, MCM = 1  
CS1/0 = ××  
SCS = 0 or MCS = 1  
SCM = 1, MCM = 0  
CS1/0 = 01  
<9>  
<8>  
<6>  
<5>  
<7>  
PLL3  
Main  
PLL 3 multiplier  
SCS = 1, MSC = 0  
SCM = 1, MCM = 0  
CS1/0 = 10  
SCS = 0 or MCS = 1  
SCM = 1, MCM = 0  
CS1/0 = 10  
<6>  
<8>  
<8>  
<8>  
Main Sub  
SCS = 0, MCS = ×  
MCM = 1  
PLL4  
Main  
PLL 4 multiplier  
SCS = 1, MSC = 0  
SCM = 1, MCM = 0  
CS1/0 = 11  
SCS = 0 or MCS = 1  
SCM = 1, MCM = 0  
CS1/0 = 11  
<6>  
SCM = 1  
<1> MCS bit cleared and SCS bit set  
<2> PLL clock oscillation stabilization delay complete and CS1/0 = 00  
<3> PLL clock oscillation stabilization delay complete and CS1/0 = 01  
<4> PLL clock oscillation stabilization delay complete and CS1/0 = 10  
<5> PLL clock oscillation stabilization delay complete and CS1/0 = 11  
<6> MCS bit set or SCS bit cleared  
<7> PLL clock and main clock synchronized timing and SCS = 1  
<8> PLL clock and main clock synchronized timing and SCS = 0  
<9> Main clock oscillation stabilization delay complete and MCS = 0  
67  
MB90650A Series  
State transition diagam for clock selection (2)  
Power-on  
<1>  
Main Sub  
SCS = 0  
Main  
SCS = 1, MCS = 1  
SCM = 1  
SCM = 1  
MCM = 1  
MCM = 1  
<2>  
<4>  
Sub  
Sub Main  
SCS = 1  
<5>  
PLL× → Sub  
SCS = 0  
SCM = 0  
MCM = 1  
SCS = 0, MCS = ×  
SCM = 1, MCM = 0  
CS1/0 = ××  
SCM = 0  
MCM = 1  
<3>  
<6>  
Main PLL×  
SCS = 1, MCS = 0  
SCM = 1, MCM = 1  
CS1/0 = ××  
<1> SCS bit cleared  
<2> Sub clock edge detection timing  
<3> SCS bit set  
<4> Main clock oscillation stabilization delay complete and MCS = 1  
<5> PLL clock and main clock synchronized timing and SCS = 0  
<6> Main clock ascillation stabilization delay complete and MCS = 0  
68  
MB90650A Series  
15. Delayed Interrupt Generation Module  
The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to  
the F2MC-16L CPU can be generated and cleared by software using this module.  
(1) Register Details  
Delayed interrupt generation /release register (DIRR)  
Initial value  
-------0B  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
R0  
Address : 00009FH  
R/W  
: Readable and writable  
: Unused  
R/W  
The DIRR register controls generation and clearing of delayed interrupt requests. Writing “1” to the register  
generates a delayed interrupt request. Writing “0” to the register clears the delayed interrupt request. The register  
is set to the interrupt cleared state by a reset. Either “0” or “1” can be written to the reserved bits. However,  
considering possible future extensions, it is recommended that the set bit and clear bit instructions are used for  
register access.  
(2) Block Diagram  
Delayed interrupt generation/release decoder  
Interrupt latch  
69  
MB90650A Series  
16. DTMF Generator  
The DTMF (dual tone multifrequency) generator is a module that can generate a series of audio tones as heard  
from a push-button telephone or a radio transceiver with a keypad. It has the following features:  
Capable of generating DTMF tones continuously (or even a single tone)  
Capable of generating all CCITT tones: 0 to 9, *, #, A to D  
(1) Register list  
DTMF control register (DTMC)  
Initial value  
bit 7  
bit 6  
CSL2 CSL1 CSL0 CDIS RDIS OUTE  
R/W  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address : 000088H  
Address : 000089H  
00000000B  
R/W  
R/W  
R/W  
R/W  
R/W  
DTMF data register (DTMD)  
Initial value  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
DDAT3 DDAT2 DDAT1  
000X0000B  
DDAT0  
R/W  
R/W  
R/W  
R/W  
: Read/write enabled  
: Unused  
R/W  
X : Undefined  
(2) Block diagram  
Clock pulse  
Frequency divider  
COL staircase  
generator  
Voltage data  
Frequency  
select  
DTMF  
ROW/COL  
decoder  
ROW staircase  
generator  
Adder  
Frequency  
select  
Preset counter  
Count clock  
Terminate  
Frequency  
divider  
Internal clock  
Control signal generator  
Frequency  
select  
DTMF control register (DTMC)  
DTMF data register (DTMD)  
Internal bus  
70  
MB90650A Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(VSS = AVSS = 0.0 V)  
Value  
Symbol  
VCC1  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VSS – 0.3  
VSS – 0.3  
VSS + 4.0  
VSS + 7.0  
V
V
MB90652A/653A/654A,  
MB90F654A  
VCC2  
VCC  
(VCC1 = VCC2)  
VSS – 0.3  
VSS + 7.0  
V
MB90P653A  
MB90652A/653A/654A,  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS + 4.0  
VSS + 7.0  
VSS + 4.0  
VSS + 7.0  
VSS + 4.0  
VSS + 7.0  
VSS + 4.0  
VSS + 7.0  
VSS + 4.0  
VSS + 7.0  
10  
V
V
MB90F654A  
*1  
AVCC  
Power supply voltage  
MB90P653A  
*1  
MB90652A/653A/654A,  
MB90F654A  
V
AVRH  
AVRL  
V
MB90P653A  
MB90652A/653A/654A,  
MB90F654A  
V
DVRH  
VI  
V
MB90P653A  
MB90652A/653A/654A,  
V
MB90F654A  
*2  
Input voltage  
V
MB90P653A  
*2,*6  
MB90652A/653A/654A,  
V
MB90F654A  
*2  
Output voltage  
VO  
V
MB90P653A  
*2,*6  
MB90652A/653A/654A,  
mA  
“L” level maximum  
output current  
MB90F654A  
*3  
IOL  
15  
mA MB90P653A  
*3  
MB90652A/653A/654A,  
3
mA  
MB90F654A  
*4  
“L” level average output current  
IOLAV  
ΣIOL  
ΣIOLAV  
IOH  
4
mA MB90P653A  
*4  
MB90652A/653A/654A,  
MB90F654A  
60  
mA  
“L” level total maximum  
output current  
100  
mA MB90P653A  
30  
mA  
“L” level total average  
output current  
50  
MB90652A/653A/654A,  
–10  
mA  
“H” level maximum  
output current  
MB90F654A  
*3  
–15  
mA MB90P653A  
*3  
(Continued)  
71  
MB90650A Series  
(Continued)  
(VSS = AVSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
–3  
MB90652A/653A/654A,  
MB90F654A  
mA  
“H” level average  
output current  
*4  
*4  
IOHAV  
–4  
mA MB90P653A  
MB90652A/653A/654A,  
MB90F654A  
–60  
–100  
–30  
mA  
“H” level total maximum  
output current  
ΣIOH  
mA MB90P653A  
mA  
“H” level total average  
output current  
ΣIOHAV  
*5  
Power consumption  
Operating temperature  
Storage temperature  
PD  
200  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
*1: AVCC, AVRH, AVRL and DVRH must not exceed VCC (VCC1 and VCC2 are contained). Similarly, AVRL must not  
exceed AVRH.  
*2: VI and VO must not exceed VCC (VCC1 and VCC2 are contained) + 0.3 V.  
*3: Maximum output current specifies the peak value or one corresponding pin.  
*4: The average output current is the rating for the current from an individual pin averaged over 100 ms.  
*5: The average total output current is the rating for the current from all pins averaged over 100 ms.  
*6: Applies to the P47 and P70 to P72 on the MB90652A/653A/654A and MB90F654A.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
72  
MB90650A Series  
2. Recommended Operating Conditions  
(VSS = AVSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
For normal operation  
(MB90652A/653A/654A)  
2.2  
3.6  
V
VCC1  
2.7  
2.4  
3.6  
3.6  
V
V
For normal operation (MB90P653A)  
For normal operation (MB90F654A)  
For normal operation  
(MB90652A/653A/654A)  
2.2  
5.5  
V
VCC2  
2.7  
2.4  
5.5  
5.5  
V
V
For normal operation (MB90P653A)  
For normal operation (MB90F654A)  
To maintain statuses in stop mode  
(MB90652A/653A/654A)  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
3.6  
5.5  
3.6  
5.5  
5.5  
5.5  
V
V
V
V
V
V
Power supply voltage  
To maintain statuses in stop mode  
(MB90P653A)  
VCC1  
To maintain statuses in stop mode  
(MB90F654A)  
To maintain statuses in stop mode  
(MB90652A/653A/654A)  
To maintain statuses in stop mode  
(MB90P653A)  
VCC2  
To maintain statuses in stop mode  
(MB90F654A)  
VIH  
0.7 VCC  
0.8 VCC  
VCC – 0.3  
2.4  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
0.3 VCC  
0.2 VCC  
VSS + 0.3  
0.8  
V
V
Pins other than VIHS and VIHM  
Hysteresis input pins  
MD pin input  
VIHS  
VIHM  
VIHT  
VIL  
“H” level input voltage  
“L” level input voltage  
V
V
TTL input pins  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
–40  
V
PIns other than VILS and VILM  
Hysteresis input pins  
MD pin input  
VILS  
VILM  
VILT  
V
V
V
TTL input pins  
Operating temperature TA  
+85  
°C  
Note: I2C must be used at above 2.7 V.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device's electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
73  
MB90650A Series  
3. DC Characteristics  
(MB90652A/653A/654A: VCC = 2.2 V to 3.6 V, VSS = 0.0 V, TA = –40°C to +85°C)  
(MB90P653A: VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
(MB92F654A: VCC = 2.4 V to 3.6 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
“H” level  
output  
voltage*2  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ. Max.  
VCC2 = 4.5 V,  
IOH = –4.0 mA  
When the 5-V power  
supply is used  
VCC2– 0.5  
V
V
V
V
Pins except  
P47,  
P70 to P72  
VOH  
VCC = 2.7 V,  
IOH = –1.6 mA  
When the 3-V power  
supply is used  
VCC1– 0.3  
*1  
VCC2 = 4.5 V,  
IOL = 4.0 mA  
When the 5-V power  
supply is used  
0.4  
0.4  
“L” level output  
voltage*2  
All output  
pins  
VOL  
VCC = 2.7 V,  
IOL = 2.0 mA  
When the 3-V power  
supply is used  
Except P50  
to P57,  
P90, P91  
Input leakage  
current  
VCC = 3.3 V,  
VSS < VI < VCC  
IIL  
–10  
10  
µA  
40  
20  
80 400 kMB90P653A  
MB90652A/653A/654A,  
When VCC = 3.0 V,  
TA = +25°C  
Pull-up resistor RPULL  
65 200 kΩ  
MB90F654A  
Open-drain  
output leakage Ileak  
current  
P40 to P47,  
P70 to P72  
0.1 10  
µA  
MB90652A/653A/654A:  
During normal operation  
ICC  
ICC  
ICC  
10 20 mA  
17 24 mA  
19 26 mA  
MB90652A/653A/654A:  
In A/D operation  
When VCC = 3.0 V  
Internal 8 MHz  
operation  
MB90652A/653A/654A:  
In D/A operation  
MB90652A/653A/654A:  
During sleep  
ICCS  
2.5  
5
mA  
Power supply  
current  
MB90P653A:  
During normal operation  
ICC  
20 27 mA  
24 31 mA  
26 33 mA  
4.2 10 mA  
MB90P653A:  
In A/D operation  
ICC  
When VCC = 3.0 V  
Internal 8 MHz  
operation  
MB90P653A:  
In D/A operation  
ICC  
MB90P653A:  
During sleep  
ICCS  
* 1 : P40 to P46 are N-ch open-drain pins to be controlled and are usually used as CMOS devices.  
* 2 : When the device is used with dual power supplies, the P20 to P27, P30 to P37, P40 to P47, and P70 to P72  
are the 5 V pins and the rest are the 3 V pins.  
(Continued)  
74  
MB90650A Series  
(Continued)  
(MB90652A/653A/654A: VCC = 2.2 V to 3.6 V, VSS = 0.0 V, TA = –40°C to +85°C)  
(MB90P653A: VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
(MB90F654A: VCC = 2.4 V to 3.6 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ. Max.  
MB90652A/653A/654A:  
During normal operation  
ICC  
20  
27  
35 mA  
45 mA  
50 mA  
41 mA  
42 mA  
10 mA  
12 mA  
MB90F654A:  
During normal operation  
ICC  
When VCC = 3.0 V  
Internal 16 MHz  
operation  
MB90F654A:  
Flash write/erase  
ICC  
33  
MB90652A/653A/654A:  
In A/D operation  
ICC  
31  
MB90652A/653A/654A:  
In D/A operation  
ICC  
34  
MB90652A/653A/654A:  
During sleep  
ICCS  
ICCS  
ICCH  
ICCH  
4.8  
6.2  
0.1  
0.2  
When VCC = 3.0 V  
Internal 16 MHz  
operation  
MB90F654A:  
During sleep  
Power supply  
current  
MB90652A/653A/654A:  
During stop  
20  
40  
µA  
µA  
TA = +25°C  
When VCC = 3.0 V  
MB90F654A:  
During stop  
VCC = 3.0 V,  
TA = +25°C  
External 32 kHz  
operation  
(Internal 8 MHz  
operation)  
MB90652A/653A/654A,  
16 140 µA MB90F654A:  
ICCL  
In sub operation  
MB90P653A:  
In sub operation  
ICCL  
4.4  
6
mA  
MB90652A/653A/654A:  
In watch mode  
ICCT  
ICCT  
ICCT  
10  
15  
15  
30  
30  
60  
µA  
µA  
µA  
VCC = 3.0 V,  
TA = +25°C  
External 32 kHz  
operation  
MB90F654A:  
In watch mode  
MB90P653A:  
In watch mode  
Except AVCC,  
AVSS, VCC,  
VSS  
Input  
capacitance  
CIN  
10  
80  
pF  
Note: VCC = VCC1 = VCC2  
75  
MB90650A Series  
4. AC Characteristics  
(1) Clock Timing  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
MB90652A/653A/  
654A,MB90F654A  
3
32  
MHz  
FCH  
FCL  
tC  
X0, X1  
X0A, X1A  
X0, X1  
X0A, X1A  
X0  
Clock frequency  
3
16  
MHz MB90P653A  
kHz  
32.768  
MB90652A/653A/  
654A,MB90F654A  
31.25  
333  
ns  
Clock cycle time  
62.5  
333  
ns MB90P653A  
tCL  
30.5  
µs  
MB90652A/653A/  
654A,MB90F654A*2  
5
ns  
PWH  
PWL  
Input clock pulse  
width  
10  
ns MB90P653A  
*2  
*2  
PWLH  
PWLL  
X0A  
X0  
15.2  
µs  
Input clock rise  
tcr  
5
ns External clock  
time and fall time tcf  
MB90652A/653A/  
MHz  
1.5  
16  
654A,MB90F654A  
Internal  
operating clock  
frequency  
fCP  
1.5  
8.192  
8
MHz MB90P653A  
fCPL  
kHz  
ns  
Internal  
tCP  
62.5  
666  
operating clock  
cycle time  
tCPL  
122.1  
5
µs  
Frequency  
fluctuation ratio  
f  
%
When locked  
*1  
*1: The frequency fluction ratio indicates the maximum fluctuation ratio from the set center frequency while locked  
when using the PLL multiplier.  
+
+α  
α
Center frequency  
fO  
f =  
× 100 (%)  
fO  
α  
Because the PLL frequency fluctuates around the set frequency with a certain cycle [approximately CLK × (1 CYC  
to 50 CYC)], the worst value is not maintained for long. (The pulse, if featured with the long period, would produce  
practically no error.)  
*2: The duty ratio should be in the range 30% to 70%.  
Note: VCC = VCC1 = VCC2  
76  
MB90650A Series  
Main clock timing condition (X0, X1)  
tC  
0.8 VCC  
0.2 VCC  
X0  
PWL  
PWH  
tcf  
tcr  
Subclock timing condition (X0A, X1A )  
tCL  
0.8 VCC  
0.2 VCC  
X0A  
PWLL  
PWHL  
77  
MB90650A Series  
PLL operation assurance range  
Relationship between the internal operating clock frequency and power supply voltage  
(MB90652A/653A/654A, MB90F654A)  
(V)  
3.6  
Normal operation range  
PLL operation assurance range  
2.7  
2.5  
2.2  
1
3
5
16  
(MHz)  
Internal clock (fCP)  
Relationship between the internal oprating clock frequency and power supply voltage  
(MB90P653A)  
(V)  
Normal operation range  
3.6  
PLL operation  
assurance range  
2.7  
1.5  
3
8
(MHz)  
Internal clock (fCP)  
Relationship between the oscillation frequency and internal operating clock frequency  
(MHz)  
Multiply Multiply  
by 4  
by 3  
16  
12  
No multiplier  
Multiply  
by 2  
Multiply by 1  
9
8
4
3 4  
8
16  
24  
32  
(MHz)  
Oscillation clock (FC)  
78  
MB90650A Series  
The AC characteristics are for the following measurement reference voltages.  
Output signal waveform  
Input signal waveform  
Hysteresis input pins  
0.8 VCC  
Output pins  
2.4 V  
0.2 VCC  
0.2 V  
Other than hysteresis or MD input pins  
0.7 VCC  
0.3 VCC  
79  
MB90650A Series  
(2) Clock Output Timing  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Cycle time  
name  
Min.  
Max.  
tCYC  
CLK  
CLK  
tCP  
ns  
ns  
tCP / 2 – 20 tCP / 2 + 20  
VCC = 3.0 V  
±10%  
In the external  
frequency of  
5 MHz  
CLK ↑ → CLK↓  
tCHCL  
tCP / 2 – 64 tCP / 2 + 64  
ns  
tCP: See “(1) Clock Timing.”  
Note: VCC = VCC1 = VCC2  
tCYC  
tCHCL  
2.4 V  
2.4 V  
CLK  
0.8 V  
(3) Reset Input Specifications  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
Symbol  
tRSTL  
Condition  
Unit  
Remarks  
Parameter  
Reset input time  
name  
Min.  
Max.  
RST  
16 tCP  
ns  
tCP: See “(1) Clock Timing.”  
Note: VCC = VCC1 = VCC2  
t
RSTL  
RST  
0.2 VCC  
0.2 VCC  
AC characteristics measurement conditions  
Pin  
CL : Load capacitance at testing  
CLK, ALE: CL = 30 pF  
AD15 to AD00 (address/data bus), RD, WR: CL = 80 pF  
CL  
80  
MB90650A Series  
(4) Power on Supply Specifications (Power-on Reset)  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
tR  
tOFF  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
Power supply rising time  
VCC  
30  
ms  
*
Due to  
ms repeat  
Power supply cut-off time  
VCC  
1
operation  
* : When the power rising, VCC must be less than 0.2 V.  
Notes: The above standards are the values needed in order to activate a power-on reset.  
Activate a power-on reset by turning on the power supply again this in device.  
VCC = VCC1 = VCC2  
tR  
2.7 V  
VCC  
0.2 V  
tOFF  
Abrupt changes in the power supply voltage may cause a power-on reset.  
When changing the power supply voltage during operation, suppress variations in the voltage and  
ensure that the voltage rises smoothly, as shown in the following figure.  
Main power supply voltage  
VCC  
It is recommended that the rate of  
increase in the voltage be kept to  
no more than 50 mV/ms.  
Sub-power supply voltage  
Holding RAM data  
VSS  
81  
MB90650A Series  
(5) Bus Read Timing  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
tCP /2 – 20  
tCP / 2 – 35  
tCP / 2 – 25  
tCP / 2 – 40  
ns MASK/FLASH  
ns MB90P653A  
ns MASK/FLASH  
ns MB90P653A  
ALE pulse width  
tLHLL  
ALE  
Multiplexed  
address  
Valid address ALE time tAVLL  
ALE ↓ → address valid time tLLAX  
Multiplexed  
address  
tCP / 2 – 15  
tCP – 15  
ns  
ns  
Multiplexed  
address  
Valid address RD time  
tAVRL  
5 tCP / 2 – 60 ns MASK/FLASH  
5 tCP / 2 – 80 ns MB90P653A  
Valid address valid data  
input  
Multiplexed  
address  
tAVDV  
tRLRH  
tRLDV  
RD pulse width  
RD  
3 tCP / 2 – 20  
ns  
5 tCP / 2 – 60 ns MASK/FLASH  
5 tCP / 2 – 80 ns MB90P653A  
RD ↓ → valid data input  
D15 to D00  
0
RD ↑ → data hold time  
RD ↑ → ALE time  
tRHDX  
tRHLH  
D15 to D00  
RD, ALE  
ns  
ns  
tCP / 2 – 15  
Address,  
RD  
RD ↑ → address valid time tRHAX  
Valid address CLK time tAVCH  
tCP / 2 – 10  
ns  
Address,  
CLK  
tCP / 2 –20  
tCP / 2 – 20  
ns  
ns  
RD ↓ → CLK time  
tRLCH  
RD, CLK  
tCP: See “(1) Clock Timing.”  
Note: VCC = VCC1 = VCC2  
82  
MB90650A Series  
tAVCH  
tRLCH  
2.4 V  
2.4 V  
CLK  
ALE  
tRHLH  
tAVLL  
2.4 V 2.4 V  
tLHLL  
tLLAX  
2.4 V  
0.8 V  
tAVRL  
tRLRH  
2.4 V  
RD  
0.8 V  
tRHAX  
A23 to  
A16  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
tRLDV  
tAVDV  
tRHDX  
2.4 V  
0.8 V  
0.7 VCC  
0.3 VCC  
2.4 V  
0.8 V  
0.7 VCC  
0.3 VCC  
D15 to  
D00  
Address  
Read data  
83  
MB90650A Series  
(6) Bus Write Timing  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Valid address WR time tAVWL  
A23 to A00  
WR  
tCP – 15  
ns  
ns  
WR pulse width  
tWLWH  
3 tCP / 2 – 20  
Valid data output WR ↑  
time  
tDVWH  
D15 to D00  
D15 to D00  
3 tCP / 2 – 20  
ns  
20  
ns MASK/FLASH  
WR ↑ → data hold time  
tWHDX  
30  
ns MB90P653A  
WR ↑ → address valid time tWHAX  
A23 to A00  
WR, ALE  
WR, ALE  
tCP / 2 – 10  
tCP / 2 – 15  
tCP / 2 – 20  
ns  
ns  
ns  
WR ↑ → ALE time  
WR ↓ → CLK time  
tWHLH  
tWLCH  
tCP: See “(1) Clock Timing.”  
Note: VCC = VCC1 = VCC2  
tWLCH  
2.4 V  
CLK  
ALE  
tWHLH  
2.4 V  
tAVWL  
tWLWH  
2.4 V  
WR  
(WRL, WRH)  
0.8 V  
tWHAX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
A23 to  
A16  
tDVWH  
tWHDX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
D15 to  
D00  
Write data  
Address  
84  
MB90650A Series  
(7) Ready Input Timing  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit  
Remarks  
Parameter  
Min.  
45  
70  
0
Max.  
ns MASK/FLASH  
ns MB90P653A  
ns  
RDY setup time  
RDY hold time  
tRYHS  
tRYHH  
RDY  
RDY  
Notes: Use the auto-ready function if the RDY setup time is too short  
VCC = VCC1 = VCC2.  
2.4 V  
2.4 V  
CLK  
ALE  
RD/WR  
tRYHS  
RDY (When  
wait states are  
not inserted)  
tRYHH  
0.8 VCC  
0.8 VCC  
RDY (When  
one wait states  
are inserted)  
0.2 VCC  
0.2 VCC  
tRYHS  
85  
MB90650A Series  
(8) Hold Timing  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit  
Remarks  
Parameter  
Min.  
30  
Max.  
tCP  
Pin floating HAK time  
HAK ↑ → pin valid time  
tXHAL  
tHAHV  
HAK  
HAK  
ns  
ns  
tCP  
2 tCP  
tCP: See “(1) Clock Timing.”  
Notes: After reading HRQ, more than one cycle is required before changing HAK.  
VCC = VCC1 = VCC 2  
2.4 V  
HAK  
0.8 V  
tHAHV  
tXHAL  
High impedance  
Pin  
86  
MB90650A Series  
(9) UART Timing  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
name  
Min.  
8 tCP  
–80  
Max.  
Serial clock cycle time  
tSCYC  
ns  
80  
ns MASK/FLASH  
ns MB90P653A  
ns MASK/FLASH  
ns MB90P653A  
SCK ↓ → SOT delay time tSLOV  
CL = 80 pF + 1 TTL  
for the internal shift  
clock mode output  
pin  
–120  
100  
120  
Valid SIN SCK ↑  
tIVSH  
200  
SCK ↑ → valid SIN hold  
time  
tSHIX  
tSHSL  
tSLSH  
tCP  
ns  
ns  
ns  
Serial clock “H” pulse  
width  
4 tCP  
4 tCP  
Serial clock “L” pulse  
width  
CL = 80 pF + 1 TTL  
for the external  
shift clock mode  
output pin  
150  
200  
ns MASK/FLASH  
ns MB90P653A  
ns MASK/FLASH  
ns MB90P653A  
ns MASK/FLASH  
ns MB90P653A  
SCK ↓ → SOT delay time tSLOV  
60  
Valid SIN SCK ↑  
tIVSH  
120  
60  
SCK ↑ → valid SIN hold  
time  
tSHIX  
120  
Notes: • These are the AC characteristics for CLK synchronous mode.  
• CL is the load capacitance connected to the pin at testing.  
• tCP is the machine cycle period (unit: ns).  
• VCC = VCC1 = VCC 2  
87  
MB90650A Series  
Internal shift clock mode  
tSCYC  
2.4 V  
SCK  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
0.8 V  
SOT  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SIN  
External shift clock mode  
tSLSH  
tSHSL  
0.8 VCC  
0.8 VCC  
SCK  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SOT  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SIN  
88  
MB90650A Series  
(10) I/O Extended Serial Timing  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
name  
Min.  
8 tCP  
Max.  
Serial clock cycle time  
tSCYC  
ns  
80  
ns MASK/FLASH  
ns MB90P653A  
ns  
CL = 80 pF + 1 TTL  
for the internal shift  
clock mode output  
pin  
SCK ↓ → SOT delay time tSLOV  
160  
Valid SIN SCK ↑  
tIVSH  
tSHIX  
tCP  
SCK ↑ → valid SIN hold  
tCP  
ns  
time  
230  
460  
230  
460  
2 tCP  
tCP  
ns MASK/FLASH  
ns MB90P653A  
ns MASK/FLASH  
ns MB90P653A  
ns  
Serial clock “H” pulse  
width  
tSHSL  
Serial clock “L” pulse  
width  
CL = 80 pF + 1 TTL  
for the external  
shift clock mode  
output pin  
tSLSH  
SCK ↓ → SOT delay time tSLOV  
Valid SIN SCK ↑  
tIVSH  
ns  
SCK ↑ → valid SIN hold  
time  
tSHIX  
2 tCP  
ns  
Notes: • These are the AC characteristics for CLK synchronous mode.  
• CL is the load capacitance connected to the pin at testing.  
• tCP is the machine cycle period (unit: ns).  
• The values in the table are target values.  
• VCC = VCC1 = VCC 2  
89  
MB90650A Series  
Internal shift clock mode  
tSCYC  
2.4 V  
SCK  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
0.8 V  
SOT  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SIN  
External shift clock mode  
tSLSH  
tSHSL  
0.8 V CC  
0.8 VCC  
SCK  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SOT  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SIN  
90  
MB90650A Series  
(11) I2C Timing  
(VCC = 2.7 V to 3.3 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
SCL clock frequency  
fSCL  
0
100  
kHz  
Bus free time between stop  
and start conditions  
tBUS  
4.7  
µs  
The first clock  
pulse is  
generated after  
this period.  
Hold time (re-send) start  
tHDSTA  
4.0  
µs  
SCL clock L state hold time tLOW  
4.7  
4.0  
µs  
µs  
SCL clock H state hold  
tHIGH  
time  
Re-send start condition  
tSUSTA  
4.7  
µs  
setup time  
Data hold time  
Data setup time  
tHDDAT  
tSUDAT  
0
µs  
40  
ns  
SDA and SCL signal rising  
time  
tR  
1000  
ns  
SDA and SCL signal falling  
time  
tF  
300  
ns  
Stop condition setup time  
Note: VCC = VCC1 = VCC2  
tSUSTO  
4.0  
µs  
0.8 VCC  
0.2 VCC  
SDA  
tBUS  
tHDSTA  
tLOW  
tR  
tF  
0.8 VCC  
SCL  
0.2 VCC  
tHIGH  
tSUDAT  
tSUSTA  
tSUSTO  
tHDDAT  
tHDSTA  
91  
MB90650A Series  
5. A/D Converter Electrical Characteristics  
(MB90652A/653A/654A: VCC = 2.2 V to 3.3V, VSS = AVSS =0.0V, 2.7 V AVRH – AVRL, TA = –40°C to +85°C)  
(MB90F654A: VCC = 2.4 V to 3.6 V, VSS = AVSS = 0.0 V, 2.7 V AVRH – AVRL, TA = –40°C to +85°C)  
(MB90P653A: VCC = 2.7 V to 3.3 V, VSS = AVSS = 0.0 V, 2.7 V AVRH – AVRL, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Unit  
Remarks  
Parameter  
Min.  
Typ.  
10  
Max.  
10  
Resolution  
bit  
Total error  
±3.0  
±2.0  
±1.9  
±1.5  
LSB  
LSB  
Linearity error  
LSB MASK/FLASH  
LSB MB90P653A  
Differential  
linearity error  
Zero transition  
voltage  
AVRL  
– 1.5 LSB  
AVRL  
+ 0.5 LSB  
AVRL  
+ 2.5 LSB  
VOT  
AN0 to AN7  
AN0 to AN7  
mV  
mV  
Full scale  
transition voltage  
AVRH  
– 4.5 LSB  
AVRH  
– 1.5 LSB  
AVRH  
+ 0.5 LSB  
VFST  
6.125*1  
12.25*2  
µs MASK/FLASH  
µs MB90P653A  
Conversion time  
Analog port input  
current  
IAIN  
AN0 to AN7  
0.1  
10  
µA  
Analog input  
voltage  
VAIN  
AN0 to AN7  
AVRH  
AVRL  
AVRL + 2.7  
0
AVRH  
AVCC  
V
V
V
Reference voltage  
AVRH –  
2.7  
AVRL  
IA  
AVCC  
3
5*3  
5*3  
mA  
µA  
µA  
µA  
Power supply  
current  
IAH  
IR  
AVCC  
AVRH  
AVRH  
200  
Reference voltage  
supply current  
IRH  
Variation between  
channels  
AN0 to AN7  
4
LSB  
*1: For a 16 MHz machine clock  
*2: For an 8 MHz machine clock  
*3: The current when the A/D converter is not operating or the CPU is in stop mode (for VCC = AVCC = AVRH = 3.0 V).  
Notes: • The error increases proportionally as |AVRH – AVRL| decreases.  
• The output impedance of the external circuits connected to the analog inputs should be in the following  
range.  
The output impedance of the external circuit should be less than approximately 7 kΩ.  
When using an external capacitor, it is recommended to have several thousand times the capacitance of  
theinternalcapacitorasaguid, ifonetakesintoconsiderationtheeffectofthedividedcapacitancebetween  
the external capacitor and the internal capacitor.  
• If the output impedance of the external circuit is too high, the sampling time might be insufficient (sampling  
time = 3.75 µs at a machine clock of 16 MHz).  
• VCC = VCC1 = VCC2  
(Continued)  
92  
MB90650A Series  
(Continued)  
Analog input circuit model diagram  
Sample hold circuit  
C0  
Analog input  
Comparator  
RON1  
RON2  
RON3  
RON4  
C1  
RON1 : Approx. 5 kΩ  
RON2 : Approx. 617 Ω  
RON3 : Approx. 617 Ω  
RON4 : Approx. 473 Ω  
C0 : Approx. 35 pF  
C1 : Approx. 2 pF  
Note: Use the values shown as guids only.  
93  
MB90650A Series  
6. D/A Converter Electrical Characteristics  
(MB90652A/653A : VCC = 2.2 V to 3.3 V, VSS = DVSS = 0.0 V, 2.2 V DVRH – DVSS, TA = –40°C to +85°C)  
(MB90F654A : VCC = 2.4 V to 3.6 V, VSS = DVSS = 0.0 V, 2.4 V DVRH – DVSS, TA = –40°C to +85°C)  
(MB90P653A : VCC = 2.7 V to 3.3 V, VSS = DVSS = 0.0 V, 2.7 V DVRH – DVSS, TA = –40°C to +85°C)  
Value  
Pin  
Symbol  
Unit  
Remarks  
Parameter  
name  
Min.  
Typ.  
Max.  
Resolution  
8
8
bit  
Differential  
linearity error  
±0.9  
LSB  
Absolute  
accuracy  
1
%
Linearity error  
10.0  
±1.5  
20.0  
VCC  
VCC  
VCC  
LSB  
µs  
V
Conversion time  
*1  
MB90652A/653A/654A*2  
2.2  
2.4  
2.7  
Analog  
reference power  
supply voltage  
DVRH  
V
MB90F654A  
MB90P653A  
*2  
*2  
*3  
V
Reference  
voltage supply  
current  
IDVR  
100  
µA  
DVRH  
IDVRS  
5
µA  
kΩ  
*4  
Analog output  
impedance  
28  
*1: Conversion time is the value at the load capacitance = 20 pF.  
*2: DVRH – DVSS (AVSS)  
*3: Current value at conversion  
*4: Current value when stopped  
Note: VCC = VCC1 = VCC2  
94  
MB90650A Series  
7. DTMF Electrical characteristics  
(MB90652A/653A : VCC = 2.2 V to 3.3 V, VSS = DVSS = 0.0 V, 2.2 V DVRH – DVSS, TA = –40°C to +85°C)  
(MB90F654A : VCC = 2.4 V to 3.6 V, VSS = DVSS = 0.0 V, 2.4 V DVRH – DVSS, TA = –40°C to +85°C)  
(MB90P653A : VCC = 2.7 V to 3.3 V, VSS = DVSS = 0.0 V, 2.7 V DVRH – DVSS, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Typ. Max.  
Output load  
condition  
To be specified with DTMF  
pin pull-down resistor  
RO  
30 k  
DTMF output  
offset voltage  
(At signal output)  
VMOF  
0.4  
V
VCC = 3 V  
TA = 25°C  
Machine clock  
f = 16 MHz  
DTMF output  
amplitude  
(COL single tone)  
VMFC  
450  
530  
600  
mVP-P  
When DTMF terminal is  
opened  
RO = 200 kΩ  
DTMF output  
amplitude  
(ROW single tone)  
VMFOR  
330  
1.6  
440  
2.0  
500  
2.4  
mVP-P  
COL/ROW level  
difference  
RMF  
dB  
Note: VCC =VCC1 = VCC2  
• Output level measurement circuit  
VCC  
X0  
Audio  
Low-pass filter  
16MHz  
Output level  
DTMF  
Analizer  
X1  
48 dB / oct  
VSS  
RO  
95  
MB90650A Series  
EXAMPLE CHARACTERISTICS  
(1) “H” Level Output Voltage  
(2) “L” Level Output Voltage  
VOL vs. IOL  
V
OH vs. IOH  
VOL (V)  
1.0  
VOH (V)  
4.0  
TA = +25°C  
TA = +25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
3.5  
3.0  
2.5  
VCC = 3.6 V  
VCC = 2.4 V  
VCC = 3.3 V  
VCC = 3.0 V  
VCC = 2.5 V  
VCC = 2.7 V  
VCC = 2.7 V  
VCC = 2.5 V  
VCC = 2.4 V  
VCC = 3.0 V  
VCC = 3.3 V  
VCC = 3.6 V  
2.0  
1.5  
1.0  
0.5  
0.0  
1
2
3
4
5
–1  
–2  
–3  
–4  
–5  
IOH (mA)  
IOL (mA)  
(3) “H” Level Input Voltage/“L” Level Input Voltage  
(COMS Input)  
(4) “H” Level Input Voltage/“L” Level Input Voltage  
(Hysteresis Input)  
V
IN vs.  
VCC  
VIN vs.  
V
CC  
VIN (V)  
2.4  
VIN (V)  
2.4  
TA = +25°C  
TA = +25°C  
VIHS  
2.2  
2.0  
1.8  
1.6  
1.4  
2.2  
2.0  
1.8  
1.6  
1.4  
VIH  
VIL  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.0  
0.8  
0.6  
0.4  
VILS  
2.4  
2.7  
3.0  
3.3  
3.6  
2.4  
2.7  
3.0  
3.3  
3.6  
VCC (V)  
VCC (V)  
VIHS: Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
VIH: ThresholdwheninputvoltageissettoHlevel  
VIL: Threshold when input voltage is set to “L” level  
VILS: Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
96  
MB90650A Series  
(5) Power Supply Current (fCP = Internal Operating Clock Frequency)  
• Mask ROM products  
I
CC vs.  
VCC  
I
CCS vs.  
VCC  
ICC (mA)  
30  
ICCS (mA)  
10  
T
A
= +25°C  
TA = +25°C  
28  
26  
24  
22  
9
8
7
fCP = 16 MHZ  
fCP = 16 MHZ  
20  
18  
6
5
fCP = 10 MHZ  
fCP = 8 MHZ  
16  
14  
12  
10  
8
fCP = 10 MHZ  
fCP = 8 MHZ  
4
3
2
1
0
fCP = 5 MHZ  
6
fCP = 5 MHZ  
4
2
0
2.4  
2.7  
2.7  
2.7  
3
3.3  
3.6  
VCC (V)  
2.4  
2.7  
2.7  
2.7  
3
3.3  
3.6  
VCC (V)  
I
CCH vs.  
V
CC  
I
CCL vs.  
V
CC  
ICCH (µA)  
ICCL (µA)  
0.50  
50  
T
A
= +25°C  
T
A
= +25°C  
0.45  
0.40  
0.35  
45  
40  
35  
0.30  
0.25  
30  
25  
0.20  
0.15  
0.10  
0.05  
0.00  
20  
15  
10  
5
0
2.4  
2.4  
3
3.3  
3.6  
VCC (V)  
3
3.3  
3.6  
VCC (V)  
I
A
vs. A  
V
CC  
I
R
vs. A  
V
CC  
IA (mA)  
4.0  
IR (mA)  
4.0  
T
A
= +25°C  
T
A
= +25°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.4  
3
3.3  
3.6  
2.4  
3
3.3  
3.6  
AVCC (V)  
AVCC (V)  
97  
MB90650A Series  
• OTPROM products  
I
CC vs.  
V
CC  
I
CCS vs.  
VCC  
ICC (mA)  
60  
ICCS (mA)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
T
A
= +25°C  
TA = +25°C  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
fCP = 16 MHZ  
fCP = 16 MHZ  
fCP = 10 MHZ  
fCP = 8 MHZ  
fCP = 10 MHZ  
fCP = 8 MHZ  
fCP = 5 MHZ  
4
3
2
1
0
fCP = 5 MHZ  
0
2.4  
2.7  
3
3.3  
3.6  
2.4  
2.7  
3
3.3  
3.6  
VCC (V)  
VCC (V)  
I
CCH vs.  
V
CC  
I
CCL vs.  
V
CC  
ICCH (µA)  
3.0  
ICCL (mA)  
10  
T
A
= +25°C  
T
A
= +25°C  
2.8  
9
8
7
6
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
2.4  
2.7  
3
3.3  
3.6  
2.4  
2.7  
3
3.3  
3.6  
VCC (V)  
VCC (V)  
98  
MB90650A Series  
• FLAH products  
I
CC vs.  
V
CC  
I
CCS vs.  
V
CC  
ICC (mA)  
ICCS (mA)  
10  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
T
A
= +25 °C  
TA = +25 °C  
fCP  
=
16 MHZ  
9
8
7
fCP  
=
16 MHZ  
fCP  
fCP  
=
=
10 MHZ  
8 MHZ  
6
5
fCP  
fCP  
=
=
10 MHZ  
8 MHZ  
4
3
2
1
0
fCP  
=
5 MHZ  
fCP  
=
5 MHZ  
6
4
2
0
2.4  
2.7  
3
3.3  
3.6  
2.4  
2.7  
3
3.3  
3.6  
VCC (V)  
VCC (V)  
I
CCH vs.  
V
CC  
I
CCL vs.  
V
CC  
ICCH (µA)  
ICCL (µA)  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
50  
T
A
= +25 °C  
T
A
= +25 °C  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
2.4  
2.7  
3
3.3  
3.6  
2.4  
2.7  
3
3.3  
3.6  
VCC (V)  
VCC (V)  
99  
MB90650A Series  
(6) Pull-up Resistance  
• Mask ROM products  
OTPROM products  
R
vs.  
V
CC  
R
vs.  
V
CC  
R (k)  
R (k)  
1000  
1000  
T
A
= +25°C  
TA = +25°C  
100  
100  
10  
2.4  
10  
2.4  
2.7  
3
3.3  
3.6  
2.7  
3
3.3  
3.6  
VCC (V)  
VCC (V)  
• FLASH products  
R
vs.  
V
CC  
R (k)  
1000  
TA = +25 °C  
100  
10  
2.4  
2.7  
3
3.3  
3.6  
VCC (V)  
100  
MB90650A Series  
INSTRUCTIONS (340 INSTRUCTIONS)  
Table 1 Explanation of Items in Tables of Instructions  
Meaning  
Upper-case letters and symbols: Represented as they appear in assembler.  
Item  
Mnemonic  
Lower-case letters: Replaced when described in assembler.  
Numbers after lower-case letters:Indicate the bit width within the instruction.  
#
~
Indicates the number of bytes.  
Indicates the number of cycles.  
m: When branching  
n : When not branching  
See Table 4 for details about meanings of other letters in items.  
RG  
B
Indicates the number of accesses to the register during execution of the instruction.  
It is used calculate a correction value for intermittent operation of CPU.  
Indicates the correction value for calculating the number of actual cycles during execution of the  
instruction. (Table 5)  
The number of actual cycles during execution of the instruction is the correction value summed  
with the value in the “~” column.  
Operation  
LH  
Indicates the operation of instruction.  
Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator.  
Z : Transfers “0”.  
X : Extends with a sign before transferring.  
– : Transfers nothing.  
AH  
Indicates special operations involving the upper 16 bits in the accumulator.  
* : Transfers from AL to AH.  
– : No transfer.  
Z : Transfers 00H to AH.  
X : Transfers 00H or FFH to AH by signing and extending AL.  
I
S
Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),  
N (negative), Z (zero), V (overflow), and C (carry).  
* : Changes due to execution of instruction.  
– : No change.  
S : Set by execution of instruction.  
R : Reset by execution of instruction.  
T
N
Z
V
C
RMW  
Indicates whether the instruction is a read-modify-write instruction. (a single instruction that  
reads data from memory, etc., processes the data, and then writes the result to memory.)  
* : Instruction is a read-modify-write instruction.  
– : Instruction is not a read-modify-write instruction.  
Note: A read-modify-write instruction cannot be used on addresses that have different  
meanings depending on whether they are read or written.  
101  
MB90650A Series  
Table 2 Explanation of Symbols in Tables of Instructions  
Meaning  
Symbol  
A
32-bit accumulator  
The bit length varies according to the instruction.  
Byte : Lower 8 bits of AL  
Word : 16 bits of AL  
Long : 32 bits of AL:AH  
AH  
AL  
Upper 16 bits of A  
Lower 16 bits of A  
SP  
PC  
Stack pointer (USP or SSP)  
Program counter  
PCB  
DTB  
ADB  
SSB  
USB  
SPB  
DPR  
brg1  
brg2  
Ri  
Program bank register  
Data bank register  
Additional data bank register  
System stack bank register  
User stack bank register  
Current stack bank register (SSB or USB)  
Direct page register  
DTB, ADB, SSB, USB, DPR, PCB, SPB  
DTB, ADB, SSB, USB, DPR, SPB  
R0, R1, R2, R3, R4, R5, R6, R7  
RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7  
RW0, RW1, RW2, RW3  
RWi  
RWj  
RLi  
RL0, RL1, RL2, RL3  
dir  
Compact direct addressing  
addr16  
addr24  
ad24 0 to 15  
ad24 16 to 23  
Direct addressing  
Physical direct addressing  
Bit 0 to bit 15 of addr24  
Bit 16 to bit 23 of addr24  
io  
I/O area (000000H to 0000FFH)  
imm4  
imm8  
4-bit immediate data  
8-bit immediate data  
imm16  
imm32  
ext (imm8)  
16-bit immediate data  
32-bit immediate data  
16-bit data signed and extended from 8-bit immediate data  
disp8  
disp16  
8-bit displacement  
16-bit displacement  
bp  
Bit offset  
vct4  
vct8  
Vector number (0 to 15)  
Vector number (0 to 255)  
( )b  
Bit address  
(Continued)  
102  
MB90650A Series  
(Continued)  
Symbol  
Meaning  
rel  
Branch specification relative to PC  
ear  
eam  
Effective addressing (codes 00 to 07)  
Effective addressing (codes 08 to 1F)  
rlst  
Register list  
Table 3 Effective Address Fields  
Address format  
Number of bytes in address  
extension *  
Code  
Notation  
00  
01  
02  
03  
04  
05  
06  
07  
R0  
RW0  
RW1  
RW2  
RW3  
RW4  
RW5  
RW6  
RW7  
RL0 Register direct  
(RL0)  
RL1 “ea” corresponds to byte, word, and  
(RL1) long-word types, starting from the  
RL2 left  
(RL2)  
RL3  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
(RL3)  
08  
09  
0A  
0B  
@RW0  
Register indirect  
@RW1  
@RW2  
@RW3  
0
0
0C  
0D  
0E  
0F  
@RW0 +  
@RW1 +  
@RW2 +  
@RW3 +  
Register indirect with post-increment  
10  
11  
12  
13  
14  
15  
16  
17  
@RW0 + disp8  
@RW1 + disp8  
@RW2 + disp8  
@RW3 + disp8  
@RW4 + disp8  
@RW5 + disp8  
@RW6 + disp8  
@RW7 + disp8  
Register indirect with 8-bit  
displacement  
1
2
18  
19  
1A  
1B  
@RW0 + disp16  
@RW1 + disp16  
@RW2 + disp16  
@RW3 + disp16  
Register indirect with 16-bit  
displacement  
1C  
1D  
1E  
1F  
@RW0 + RW7  
@RW1 + RW7  
@PC + disp16  
addr16  
Register indirect with index  
Register indirect with index  
PC indirect with 16-bit displacement  
Direct address  
0
0
2
2
Note: The number of bytes in the address extension is indicated by the “+” symbol in the “#” (number of bytes)  
column in the tables of instructions.  
103  
MB90650A Series  
Table 4 Number of Execution Cycles for Each Type of Addressing  
(a)  
Number of register  
accesses for each type of  
addressing  
Code  
Operand  
Number of execution cycles  
for each type of addressing  
Ri  
RWi  
RLi  
00 to 07  
Listed in tables of instructions Listed in tables of instructions  
08 to 0B  
0C to 0F  
10 to 17  
18 to 1B  
@RWj  
2
4
2
2
1
2
1
1
@RWj +  
@RWi + disp8  
@RWj + disp16  
1C  
1D  
1E  
1F  
@RW0 + RW7  
@RW1 + RW7  
@PC + disp16  
addr16  
4
4
2
1
2
2
0
0
Note: “(a)” is used in the “~” (number of states) column and column B (correction value) in the tables of instructions.  
Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles  
(b) byte  
Number Number  
(c) word  
Number Number  
(d) long  
Number Number  
Operand  
of cycles of access of cycles of access of cycles of access  
Internal register  
+0  
1
+0  
1
+0  
2
Internal memory even address  
Internal memory odd address  
+0  
+0  
1
1
+0  
+2  
1
2
+0  
+4  
2
4
Even address on external data bus (16 bits)  
Odd address on external data bus (16 bits)  
+1  
+1  
1
1
+1  
+4  
1
2
+2  
+8  
2
4
External data bus (8 bits)  
+1  
1
+4  
2
+8  
4
Notes: “(b)”, “(c)”, and “(d)” are used in the “~” (number of states) column and column B (correction value)  
in the tables of instructions.  
When the external data bus is used, it is necessary to add in the number of wait cycles used for ready  
input and automatic ready.  
Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles  
Instruction  
Internal memory  
Byte boundary  
Word boundary  
+3  
+2  
+3  
External data bus (16 bits)  
External data bus (8 bits)  
Notes: When the external data bus is used, it is necessary to add in the number of wait cycles used for ready  
input and automatic ready.  
Because instruction execution is not slowed down by all program fetches in actuality, these correction  
values should be used for “worst case” calculations.  
104  
MB90650A Series  
Table 7 Transfer Instructions (Byte) [41 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
A, dir  
A, addr16  
A, Ri  
A, ear  
A, eam  
A, io  
A, #imm8  
A, @A  
A, @RLi+disp8  
2
3
1
2
3
4
2
2
0
0
1
1
(b) byte (A) (dir)  
(b) byte (A) (addr16)  
Z
Z
Z
Z
Z
Z
Z
Z
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
byte (A) (Ri)  
byte (A) (ear)  
2+ 3+ (a) 0  
(b) byte (A) (eam)  
(b) byte (A) (io)  
2
2
2
3
1
3
2
3
10  
1
0
0
0
2
0
0
byte (A) imm8  
(b) byte (A) ((A))  
(b) byte (A) ((RLi)+disp8) Z  
MOVN A, #imm4  
0
byte (A) imm4  
Z
R
MOVX A, dir  
MOVX A, addr16  
MOVX A, Ri  
MOVX A, ear  
MOVX A, eam  
MOVX A, io  
MOVX A, #imm8  
MOVX A, @A  
MOVX A,@RWi+disp8  
MOVX A, @RLi+disp8  
2
3
2
2
3
4
2
2
0
0
1
1
(b) byte (A) (dir)  
(b) byte (A) (addr16)  
X
X
X
X
X
X
X
X
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
byte (A) (Ri)  
byte (A) (ear)  
2+ 3+ (a) 0  
(b) byte (A) (eam)  
(b) byte (A) (io)  
2
2
2
2
3
3
2
3
5
10  
0
0
0
1
2
0
byte (A) imm8  
(b) byte (A) ((A))  
(b) byte (A) ((RWi)+disp8) X  
(b) byte (A) ((RLi)+disp8) X  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
dir, A  
addr16, A  
Ri, A  
ear, A  
eam, A  
io, A  
@RLi+disp8, A  
Ri, ear  
Ri, eam  
ear, Ri  
eam, Ri  
Ri, #imm8  
io, #imm8  
dir, #imm8  
ear, #imm8  
eam, #imm8  
@AL, AH  
2
3
1
2
3
4
2
2
0
0
1
1
(b) byte (dir) (A)  
(b) byte (addr16) (A)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
byte (Ri) (A)  
byte (ear) (A)  
2+ 3+ (a) 0  
(b) byte (eam) (A)  
(b) byte (io) (A)  
(b) byte ((RLi) +disp8) (A) –  
2
3
2
3
10  
3
0
2
2
0
byte (Ri) (ear)  
(b) byte (Ri) (eam)  
byte (ear) (Ri)  
(b) byte (eam) (Ri)  
byte (Ri) imm8  
2+ 4+ (a) 1  
2
2+ 5+ (a) 1  
2
3
3
3
4
2
0
2
5
5
2
1
0
0
1
0
(b) byte (io) imm8  
(b) byte (dir) imm8  
0
byte (ear) imm8  
3+ 4+ (a) 0  
2
(b) byte (eam) imm8  
(b) byte ((A)) (AH)  
3
0
XCH  
XCH  
XCH  
XCH  
A, ear  
2
4
2
0
byte (A) (ear)  
Z
Z
A, eam  
Ri, ear  
Ri, eam  
2+ 5+ (a) 0 2× (b) byte (A) (eam)  
byte (Ri) (ear)  
2+ 9+ (a) 2 2× (b) byte (Ri) (eam)  
2
7
4
0
Note: Foranexplanationof(a)to(d)”, refertoTable4, “NumberofExecutionCyclesforEachTypeofAddressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
105  
MB90650A Series  
Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
MOVW A, dir  
MOVW A, addr16  
MOVW A, SP  
MOVW A, RWi  
MOVW A, ear  
MOVW A, eam  
MOVW A, io  
MOVW A, @A  
#
~
B
Operation  
2
3
1
1
2
3
4
1
2
2
0
0
0
1
1
(c) word (A) (dir)  
(c) word (A) (addr16)  
0
0
0
(c) word (A) (eam)  
(c) word (A) (io)  
(c) word (A) ((A))  
0
(c)  
(c)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
word (A) (SP)  
word (A) (RWi)  
word (A) (ear)  
2+ 3+ (a) 0  
2
2
3
2
3
3
3
2
5
10  
0
0
0
1
2
MOVW A, #imm16  
MOVW A, @RWi+disp8  
MOVW A, @RLi+disp8  
word (A) imm16  
word (A) ((RWi) +disp8)  
word (A) ((RLi) +disp8)  
MOVW dir, A  
MOVW addr16, A  
MOVW SP, A  
MOVW RWi, A  
MOVW ear, A  
MOVW eam, A  
MOVW io, A  
MOVW @RWi+disp8, A  
MOVW @RLi+disp8, A  
MOVW RWi, ear  
MOVW RWi, eam  
MOVW ear, RWi  
MOVW eam, RWi  
MOVW RWi, #imm16  
MOVW io, #imm16  
MOVW ear, #imm16  
MOVW eam, #imm16  
2
3
1
1
2
3
4
1
2
2
0
0
0
1
1
(c) word (dir) (A)  
(c) word (addr16) (A)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
0
word (SP) (A)  
word (RWi) (A)  
word (ear) (A)  
2+ 3+ (a) 0  
(c) word (eam) (A)  
(c) word (io) (A)  
2
2
3
2
3
5
10  
3
0
1
2
2
word ((RWi) +disp8) (A)  
word ((RLi) +disp8) (A)  
(c)  
(c)  
(0) word (RWi) (ear)  
(c) word (RWi) (eam)  
2+ 4+ (a) 1  
2
2+ 5+ (a) 1  
3
4
4
4
2
0
word (ear) (RWi)  
(c) word (eam) (RWi)  
word (RWi) imm16  
(c) word (io) imm16  
word (ear) imm16  
2
5
2
1
0
1
0
0
4+ 4+ (a) 0  
(c) word (eam) imm16  
MOVW @AL, AH  
2
2
3
4
0
2
(c) word ((A)) (AH)  
*
*
XCHW A, ear  
0
word (A) (ear)  
XCHW A, eam  
XCHW RWi, ear  
XCHW RWi, eam  
2+ 5+ (a) 0 2× (c) word (A) (eam)  
word (RWi) (ear)  
2+ 9+ (a) 2 2× (c) word (RWi) (eam)  
2
7
4
0
MOVL A, ear  
MOVL A, eam  
MOVL A, #imm32  
2
4
2
0
long (A) (ear)  
*
*
*
*
*
*
2+ 5+ (a) 0  
5
(d) long (A) (eam)  
3
0
0
0
long (A) imm32  
long (ear) (A)  
MOVL ear, A  
MOVL eam, A  
2
4
2
*
*
*
*
2+ 5+ (a) 0  
(d) long (eam) (A)  
Note: Foranexplanationof(a)to(d)”, refertoTable4, “NumberofExecutionCyclesforEachTypeofAddressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
106  
MB90650A Series  
Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
ADD  
A,#imm8  
A, dir  
A, ear  
A, eam  
ear, A  
eam, A  
A
2
2
2
2
5
3
0
0
1
0
byte (A) (A) +imm8  
Z
Z
Z
Z
Z
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC A, ear  
ADDC A, eam  
ADDDC A  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUBC  
SUBC A, ear  
SUBC A, eam  
SUBDC A  
(b) byte (A) (A) +(dir)  
byte (A) (A) +(ear)  
(b) byte (A) (A) +(eam)  
byte (ear) (ear) + (A)  
2+ 5+ (a) 0 2× (b) byte (eam) (eam) + (A)  
0
2+ 4+ (a) 0  
2
3
2
0
1
2
2
3
0
1
0
0
byte (A) (AH) + (AL) + (C) Z  
byte (A) (A) + (ear) + (C)  
Z
2+ 4+ (a) 0  
(b) byte (A) (A) + (eam) + (C) Z  
0
0
byte (A) (AH) + (AL) + (C) (decimal)  
1
2
2
2
3
2
5
3
0
0
0
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
A, #imm8  
A, dir  
A, ear  
A, eam  
ear, A  
eam, A  
A
byte (A) (A) –imm8  
(b) byte (A) (A) – (dir)  
byte (A) (A) – (ear)  
(b) byte (A) (A) – (eam)  
byte (ear) (ear) – (A)  
2+ 5+ (a) 0 2× (b) byte (eam) (eam) – (A)  
0
2+ 4+ (a) 0  
2
3
2
0
1
2
2
3
0
1
0
0
byte (A) (AH) – (AL) – (C)  
byte (A) (A) – (ear) – (C)  
2+ 4+ (a) 0  
1
(b) byte (A) (A) – (eam) – (C)  
0
byte (A) (AH) – (AL) – (C) (decimal)  
3
0
ADDW A  
1
2
2
3
0
1
0
0
word (A) (AH) + (AL)  
word (A) (A) +(ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ADDW A, ear  
ADDW A, eam  
ADDW A, #imm16  
ADDW ear, A  
ADDW eam, A  
ADDCWA, ear  
ADDCWA, eam  
SUBW A  
SUBW A, ear  
SUBW A, eam  
SUBW A, #imm16  
SUBW ear, A  
SUBW eam, A  
SUBCW A, ear  
SUBCW A, eam  
2+ 4+ (a) 0  
3
2
(c) word (A) (A) +(eam)  
0
0
2
3
0
2
word (A) (A) +imm16  
word (ear) (ear) + (A)  
2+ 5+ (a) 0 2× (c) word (eam) (eam) + (A)  
word (A) (A) + (ear) + (C)  
2
3
1
0
2+ 4+ (a) 0  
1
2
2+ 4+ (a) 0  
3
2
(c) word (A) (A) + (eam) + (C) –  
0
0
(c) word (A) (A) – (eam)  
0
0
2
3
0
1
word (A) (AH) – (AL)  
word (A) (A) – (ear)  
2
3
0
2
word (A) (A) –imm16  
word (ear) (ear) – (A)  
2+ 5+ (a) 0 2× (c) word (eam) (eam) – (A)  
word (A) (A) – (ear) – (C)  
2
3
1
0
2+ 4+ (a) 0  
(c) word (A) (A) – (eam) – (C) –  
ADDL A, ear  
2
6
2
0
long (A) (A) + (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ADDL A, eam  
ADDL A, #imm32  
SUBL A, ear  
SUBL A, eam  
SUBL A, #imm32  
2+ 7+ (a) 0  
5
2
2+ 7+ (a) 0  
5
(d) long (A) (A) + (eam)  
0
0
4
6
0
2
long (A) (A) +imm32  
long (A) (A) – (ear)  
(d) long (A) (A) – (eam)  
long (A) (A) –imm32  
4
0
0
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
107  
MB90650A Series  
Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
INC  
INC  
ear  
eam  
2
2
2
0
byte (ear) (ear) +1  
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (b) byte (eam) (eam) +1  
DEC  
DEC  
ear  
eam  
2
3
2
0
byte (ear) (ear) –1  
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (b) byte (eam) (eam) –1  
INCW ear  
INCW eam  
2
3
2
0
word (ear) (ear) +1  
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (c) word (eam) (eam) +1  
DECW ear  
DECW eam  
2
3
2
0
word (ear) (ear) –1  
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (c) word (eam) (eam) –1  
INCL ear  
INCL eam  
2
7
4
0
long (ear) (ear) +1  
*
*
*
*
*
*
*
2+ 9+ (a) 0 2× (d) long (eam) (eam) +1  
DECL ear  
DECL eam  
2
7
4
0
long (ear) (ear) –1  
*
*
*
*
*
*
*
2+ 9+ (a) 0 2× (d) long (eam) (eam) –1  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
CMP  
A
1
2
1
2
0
1
0
0
byte (AH) – (AL)  
byte (A) (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CMP  
CMP  
CMP  
A, ear  
A, eam  
A, #imm8  
2+ 3+ (a) 0  
2
(b) byte (A) (eam)  
0
2
0
byte (A) imm8  
CMPW A  
1
2
1
2
0
1
0
0
word (AH) – (AL)  
word (A) (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CMPW A, ear  
CMPW A, eam  
CMPW A, #imm16  
2+ 3+ (a) 0  
3
(c) word (A) (eam)  
0
2
0
word (A) imm16  
CMPL A, ear  
CMPL A, eam  
CMPL A, #imm32  
2
6
2
0
word (A) (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
2+ 7+ (a) 0  
5
(d) word (A) (eam)  
word (A) imm32  
3
0
0
Note: Foranexplanationof(a)to(d)”, refertoTable4, “NumberofExecutionCyclesforEachTypeofAddressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
108  
MB90650A Series  
Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
1
DIVU  
A
1
0
0 word (AH) /byte (AL)  
*
*
*
Quotient byte (AL) Remainder byte (AH)  
2
DIVU  
DIVU  
A, ear  
2
1
0
1
0
0 word (A)/byte (ear)  
*
*
*
*
*
*
*
*
*
Quotient byte (A) Remainder byte (ear)  
6
3
A, eam 2+  
word (A)/byte (eam)  
Quotient byte (A) Remainder byte (eam)  
*
*
4
DIVUW A, ear  
2
long (A)/word (ear)  
Quotient word (A) Remainder word (ear)  
0
*
7
5
DIVUW A, eam 2+  
long (A)/word (eam)  
Quotient word (A) Remainder word (ear)  
*
*
8
MULU  
MULU A, ear  
MULU A, eam 2+  
A
1
2
0
1
0
byte (AH) *byte (AL) word (A)  
byte (A) *byte (ear) word (A)  
byte (A) *byte (eam) word (A)  
0
0
(b)  
*
9
*
10  
*
MULUW A  
MULUW A, ear  
MULUW A, eam 2+  
1
2
11  
12  
13  
0
1
0
word (AH) *word (AL) long (A)  
word (A) *word (ear) long (A)  
word (A) *word (eam) long (A)  
0
0
(c)  
*
*
*
*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.  
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.  
*3: 6 + (a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.  
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.  
*5: 6 + (a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.  
*6: (b) when the result is zero or when an overflow occurs, and 2 × (b) normally.  
*7: (c) when the result is zero or when an overflow occurs, and 2 × (c) normally.  
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.  
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.  
*10: 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.  
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.  
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.  
*13: 5 + (a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
109  
MB90650A Series  
Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
AND A, #imm8  
#
~
B
Operation  
2
2
2
3
0
1
0
0
byte (A) (A) and imm8  
byte (A) (A) and (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
AND  
AND  
AND  
AND  
A, ear  
A, eam  
ear, A  
2+ 4+ (a) 0  
(b) byte (A) (A) and (eam)  
byte (ear) (ear) and (A)  
2
3
2
0
eam, A  
2+ 5+ (a) 0 2× (b) byte (eam) (eam) and (A) –  
OR  
OR  
OR  
OR  
OR  
A, #imm8  
A, ear  
A, eam  
ear, A  
2
2
2
3
0
1
0
0
byte (A) (A) or imm8  
byte (A) (A) or (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
2+ 4+ (a) 0  
(b) byte (A) (A) or (eam)  
byte (ear) (ear) or (A)  
2+ 5+ (a) 0 2× (b) byte (eam) (eam) or (A)  
2
3
2
0
eam, A  
XOR A, #imm8  
XOR A, ear  
XOR A, eam  
XOR ear, A  
XOR eam, A  
2
2
2
3
0
1
0
0
byte (A) (A) xor imm8  
byte (A) (A) xor (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
2+ 4+ (a) 0  
2
2+ 5+ (a) 0 2× (b) byte (eam) (eam) xor (A) –  
(b) byte (A) (A) xor (eam)  
byte (ear) (ear) xor (A)  
3
2
0
NOT  
NOT  
NOT  
A
ear  
eam  
1
2
2
3
0
2
0
0
byte (A) not (A)  
byte (ear) not (ear)  
*
*
*
*
*
*
R
R
R
*
2+ 5+ (a) 0 2× (b) byte (eam) not (eam)  
ANDW A  
1
3
2
2
2
3
0
0
1
0
0
0
word (A) (AH) and (A)  
word (A) (A) and imm16  
word (A) (A) and (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
ANDW A, #imm16  
ANDW A, ear  
ANDW A, eam  
ANDW ear, A  
ANDW eam, A  
2+ 4+ (a) 0  
2
2+ 5+ (a) 0 2× (c) word (eam) (eam) and (A) –  
(c) word (A) (A) and (eam)  
word (ear) (ear) and (A)  
3
2
0
ORW  
A
1
3
2
2
2
3
0
0
1
0
0
0
word (A) (AH) or (A)  
word (A) (A) or imm16  
word (A) (A) or (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
ORW A, #imm16  
ORW A, ear  
ORW A, eam  
ORW ear, A  
2+ 4+ (a) 0  
2
2+ 5+ (a) 0 2× (c) word (eam) (eam) or (A) –  
(c) word (A) (A) or (eam)  
word (ear) (ear) or (A)  
3
2
0
ORW eam, A  
XORW A  
1
3
2
2
2
3
0
0
1
0
0
0
word (A) (AH) xor (A)  
word (A) (A) xor imm16  
word (A) (A) xor (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
XORW A, #imm16  
XORW A, ear  
XORW A, eam  
XORW ear, A  
XORW eam, A  
2+ 4+ (a) 0  
(c) word (A) (A) xor (eam)  
word (ear) (ear) xor (A)  
2+ 5+ (a) 0 2× (c) word (eam) (eam) xor (A)  
2
3
2
0
NOTW A  
NOTW ear  
NOTW eam  
1
2
2
3
0
2
0
0
word (A) not (A)  
word (ear) not (ear)  
*
*
*
*
*
*
R
R
R
*
2+ 5+ (a) 0 2× (c) word (eam) not (eam)  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
110  
MB90650A Series  
Table 14 Logical 2 Instructions (Long Word) [6 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
ANDL A, ear  
ANDL A, eam  
2
6
2
0
long (A) (A) and (ear)  
*
*
*
*
R
R
2+ 7+ (a) 0  
(d) long (A) (A) and (eam)  
ORL  
ORL  
A, ear  
A, eam  
2
6
2
0
long (A) (A) or (ear)  
*
*
*
*
R
R
2+ 7+ (a) 0  
(d) long (A) (A) or (eam)  
XORL A, ea  
XORL A, eam  
2
6
2
0
long (A) (A) xor (ear)  
*
*
*
*
R
R
2+ 7+ (a) 0  
(d) long (A) (A) xor (eam)  
Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
NEG  
A
1
2
0
0
byte (A) 0 – (A)  
X
*
*
*
*
NEG ear  
NEG eam  
2
3
2
0
byte (ear) 0 – (ear)  
*
*
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (b) byte (eam) 0 – (eam)  
NEGW A  
1
2
0
0
word (A) 0 – (A)  
*
*
*
*
NEGW ear  
NEGW eam  
2
3
2
0
word (ear) 0 – (ear)  
*
*
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (c) word (eam) 0 – (eam)  
Table 16 Normalize Instruction (Long Word) [1 Instruction]  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
RG  
B
Operation  
1
NRML A, R0  
2
1
0
long (A) Shift until first digit is “1” –  
byte (R0) Current shift count  
*
*
*1: 4 when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
111  
MB90650A Series  
Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
RORC A  
#
~
B
Operation  
byte (A) Right rotation with carry  
byte (A) Left rotation with carry  
2
2
2
2
0
0
0
0
*
*
*
*
*
*
ROLC A  
RORC ear  
RORC eam  
ROLC ear  
ROLC eam  
byte (ear) Right rotation with carry  
byte (eam) Right rotation with carry  
byte (ear) Left rotation with carry  
byte (eam) Left rotation with carry  
2
2+  
2
3
2
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
5+ (a)  
0 2× (b)  
2
0 2× (b)  
0
3
2+  
5+ (a)  
byte (A) Arithmetic right barrel shift (A, R0)  
byte (A) Logical right barrel shift (A, R0)  
byte (A) Logical left barrel shift (A, R0)  
ASR A, R0  
LSR A, R0  
LSL A, R0  
1
2
2
2
1
1
1
0
0
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
1
word (A) Arithmetic right shift (A, 1 bit)  
word (A) Logical right shift (A, 1 bit)  
word (A) Logical left shift (A, 1 bit)  
ASRWA  
LSRW A/SHRW A  
LSLW A/SHLW A  
1
1
1
2
2
2
0
0
0
0
0
0
*
*
*
R
*
*
*
*
*
*
*
1
word (A) Arithmetic right barrel shift (A, R0)  
word (A) Logical right barrel shift (A, R0)  
word (A) Logical left barrel shift (A, R0)  
ASRW A, R0  
LSRW A, R0  
LSLW A, R0  
2
2
2
1
1
1
0
0
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
1
2
ASRL A, R0  
LSRL A, R0  
LSLL A, R0  
long (A) Arithmetic right shift (A, R0)  
long (A) Logical right barrel shift (A, R0)  
long (A) Logical left barrel shift (A, R0)  
2
2
2
1
1
1
0
0
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
2
2
*1: 6 when R0 is 0, 5 + (R0) in all other cases.  
*2: 6 when R0 is 0, 6 + (R0) in all other cases.  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
112  
MB90650A Series  
Table 18 Branch 1 Instructions [31 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
1
BZ/BEQ  
BNZ/BNE rel  
BC/BLO  
BNC/BHS rel  
rel  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Branch when (Z) = 1  
Branch when (Z) = 0  
Branch when (C) = 1  
Branch when (C) = 0  
Branch when (N) = 1  
Branch when (N) = 0  
Branch when (V) = 1  
Branch when (V) = 0  
Branch when (T) = 1  
Branch when (T) = 0  
Branch when (V) xor (N) = 1  
Branch when (V) xor (N) = 0  
Branch when ((V) xor (N)) or (Z) = 1  
Branch when ((V) xor (N)) or (Z) = 0  
1
1
rel  
1
1
BN  
BP  
BV  
BNV  
BT  
BNT  
BLT  
BGE  
BLE  
BGT  
BLS  
BHI  
BRA  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
1
1
1
1
1
1
1
1
1
1
Branch when (C) or (Z) = 1  
Branch when (C) or (Z) = 0  
Branch unconditionally  
1
1
*
JMP  
JMP  
JMP  
JMP  
@A  
1
3
2
2
3
3
0
0
1
0
2
0
0
0
0
0
word (PC) (A)  
word (PC) addr16  
word (PC) (ear)  
addr16  
@ear  
@eam  
2+ 4+ (a)  
2
2+ 6+ (a)  
4
2
(c) word (PC) (eam)  
0
(d)  
0
JMPP @ear *3  
JMPP @eam *3  
JMPP addr24  
word (PC) (ear), (PCB) (ear +2)  
5
word (PC) (eam), (PCB) (eam +2)  
4
6
word (PC) ad24 0 to 15,  
(PCB) ad24 16 to 23  
CALL @ear *4  
CALL @eam *4  
CALL addr16 *5  
CALLV #vct4 *5  
CALLP @ear *6  
1
(c) word (PC) (ear)  
2+ 7+ (a) 0 2× (c) word (PC) (eam)  
3
1
2
6
7
10  
0
(c) word (PC) addr16  
0 2× (c) Vector call instruction  
2 2× (c) word (PC) (ear) 0 to 15,  
(PCB) (ear) 16 to 23  
2
CALLP @eam *6  
CALLP addr24 *7  
2+ 11+ (a)  
10  
0
0
word (PC) (eam) 0 to 15,  
(PCB) (eam) 16 to 23  
word (PC) addr0 to 15,  
(PCB) addr16 to 23  
*
4
2× (c)  
*1: 4 when branching, 3 when not branching.  
*2: (b) + 3 × (c)  
*3: Read (word) branch address.  
*4: W: Save (word) to stack; R: read (word) branch address.  
*5: Save (word) to stack.  
*6: W: Save (long word) to W stack; R: read (long word) R branch address.  
*7: Save (long word) to stack.  
Note: Foranexplanationof(a)to(d)”, refertoTable4, “NumberofExecutionCyclesforEachTypeofAddressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
113  
MB90650A Series  
Table 19 Branch 2 Instructions [19 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
1
Branch when byte (A) imm8  
Branch when word (A) imm16  
CBNE A, #imm8, rel  
CWBNE A, #imm16, rel  
3
4
0
0
0
0
*
*
*
*
*
*
*
*
*
*
1
2
Branch when byte (ear) imm8  
Branch when byte (eam) imm8  
Branch when word (ear) imm16  
Branch when word (eam) imm16  
CBNE ear, #imm8, rel  
4
4+  
5
*
*
*
*
1
0
1
0
0
(b)  
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CBNE  
eam, #imm8, rel*9  
3
4
CWBNE ear, #imm16, rel  
CWBNE eam, #imm16, rel*9  
3
5+  
(c)  
5
DBNZ ear, rel  
DBNZ eam, rel  
3
2
0
Branch when byte (ear) =  
(ear) – 1, and (ear) 0  
*
*
*
*
*
*
*
*
6
*
3+  
2 2× (b) Branch when byte (eam) =  
(eam) – 1, and (eam) 0  
5
DWBNZ ear, rel  
DWBNZ eam, rel  
3
*
2
0
Branch when word (ear) =  
(ear) – 1, and (ear) 0  
*
*
*
*
*
*
*
6
3+  
2 2× (c) Branch when word (eam) =  
(eam) – 1, and (eam) 0  
*
INT  
INT  
INTP  
INT9  
RETI  
#vct8  
addr16  
addr24  
8× (c)  
6× (c)  
6× (c)  
8× (c)  
6× (c)  
2
3
4
1
1
0
0
0
0
0
Software interrupt  
Software interrupt  
Software interrupt  
Software interrupt  
Return from interrupt  
R S –  
R S –  
R S –  
R S –  
*
*
*
*
20  
16  
17  
20  
15  
*
*
*
LINK  
#local8  
(c)  
2
0
At constant entry, save old  
frame pointer to stack, set  
new frame pointer, and  
6
allocate local pointer area  
At constant entry, retrieve  
old frame pointer from stack.  
UNLINK  
(c)  
1
0
5
RET *7  
(c)  
(d)  
1
1
0
0
Return from subroutine  
Return from subroutine  
4
6
RETP *8  
*1: 5 when branching, 4 when not branching  
*2: 13 when branching, 12 when not branching  
*3: 7 + (a) when branching, 6 + (a) when not branching  
*4: 8 when branching, 7 when not branching  
*5: 7 when branching, 6 when not branching  
*6: 8 + (a) when branching, 7 + (a) when not branching  
*7: Retrieve (word) from stack  
*8: Retrieve (long word) from stack  
*9: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
114  
MB90650A Series  
Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
PUSHW A  
PUSHW AH  
PUSHW PS  
PUSHW rlst  
#
~
B
Operation  
word (SP) (SP) –2, ((SP)) (A)  
word (SP) (SP) –2, ((SP)) (AH)  
word (SP) (SP) –2, ((SP)) (PS)  
(SP) (SP) –2n, ((SP)) (rlst)  
1
1
1
2
4
4
4
0
0
0
(c)  
(c)  
(c)  
3
5
4
*
*
*
word (A) ((SP)), (SP) ← (SP) +2  
word (AH) ((SP)), (SP) ← (SP) +2  
word (PS) ((SP)), (SP) ← (SP) +2  
(rlst) ((SP)), (SP) (SP) +2n  
POPW A  
1
1
1
2
*
*
*
*
*
*
*
*
3
3
4
0
0
0
(c)  
(c)  
(c)  
POPW AH  
POPW PS  
POPW rlst  
2
5
4
*
*
*
JCTX @A  
1
Context switch instruction  
0 6× (c)  
*
*
*
*
*
*
*
14  
AND CCR, #imm8  
OR CCR, #imm8  
2
2
byte (CCR) (CCR) and imm8 –  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3
3
0
0
0
0
byte (CCR) (CCR) or imm8  
MOV RP, #imm8  
MOV ILM, #imm8  
2
2
byte (RP) imm8  
byte (ILM) imm8  
2
2
0
0
0
0
MOVEA RWi, ear  
MOVEA RWi, eam 2+  
MOVEA A, ear  
MOVEA A, eam  
2
word (RWi) ear  
word (RWi) eam  
word(A) ear  
*
3
1
0
0
0
0
2+ (a) 1  
2
2+  
1
0
word (A) eam  
*
1+ (a) 0  
ADDSP #imm8  
ADDSP #imm16  
2
3
word (SP) (SP) +ext (imm8)  
word (SP) (SP) +imm16  
3
3
0
0
0
0
1
MOV  
MOV  
A, brgl  
brg2, A  
2
2
byte (A) (brgl)  
byte (brg2) (A)  
Z
*
*
*
*
*
0
0
0
0
*
1
NOP  
ADB  
DTB  
PCB  
SPB  
NCC  
CMR  
1
1
1
1
1
1
1
No operation  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
Prefix code for accessing AD space  
Prefix code for accessing DT space  
Prefix code for accessing PC space  
Prefix code for accessing SP space  
Prefix code for no flag change  
Prefix code for common register bank  
*1: PCB, ADB, SSB, USB, and SPB : 1 state  
DTB, DPR : 2 states  
*2: 7 + 3 × (pop count) + 2 × (last register number to be popped), 7 when rlst = 0 (no transfer register)  
*3: 29 + (push count) – 3 × (last register number to be pushed), 8 when rlst = 0 (no transfer register)  
*4: Pop count × (c), or push count × (c)  
*5: Pop count or push count.  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
115  
MB90650A Series  
Table 21 Bit Manipulation Instructions [21 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
MOVB A, dir:bp  
MOVB A, addr16:bp  
MOVB A, io:bp  
3
4
3
5
5
4
0
0
0
(b) byte (A) (dir:bp) b  
(b) byte (A) (addr16:bp) b  
(b) byte (A) (io:bp) b  
Z
Z
Z
*
*
*
*
*
*
*
*
*
MOVB dir:bp, A  
MOVB addr16:bp, A  
MOVB io:bp, A  
3
4
3
7
7
6
0 2× (b) bit (dir:bp) b (A)  
0 2× (b) bit (addr16:bp) b (A)  
0 2× (b) bit (io:bp) b (A)  
*
*
*
*
*
*
*
*
*
SETB dir:bp  
SETB addr16:bp  
SETB io:bp  
3
4
3
7
7
7
0 2× (b) bit (dir:bp) b 1  
0 2× (b) bit (addr16:bp) b 1  
0 2× (b) bit (io:bp) b 1  
*
*
*
CLRB dir:bp  
CLRB addr16:bp  
CLRB io:bp  
3
4
3
7
7
7
0 2× (b) bit (dir:bp) b 0  
0 2× (b) bit (addr16:bp) b 0  
0 2× (b) bit (io:bp) b 0  
*
*
*
1
BBC dir:bp, rel  
BBC addr16:bp, rel  
BBC io:bp, rel  
4
5
4
0
0
0
(b) Branch when (dir:bp) b = 0  
(b) Branch when (addr16:bp) b = 0  
(b) Branch when (io:bp) b = 0  
*
*
*
*
1
*
2
*
1
BBS dir:bp, rel  
BBS addr16:bp, rel  
BBS io:bp, rel  
4
5
4
0
0
0
(b) Branch when (dir:bp) b = 1  
(b) Branch when (addr16:bp) b = 1  
(b) Branch when (io:bp) b = 1  
*
*
*
*
1
*
2
*
3
Branch when (addr16:bp) b = 1, bit = 1  
SBBS addr16:bp, rel  
WBTS io:bp  
5
3
3
0 2× (b)  
*
*
*
5
4
0
0
Wait until (io:bp) b = 1  
Wait until (io:bp) b = 0  
*
*
*
4
5
WBTC io:bp  
*
*1: 8 when branching, 7 when not branching  
*2: 7 when branching, 6 when not branching  
*3: 10 when condition is satisfied, 9 when not satisfied  
*4: Undefined count  
*5: Until condition is satisfied  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
116  
MB90650A Series  
Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
SWAP  
SWAPW  
EXT  
EXTW  
ZEXT  
ZEXTW  
#
~
B
Operation  
1
1
1
1
1
1
3
2
1
2
1
1
0
0
0
0
0
0
0 byte (A) 0 to 7 (A) 8 to 15  
0 word (AH) (AL)  
0 byte sign extension  
0 word sign extension  
0 byte zero extension  
0 word zero extension  
X
Z
*
X
Z
*
*
R
R
*
*
*
*
Table 23 String Instructions [10 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
2
5
3
Byte transfer @AH+ @AL+, counter = RW0  
Byte transfer @AH– @AL–, counter = RW0  
MOVS/MOVSI  
MOVSD  
2
2
*
*
*
*
*
2
5
3
*
1
5
4
Byte retrieval (@AH+) – AL, counter = RW0  
Byte retrieval (@AH–) – AL, counter = RW0  
SCEQ/SCEQI  
SCEQD  
2
2
*
*
*
*
*
*
*
*
*
*
*
*
*
1
5
4
*
5
3
Byte filling @AH+ AL, counter = RW0  
FISL/FILSI  
2
*
*
6m +6  
*
*
2
8
6
Word transfer @AH+ @AL+, counter = RW0  
Word transfer @AH– @AL–, counter = RW0  
MOVSW/MOVSWI 2  
MOVSWD  
*
*
*
*
*
2
8
6
2
*
1
8
7
Word retrieval (@AH+) – AL, counter = RW0  
Word retrieval (@AH–) – AL, counter = RW0  
SCWEQ/SCWEQI 2  
*
*
*
*
*
*
*
*
*
*
*
*
*
1
8
7
SCWEQD  
2
*
8
6
Word filling @AH+ AL, counter = RW0  
FILSW/FILSWI  
2
*
*
6m +6  
*
*
m: RW0 value (counter value)  
n: Loop count  
*1: 5 when RW0 is 0, 4 + 7 × (RW0) for count out, and 7 × n + 5 when match occurs  
*2: 5 when RW0 is 0, 4 + 8 × (RW0) in any other case  
*3: (b) × (RW0) + (b) × (RW0) when accessing different areas for the source and destination, calculate (b) separately  
for each.  
*4: (b) × n  
*5: 2 × (RW0)  
*6: (c) × (RW0) + (c) × (RW0) when accessing different areas for the source and destination, calculate (c) separately  
for each.  
*7: (c) × n  
*8: 2 × (RW0)  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
117  
MB90650A Series  
ORDERING INFORMATION  
Model  
Package  
Remarks  
MB90652APFV  
MB90653APFV  
MB90P653APFV  
MB90654APFV  
MB90F654APFV  
100-pin plastic LQFP  
(FPT-100P-M05)  
MB90652APF  
MB90653APF  
MB90P653APF  
MB90654APF  
MB90F654APF  
100-pin plastic QFP  
(FPT-100P-M06)  
118  
MB90650A Series  
PACKAGE DIMENSIONS  
100-pin plastic LQFP  
(FPT-100P-M05)  
16.00±0.20(.630±.008)SQ  
1.50 +00..1200  
.059 +..000048  
(Mouting height)  
75  
51  
14.00±0.10(.551±.004)SQ  
76  
50  
12.00  
(.472)  
REF  
15.00  
(.591)  
NOM  
Details of "A" part  
0.15(.006)  
INDEX  
0.15(.006)  
100  
26  
0.15(.006)MAX  
0.40(.016)MAX  
"B"  
1
25  
LEAD No.  
"A"  
0.50(.0197)TYP  
0.18 +00..0038  
0.127 +00..0025  
.005 +..000012  
M
Details of "B" part  
0.08(.003)  
.007 +..000013  
0.10±0.10  
(.004±.004)  
(STAND OFF)  
0.50±0.20(.020±.008)  
0.10(.004)  
0~10°  
C
Dimensions in mm (inches)  
1995 FUJITSU LIMITED F100007S-2C-3  
100-pin plastic QFP  
(FPT-100P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
0.05(.002)MIN  
(STAND OFF)  
80  
51  
81  
50  
12.35(.486)  
16.30±0.40  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
REF  
(.642±.016)  
INDEX  
31  
100  
"A"  
1
30  
LEAD No.  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.13(.005)  
Details of "A" part  
0.25(.010)  
0.30(.012)  
"B"  
0.10(.004)  
0
10°  
0.18(.007)MAX  
0.53(.021)MAX  
18.85(.742)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
C
1994 FUJITSU LIMITED F100008-3C-2  
Dimensions in mm (inches)  
119  
MB90650A Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: 81(44) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: 81(44) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and  
Fax: (408) 922-9179  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
measurement equipment, personal or household devices, etc.).  
CAUTION:  
Fax: (408) 922-9179  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded  
(such as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have an inherent chance of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
Fax: (65) 281-0220  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for  
export of those products from Japan.  
http://www.fmap.com.sg/  
F9910  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB90653APF

16-bit Proprietary Microcontroller
FUJITSU

MB90653APFV

16-bit Proprietary Microcontroller
FUJITSU

MB90654A

16-bit Proprietary Microcontroller
FUJITSU

MB90654APF

16-bit Proprietary Microcontroller
FUJITSU

MB90654APFV

16-bit Proprietary Microcontroller
FUJITSU

MB90660A

16-bit Proprietary Microcontroller CMOS
FUJITSU

MB90662A

16-bit Proprietary Microcontroller
FUJITSU

MB90662AP-SH

16-bit Proprietary Microcontroller
FUJITSU

MB90662APFM

16-bit Proprietary Microcontroller
FUJITSU

MB90663A

16-bit Proprietary Microcontroller
FUJITSU

MB90663AP-SH

16-bit Proprietary Microcontroller
FUJITSU

MB90663APFM

16-bit Proprietary Microcontroller
FUJITSU