MB90F362S [FUJITSU]

16-bit Proprietary Microcontroller; 16位微控制器专有
MB90F362S
型号: MB90F362S
厂家: FUJITSU    FUJITSU
描述:

16-bit Proprietary Microcontroller
16位微控制器专有

微控制器
文件: 总59页 (文件大小:579K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-13736-1E  
16-bit Proprietary Microcontroller  
CMOS  
F2MC-16LX MB90360 Series  
MB90F362/T/S/TS, MB90362/T/S/TS, MB90F367/T/S/TS,  
MB90367/T/S/TS, MB90V340A-101, MB90V340A-102,  
MB90V340A-103, MB90V340A-104  
DESCRIPTION  
The MB90360-series with 1 channel FULL-CAN* interface and FLASH ROM is especially designed for automotive  
and other industrial applications. Its main feature is the on-board CAN Interfaces, which conform to Ver 2.0 Part  
A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a  
normal full CAN approach. With the new 0.35 µm CMOS technology, Fujitsu now offers on-chip FLASH-ROM  
program memory up to 64 Kbytes.  
The power supply (3 V) is supplied to the internal MCU core from an internal regulator circuit. This creates a  
major advantage in terms of EMI and power consumption.  
The internal PLL clock frequency multiplier provides an internal 42 ns instruction execution time from an external  
4 MHz clock. Also, main and sub-clock can be monitored independently using the clock monitor function.  
The unit features a 4 channel input capture unit 1 channel 16-bit free running timer, 2-channel LIN-UART, and  
16-channel 8/10-bit A/D converter as the peripheral resource.  
* : Controller Area Network (CAN) - License of Robert Bosch GmbH  
Note : F2MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.  
PACKAGE  
48-pin Plastic LQFP  
(FPT-48P-M26)  
MB90360 Series  
FEATURES  
Clock  
• Built-in PLL clock frequency multiplication circuit  
• Selection of machine clocks (PLL clocks) is allowed among frequency division by 2 on oscillation clock and  
multiplication of 1 to 6 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 24 MHz) .  
• Operation by sub-clock (up to 50 kHz : 100 kHz oscillation clock divided two) is allowed (devices without S-  
suffix only) .  
• Minimum execution time of instruction : 42 ns (when operating with 4-MHz oscillation clock and 6-time multiplied  
PLL clock) .  
Clock monitor function (MB90x367x only)  
• Main clock or sub-clock is monitored independently  
• Internal CR oscillation clock (100 kHz typical) can be used as sub-clock  
Instruction system best suited to controller  
• 16 Mbytes CPU memory space  
• 24-bit internal addressing  
• Wide choice of data types (bit, byte, word, and long word)  
• Wide choice of addressing modes (23 types)  
• Enhanced multiply-divide instructions with sign and RETI instructions  
• Enhanced high-precision computing with 32-bit accumulator  
Instruction system compatible with high-level language (C language) and multitask  
• Employing system stack pointer  
• Enhanced various pointer indirect instructions  
• Barrel shift instructions  
Increased processing speed  
• 4-byte instruction queue  
Powerful interrupt function  
• Powerful 8-level, 34-condition interrupt feature  
• Up to 8 channel external interrupts are supported  
Automatic data transfer function independent of CPU  
• Expanded intelligent I/O service function (EI2OS) : up to 16 channels  
Low-power consumption (standby) mode  
• Sleep mode (a mode that halts CPU operating clock)  
• Main timer mode (timebase timer mode that is transferred from main clock mode)  
• PLL timer mode (timebase timer mode that is transferred from PLL clock mode)  
• Watch mode (a mode that operates sub-clock and watch timer only, devices without S-suffix)  
• Stop mode (a mode that stops oscillation clock and sub-clock)  
• CPU blocking operation mode  
Process  
• CMOS technology  
I/O port  
• General-purpose input/output port (CMOS output)  
- 34 ports (devices without S-suffix)  
- 36 ports (devices with S-suffix)  
Sub-clock pin (X0A and X1A)  
• Provided (used for external oscillation), devices without S-suffix  
• Not provided (used with internal CR oscillation in sub-clock mode) , devices with S-suffix  
(Continued)  
2
MB90360 Series  
(Continued)  
Timer  
• Timebase timer, watch timer (device without S-suffix) , watchdog timer : 1 channel  
• 8/16-bit PPG timer : 8-bit × 2 channels or 16-bit × 2 channels  
• 16-bit reload timer : 2 channels  
• 16- bit input/output timer  
- 16-bit free run timer : 1 channel (FRT0 : ICU 0/1/2/3)  
- 16- bit input capture : (ICU) : 4 channels  
Full-CAN interface : up to 1 channel  
• Compliant with Ver 2.0A and Ver 2.0B CAN specifications  
• Flexible message buffering (mailbox and FIFO buffering can be mixed)  
• CAN wake-up function  
UART (LIN/SCI) : up to 2 channels  
• Equipped with full-duplex double buffer  
• Clock-asynchronous or clock-synchronous serial transmission is available  
DTP/External interrupt : up to 8 channels, CAN wakeup : up to 1 channel  
• Module for activation of expanded intelligent I/O service (EI2OS) and generation of external interrupt by external  
input.  
Delay interrupt generator module  
• Generates interrupt request for task switching.  
8/10-bit A/D converter : 16 channels  
• Resolution is selectable between 8-bit and 10-bit.  
• Activation by external trigger input is allowed.  
• Conversion time : 3 µs (at 24-MHz machine clock, including sampling time)  
Program patch function  
• Address matching detection for 6 address pointers.  
Low voltage/CPU operation detection reset (devices with T-suffix)  
• Detects low voltage (4.0 V 0.3 V) and resets automatically  
• Resets automatically when program is runaway and counter is not cleared within interval time  
(approx. 262 ms : external 4 MHz)  
Capable of changing input voltage for port  
• Automotive/CMOS-Schmitt (initial level is Automotive in single-chip mode)  
FLASH memory security function  
• Protects the content of FLASH memory (FLASH memory device only)  
3
MB90360 Series  
PRODUCT LINEUP  
MB90V340  
A-101  
MB90V340  
A-102  
Features  
CPU  
MB90362  
MB90362T  
MB90362S  
F2MC-16LX CPU  
PLL clock multiplier ( × 1, × 2, × 3, × 4, × 6, 1/2 when PLL stops)  
MB90362TS  
System clock  
Minimum instruction execution time : 42 ns (4 MHz oscillation clock, PLL × 6)  
Sub-clock pin  
(X0A, X1A)  
Yes  
No  
No  
No  
Yes  
Clock monitor  
function  
ROM  
MASK ROM, 64 Kbytes  
3 Kbytes  
External  
RAM capacitance  
30 Kbytes  
CAN  
interface  
1 channel  
3 channels  
Low voltage/CPU  
operation  
No  
Yes  
No  
Yes  
No  
detection reset  
Package  
LQFP-48P  
PGA-299C  
Yes  
Emulator-specific  
power supply *  
Corresponding  
EVA product  
MB90V340A-102  
MB90V340A-101  
* : It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used. Please refer to the Emulator  
hardware manual for the details.  
Features  
CPU  
MB90F362  
MB90F362T MB90F362S MB90F362TS  
F2MC-16LX CPU  
PLL clock multiplier  
( × 1, × 2, × 3, × 4, × 6, 1/2 when PLL stops)  
Minimum instruction execution time : 42 ns  
(4 MHz oscillation clock, PLL × 6)  
System clock  
Sub-clock pin  
(X0A, X1A)  
Yes  
No  
Clock monitor  
function  
No  
ROM  
Flash memory, 64 Kbytes  
3 Kbytes  
RAM capacitance  
CAN  
interface  
1 channel  
Low voltage/CPU  
operation detec-  
tion reset  
No  
Yes  
No  
Yes  
Package  
LQFP-48P  
Corresponding  
EVA product  
MB90V340A-102  
MB90V340A-101  
4
MB90360 Series  
MB90V340 MB90V340  
Features  
CPU  
MB90367  
MB90367T  
MB90367S  
MB90367TS  
A-103  
A-104  
F2MC-16LX CPU  
PLL clock multiplier ( × 1, × 2, × 3, × 4, × 6, 1/2 when PLL stops)  
Minimum instruction execution time : 42 ns (4 MHz oscillation clock, PLL × 6)  
System clock  
Sub-clock pin  
(X0A, X1A)  
No  
Yes  
Yes  
(internal CR oscillation can be used as sub-clock)  
Clock monitor  
function  
Yes  
ROM  
MASK ROM, 64 Kbytes  
External  
RAM capacitance  
3 Kbytes  
30 Kbytes  
CAN  
interface  
1 channel  
3 channels  
Low voltage/CPU  
operation  
No  
Yes  
No  
Yes  
No  
detection reset  
Package  
LQFP-48P  
PGA-299C  
Yes  
Emulator-specific  
power supply *  
Corresponding  
EVA product  
MB90V340A-104  
MB90V340A-103  
* : It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used. Please refer to the Emulator  
hardware manual for the details.  
Features  
CPU  
MB90F367  
MB90F367T MB90F367S MB90F367TS  
F2MC-16LX CPU  
PLL clock multiplier  
( × 1, × 2, × 3, × 4, × 6, 1/2 when PLL stops)  
Minimum instruction execution time : 42 ns  
(4 MHz oscillation clock, PLL × 6)  
System clock  
No  
Sub-clock pin  
(X0A, X1A)  
Yes  
(internal CR oscillation can be  
used as sub-clock)  
Clock monitor  
function  
Yes  
ROM  
Flash memory, 64 Kbytes  
3 Kbytes  
RAM capacitance  
CAN  
interface  
1 channel  
Low voltage/CPU  
operation  
No  
Yes  
No  
Yes  
detection reset  
Package  
LQFP-48P  
Corresponding  
EVA product  
MB90V340A-104  
MB90V340A-103  
5
MB90360 Series  
PIN ASSIGNMENT  
MB90F362/T/S/TS, MB90362/T/S/TS, MB90F367/T/S/TS, MB90367/T/S/TS  
(TOP VIEW)  
(LQFP-48P)  
P20 *2  
P21 *2  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AVcc  
AVR  
P22/PPGD(C) *2  
P60/AN0  
3
P61/AN1  
4
P23/PPGF(E) *2  
P24/IN0  
P25/IN1  
P26/IN2  
P27/IN3  
X1  
P62/AN2  
5
P63/AN3  
6
7
P64/AN4  
8
P65/AN5  
9
P66/AN6/PPGC(D)  
P67/AN7/PPGE(F)  
P80/ADTG/INT12R  
P50/AN8  
10  
11  
12  
X0  
C
Vss  
(FPT-48P-M26)  
*1 : MB90F362/T, MB90362/T, MB90F367/T, MB90367/T : X0A, X1A  
MB90F362S/TS, MB90362S/TS, MB90F367S/TS, MB90367S/TS : P40, P41  
*2 : High current port  
6
MB90360 Series  
PIN DESCRIPTION  
Pin No.  
Pin name  
LQFP-48P*  
Circuit type  
Function  
1
AVCC  
I
VCC power input pin for analog circuit.  
Power (Vref+) input pin for A/D converter.  
It should be below VCC.  
2
AVR  
P60 to P65  
AN0 to AN5  
P66, P67  
General-purpose I/O port.  
3 to 8  
9, 10  
H
Analog input pin for A/D converter.  
General-purpose I/O port.  
AN6, AN7  
Analog input pin for A/D converter.  
H
PPGC (D) ,  
PPGE (F)  
Output pin for PPG.  
P80  
General-purpose I/O port.  
11  
12 to 14  
15  
ADTG  
INT12R  
F
H
H
Trigger input pin for A/D converter.  
External interrupt request input pin for INT12.  
General-purpose I/O port. (P50 has different I/O circuit type  
from MB90V340A.)  
P50 to P52  
AN8 to AN10  
P53  
Analog input pin for A/D converter.  
General-purpose I/O port.  
AN11  
Analog input pin for A/D converter.  
Event input pin for reload timer 3.  
General-purpose I/O port.  
TIN3  
P54  
AN12  
Analog input pin for A/D converter.  
Output pin for reload timer 3  
16  
H
H
TOT3  
INT8  
External interrupt request input pin for INT8.  
General-purpose I/O port.  
P55 to P57  
AN13 to AN15  
Analog input pin for A/D converter.  
17 to 19  
INT10, INT11,  
INT13  
External interrupt request input pin for INT10, INT11, INT13.  
Input pin for operation mode specification.  
20  
MD2  
D
C
MD1,  
MD0  
21, 22  
Input pin for operation mode specification.  
23  
24  
25  
RST  
VCC  
VSS  
E
Reset input.  
Power input pin (3.5 V to 5.5 V) .  
Power input pin (0 V) .  
Power supply stabilization capacitor pin. It should be connected  
to a higher than or equal to 0.1 µF ceramic capacitor.  
26  
C
I
* : FPT-48P-M26  
(Continued)  
7
MB90360 Series  
Pin No.  
Pin name  
Circuit type  
Function  
LQFP-48P*  
27  
28  
X0  
X1  
Oscillation input pin.  
A
Oscillation output pin.  
General-purpose I/O port.  
P27 to P24  
IN3 to IN0  
The register can be set to select whether to use a pull-up resis-  
tor. This function is enabled in single-chip mode.  
29 to 32  
G
Event input pin for input capture 0 to 3.  
General-purpose I/O port.  
The register can be set to select whether to use a pull-up resis-  
tor. This function is enabled in single-chip mode.  
High current output port.  
P23, P22  
33, 34  
35, 36  
J
J
PPGF (E) ,  
PPGD (C)  
Output pin for PPG.  
General-purpose I/O port.  
The register can be set to select whether to use a pull-up resis-  
tor. This function is enabled in single-chip mode.  
High current output port.  
P21, P20  
P85  
SIN1  
P87  
General-purpose I/O port.  
37  
38  
39  
40  
K
F
F
F
Serial data input pin for UART1.  
General-purpose I/O port.  
SCK1  
P86  
Clock I/O pin for UART1.  
General-purpose I/O port.  
SOT1  
P43  
Serial data output pin for UART1.  
General-purpose I/O port.  
TX1  
TX output pin for CAN1 interface.  
General-purpose I/O port.  
P42  
41  
42  
RX1  
F
F
F
RX input pin for CAN1 interface.  
External interrupt request input pin for INT9 (Sub) .  
General-purpose I/O port.  
INT9R  
P83  
SOT0  
TOT2  
P84  
Serial data output pin for UART0.  
Output pin for reload timer 2  
General-purpose I/O port.  
43  
SCK0  
INT15R  
Clock I/O pin for UART0.  
External interrupt request input pin for INT15.  
* : FPT-48P-M26  
(Continued)  
8
MB90360 Series  
(Continued)  
Pin No.  
Pin name  
Circuit type  
Function  
LQFP-48P*  
P82  
SIN0  
General-purpose I/O port.  
Serial data input pin for UART0.  
44  
K
INT14R  
TIN2  
External interrupt request input pin for INT14.  
Event input pin for reload timer 2.  
General-purpose I/O port. (Different I/O circuit type from  
MB90V340A.)  
P44  
45  
F
F
FRCK0  
P40, P41  
Free-run timer 0 clock pin.  
General-purpose I/O port.  
(Devices with S-suffix and MB90V340A-101/103 only.)  
46, 47  
Oscillation input pin for sub-clock.  
(Devices without S-suffix and MB90V340A-102/104 only.)  
X0A, X1A  
AVSS  
B
I
48  
VSS power input pin for analog circuit.  
* : FPT-48P-M26  
9
MB90360 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
Oscillation circuit  
X1  
X0  
• High-speed oscillation feedback  
resistor = approx. 1 MΩ  
Xout  
A
Standby control signal  
Oscillation circuit  
X1A  
X0A  
Xout  
• Low-speed oscillation feedback  
resistor = approx. 10 MΩ  
B
Standby control signal  
Mask ROM device :  
R
• CMOS hysteresis input pin  
Hysteresis  
inputs  
C
D
Flash device :  
• CMOS input pin  
Mask ROM device :  
R
• CMOS hysteresis input pin  
• Pull-down resistor value : approx. 50 kΩ  
Hysteresis  
inputs  
Pull-down  
resistor  
Flash device :  
• CMOS input pin  
• No Pull-down  
CMOS hysteresis input pin  
• Pull-up resistor value : approx. 50 kΩ  
Pull-up  
resistor  
E
R
Hysteresis  
inputs  
(Continued)  
10  
MB90360 Series  
Type  
Circuit  
Remarks  
• CMOS level output (IOL = 4 mA,  
IOH = −4 mA)  
• CMOS hysteresis inputs (With the  
standby-time input shutdown function)  
• Automotive input (With the standby-  
time input shutdown function)  
Pout  
Nout  
R
F
Hysteresis inputs  
Automotive inputs  
Standby control for  
input shutdown  
• CMOS level output (IOL = 4 mA,  
IOH = −4 mA)  
• CMOS hysteresis inputs (With the  
standby-time input shutdown function)  
• Automotive input (With the standby-  
time input shutdown function)  
Pull-up control  
Pout  
Pull-up  
resistor  
• Settablepull-upresistor:approx. 50kΩ  
Nout  
G
R
Hysteresis inputs  
Automotive inputs  
Standby control for  
input shutdown  
• CMOS level output (IOL = 4 mA,  
IOH = −4 mA)  
• CMOS hysteresis inputs (With the  
standby-time input shutdown function)  
• Automotive input (With the standby-  
time input shutdown function)  
• A/D analog input  
Pout  
Nout  
R
H
Hysteresis inputs  
Automotive inputs  
Standby control for  
input shutdown  
Analog input  
(Continued)  
11  
MB90360 Series  
(Continued)  
Type  
Circuit  
Remarks  
• Power supply input protection circuit  
I
• CMOS level output (IOL = 20 mA,  
IOH = −14 mA)  
• CMOS hysteresis inputs (With the  
standby-time input shutdown function)  
• Automotive input (With the standby-  
time input shutdown function)  
Pull-up control  
Pull-up  
resistor  
Pout high current output  
Nout high current output  
• Settable pull-up resistor : approx. 50 kΩ  
J
R
Hysteresis inputs  
Automotive inputs  
Standby control for  
input shutdown  
• CMOS level output (IOL = 4 mA,  
IOH = −4 mA)  
• CMOS input (With standby-time input  
shutdown function)  
• Automotive input (With standby-time in-  
put shutdown function)  
Pout  
Nout  
R
K
CMOS inputs  
Automotive inputs  
Standby control for  
input shutdown  
12  
MB90360 Series  
HANDLING DEVICES  
Special care is required for the following when handling the device :  
• Preventing latch-up  
Treatment of unused pins  
• Using external clock  
• Precautions for when not using a sub-clock signal  
• Notes on during operation of PLL clock mode  
• Power supply pins (VCC/VSS)  
• Pull-up/down resistors  
• Crystal oscillator circuit  
Turning-on sequence of power supply to A/D converter and analog inputs  
• Connection of unused pins of A/D converter  
• Notes on energization  
• Stabilization of power supply voltage  
• Initialization  
• Notes on using CAN Function  
• Flash security function  
• Correspondence with +105 °C or more  
1. Preventing latch-up  
CMOS IC chips may suffer latch-up under the following conditions :  
• A voltage higher than VCC or lower than VSS is applied to an input or output pin.  
• A voltage higher than the rated voltage is applied between VCC and VSS.  
• The AVCC power supply is applied before the VCC voltage.  
Latch-up may increase the power supply current drastically, causing thermal damage to the device.  
Use meticulous care not to exceed the rating.  
For the same reason, also be careful not to let the analog power-supply voltage (AVCC, AVR) exceed the digital  
power-supply voltage.  
2. Treatment of unused pins  
Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the  
device. Therefore, they must be pulled up or pulled down through resistors. In this case, those resistors should  
be more than 2 k.  
Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above  
described connection.  
3. Using external clock  
To use external clock, drive the X0 pin and leave X1 pin open.  
MB90360 Series  
X0  
X1  
Open  
13  
MB90360 Series  
4. Precautions for when not using a sub-clock signal  
If you do not connect pins X0A and X1A to an oscillator, use pull-down handling on the X0A pin and leave the  
X1A pin open.  
5. Notes on during operation of PLL clock mode  
If the PLL clock mode is selected, the microcontroller attempts to be working with the self-oscillating circuit even  
when there is no external oscillator or external clock input is stopped. Performance of this operation, however,  
cannot be guaranteed.  
6. Power supply pins (VCC/VSS)  
• If there are multiple VCC and VSS pins, from the point of view of device design, pins to be of the same potential  
are connected the inside of the device to prevent such malfunctioning as latch up.  
To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level,  
and observe the standard for total output current, be sure to connect the VCC and VSS pins to the power supply  
and ground externally.  
• Connect VCC and VSS to the device from the current supply source at a low impedance.  
• As a measure against power supply noise, connect a capacitor of about 0.1 µF as a bypass capacitor between  
VCC and VSS in the vicinity of VCC and VSS pins of the device.  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
MB90360  
Series  
VCC  
VSS  
VCC  
VSS  
7. Pull-up/down resistors  
The MB90360 Series does not support internal pull-up/down resistors (Port 2 : built-in pull-up resistors) . Use  
external components where needed.  
8. Crystal oscillator circuit  
Noises around X0 or X1 pin may be possible causes of abnormal operations. Make sure to provide bypass  
capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and  
make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits.  
It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground  
area for stabilizing the operation.  
9. Turning-on sequence of power supply to A/D converter and analog inputs  
Make sure to turn on the A/D converter power supply (AVCC and AVR) and analog inputs (AN0 to AN15) after  
turning-on the digital power supply (VCC) .  
Turn-off the digital power after turning off the A/D converter power supply and analog inputs. In this case, make  
sure that the voltage does not exceed AVRH or AVCC (turning on/off the analog and digital power supplies  
simultaneously is acceptable) .  
14  
MB90360 Series  
10. Connection of unused pins of A/D converter if A/D converter is used  
Connect unused pins of A/D converter to AVCC = VCC, AVSS = AVR = VSS.  
11. Notes on energization  
To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at  
50 µs or more (0.2 V to 2.7 V)  
12. Stabilization of power supply voltage  
A sudden change in the power supply voltage may cause the device to malfunction even within the specified  
VCC power supply voltage operating guarantee range. Therefore, the VCC power supply voltage should be stabi-  
lized.  
For reference, the power supply voltage should be controlled so that VCC ripple variations (peak-to-peak value)  
at commercial frequencies (50 Hz to 60 Hz) fall below 10% of the standard VCC power supply voltage and the  
coefficient of transient fluctuation does not exceed 0.1 V/ms at instantaneous power switching.  
13. Initialization  
Inthedevice, thereareinternalregisterswhichareinitializedonlybyapower-onreset. Toinitializetheseregisters,  
turn on the power again.  
14. Notes on using CAN function  
To use CAN function, please set ’1’ to DIRECT bit of CAN direct mode register (CDMR) .  
If DIRECT bit is set to ’0’ (initial value) , wait states will be performed when accessing CAN registers.  
Note : Please refer to Hardware Manual of MB90360 series for detail of CAN Direct Mode Register.  
15. Flash security function  
The security bit is located in the area of the flash memory.  
If protection code 01H is written in the security bit, the flash memory is in the protected state by security.  
Therefore, please do not write 01H in this address if you do not use the security function.  
Please refer to following table for the address of the security bit.  
Flash memory size  
Address for security bit  
MB90F362  
MB90F362S  
MB90F362T  
MB90F362TS  
MB90F367  
Embedded 512 Kbit Flash Memory  
FF0001H  
MB90F367S  
MB90F367T  
MB90F367TS  
16. Correspondence with +105 °C or more  
If used exceeding TA = +105 °C, please contact Fujitsu for reliability limitations.  
15  
MB90360 Series  
BLOCK DIAGRAMS  
MB90V340A-101/102  
X0, X1  
X0A, X1A*  
Clock  
Controller  
F2MC-16LX  
Core  
RST  
16-bit  
I/O Timer 0  
FRCK0  
Input  
Capture  
IN7 to IN0  
8 channels  
RAM  
30 Kbytes  
Output  
Compare  
8 channels  
OUT7 to OUT0  
FRCK1  
Prescaler  
(5 channels)  
16-bit  
I/O Timer 1  
SOT4 to SOT0  
SCK4 to SCK0  
SIN4 to SIN0  
CAN  
controller  
3 channels  
RX2 to RX0  
TX2 to TX0  
UART  
5 channels  
16-bit  
Reload Timer  
4 channels  
AVCC  
TIN3 to TIN0  
TOT3 to TOT0  
AVSS  
AN23 to AN0  
8/10-bit  
A/D  
converter  
24 channels  
AVRH  
AVRL  
ADTG  
AD15 to AD00  
A23 to A16  
ALE  
RD  
WRL  
WRH  
HRQ  
10-bit  
D/A converter  
2 channels  
External  
Bus  
DA01, DA00  
8/16-bit  
PPG  
16 channels  
HAK  
RDY  
CLK  
PPGF to PPG0  
I2C  
interface  
2 channels  
SDA1, SDA0  
SCL1, SCL0  
INT15 to INT8  
(INT15R to INT8R)  
INT7 to INT0  
DTP/  
External  
Interrupt  
DMA  
Clock  
Monitor  
CKOT  
* : Only for MB90V340A-102  
16  
MB90360 Series  
MB90V340A-103/104  
X0, X1  
X0A, X1A*  
Clock  
Controller/  
monitor  
F2MC-16LX  
Core  
RST  
16-bit  
I/O Timer 0  
FRCK0  
CR  
oscillator  
circuit  
Input  
IN7 to IN0  
OUT7 to OUT0  
FRCK1  
Capture  
8 channels  
RAM  
30 Kbytes  
Output  
Compare  
8 channels  
Prescaler  
(5 channels)  
16-bit  
I/O Timer 1  
SOT4 to SOT0  
SCK4 to SCK0  
SIN4 to SIN0  
CAN  
controller  
3 channels  
RX2 to RX0  
TX2 to TX0  
UART  
5 channels  
16-bit  
Reload Timer  
4 channels  
AVCC  
TIN3 to TIN0  
TOT3 to TOT0  
AVSS  
AN23 to AN0  
8/10-bit  
A/D  
converter  
24 channels  
AVRH  
AVRL  
ADTG  
AD15 to AD00  
A23 to A16  
ALE  
RD  
WRL  
WRH  
HRQ  
10-bit  
D/A converter  
2 channels  
External  
Bus  
DA01, DA00  
8/16-bit  
PPG  
16 channels  
HAK  
RDY  
CLK  
PPGF to PPG0  
I2C  
interface  
2 channels  
SDA1, SDA0  
SCL1, SCL0  
INT15 to INT8  
(INT15R to INT8R)  
INT7 to INT0  
DTP/  
External  
Interrupt  
DMA  
Clock  
Monitor  
CKOT  
* : Only for MB90V340A-104  
17  
MB90360 Series  
MB90F362/T/S/TS, MB90362/T/S/TS, MB90F367/T/S/TS, MB90367/T/S/TS  
X0, X1  
Clock  
Controller/  
monitor *3  
F2MC-16LX  
Core  
X0A, X1A*1  
RST  
CR  
oscillator  
circuit  
Input  
Capture  
4 channels  
IN0 to IN3  
FRCK0  
Low voltage detection *2  
16-bit  
I/O  
Timer 0  
CPU operation detection *2  
RAM  
3 Kbytes  
CAN  
RX1  
TX1  
controller  
1 channels  
ROM  
64 Kbytes  
16-bit  
Reload  
TIN2, TIN3  
TOT2, TOT3  
Timer  
2 channels  
Prescaler  
(2 channels)  
SOT0, SOT1  
SCK0, SCK1  
SIN0, SIN1  
UART  
2 channels  
AVCC  
AVSS  
AN15 to AN0  
8/10-bit  
A/D  
converter  
16 channels  
AVR  
ADTG  
INT8, INT9R  
INT10, INT11  
INT12R, INT13  
INT14R, INT15R  
DTP/  
External  
Interrupt  
8/16-bit  
PPG  
2 channels  
PPGF(E), PPGD(C),  
PPGC(D), PPGE(F)  
*1 : Only for devices without S-suffix  
*2 : Only for devices with T-suffix  
*3 : CR oscillation circuit/clock monitor correspond to MB90F367/T/S/TS and MB90367/T/S/TS only.  
18  
MB90360 Series  
MEMORY MAP  
MB90F362/T/S/TS  
MB90362/T/S/TS  
MB90F367/T/S/TS  
MB90367/T/S/TS  
MB90V340A-101/102/103/104  
FFFFFFH  
FFFFFFH  
ROM (FF bank)  
ROM (FE bank)  
ROM (FD bank)  
ROM (FC bank)  
ROM (FB bank)  
ROM (FA bank)  
ROM (F9 bank)  
ROM (F8 bank)  
ROM (FF bank)  
FF0000H  
FEFFFFH  
FF0000H  
FEFFFFH  
FE0000H  
FDFFFFH  
FD0000H  
FCFFFFH  
FC0000H  
FBFFFFH  
FB0000H  
FAFFFFH  
FA0000H  
F9FFFFH  
F90000H  
F8FFFFH  
F80000H  
00FFFFH  
010000H  
00FFFFH  
ROM (image  
of FF bank)  
ROM (image  
of FF bank)  
008000H  
007FFFH  
008000H  
007FFFH  
Peripheral  
Peripheral  
007900H  
007900H  
0078FFH  
RAM 30 Kbytes  
000CFFH  
000100H  
RAM 3 Kbytes  
Peripheral  
000100H  
0000FFH  
0000F0H  
0000EFH  
000000H  
0000EFH  
000000H  
Peripheral  
: No access  
Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C  
compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referred without using  
the far specification in the pointer declaration.  
For example, an attempt to access 00C000H accesses the value at FFC000H in ROM.  
The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00.  
The image between FF8000H and FFFFFFH is visible in bank 00, while the image between FF0000H and  
FF7FFFH is visible only in bank FF.  
19  
MB90360 Series  
I/O MAP  
(Address : 000000H-0000FFH)  
Abbrevia-  
tion  
Address  
Register  
Access  
Resource name Initial value  
000000H,  
000001H  
Reserved  
000002H Port 2 Data Register  
000003H Reserved  
PDR2  
R/W  
Port 2  
XXXXXXXXB  
000004H Port 4 Data Register  
000005H Port 5 Data Register  
000006H Port 6 Data Register  
000007H Reserved  
PDR4  
PDR5  
PDR6  
R/W  
R/W  
R/W  
Port 4  
Port 5  
Port 6  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
000008H Port 8 Data Register  
PDR8  
R/W  
Port 8  
XXXXXXXXB  
000009H,  
Reserved  
00000AH  
00000BH Port 5 Analog Input Enable Register  
00000CH Port 6 Analog Input Enable Register  
00000DH Reserved  
ADER5  
ADER6  
R/W  
R/W  
Port 5, A/D  
Port 6, A/D  
11111111B  
11111111B  
00000EH Input Level Select Register  
00000FH Input Level Select Register  
ILSR0  
ILSR1  
R/W  
R/W  
Ports  
Ports  
XXXX0XXXB  
XXXXXXXXB  
000010H,  
Reserved  
000011H  
000012H Port 2 Direction Register  
000013H Reserved  
DDR2  
R/W  
Port 2  
00000000B  
000014H Port 4 Direction Register  
000015H Port 5 Direction Register  
000016H Port 6 Direction Register  
000017H Reserved  
DDR4  
DDR5  
DDR6  
R/W  
R/W  
R/W  
Port 4  
Port 5  
Port 6  
XXX00000B  
00000000B  
00000000B  
000018H Port 8 Direction Register  
000019H Reserved  
DDR8  
DDRA  
R/W  
W
Port 8  
Port A  
000000X0B  
00001AH Port A Direction Register  
XXX00XXXB  
00001BH  
to  
Reserved  
00001DH  
00001EH Port 2 Pull-up Control Register  
00001FH Reserved  
PUCR2  
R/W  
Port 2  
00000000B  
(Continued)  
20  
MB90360 Series  
Abbrevia-  
tion  
Address  
Register  
Access  
Resource name Initial value  
000020H Serial Mode Register 0  
000021H Serial Control Register 0  
SMR0  
SCR0  
W, R/W  
W, R/W  
00000000B  
00000000B  
RDR0/  
TDR0  
000022H Reception/Transmission Data Register 0  
000023H Serial Status Register 0  
R/W  
00000000B  
SSR0  
R, R/W  
00001000B  
UART0  
Extended Communication Control  
R, W,  
R/W  
000024H  
ECCR0  
000000XXB  
Register 0  
000025H Extended Status/Control Register 0  
000026H Baud Rate Generator Register 00  
000027H Baud Rate Generator Register 01  
000028H Serial Mode Register 1  
ESCR0  
BGR00  
BGR01  
SMR1  
R/W  
00000100B  
00000000B  
00000000B  
00000000B  
00000000B  
R/W, R  
R/W, R  
W, R/W  
W, R/W  
000029H Serial Control Register 1  
SCR1  
RDR1/  
TDR1  
00002AH Reception/Transmission Data Register 1  
R/W  
00000000B  
00002BH Serial Status Register 1  
SSR1  
R, R/W  
00001000B  
UART1  
Extended Communication Control  
R, W,  
R/W  
00002CH  
ECCR1  
000000XXB  
Register 1  
00002DH Extended Status/Control Register 1  
00002EH Baud Rate Generator Register 10  
00002FH Baud Rate Generator Register 11  
000030H  
ESCR1  
BGR10  
BGR11  
R/W  
00000100B  
00000000B  
00000000B  
R/W, R  
R/W, R  
to  
Reserved  
00003AH  
Address Match  
00000000B  
00003BH Address Detect Control Register 1  
PACSR1  
R/W  
Detection 1  
00003CH  
to  
Reserved  
000047H  
000048H PPG C Operation Mode Control Register PPGCC  
000049H PPG D Operation Mode Control Register PPGCD  
PPG C/PPG D Count Clock Select  
Register  
00004BH Reserved  
W, R/W  
W, R/W  
0X000XX1B  
0X000001B  
16-bit PPG C/D  
00004AH  
PPGCD  
R/W  
000000X0B  
00004CH PPG E Operation Mode Control Register PPGCE  
00004DH PPG F Operation Mode Control Register PPGCF  
PPG E/PPG F Count Clock Select  
Register  
00004FH Reserved  
W, R/W  
W, R/W  
0X000XX1B  
0X000001B  
16-bit PPG E/F  
00004EH  
PPGEF  
R/W  
000000X0B  
(Continued)  
21  
MB90360 Series  
Abbrevia-  
tion  
Address  
Register  
Access  
Resource name  
Initial value  
000050H Input Capture Control Status 0/1  
000051H Input Capture Edge 0/1  
000052H Input Capture Control Status 2/3  
000053H Input Capture Edge 2/3  
000054H  
ICS01  
ICE01  
ICS23  
ICE23  
R/W  
R/W, R  
R/W  
R
00000000B  
XXX0X0XXB  
00000000B  
Input Capture 0/1  
Input Capture 2/3  
XXXXXXXXB  
to  
Reserved  
000063H  
000064H Timer Control Status 2  
000065H Timer Control Status 2  
000066H Timer Control Status 3  
000067H Timer Control Status 3  
000068H A/D Control Status 0  
000069H A/D Control Status 1  
00006AH A/D Data 0  
TMCSR2  
TMCSR2  
TMCSR3  
TMCSR3  
ADCS0  
ADCS1  
ADCR0  
ADCR1  
ADSR0  
ADSR1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W, W  
R
00000000B  
XXXX0000B  
00000000B  
XXXX0000B  
000XXXX0B  
0000000XB  
00000000B  
XXXXXX00B  
00000000B  
00000000B  
16-bit Reload Timer  
2
16-bit Reload Timer  
3
A/D Converter  
00006BH A/D Data 1  
R
00006CH ADC Setting 0  
R/W  
R/W  
00006DH ADC Setting 1  
Low voltage/CPU  
R/W, W operation detection  
reset  
Low Voltage/CPU Operation Detection  
Reset Control Register  
00006EH  
LVRC  
00111000B  
00006FH ROM Mirror Function Select  
000070H  
ROMM  
W
ROM Mirror  
XXXXXXX1B  
to  
Reserved  
00007FH  
000080H  
to  
Reserved for CAN Interface 1. Refer to “CAN CONTROLLERS”  
00008FH  
000090H  
to  
Reserved  
00009DH  
Address Match  
Detection 0  
00009EH Address Detect Control Register 0  
00009FH Delayed Interrupt/Release Register  
PACSR0  
DIRR  
R/W  
R/W  
00000000B  
Delayed Interrupt  
generation module  
XXXXXXX0B  
Low-Power  
consumption  
Control Circuit  
Low-power Consumption Mode  
0000A0H  
LPMCR  
CKSCR  
W, R/W  
R, R/W  
00011000B  
Control Register  
Low-Power  
consumption  
Control Circuit  
0000A1H Clock Selection Register  
11111100B  
(Continued)  
22  
MB90360 Series  
Abbrevia-  
tion  
Address  
Register  
Access  
Resource name  
Initial value  
0000A2H  
to  
Reserved  
0000A7H  
0000A8H Watchdog Control Register  
0000A9H Timebase Timer Control Register  
0000AAH Watch Timer Control register  
0000ABH  
WDTC  
TBTC  
WTC  
R, W  
Watchdog Timer  
Timebase Timer  
Watch Timer  
XXXXX111B  
1XX00100B  
1X001000B  
W, R/W  
R, R/W  
to  
Reserved  
0000ADH  
Flash Control Status  
0000AEH (Flash Devices only.  
Otherwise reserved)  
FMCS  
R, R/W  
Flash Memory  
000X0000B  
0000AFH Reserved  
0000B0H Interrupt Control Register 00  
0000B1H Interrupt Control Register 01  
0000B2H Interrupt Control Register 02  
0000B3H Interrupt Control Register 03  
0000B4H Interrupt Control Register 04  
0000B5H Interrupt Control Register 05  
0000B6H Interrupt Control Register 06  
0000B7H Interrupt Control Register 07  
0000B8H Interrupt Control Register 08  
0000B9H Interrupt Control Register 09  
0000BAH Interrupt Control Register 10  
0000BBH Interrupt Control Register 11  
0000BCH Interrupt Control Register 12  
0000BDH Interrupt Control Register 13  
0000BEH Interrupt Control Register 14  
0000BFH Interrupt Control Register 15  
0000C0H  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
W, R/W  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
00000111B  
Interrupt Control  
to  
Reserved  
0000C9H  
0000CAH External Interrupt Enable 1  
0000CBH External Interrupt Source 1  
ENIR1  
EIRR1  
R/W  
R/W  
00000000B  
XXXXXXXXB  
00000000B  
00000000B  
00000000B  
(Continued)  
0000CCH  
External Interrupt 1  
Detection Level Setting 1  
0000CDH  
ELVR1  
EISSR  
R/W  
R/W  
0000CEH External Interrupt Source Select  
23  
MB90360 Series  
(Continued)  
Abbrevia-  
tion  
Address  
Register  
Access  
Resource name  
Initial value  
0000CFH PLL/Subclock Control Register  
0000D0H  
PSCCR  
W
PLL  
XXXX0000B  
to  
Reserved  
0000FFH  
24  
MB90360 Series  
(Address : 7900H-7FFFH)  
Address  
Abbrevia-  
tion  
Register  
Access  
Resource name  
Initial value  
7900H  
to  
Reserved  
7917H  
7918H  
7919H  
Reload Register LC  
Reload Register HC  
PRLLC  
PRLHC  
PRLLD  
PRLHD  
PRLLE  
PRLHE  
PRLLF  
PRLHF  
IPCP0  
IPCP0  
IPCP1  
IPCP1  
IPCP2  
IPCP2  
IPCP3  
IPCP3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
16-bit PPG C/D  
16-bit PPG E/F  
Input Capture 0/1  
Input Capture 2/3  
791AH Reload Register LD  
791BH Reload Register HD  
791CH Reload Register LE  
791DH Reload Register HE  
791EH Reload Register LF  
791FH Reload Register HF  
7920H  
7921H  
7922H  
7923H  
7924H  
7925H  
7926H  
7927H  
Input Capture 0  
Input Capture 0  
Input Capture 1  
Input Capture 1  
Input Capture 2  
Input Capture 2  
Input Capture 3  
Input Capture 3  
R
R
R
R
R
R
R
7928H  
to  
Reserved  
793FH  
7940H  
7941H  
7942H  
7943H  
Timer Data 0  
TCDT0  
TCDT0  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
0XXXXXXXB  
Timer Data 0  
I/O Timer 0  
Timer Control Status 0  
Timer Control Status 0  
TCCSL0  
TCCSH0  
7944H  
to  
Reserved  
794BH  
794CH  
794DH  
794EH  
794FH  
R/W  
R/W  
R/W  
R/W  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
TMR2/  
TMRLR2  
16-bit Reload  
Timer 2  
Timer 2/Reload 2  
Timer 3/Reload 3  
TMR3/  
TMRLR3  
16-bit Reload  
Timer 3  
7950H  
to  
Reserved  
795FH  
(Continued)  
25  
MB90360 Series  
Abbrevia-  
tion  
Address  
Register  
Access  
Resource name  
Initial value  
Clock Monitor Function Control  
Register  
7960H  
CSVCR  
R, R/W  
Clock monitor  
00011100B  
7961H  
to  
Reserved  
796DH  
CAN Direct Mode Register  
(MB90V340 only)  
796EH  
CDMR  
R/W  
CAN clock sync  
XXXXXXX0B  
796FH  
to  
Reserved  
79DFH  
79E0H Detect Address Setting 0  
79E1H Detect Address Setting 0  
79E2H Detect Address Setting 0  
79E3H Detect Address Setting 1  
79E4H Detect Address Setting 1  
79E5H Detect Address Setting 1  
79E6H Detect Address Setting 2  
79E7H Detect Address Setting 2  
79E8H Detect Address Setting 2  
79E9H  
PADR0  
PADR0  
PADR0  
PADR1  
PADR1  
PADR1  
PADR2  
PADR2  
PADR2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
Address Match  
Detection 0  
to  
Reserved  
79EFH  
79F0H Detect Address Setting 3  
79F1H Detect Address Setting 3  
79F2H Detect Address Setting 3  
79F3H Detect Address Setting 4  
79F4H Detect Address Setting 4  
79F5H Detect Address Setting 4  
79F6H Detect Address Setting 5  
79F7H Detect Address Setting 5  
79F8H Detect Address Setting 5  
79F9H  
PADR3  
PADR3  
PADR3  
PADR4  
PADR4  
PADR4  
PADR5  
PADR5  
PADR5  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
Address Match  
Detection 1  
to  
Reserved  
7BFFH  
7C00H  
to  
Reserved for CAN Interface 1. Refer to “CAN CONTROLLERS”  
7CFFH  
(Continued)  
26  
MB90360 Series  
(Continued)  
Abbrevia-  
tion  
Address  
Register  
Access  
Resource name  
Initial value  
7D00H  
to  
Reserved for CAN Interface 1. Refer to “CAN CONTROLLERS”  
7DFFH  
7E00H  
to  
Reserved  
7FFFH  
Notes : Initial value of “X” represents unknown value.  
Any write access to reserved addresses in I/O map should not be performed. A read access to reserved  
addresses results in reading “X”.  
27  
MB90360 Series  
CAN CONTROLLERS  
The CAN controller has the following features :  
• Conforms to CAN Specification Version 2.0 Part A and B  
Supports transmission/reception in standard frame and extended frame formats  
• Supports transmitting of data frames by receiving remote frames  
• 16 transmitting/receiving message buffers  
29-bit ID and 8-byte data  
Multi-level message buffer configuration  
• Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message  
buffer as ID acceptance mask  
2 acceptance mask registers in either standard frame format or extended frame formats  
• Bit rate programmable from 10 Kbps/s to 2 Mbps/s (when input clock is at 16 MHz)  
List of Control Registers (1)  
Address  
Register  
Abbreviation  
BVALR  
TREQR  
TCANR  
TCR  
Access  
R/W  
R/W  
W
Initial Value  
CAN1  
000080H  
000081H  
000082H  
000083H  
000084H  
000085H  
000086H  
000087H  
000088H  
000089H  
00008AH  
00008BH  
00008CH  
00008DH  
00008EH  
00008FH  
Message buffer  
valid register  
00000000B  
00000000B  
Transmit request  
register  
00000000B  
00000000B  
Transmit cancel  
register  
00000000B  
00000000B  
Transmission  
complete register  
00000000B  
00000000B  
R/W  
R/W  
R/W  
R/W  
R/W  
Receive complete  
register  
00000000B  
00000000B  
RCR  
Remote request  
receiving register  
00000000B  
00000000B  
RRTRR  
ROVRR  
RIER  
Receive overrun  
register  
00000000B  
00000000B  
Reception interrupt  
enable register  
00000000B  
00000000B  
28  
MB90360 Series  
List of Control Registers (2)  
Abbreviation  
Address  
CAN1  
Register  
Access  
Initial Value  
007D00H  
007D01H  
007D02H  
007D03H  
007D04H  
007D05H  
007D06H  
007D07H  
007D08H  
007D09H  
007D0AH  
007D0BH  
007D0CH  
Control status  
register  
R/W, W  
R/W, R  
0XXXX0X1B  
00XXX000B  
CSR  
LEIR  
Last event  
indicator register  
000X0000B  
XXXXXXXXB  
R/W  
R
Receive and transmit  
error counter  
00000000B  
00000000B  
RTEC  
BTR  
Bit timing  
register  
11111111B  
X1111111B  
R/W  
R/W  
R/W  
XXXXXXXXB  
XXXXXXXXB  
IDE register  
IDER  
Transmit RTR  
register  
00000000B  
00000000B  
TRTRR  
Remote frame  
receive waiting  
register  
XXXXXXXXB  
XXXXXXXXB  
RFWTR  
TIER  
R/W  
R/W  
007D0DH  
007D0EH  
007D0FH  
007D10H  
007D11H  
007D12H  
007D13H  
007D14H  
007D15H  
007D16H  
007D17H  
007D18H  
007D19H  
007D1AH  
007D1BH  
Transmit interrupt  
enable register  
00000000B  
00000000B  
XXXXXXXXB  
XXXXXXXXB  
Acceptance mask  
select register  
AMSR  
AMR0  
AMR1  
R/W  
R/W  
R/W  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
Acceptance mask  
register 0  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
Acceptance mask  
register 1  
XXXXXXXXB  
XXXXXXXXB  
29  
MB90360 Series  
List of Message Buffers (ID Registers) (1)  
Address  
Register  
Abbreviation  
Access  
Initial Value  
CAN1  
007C00H  
to  
007C1FH  
XXXXXXXXB  
to  
XXXXXXXXB  
General-purpose RAM  
R/W  
007C20H  
007C21H  
007C22H  
007C23H  
007C24H  
007C25H  
007C26H  
007C27H  
007C28H  
007C29H  
007C2AH  
007C2BH  
007C2CH  
007C2DH  
007C2EH  
007C2FH  
007C30H  
007C31H  
007C32H  
007C33H  
007C34H  
007C35H  
007C36H  
007C37H  
007C38H  
007C39H  
007C3AH  
007C3BH  
007C3CH  
007C3DH  
007C3EH  
007C3FH  
XXXXXXXXB  
XXXXXXXXB  
ID register 0  
ID register 1  
ID register 2  
ID register 3  
ID register 4  
ID register 5  
ID register 6  
ID register 7  
IDR0  
IDR1  
IDR2  
IDR3  
IDR4  
IDR5  
IDR6  
IDR7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
30  
MB90360 Series  
List of Message Buffers (ID Registers) (2)  
Address  
CAN1  
Register  
Abbreviation  
Access  
Initial Value  
007C40H  
007C41H  
007C42H  
007C43H  
007C44H  
007C45H  
007C46H  
007C47H  
007C48H  
007C49H  
007C4AH  
007C4BH  
007C4CH  
007C4DH  
007C4EH  
007C4FH  
007C50H  
007C51H  
007C52H  
007C53H  
007C54H  
007C55H  
007C56H  
007C57H  
007C58H  
007C59H  
007C5AH  
007C5BH  
007C5CH  
007C5DH  
007C5EH  
007C5FH  
XXXXXXXXB  
XXXXXXXXB  
ID register 8  
ID register 9  
ID register 10  
ID register 11  
ID register 12  
ID register 13  
ID register 14  
ID register 15  
IDR8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
IDR9  
IDR10  
IDR11  
IDR12  
IDR13  
IDR14  
IDR15  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
31  
MB90360 Series  
List of Message Buffers (DLC Registers and Data Registers) (1)  
Address  
CAN1  
Register  
Abbreviation  
DLCR0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Initial Value  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
007C60H  
007C61H  
007C62H  
007C63H  
007C64H  
007C65H  
007C66H  
007C67H  
007C68H  
007C69H  
007C6AH  
007C6BH  
007C6CH  
007C6DH  
007C6EH  
007C6FH  
007C70H  
007C71H  
007C72H  
007C73H  
007C74H  
007C75H  
007C76H  
007C77H  
007C78H  
007C79H  
007C7AH  
007C7BH  
007C7CH  
007C7DH  
007C7EH  
007C7FH  
DLC register 0  
DLC register 1  
DLC register 2  
DLC register 3  
DLC register 4  
DLC register 5  
DLC register 6  
DLC register 7  
DLC register 8  
DLC register 9  
DLC register 10  
DLC register 11  
DLC register 12  
DLC register 13  
DLC register 14  
DLC register 15  
DLCR1  
DLCR2  
DLCR3  
DLCR4  
DLCR5  
DLCR6  
DLCR7  
DLCR8  
DLCR9  
DLCR10  
DLCR11  
DLCR12  
DLCR13  
DLCR14  
DLCR15  
32  
MB90360 Series  
List of Message Buffers (DLC Registers and Data Registers) (2)  
Address  
CAN1  
Register  
Abbreviation  
Access  
Initial Value  
007C80H  
to  
007C87H  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 0  
(8 bytes)  
DTR0  
R/W  
007C88H  
to  
007C8FH  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 1  
(8 bytes)  
DTR1  
DTR2  
DTR3  
DTR4  
DTR5  
DTR6  
DTR7  
DTR8  
DTR9  
DTR10  
DTR11  
DTR12  
DTR13  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
007C90H  
to  
007C97H  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 2  
(8 bytes)  
007C98H  
to  
007C9FH  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 3  
(8 bytes)  
007CA0H  
to  
007CA7H  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 4  
(8 bytes)  
007CA8H  
to  
007CAFH  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 5  
(8 bytes)  
007CB0H  
to  
007CB7H  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 6  
(8 bytes)  
007CB8H  
to  
007CBFH  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 7  
(8 bytes)  
007CC0H  
to  
007CC7H  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 8  
(8 bytes)  
007CC8H  
to  
007CCFH  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 9  
(8 bytes)  
007CD0H  
to  
007CD7H  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 10  
(8 bytes)  
007CD8H  
to  
007CDFH  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 11  
(8 bytes)  
007CE0H  
to  
007CE7H  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 12  
(8 bytes)  
007CE8H  
to  
007CEFH  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 13  
(8 bytes)  
33  
MB90360 Series  
List of Message Buffers (DLC Registers and Data Registers) (3)  
Address  
CAN1  
Register  
Abbreviation  
Access  
Initial Value  
007CF0H  
to  
007CF7H  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 14  
(8 bytes)  
DTR14  
R/W  
007CF8H  
to  
007CFFH  
XXXXXXXXB  
to  
XXXXXXXXB  
Data register 15  
(8 bytes)  
DTR15  
R/W  
34  
MB90360 Series  
INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER  
Interrupt control  
Interrupt vector  
Number Address  
EI2OS  
corresponding  
register  
Interrupt cause  
Number  
Address  
Reset  
N
N
#08  
#09  
#10  
#11  
#12  
#13  
#14  
#15  
#16  
#17  
#18  
#19  
#20  
#21  
#22  
#23  
#24  
#25  
#26  
#27  
#28  
#29  
#30  
#31  
#32  
#33  
#34  
#35  
#36  
#37  
#38  
FFFFDCH  
FFFFD8H  
FFFFD4H  
FFFFD0H  
FFFFCCH  
FFFFC8H  
FFFFC4H  
FFFFC0H  
FFFFBCH  
FFFFB8H  
FFFFB4H  
FFFFB0H  
FFFFACH  
FFFFA8H  
FFFFA4H  
FFFFA0H  
FFFF9CH  
FFFF98H  
FFFF94H  
FFFF90H  
FFFF8CH  
FFFF88H  
FFFF84H  
FFFF80H  
FFFF7CH  
FFFF78H  
FFFF74H  
FFFF70H  
FFFF6CH  
FFFF68H  
FFFF64H  
INT9 instruction  
Exception  
N
Reserved  
N
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
0000B0H  
0000B1H  
0000B2H  
0000B3H  
0000B4H  
0000B5H  
0000B6H  
0000B7H  
0000B8H  
0000B9H  
0000BAH  
0000BBH  
0000BCH  
Reserved  
N
CAN 1 reception  
CAN 1 transmission/node status  
Reserved  
N
N
N
Reserved  
N
Reserved  
N
Reserved  
N
16-bit reload timer 2  
16-bit reload timer 3  
Reserved  
Y1  
Y1  
N
Reserved  
N
PPG C/D  
N
PPG E/F  
N
Timebase timer  
External interrupt 8 to 11  
Watch timer  
N
Y1  
N
External interrupt 12 to 15  
A/D converter  
I/O timer 0  
Y1  
Y1  
N
Reserved  
N
Reserved  
N
Input capture 0 to 3  
Reserved  
Y1  
N
UART 0 reception  
UART 0 transmission  
UART 1 reception  
UART 1 transmission  
Y2  
Y1  
Y2  
Y1  
0000BDH  
(Continued)  
35  
MB90360 Series  
(Continued)  
Interrupt control  
register  
Interrupt vector  
Number Address  
EI2OS  
corresponding  
Interrupt cause  
Number  
Address  
Reserved  
N
N
N
N
#39  
#40  
#41  
#42  
FFFF60H  
FFFF5CH  
FFFF58H  
FFFF54H  
ICR14  
0000BEH  
Reserved  
Flash memory  
ICR15  
0000BFH  
Delayed interrupt generation module  
Y1 : Usable  
Y2 : Usable, with EI2OS stop function  
N : Unusable  
Notes : The peripheral resources sharing the ICR register have the same interrupt level.  
When 2 peripheral resources share the ICR register, only one can use extended intelligent I/O service  
at a time.  
When either of the 2 peripheral resources sharing the ICR register specifies extended intelligent I/O  
service, the other one cannot use interrupts.  
36  
MB90360 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
VCC  
AVCC  
AVR  
VI  
VSS 0.3 VSS + 6.0  
VSS 0.3 VSS + 6.0  
VSS 0.3 VSS + 6.0  
VSS 0.3 VSS + 6.0  
VSS 0.3 VSS + 6.0  
V
V
V
V
V
Power supply voltage*1  
VCC = AVCC*2  
AVCC AVR*2  
Input voltage*1  
*3  
*3  
Output voltage*1  
VO  
Maximum clamp current  
Total Maximum clamp current  
ICLAMP  
Σ|ICLAMP|  
IOL1  
2.0  
+2.0  
40  
mA *6  
mA *6  
mA *4  
mA *5  
mA *4  
mA *5  
mA *4  
mA *5  
15  
“L” level maximum output current  
“L” level average output current  
IOL2  
40  
IOLAV1  
IOLAV2  
ΣIOL1  
4
30  
125  
160  
“L” level maximum overall output current  
ΣIOL2  
ΣIOLAV1  
ΣIOLAV2  
ΣIOLAV1  
ΣIOLAV2  
IOH1  
*4 +105 °C < TA ≤ +125 °C  
40  
40  
mA  
mA  
*5 +105 °C < TA ≤ +125 °C  
*4 40 °C TA ≤ +105 °C  
*5 40 °C TA ≤ +105 °C  
“L” level average overall output current  
15  
40  
4  
mA *4  
mA *5  
mA *4  
mA *5  
mA *4  
mA *5  
“H” level maximum output current  
“H” level average output current  
IOH2  
IOHAV1  
IOHAV2  
ΣIOH1  
ΣIOH2  
ΣIOHAV1  
ΣIOHAV2  
ΣIOHAV1  
ΣIOHAV2  
30  
125  
160  
“H” level maximum overall output current  
*4 +105 °C < TA ≤ +125 °C  
40  
mA  
mA  
*5 +105 °C < TA ≤ +125 °C  
*4 40 °C TA ≤ +105 °C  
*5 40 °C TA ≤ +105 °C  
“H” level average overall output current  
Power consumption  
40  
MB90F362/T/S/TS,  
MB90F367/T/S/TS  
PD  
300  
mW  
40  
40  
55  
+105  
+125  
+150  
°C  
Operating temperature  
Storage temperature  
TA  
°C *7  
°C  
TSTG  
(Continued)  
37  
MB90360 Series  
(Continued)  
*1 : This parameter is based on VSS = AVSS = 0 V.  
*2 : Set AVCC and VCC to the same voltage. Make sure that AVCC does not exceed VCC and that the voltage at the  
analog inputs does not exceed AVCC when the power is switched on.  
*3 : VI and VO should not exceed VCC + 0.3 V. VI should not exceed the specified ratings. However, if the maximun  
current to/from an input is limited by some means with external components, the ICLAMP rating supersedes the  
VI rating.  
*4 : Applicable to pins : P24 to P27, P40 to P44, P50 to P57, P60 to P67, P80, P82 to P87  
*5 : Applicable to pins : P20 to P23  
*6 : Applicable to pins : P20 to P27, P40 to P44, P50 to P57, P60 to P67, P80, P82 to P87  
Use within recommended operating conditions.  
Use at DC voltage (current) .  
The +B signal should always be applied a limiting resistance placed between the +B signal and the  
microcontroller.  
The value of the limiting resistance should be set so that when the +B signal is applied the input current to  
the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.  
Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input  
potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect  
other devices.  
Note that if a +B signal is inputted when the microcontroller power supply is off (not fixed at 0 V) , the power  
supply is provided from the pins, so that incomplete operation may result.  
Note that if the +B input is applied during power-on, the power supply is provided from the pins and the  
resulting power supply voltage may not be sufficient to operate the power-on reset.  
Care must be taken not to leave the +B input pin open.  
Sample recommended circuits :  
Input/output equivalent circuits  
Protective diode  
VCC  
Limiting  
Pch  
resistance  
+B input (0 V to 16 V)  
Nch  
R
*7 : If used exceeding TA = +105 °C, please contact Fujitsu for reliability limitations.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
38  
MB90360 Series  
2. Recommended Conditions  
(VSS = AVSS = 0 V)  
Remarks  
Value  
Typ  
Parameter  
Symbol  
Unit  
Min  
Max  
4.0  
5.0  
5.5  
V
Under normal operation  
Under normal operation when not  
using the A/D converter and not  
Flash programming.  
VCC,  
AVCC  
Power supply voltage  
3.5  
3.0  
5.0  
5.5  
5.5  
V
V
Maintains RAM data in stop mode  
Use a ceramic capacitor or capac-  
itor of better AC characteristics.  
Bypass capacitor at the VCC pin  
should be greater than this capac-  
itor.  
Smooth capacitor  
CS  
TA  
0.1  
1.0  
µF  
40  
40  
+105  
+125  
°C  
°C  
Operating temperature  
*
* : If used exceeding TA = +105 °C, please contact Fujitsu for reliability limitations.  
C Pin Connection Diagram  
C
CS  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
39  
MB90360 Series  
3. DC Characteristics  
Sym-  
(TA = −40 °C to +125 °C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = AVSS = 0 V)  
Value  
Parameter  
Pin  
Condition  
Unit  
Remarks  
bol  
Min  
Typ  
Max  
Pin inputs if CMOS  
hysteresis input levels  
are selected (except  
P82, P85)  
VIHS  
0.8 VCC  
VCC + 0.3  
V
Pin inputs if  
VIHA  
0.8 VCC  
0.7 VCC  
VCC + 0.3  
VCC + 0.3  
V
V
Automotive input  
levels are selected  
Input “H”  
voltage  
P82, P85  
inputs if CMOS input  
levels are selected  
VIHS  
RST input pin (CMOS  
hysteresis)  
VIHR  
VIHM  
0.8 VCC  
VCC + 0.3  
VCC + 0.3  
V
V
VCC 0.3  
MD input pin  
Pin inputs if CMOS  
hysteresis input levels  
are selected (except  
P82, P85)  
VILS  
VSS 0.3  
0.2 VCC  
V
Pin inputs if  
VILA  
VSS 0.3  
VSS 0.3  
0.5 VCC  
0.3 VCC  
V
V
Automotive input  
levels are selected  
Input “L”  
voltage  
P82, P85  
inputs if CMOS input  
levels are selected  
VILS  
RST input pin (CMOS  
hysteresis)  
VILR  
VILM  
VOH  
VSS 0.3  
VSS 0.3  
VCC 0.5  
0.2 VCC  
VSS + 0.3  
V
V
V
MD input pin  
Output “H”  
voltage  
Other than VCC = 4.5 V,  
P20 to P23 IOH = −4.0 mA  
Output “H”  
voltage  
VCC = 4.5 V,  
VOHI P20 to P23  
VCC 0.5  
50  
50  
0.4  
0.4  
1
V
V
IOH = −14.0 mA  
Output “L”  
voltage  
Other than VCC = 4.5 V,  
P20 to P23 IOL = 4.0 mA  
VOL  
1  
25  
25  
Output “L”  
voltage  
VCC = 4.5 V,  
IOL = 20.0 mA  
VOLI P20 to P23  
V
Input leak  
current  
VCC = 5.5 V, VSS  
< VI < VCC  
IIL  
µA  
kΩ  
kΩ  
Pull-up  
resistance  
P20 to P27,  
RST  
RUP  
100  
100  
Pull-down  
resistance  
Except Flash  
devices  
RDOWN  
MD2  
(Continued)  
40  
MB90360 Series  
(TA = −40 °C to +125 °C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = AVSS = 0 V)  
Value  
Sym-  
bol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min Typ Max  
VCC = 5.0 V,  
Internal frequency : 24 MHz,  
At normal operation.  
35 45 mA  
VCC = 5.0 V,  
Internal frequency : 24 MHz,  
At writing FLASH memory.  
ICC  
50 60 mA Flash devices  
50 60 mA Flash devices  
12 20 mA  
VCC = 5.0 V,  
Internal frequency : 24 MHz,  
At erasing FLASH memory.  
VCC = 5.0 V,  
Internal frequency : 24 MHz,  
At sleep mode.  
ICCS  
VCC = 5.0 V,  
Internal frequency : 2 MHz,  
At main timer mode  
0.3 0.8  
0.4 1.0  
Without T model  
With T model  
ICTS  
mA  
mA  
VCC = 5.0 V,  
Internal frequency : 24 MHz,  
At PLL timer mode,  
ICTSPLL6  
4
7
External frequency = 4 MHz  
Stopping clock  
monitor function  
MB90F362, MB90F367,  
MB90362, MB90367  
40 100  
60 150  
90 200  
110 250  
10 50  
30 100  
60 150  
80 200  
Power supply  
current*  
VCC  
VCC = 5.0 V  
Operating clock  
Internalfrequency:  
monitor function  
MB90F367, MB90367  
ICCL  
8 kHz,  
At sub operation,  
TA = +25°C  
µA  
µA  
µA  
Stopping clock  
monitor function  
MB90F362T, MB90F367T,  
MB90362T, MB90367T  
Operating clock  
monitor function  
MB90F367T, MB90367T  
Stopping clock  
monitor function  
MB90F362, MB90F367,  
MB90362, MB90367  
VCC = 5.0 V  
Operating clock  
Internalfrequency:  
monitor function  
MB90F367, MB90367  
ICCLS  
8 kHz,  
At sub sleep,  
TA = +25°C  
Stopping clock  
monitor function  
MB90F362T, MB90F367T,  
MB90362T, MB90367T  
Operating clock  
monitor function  
MB90F367T, MB90367T  
Stopping clock  
monitor function  
MB90F362, MB90F367,  
MB90362, MB90367  
8
30  
VCC = 5.0 V  
Operating clock  
Internalfrequency:  
monitor function  
30 70  
60 130  
80 170  
MB90F367, MB90367  
ICCT  
8 kHz,  
At watch mode,  
TA = +25°C  
Stopping clock  
monitor function  
MB90F362T, MB90F367T,  
MB90362T, MB90367T  
Operating clock  
monitor function  
MB90F367T, MB90367T  
5
25  
µA Without T model  
VCC = 5.0 V,  
At stop mode, TA = +25°C  
ICCH  
50 130 µA With T model  
* : The power supply current is measured with an external clock.  
(Continued)  
41  
MB90360 Series  
(Continued)  
(TA = −40 °C to +125 °C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = AVSS = 0 V)  
Value  
Sym-  
bol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min Typ Max  
Other than  
AVCC, AVSS,  
AVR, VCC, VSS,  
C
Input capacity  
CIN  
5
15  
pF  
42  
MB90360 Series  
4. AC Characteristics  
(1) Clock Timing  
(TA = −40 °C to +125 °C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = AVSS = 0 V)  
Value  
Parameter  
Symbol  
Pin  
Unit  
Remarks  
Min  
Typ  
Max  
1/2 when PLL stops,  
When using an oscillation circuit  
3
16  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
PLL × 1,  
When using an oscillation circuit  
4
4
4
4
4
3
4
4
4
4
4
16  
12  
8
PLL × 2,  
When using an oscillation circuit  
X0, X1  
PLL × 3,  
When using an oscillation circuit  
PLL × 4,  
When using an oscillation circuit  
6
PLL × 6,  
When using an oscillation circuit  
4
fC  
Clock frequency  
1/2 when PLL stops,  
When using an external clock  
24  
24  
12  
8
PLL × 1,  
When using an external clock  
PLL × 2,  
When using an external clock  
X0, X1  
PLL × 3,  
When using an external clock  
PLL × 4,  
When using an external clock  
6
PLL × 6,  
When using an external clock  
4
MHz  
kHz  
fCL  
X0A, X1A  
X0, X1  
32.768 100  
62.5  
333  
333  
ns When using an oscillation circuit  
ns When using an external clock  
µs  
tCYL  
Clock cycle time  
X0, X1 41.67  
X0A, X1A 10  
tCYLL  
30.5  
PWH, PWL  
PWHL, PWLL  
X0  
10  
5
ns  
Input clock pulse width  
Duty ratio is about 30% to 70%.  
µs  
X0A  
15.2  
Input clock rise and fall  
time  
tCR, tCF  
X0  
5
ns When using external clock  
Internal operating clock  
frequency (machine  
clock)  
fCP  
1.5  
24  
50  
MHz When using main clock  
kHz When using sub clock  
fCPL  
8.192  
tCP  
41.67  
20  
666  
ns When using main clock  
Internal operating clock  
cycle time (machine clock)  
tCPL  
122.1  
µs When using sub clock  
43  
MB90360 Series  
Clock Timing  
t
CYL  
0.8 VCC  
0.2 VCC  
X0  
P
WH  
PWL  
t
CF  
tCR  
t
CYLL  
0.8 VCC  
0.2 VCC  
X0A  
P
WHL  
PWLL  
t
CF  
tCR  
44  
MB90360 Series  
Guaranteed PLL Operation Range  
Guaranteed operation range  
5.5  
4.0  
3.5  
Guaranteed A/D converter  
operation range  
Guaranteed PLL operation range  
1.5  
4
24  
Internal clock fCP (MHz)  
Guaranteed operation range of MB90360 series  
Guaranteed oscillation frequency range  
× 6 × 4  
× 3  
× 2  
× 1  
24  
16  
12  
8
×1/2  
(PLL off)  
4.0  
1.5  
3
4
8
12  
24  
16  
External clock fC (MHz) *  
* : When using the oscillation circuit, the maximum oscillation clock frequency is 16 MHz.  
45  
MB90360 Series  
(2) Reset Standby Input  
(TA = −40 °C to +125 °C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = AVSS = 0 V)  
Value  
Parameter Symbol  
Pin  
Unit  
Remarks  
Min  
Max  
500  
ns  
Under normal operation  
In stop mode, sub clock  
mode, sub sleep mode  
and watch mode  
Reset input  
tRSTL  
Oscillation time of oscillator*  
RST  
ns  
time  
+ 100 µs  
100  
µs  
In timebase timer mode  
* : Oscillation time of oscillator is the time that the amplitude reaches 90%.  
In the crystal oscillator, the oscillation time is between several ms and tens of ms. In FAR / ceramic oscillators,  
the oscillation time is between hundreds of µs and several ms. With an external clock, the oscillation time is 0 ms.  
Under normal operation :  
t
RSTL  
RST  
0.2 VCC  
0.2 VCC  
In stop mode, sub clock mode, sub sleep mode, watch mode :  
tRSTL  
RST  
0.2 VCC  
0.2 VCC  
90% of  
amplitude  
X0  
Internal operation  
clock  
100 µs  
Oscillation time  
of oscillator  
Oscillation stabilization  
waiting time  
Instruction execution  
Internal reset  
46  
MB90360 Series  
(3) Power-on Reset  
Parameter  
(TA = −40 °C to +125 °C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = AVSS = 0 V)  
Value  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Min  
0.05  
1
Max  
30  
Power on rise time  
Power off time  
tR  
VCC  
VCC  
ms  
tOFF  
ms Due to repetitive operation  
tR  
2.7 V  
VCC  
0.2 V  
0.2 V  
0.2 V  
tOFF  
If you change the power supply voltage too rapidly, a power-on reset may occur.  
We recommend that you start up smoothly by restraining voltages when changing  
the power supply voltage during operation, as shown in the figure below. Perform  
while not using the PLL clock. However, if voltage drops are within 1 V/s, you can  
operate while using the PLL clock.  
VCC  
We recommend a rise of  
50 mV/ms maximum.  
Holds RAM data  
3 V  
VSS  
47  
MB90360 Series  
(4) UART0/1  
(TA = −40 °C to +125 °C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = 0 V)  
Value  
Parameter  
Symbol  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
Pin  
Condition  
Unit Remarks  
Min  
Max  
Serial clock cycle time  
SCK0, SCK1  
8 tCP  
ns  
ns  
SCK0, SCK1,  
SOT0, SOT1  
SCK ↓ → SOT delay time  
80  
100  
60  
+80  
Internal shift clock  
mode output pins  
are  
SCK0, SCK1,  
SIN0, SIN1  
Valid SIN SCK ↑  
ns  
ns  
C = 80 pF + 1 TTL.  
L
SCK0, SCK1,  
SIN0, SIN1  
SCK ↑ → Valid SIN hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
tSHSL  
tSLSH  
SCK0, SCK1  
SCK0, SCK1  
4 tCP  
4 tCP  
ns  
ns  
SCK0, SCK1, External shift clock  
SOT0, SOT1 mode output pins  
SCK ↓ → SOT delay time  
Valid SIN SCK ↑  
tSLOV  
tIVSH  
tSHIX  
60  
60  
150  
ns  
ns  
ns  
are  
SCK0, SCK1,  
SIN0, SIN1  
CL = 80 pF + 1 TTL.  
SCK0, SCK1,  
SIN0, SIN1  
SCK ↑ → Valid SIN hold time  
Notes : AC characteristic in CLK synchronized mode.  
CL is load capacity value of pins when testing.  
tCP is internal operating clock cycle time (machine clock) . Refer to “ (1) Clock Timing”.  
Internal Shift Clock Mode  
tSCYC  
2.4 V  
SCK  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
0.8 V  
SOT  
SIN  
tIVSH  
tSHIX  
VIH  
VIL  
VIH  
VIL  
48  
MB90360 Series  
External Shift Clock Mode  
t
SLSH  
t
SHSL  
V
IH  
V
IH  
SCK  
V
IL  
VIL  
t
SLOV  
2.4 V  
SOT  
SIN  
0.8 V  
t
IVSH  
t
SHIX  
V
V
IH  
IL  
V
IH  
IL  
V
(5) Trigger Input Timing  
(TA = −40 °C to +125 °C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = 0 V)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Min  
Max  
INT8, INT9R  
INT10, INT11  
INT12R, INT13  
INT14R, INT15R  
ADTG  
tTRGH  
tTRGL  
Input pulse width  
5 tCP  
ns  
Note : tCP is internal operating clock cycle time (machine clock) . Refer to “ (1) Clock Timing”.  
V
IH  
VIH  
INT8, INT9R  
INT10, INT11  
INT12R, INT13  
INT14R, INT15R  
ADTG  
V
IL  
VIL  
t
TRGH  
t
TRGL  
49  
MB90360 Series  
(6) Timer Related Resource Input Timing  
(TA = −40 °C to +125 °C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = 0 V)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Min  
Max  
tTIWH  
tTIWL  
TIN2, TIN3  
IN0 to IN3  
Input pulse width  
4 tCP  
ns  
Note : tCP is internal operating clock cycle time (machine clock) . Refer to “ (1) Clock Timing”.  
VIH  
VIH  
VIL  
VIL  
TIN2, TIN3  
IN0 to IN3  
tTIWH  
tTIWL  
(7) Timer Related Resource Output Timing  
(TA = –40°C to +125°C, VCC = 5.0 V 10%, fCP 24 MHz, VSS = 0 V)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Min  
Max  
TOT2, TOT3  
PPGC to PPGF  
CLK ↑ → TOUT change time  
tTO  
30  
ns  
2.4 V  
CLK  
2.4 V  
0.8 V  
TOT2, TOT3  
PPGC to PPGF  
tTO  
50  
MB90360 Series  
5. A/D Converter  
(T  
Parameter  
Resolution  
A
= −40 °C to +125 °C, 3.0 V AVR AVSS, VCC = AVCC = 5.0 V 10%, fCP 24 MHz, VSS = AVSS = 0 V)  
Value  
Symbol  
Pin  
Unit  
Remarks  
Min  
Typ  
Max  
10  
bit  
Total error  
3.0  
2.5  
LSB  
LSB  
Nonlinearity error  
Differential  
nonlinearity error  
1.9  
LSB  
Zero reading voltage  
VOT  
VFST  
AN0 to AN15 AVSS 1.5 AVSS + 0.5 AVSS + 2.5 LSB  
AN0 to AN15 AVR 3.5 AVR 1.5 AVR + 0.5 LSB  
1.0  
Full scale reading  
voltage  
4.5 V AVCC 5.5 V  
4.0 V AVCC < 4.5 V  
4.5 V AVCC 5.5 V  
4.0 V AVCC < 4.5 V  
Compare time  
Sampling time  
16,500  
µs  
2.0  
0.5  
1.2  
µs  
Analog port input  
current  
IAIN  
VAIN  
AN0 to AN15  
AN0 to AN15  
AVR  
0.3  
AVSS  
+0.3  
AVR  
AVCC  
µA  
V
Analog input  
voltage range  
Reference  
voltage range  
AVSS + 2.7  
V
IA  
IAH  
IR  
AVCC  
AVCC  
AVR  
AVR  
3.5  
7.5  
5
mA  
µA  
µA  
µA  
Power supply current  
*
*
600  
900  
5
Reference  
voltage supply current  
IRH  
Offset between  
input channels  
AN0 to AN15  
4
LSB  
* : If A/D converter is not operating, a current when CPU is stopped is applicable (VCC = AVCC = AVR = 5.0 V) .  
(Continued)  
51  
MB90360 Series  
About the external impedance of analog input and its sampling time  
• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling  
time, the analog voltage changed to the internal sample and hold capacitor is insufficient, adversely affecting  
A/D conversion precision.  
Analog input circuit model  
R
Comparator  
Analog input  
C
During sampling : ON  
MB90F362/T/S/TS, MB90F367/T/S/TS  
R
C
4.5 V AVCC 5.5 V  
4.0 V AVCC < 4.5 V  
2.0 k(Max)  
8.2 k(Max)  
16.0 pF (Max)  
16.0 pF (Max)  
MB90362/T/S/TS, MB90367/T/S/TS, MB90V340A-101/102/103/104  
R
C
4.5 V AVCC 5.5 V  
4.0 V AVCC < 4.5 V  
2.0 k(Max)  
8.2 k(Max)  
14.4 pF (Max)  
14.4 pF (Max)  
Note : The values are reference values.  
(Continued)  
52  
MB90360 Series  
(Continued)  
To satisfy the A/D conversion precision standard, consider the relationship between the external impedance  
and minimum sampling time and either adjust the resistor value and operating frequency or decrease the  
external impedance so that the sampling time is longer than the minimum value.  
The relationship between external impedance and minimum sampling time  
At 4.5 V AVCC 5.5 V  
(External impedance = 0 kto 20 k)  
(External impedance = 0 kto 100 k)  
MB90362/T/S/TS,  
MB90367/T/S/TS,  
MB90V340A-101/102/103/104  
MB90362/T/S/TS,  
MB90367/T/S/TS,  
MB90V340A-101/102/103/104  
20  
100  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
MB90F362/T/S/TS,  
MB90F367/T/S/TS  
MB90F362/T/S/TS,  
MB90F367/T/S/TS  
6
4
2
0
10  
0
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
35  
Minimum sampling time [µs]  
Minimum sampling time [µs]  
At 4.0 V AVCC < 4.5 V  
(External impedance = 0 kto 20 k)  
(External impedance = 0 kto 100 k)  
MB90362/T/S/TS,  
MB90367/T/S/TS,  
MB90V340A-101/102/103/104  
MB90362/T/S/TS,  
MB90367/T/S/TS,  
MB90V340A-101/102/103/104  
20  
100  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
MB90F362/T/S/TS,  
MB90F367/T/S/TS  
MB90F362/T/S/TS,  
MB90F367/T/S/TS  
6
4
2
0
10  
0
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
35  
Minimum sampling time [µs]  
Minimum sampling time [µs]  
• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.  
About errors  
As | AVR AVSS | becomes smaller, values of relative errors grow larger.  
53  
MB90360 Series  
6. Definition of A/D Converter Terms  
Resolution  
: Analog variation that is recognized by an A/D converter.  
Non linearity  
error  
: Deviation between a line across zero-transition line ( “00 0000 0000B← → “00 0000 0001B” )  
and full-scale transition line ( “11 1111 1110B← → “11 1111 1111B” ) and actual conversion  
characteristics.  
Differential  
linearity error  
: Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal  
value.  
Total error  
: Difference between an actual value and an theoretical value. A total error includes zero transi-  
tion error, full-scale transition error, and linear error.  
Total error  
3FFH  
1.5 LSB  
3FEH  
3FDH  
Actual conversion  
characteristics  
{1 LSB × (N 1) + 0.5 LSB}  
004H  
003H  
002H  
001H  
VNT  
(Actually-measured value)  
Actual conversion  
characteristics  
Ideal characteristics  
0.5 LSB  
AVSS  
AVR  
Analog input  
VNT {1 LSB × (N 1) + 0.5 LSB}  
[LSB]  
Total error of digital output “N” =  
1 LSB  
AVR AVSS  
1 LSB = (Ideal value)  
[V]  
1024  
VOT (Ideal value) = AVSS + 0.5 LSB [V]  
VFST (Ideal value) = AVR 1.5 LSB [V]  
VNT : A voltage at which digital output transits from (N 1) to N.  
(Continued)  
54  
MB90360 Series  
(Continued)  
Non linearity error  
Differential linearity error  
Ideal  
characteristics  
3FFH  
3FEH  
3FDH  
Actual conversion  
characteristics  
N + 1  
Actual conversion  
characteristics  
{1 LSB × (N 1)  
+ VOT }  
VFST (actual  
measurement  
value)  
N
VNT (actual  
measurement value)  
004H  
003H  
002H  
001H  
V (N + 1) T  
(actual measurement  
value)  
Actual conversion  
characteristics  
N 1  
N 2  
VNT  
(actual measurement value)  
Ideal characteristics  
Actual conversion  
characteristics  
VOT (actual measurement value)  
Analog input  
AVSS  
AVR  
AVSS  
AVR  
Analog input  
VNT {1 LSB × (N 1) + VOT}  
[LSB]  
Non linearity error of digital output N =  
1 LSB  
V (N+1) T VNT  
1 LSB [LSB]  
1 LSB  
Differential linearity error of digital output N =  
1 LSB =  
VFST VOT  
[V]  
1022  
VOT : Voltage at which digital output transits from “000H” to “001H.”  
VFST : Voltage at which digital output transits from “3FEH” to “3FFH.”  
55  
MB90360 Series  
7. Notes on A/D Converter Section  
Use the device with external circuits of the following output impedance for analog inputs :  
Recommended output impedance of external circuits are : Approx. 1.5 kor lower (4.0 V AVCC 5.5 V,  
sampling period = 0.5 µs)  
If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors  
and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as  
high as internal capacitor.  
If output impedance of an external circuit is too high, a sampling period for an analog voltage may be  
insufficient.  
Analog input circuit model  
Analog input  
R
Comparator  
C
4.5 V AVCC 5.5 V : R=: 2.52 k, C=: 10.7 pF  
4.0 V AVCC < 4.5 V : R=: 13.6 k, C=: 10.7 pF  
Note : Use the values in the figure only as a guideline.  
8. Flash Memory Program/Erase Characteristics  
Value  
Parameter  
Conditions  
Unit  
Remarks  
Min  
Typ  
Max  
Excludes programming  
prior to erasure  
Chip erase time  
1
15  
s
TA = +25 °C  
VCC = 5.0 V  
Word (16-bit width)  
programming time  
Except for the overhead  
time of the system level  
10,000  
20  
16  
3,600  
µs  
Program/Erase cycle  
cycle  
Year  
Flash memory data  
retention time  
Average  
TA = +85 °C  
*
* : This value comes from the technology qualification (using Arrhenius equation to translate high temperature  
measurements into normalized value at +85 °C) .  
56  
MB90360 Series  
ORDERING INFORMATION  
Part number  
MB90F362PMT  
MB90F362TPMT  
MB90F362SPMT  
MB90F362TSPMT  
MB90F367PMT  
MB90F367TPMT  
MB90F367SPMT  
MB90F367TSPMT  
MB90362PMT  
Package  
Remarks  
48-pin Plastic LQFP  
(FPT-48P-M26)  
MB90362TPMT  
MB90362SPMT  
MB90362TSPMT  
MB90367PMT  
MB90367TPMT  
MB90367SPMT  
MB90367TSPMT  
MB90V340A-101  
MB90V340A-102  
MB90V340A-103  
MB90V340A-104  
299-pin Ceramic PGA  
(PGA-299C-A01)  
For evaluation  
57  
MB90360 Series  
PACKAGE DIMENSION  
Note 1) * : These dimensions include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
48-pin Plastic LQFP  
(FPT-48P-M26)  
9.00±0.20(.354±.008)SQ  
+0.40  
7.00 –0.10 .276 +..000146 SQ  
0.145±0.055  
(.006±.002)  
*
36  
25  
37  
24  
Details of "A" part  
0.08(.003)  
1.50 +00..1200  
(Mounting height)  
.059 +..000048  
INDEX  
48  
13  
0.10±0.10  
(.004±.004)  
(Stand off)  
"A"  
0˚~8˚  
1
12  
LEAD No.  
0.50(.020)  
0.25(.010)  
0.20±0.05  
(.008±.002)  
M
0.08(.003)  
0.60±0.15  
(.024±.006)  
C
2003 FUJITSU LIMITED F48040S-c-2-2  
Dimensions in mm (inches)  
Note : The values in parentheses are reference values.  
58  
MB90360 Series  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0501  
© 2005 FUJITSU LIMITED Printed in Japan  

相关型号:

MB90F362SPMT

16-bit Proprietary Microcontroller
FUJITSU

MB90F362T

16-bit Proprietary Microcontroller
FUJITSU

MB90F362TE

16-bit Proprietary Microcontroller
FUJITSU

MB90F362TEPMT

16-bit Proprietary Microcontroller
FUJITSU

MB90F362TEPMT

Microcontroller, 16-Bit, FLASH, 24MHz, CMOS, PQFP48, 7 X 7 MM, 1.70 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LFQFP-48
SPANSION

MB90F362TES

16-bit Proprietary Microcontroller
FUJITSU

MB90F362TESPMT

16-bit Proprietary Microcontroller
FUJITSU

MB90F362TESPMT

Microcontroller, 16-Bit, FLASH, 24MHz, CMOS, PQFP48, 7 X 7 MM, 1.70 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LFQFP-48
SPANSION

MB90F362TPMT

16-bit Proprietary Microcontroller
FUJITSU

MB90F362TS

16-bit Proprietary Microcontroller
FUJITSU

MB90F362TSPMT

16-bit Proprietary Microcontroller
FUJITSU

MB90F367

16-bit Proprietary Microcontroller
FUJITSU