MB90P673PF [FUJITSU]

16-bit Proprietary Microcontroller; 16位微控制器专有
MB90P673PF
型号: MB90P673PF
厂家: FUJITSU    FUJITSU
描述:

16-bit Proprietary Microcontroller
16位微控制器专有

微控制器和处理器 外围集成电路 可编程只读存储器 时钟
文件: 总124页 (文件大小:2396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-13602-4E  
16-bit Proprietary Microcontroller  
CMOS  
F2MC-16L MB90670/675 Series  
MB90671/672/673/T673/P673 (MB90670 Series)  
MB90676/677/678/T678/P678 (MB90675 Series)  
DESCRIPTION  
The MB90670/675 series is a member of 16-bit proprietary single-chip microcontroller F2MC*1-16L family  
designed to be combined with an ASIC (Application Specific IC) core. The MB90670/675 series is a high-  
performance  
general-purpose 16-bit microcontroller for high-speed real-time processing in various industrial equipment, OA  
equipment, and process control.  
The instruction set of F2MC-16L CPU core inherits AT architecture of F2MC-8 family with additional instruction  
sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and  
enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word  
data (32-bit).  
The MB90670/675 series has peripheral resources of UART0, UART1(SCI), an 8/10-bit A/D converter, an  
8/16-bit PPG timer, a 16-bit reload timer, a 24-bit free-run timer, an output compare (OCU), an input capture  
(ICU), DTP/external interrupt circuit, an I2C*2 interface (in MB90675 series only). Embedded peripheral  
resources performs data transmission with an intelligent I/O service function without the intervention of the CPU,  
enabling real-time control in various applications.  
*1: F2MC stands for FUJITSU Flexible Microcontroller.  
*2: Purchase of Fujitsu I2C components conveys a license under the Philips I2C Patent Rights to use these  
components in an I2C system, provided that the system conforms to the I2C Standard Specification as  
defined by Philips.  
PACKAGE  
80-pin Plastic LQFP  
80-pin Plastic QFP  
100-pin Plastic LQFP  
100-pin Plastic QFP  
(FPT-80P-M05)  
(FPT-80P-M06)  
(FPT-100P-M05)  
(FPT-100P-M06)  
MB90670/675 Series  
FEATURES  
• Clock  
Embedded PLL clock multiplication circuit  
Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation  
(at oscillation of 4 MHz, 4 MHz to 16 MHz).  
Minimum instruction execution time of 62.5 ns (at oscillation of 4 MHz, four times the PLL clock, operation at  
Vcc of 5.0 V)  
• CPU addressing space of 16 Mbytes  
Internal addressing of 24-bit  
External accessing can be performed by selecting 8/16-bit bus width (external bus mode)  
• Instruction set optimized for controller applications  
Rich data types (bit, byte, word, long word)  
Rich addressing mode (23 types)  
High code efficiency  
Enhanced precision calculation realized by the 32-bit accumulator  
• Instruction set designed for high level language (C) and multi-task operations  
Adoption of system stack pointer  
Enhanced pointer indirect instructions  
Barrel shift instructions  
• Enhanced execution speed  
4-byte instruction queue  
• Enhanced interrupt function  
8 levels, 32 factors  
• Automatic data transmission function independent of CPU operation  
Extended intelligent I/O service function (EI2OS)  
• Low-power consumption (standby) mode  
Sleep mode (mode in which CPU operating clock is stopped)  
Timebase timer mode (mode in which other than oscillation and timebase timer are stopped)  
Stop mode (mode in which oscillation is stopped)  
CPU intermittent operation mode  
Hardware standby mode  
• Process  
CMOS technology  
• I/O port  
MB90670 series: Maximum of 65 ports  
MB90675 series: Maximum of 84 ports  
• Timer  
Timebase timer/watchdog timer: 1 channel  
8/16-bit PPG timer: 8-bit × 2 channels or 16-bit × 1 channel  
16-bit reload timer: 2 channels  
24-bit free-run timer: 1 channel  
• Input capture (ICU)  
Generates an interrupt request by latching a 24-bit free-run timer counter value upon detection of an edge  
input to the pin.  
• Output compare (OCU)  
Generates an interrupt request and reverse the output level upon detection of a match between the 24-bit free-  
run timer counter value and the compare setting value.  
• I2C interface (in MB90675 series only)  
Serial I/O port for supporting Inter IC BUS  
(Continued)  
2
MB90670/675 Series  
(Continued)  
• UART0  
With full-duplex double buffer (8-bit length)  
Clock asynchronized or clock synchronized transmission (with start and stop bits) can be selectively used.  
• UART1 (SCI)  
With full-duplex double buffer (8-bit length)  
Clock asynchronized or clock synchronized serial transmission (I/O extended serial) can be selectively used.  
• DTP/external interrupt circuit (4 channels)  
A module for starting extended intelligent I/O service (EI2OS) and generating an external interrupt triggered  
by an external input.  
• Wake-up interrupt  
Receives external interrupt requests and generates an interrupt request upon an “L” level input.  
• Delayed interrupt generation module  
Generates an interrupt request for switching tasks.  
• 8/10-bit A/D converter (8 channels)  
8-bit or 10-bit resolution can be selectively used.  
Starting by an external trigger input.  
3
MB90670/675 Series  
PRODUCT LINEUP  
• MB90670 series  
Part number  
MB90671  
Item  
MB90672  
MB90673  
MB90T673  
MB90P673  
External ROM  
product  
One-time PROM  
product  
Classification  
Mask ROM products  
ROM size  
RAM size  
16 Kbytes  
640 bytes  
32 Kbytes  
48 Kbytes  
External ROM  
2 Kbytes  
48 Kbytes  
1.64 Kbytes  
Number of instructions:340  
Instruction bit length:8 bits, 16 bits  
Instruction length:1 byte to 7 bytes  
Data bit length:1 bit, 8 bits, 16 bits  
CPU functions  
Minimum execution time:62.5 ns (at machine clock of 16 MHz)  
Interrupt processing time:1.5 µs (at machine clock of 16 MHz, minimum value)  
General-purpose I/O ports (CMOS output): 57  
General-purpose I/O ports (N-ch open-drain output): 8  
Total: 65  
Ports  
Clock synchronized transmission (500 Kbps to 2 Mbps)  
Clock asynchronized transmission (4800 Kbps to 500 kbps)  
Transmission can be performed by bi-directional serial transmission or by master/  
slave connection.  
UART0  
Clock synchronized transmission (500 Kbps to 2 Mbps)  
Clock asynchronized transmission (2400 Kbps to 62500 bps)  
Transmission can be performed by bi-directional serial transmission or by master/  
slave connection.  
UART1 (SCI)  
Conversion precision: 10-bit or 8-bit selectable  
Number of inputs: 8  
One-shot conversion mode (converts selected channel only once)  
Continuous conversion mode (converts selected channel continuously)  
Stop conversion mode (converts selected channel and stop operation repeatedly)  
8/10-bit A/D converter  
8/16-bit PPG timer  
Number of channels: 2  
8-bit or 16-bit PPG operation  
A pulse wave of given intervals and given duty ratios can be output.  
Pulse cycle: 125 ns to 16.78 s (at oscillation of 4 MHz, machine clock of 16 MHz)  
Number of channels: 2  
16-bit reload timer operation  
Interval: 125 ns to 131 ms (at machine clock of 16 MHz)  
16-bit reload timer  
24-bit free-run timer  
External event count can be performed.  
Number of channel :1  
Overflow interrupts or intermediate bit interrupts may be generated.  
Output compare unit  
(OCU)  
Number of channels: 8  
Pin input factor: A match signal of compare register  
(Continued)  
4
MB90670/675 Series  
(Continued)  
Part number  
MB90671  
MB90672  
MB90673  
MB90T673  
MB90P673  
Item  
Number of channels: 4  
Rewriting a register value upon a pin input (rising, falling, or both edges)  
Input capture unit (ICU)  
Number of inputs: 4  
DTP/external interrupt circuit Started by a rising edge, a falling edge, an “H” level input, or an “L” level input.  
External interrupt circuit or extended intelligent I/O service (EI2OS) can be used.  
Number of inputs: 8  
Started by an “L” level input.  
Wake-up interrupt  
Delayed interrupt generation  
module  
An interrupt generation module for switching tasks used in real-time operating  
systems.  
I2C interface  
None  
18-bit counter  
Interrupt interval: 1.024 ms, 4.096 ms, 16.384 ms, 131.072 ms  
(at oscillation of 4 MHz)  
Timebase timer  
Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms  
(at oscillation of 4 MHz, minimum value)  
Watchdog timer  
Low-power consumption  
(standby) mode  
Sleep/stop/CPU intermittent operation/timebase timer/hardware stand-by  
Process  
CMOS  
Operating voltage*  
2.7 V to 5.5 V  
* : Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
5
MB90670/675 Series  
• MB90675 series  
Part number  
MB90676  
MB90677  
MB90678  
MB90T678  
MB90P678  
MB90V670  
Item  
One-time  
PROM  
product  
External ROM  
product  
Evaluation  
product  
Classification  
Mask ROM products  
48 Kbytes  
ROM size  
RAM size  
32 Kbytes  
64 Kbytes  
None  
64 Kbytes  
1.64 Kbytes  
2 Kbytes  
3 Kbytes  
4 Kbytes  
The number of instructions: 340  
Instruction bit length: 8 bits, 16 bits  
Instruction length: 1 byte to 7 bytes  
Data bit length: 1 bit, 8 bits, 16 bits  
CPU functions  
Minimum execution time: 62.5 ns (at machine clock of 16 MHz)  
Interrupt processing time: 1.5 µs (at machine clock of 16 MHz, minimum value)  
General-purpose I/O ports (CMOS output): 74  
General-purpose I/O ports (N-ch open-drain output): 10  
Total: 84  
Ports  
Clock synchronized transmission (500 Kbps to 2 Mbps)  
Clock asynchronized transmission (4800 Kbps to 500 Kbps)  
Transmission can be performed by bi-directional serial transmission or by master/slave  
connection.  
UART0  
Clock synchronized transmission (500 Kbps to 2 Mbps)  
Clock asynchronized transmission (2400 Kbps to 62500 bps)  
Transmission can be performed by bi-directional serial transmission or by master/slave  
connection.  
UART1 (SCI)  
Conversion precision: 10-bit or 8-bit can be selectively used.  
Number of inputs: 8  
One-shot conversion mode (converts selected channel only once)  
Continuous conversion mode (converts selected channel continuously)  
Stop conversion mode (converts selected channel and stop operation repeatedly)  
8/10-bit A/D  
converter  
Number of channels: 2  
PPG operation of 8-bit or 16-bit  
Pulse of given intervals and given duty ratios can be output  
Pulse interval 125 ns to 16.78 s (at oscillation of 4 MHz, machine clock of 16 MHz)  
8/16-bit PPG timer  
16-bit reload timer  
Number of channels: 2  
16-bit reload timer operation  
Interval: 125 ns to 131 ms (at machine clock of 16 MHz)  
External event count can be performed.  
24-bit free-run  
timer  
Number of channel :1  
Overflow interrupts or intermediate bit interrupts may be generated.  
Output compare  
(OCU)  
Number of channels: 8  
Pin input factor: a match signal of compare register  
(Continued)  
6
MB90670/675 Series  
(Continued)  
Part number  
MB90676  
MB90677  
MB90678  
MB90T678  
MB90P678  
MB90V670  
Item  
Number of channels: 4  
Rewriting a register value upon a pin input (rising, falling, or both edges)  
Input capture (ICU)  
Number of inputs: 4  
DTP/external  
interrupt circuit  
Started by a rising edge, a falling edge, an “H” level input, or an “L” level input.  
External interrupt circuit or extended intelligent I/O service (EI2OS) can be used.  
Number of inputs: 8  
Started by an “L” level input.  
Wake-up interrupt  
Delayed interrupt  
generation module  
An interrupt generation module for switching tasks used in real-time operating systems.  
Serial I/O port for supporting Inter IC BUS  
I2C interface  
18-bit counter  
Interrupt interval: 1.024 ms, 4.096 ms, 16.384 ms, 131.072 ms  
(at oscillation of 4 MHz)  
Timebase timer  
Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms  
(at oscillation of 4 MHz, minimum value)  
Watchdog timer  
Low-power  
consumption  
(stand-by) mode  
Sleep/stop/CPU intermittent operation/timebase timer/hardware stand-by  
Process  
CMOS  
Power supply  
voltage for  
operation*  
2.7 V to 5.5 V  
* : Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”) Assurance  
for the MB90V670 is given only for operation with a tool at a power voltage of 2.7 V to 5.5 V, an operating  
temperature of 0°C to 70°C, and an operating frequency of 1.5 MHz to 16 MHz.  
PACKAGE AND CORRESPONDING PRODUCTS  
MB90671  
MB90672  
MB90673  
MB90T673  
MB90676  
MB90677  
MB90678  
MB90T678  
Package  
MB90P673  
MB90P678  
MB90V670  
FPT-80P-M05  
FPT-80P-M06  
FPT-100P-M05  
FPT-100P-M06  
×
×
×
×
×
×
×
×
×
×
×
×
: Available × : Not available  
Note: For more information about each package, see section “Package Dimensions.”  
7
MB90670/675 Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
In evaluation with an evaluation product, note the difference between the evaluation chip and the chip actually  
used. The following items must be taken into consideration.  
• The MB90V670 does not have an internal ROM, however, operations equivalent to chips with an internal ROM  
can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the  
development tool.  
• In the MB90V670, images from FF4400H to FFFFFFH are mapped to bank 00, and FE0000H to FF3FFFH to  
mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)  
• In the MB90678/MB90P678, images from FF4000H to FFFFFFH are mapped to bank 00, and FF0000H to  
FF3FFFH to bank FF only.  
2. Mask Options  
Functions selected by optional settings and methods for setting the options are dependent on the product types.  
Refer to “Mask Options” for detailed information.  
Note that mask option is fixed in MB90V670 series.  
8
MB90670/675 Series  
PIN ASSIGNMENT  
(Top view)  
1
2
3
4
5
6
7
8
P20/A16  
P21/A17  
P22/A18  
P23/A19  
P24/TIN0  
P25/TIN1  
P26/TOT0  
P27/TOT1  
VSS  
RST  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P80/PPG1  
P77/DOT7  
P76/DOT6  
P75/DOT5  
P74/DOT4  
P73/DOT3  
P72/DOT2  
P71/DOT1  
P70/DOT0  
P67/ASR3  
P66/ASR2  
P65/ASR1  
P64/ASR0  
P63/INT3  
P62/INT2  
P61/INT1  
P60/INT0  
HST  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P30/ALE  
P31/RD  
P32/WRL/WR  
P33/WRH  
P34/HRQ  
P35/HAK  
P36/RDY  
P37/CLK  
P40/SIN0  
P41/SOT0  
P42/SCK0  
MD2  
(FPT-80P-M05)  
9
MB90670/675 Series  
(Top view)  
X0  
VSS  
RST  
P16/AD14/WI6  
P17/AD15/WI7  
P20/A16  
P21/A17  
P22/A18  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P80/PPG1  
P77/DOT7  
P76/DOT6  
P75/DOT5  
P74/DOT4  
P73/DOT3  
P72/DOT2  
P71/DOT1  
P70/DOT0  
P67/ASR3  
P66/ASR2  
P65/ASR1  
P64/ASR0  
P63/INT3  
P62/INT2  
P61/INT1  
P60/INT0  
HST  
P23/A19  
P24/TIN0  
P25/TIN1  
P26/TOT0  
P27/TOT1  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P30/ALE  
P31/RD  
P32/WRL/WR  
P33/WRH  
P34/HRQ  
P35/HAK  
P36/RDY  
P37/CLK  
P40/SIN0  
P41/SOT0  
P42/SCK0  
P43/SIN1  
P44/SOT10  
MD2  
MD1  
MD0  
(FPT-80P-M06)  
10  
MB90670/675 Series  
(Top view)  
P22/A18  
P23/A19  
P24/TIN0  
P25/TIN1  
P26/TOT0  
P27/TOT1  
P30/ALE  
P31/RD  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
RST  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
VSS  
9
PA0  
P32/WRL/WR  
P33/WRH  
P34/HRQ  
P35/HAK  
P36/RDY  
P37/CLK  
P40/SIN0  
P41/SOT0  
P42/SCK0  
P43/SIN1  
P44/SOT1  
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P77/DOT7  
P76/DOT6  
P75/DOT5  
P74/DOT4  
P73/DOT3  
P72/DOT2  
P71/DOT1  
P70/DOT0  
P67/ASR3  
P66/ASR2  
P65/ASR1  
P64/ASR0  
P63/INT3  
P62/INT2  
P61/INT1  
P60/INT0  
P45/SCK1  
P46/PPG0  
P47/ATG  
P80/PPG1  
(FPT-100P-M05)  
11  
MB90670/675 Series  
(Top view)  
P20/A16  
P21/A17  
P22/A18  
P23/A19  
P24/TIN0  
P25/TIN1  
P26/TOT0  
P27/TOT1  
P30/ALE  
P31/RD  
PB2  
PB1  
PB0  
RST  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
P77/DOT7  
P76/DOT6  
P75/DOT5  
P74/DOT4  
P73/DOT3  
P72/DOT2  
P71/DOT1  
P70/DOT0  
P67/ASR3  
P66/ASR2  
P65/ASR1  
P64/ASR0  
P63/INT3  
P62/INT2  
P61/INT1  
P60/INT0  
HST  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSS  
P32/WRL/WR  
P33/WRH  
P34/HRQ  
P35/HAK  
P36/RDY  
P37/CLK  
P40/SIN0  
P41/SOT0  
P42/SCK0  
P43/SIN1  
P44/SOT1  
VCC  
P45/SCK1  
P46/PPG0  
P47/ATG  
P80/PPG1  
P81  
P82  
P83  
MD2  
(FPT-100P-M06)  
12  
MB90670/675 Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
Function  
LQFP  
-80*1  
QFP  
-80*2  
LQFP  
QFP  
-100*3 -100*4  
62  
63  
64  
65  
80  
81  
82  
83  
X0  
X1  
A
Crystal oscillator pins  
(Oscillation)  
39 to 41 41 to 43 47 to 49 49 to 51 MD0 to  
MD2  
F
Input pins for selecting operation modes  
(CMOS) Connect directly to VCC or VSS.  
60  
62  
75  
77  
RST  
H
External reset request input  
Hardware standby input pin  
General-purpose I/O port  
(CMOS/H)  
42  
44  
50  
52  
HST  
G
(CMOS/H)  
65 to 72 67 to 74 83 to 90 85 to 92 P00 to P07  
B
(CMOS) This function is valid in the single-chip mode.  
AD00 to  
AD07  
I/O pins for the lower 8-bit of the external address  
data bus  
This function is valid in the mode where the  
external bus is valid.  
73 to 78, 75 to 80, 91 to 96, 93 to 98, P10 to P15,  
B
General-purpose I/O port  
79,  
1,  
97,  
99,  
P16,  
(CMOS) This function is valid in the single-chip mode.  
80  
2
98  
100 P17  
AD08 to  
I/O pins for the upper 8-bit of the external address  
data bus  
This function is valid in the mode where the  
external bus is valid.  
AD13,  
AD14,  
AD15  
WI0 to WI5,  
WI6,  
WI7  
I/O pins for wake-up interrupts  
This function is valid in the single-chip mode.  
Because the input of the DTP/external interrupt  
circuit is used as required when the DTP/external  
interrupt circuit is enabled, and it is necessary to  
stop outputs by other functions unless such  
outputs are made intentionally.  
1,  
2,  
3,  
4
3,  
4,  
5,  
6
99,  
100,  
1,  
1,  
2,  
3,  
4
P20,  
P21,  
P22,  
P23  
B
General-purpose I/O port  
(CMOS) This function becomes valid in the single-chip  
mode or the external address output control  
register is set to select a port.  
2
A16,  
A17,  
A18,  
A19  
Output pins for the external address bus of A16 to  
A19  
This function is valid in the mode where the  
external bus is valid and the upper address  
control register is set to select an address.  
*1: FPT-80P-M05  
*2: FPT-80P-M06  
*3: FPT-100P-M05  
*4: FPT-100P-M06  
(Continued)  
13  
MB90670/675 Series  
Pin no.  
Circuit  
type  
Pin name  
Function  
General-purpose I/O port  
LQFP  
-80*1  
QFP  
-80*2  
LQFP  
QFP  
-100*3 -100*4  
5,  
6
7,  
8
3,  
4
5,  
6
P24,  
P25  
E
(CMOS/H) This function is always valid.  
TIN0,  
TIN1  
Event input pins of 16-bit reload timer 0 and 1  
Because this input is used as required when the  
16-bit reload timer is performing input operations,  
and it is necessary to stop outputs by other functions  
unless such outputs are made intentionally.  
7,  
8
9,  
10  
5,  
6
7,  
8
P26,  
P27  
E
General-purpose I/O port  
(CMOS/H) This function is valid when outputs from 16-bit  
reload timer 0 and 1 are disabled.  
TOT0,  
TOT1  
Output pins for 16-bit reload timer 0 and 1  
This function is valid when output from 16-bit  
reload timer 0 and 1 are enabled.  
10  
11  
12  
12  
13  
14  
7
8
9
P30  
ALE  
B
General-purpose I/O port  
(CMOS) This function is valid in the single-chip mode.  
Address latch enable output pin  
This function is valid in the mode where the  
external bus is valid.  
10  
12  
P31  
RD  
B
General-purpose I/O port  
(CMOS) This function is valid in the single-chip mode.  
Read strobe output pin for the data bus  
This function is valid in the mode where the  
external bus is valid.  
10  
P32  
B
General-purpose I/O port  
(CMOS) This function is valid in the single-chip mode or  
WRL/WR pin output is disabled.  
WRL  
WR  
Write strobe output pin for the data bus  
This function is valid when WRL/WR pin output is  
enabled in the mode where external bus is valid.  
WRL is used for holding the lower 8-bit for write  
strobe in 16-bit access operations, while WR is  
used for holding 8-bit data for write strobe in  
8-bit access operations.  
13  
15  
11  
13  
P33  
B
General-purpose I/O port  
(CMOS) This function is valid in the single-chip mode, in  
the external bus 8-bit mode, or WRH pin output is  
disabled.  
WRH  
Write strobe output pin for the upper 8-bit of the  
data bus  
This function is valid when the external bus 16-bit  
mode is selected in the mode where the external  
bus is valid, and WRH output pin is enabled.  
*1: FPT-80P-M05  
*2: FPT-80P-M06  
*3: FPT-100P-M05  
*4: FPT-100P-M06  
(Continued)  
14  
MB90670/675 Series  
Pin no.  
Circuit  
type  
Pin name  
P34  
Function  
LQFP  
-80*1  
QFP  
LQFP  
QFP  
-80*2  
-100*3 -100*4  
14  
15  
16  
16  
12  
13  
14  
14  
15  
16  
B
General-purpose I/O port  
(CMOS) This function is valid when both the single-chip  
mode and the hold function are disabled.  
HRQ  
Hold request input pin  
This function is valid in the mode where the  
external bus is valid or when the hold function is  
enabled.  
17  
18  
P35  
B
General-purpose I/O port  
(CMOS) This function is valid when both the single-chip  
mode and the hold function are disabled.  
HAK  
Hold acknowledge output pin  
This function is valid in the mode where the  
external bus is valid or when the hold function is  
enabled.  
P36  
B
General-purpose I/O port  
(CMOS) This function is valid when both the single-chip  
mode and the external ready function are  
disabled.  
RDY  
Ready input pin  
This function is valid when the external ready  
function is enabled in the mode where the  
external bus is valid.  
17  
18  
19  
20  
15  
16  
17  
18  
P37  
CLK  
B
General-purpose I/O port  
(CMOS) This function is valid in the single-chip mode or  
when the CLK output is disabled.  
CLK output pin  
This function is valid when CLK output is disabled  
in the mode where the external bus is valid.  
P40  
E
General-purpose I/O port  
(CMOS/H) This function is always valid.  
SIN0  
Serial data input pin of UART0  
Because this input is used as required when  
UART0 is performing input operations, and it is  
necessary to stop outputs by other functions  
unless such outputs are made intentionally.  
19  
21  
17  
19  
P41  
E
General-purpose I/O port  
(CMOS/H) This function is valid when serial data output from  
UART0 is disabled.  
SOT0  
Serial data output pin of UART0  
This function is valid when serial data output from  
UART0 is enabled.  
*1: FPT-80P-M05  
*2: FPT-80P-M06  
*3: FPT-100P-M05  
*4: FPT-100P-M06  
(Continued)  
15  
MB90670/675 Series  
Pin no.  
Circuit  
type  
Pin name  
P42  
Function  
General-purpose I/O port  
LQFP  
-80*1  
QFP  
-80*2  
LQFP  
QFP  
-100*3 -100*4  
20  
22  
18 20  
E
(CMOS/H) This function is valid when clock output from  
UART0 is disabled.  
SCK0  
Clock I/O pin of UART0  
This function is valid when clock output from  
UART0 is enabled.  
Because this input is used as required when  
UART0 is performing input operations, and it is  
necessary to stop outputs by other functions  
unless such outputs are made intentionally.  
21  
23  
19  
21  
P43  
E
General-purpose I/O port  
(CMOS/H) This function is always valid.  
SIN1  
Serial data input pin of UART1 (SCI)  
Because this input is used as required when  
UART1 (SCI) is performing input operations, and it  
is necessary to stop outputs by other functions  
unless such outputs are made intentionally.  
22  
23  
24  
25  
20  
22  
22  
24  
P44  
E
General-purpose I/O port  
(CMOS/H) This function is valid when serial data output from  
UART1 (SCI) is disabled.  
SOT1  
P45  
Serial data output pin of UART1 (SCI)  
This function is valid when serial data output from  
UART1 (SCI) is enabled.  
E
General-purpose I/O port  
(CMOS/H) This function is valid when clock output from  
UART1 (SCI) is disabled.  
SCK1  
Clock I/O pin of UART1 (SCI)  
This function is valid when clock output from  
UART1 (SCI) is enabled.  
Because this input is used as required when  
UART1 (SCI) is performing input operations, and it  
is necessary to stop outputs by other functions  
unless such outputs are made intentionally.  
24  
26  
23  
25  
P46  
E
General-purpose I/O port  
(CMOS/H) This function is valid when waveform output from  
8/16-bit PPG timer 0 is disabled.  
PPG0  
Output pin of 8/16-bit PPG timer 0  
This function is valid when waveform output from  
8/16-bit PPG timer 0 is enabled.  
*1: FPT-80P-M05  
*2: FPT-80P-M06  
*3: FPT-100P-M05  
*4: FPT-100P-M06  
(Continued)  
16  
MB90670/675 Series  
Pin no.  
Circuit  
type  
Pin name  
P47  
Function  
LQFP  
-80*1  
QFP  
LQFP  
QFP  
-80*2  
-100*3 -100*4  
25  
27  
24  
26  
E
General-purpose I/O port  
(CMOS/H) This function is always valid.  
ATG  
Trigger input pin of the 8/10-bit A/D converter  
Because this input is used as requited when the  
8/10-bit A/D converter is performing input operations,  
and it is necessary to stop outputs by other functions  
unless such outputs are made intentionally.  
30,  
31,  
33,  
34,  
32,  
33,  
35,  
36,  
36,  
37,  
38,  
39,  
38,  
39,  
40,  
41,  
P50,  
P51,  
P52,  
P53,  
C
I/O port of an open-drain type  
(CMOS/H) The input function is valid when the analog input  
enable register is set to select a port.  
35 to 38 37 to 40 41 to 44 43 to 46 P54 to P57  
AN0,  
AN1,  
AN2,  
Analog input pins of the 8/10-bit A/D converter  
This function is valid when the analog input enable  
register is set to select AD.  
AN3,  
AN4 to AN7  
43 to 46 45 to 48 51 to 54 53 to 56 P60 to P63  
INT0 to INT3  
E
General-purpose I/O port  
(CMOS/H) This function is always valid.  
Request input pins of the DTP/external interrupt  
circuit  
Because this input is used as required when the  
DTP/external interrupt circuit is performing input  
operations, and it is necessary to stop outputs from  
other functions unless such outputs are made  
intentionally.  
47 to 50 49 to 52 55 to 58 57 to 60 P64 to P67  
E
General-purpose I/O port  
(CMOS/H) This function is always valid.  
ASR0 to  
ASR3  
Sample data input pins for ICU0 to ICU3  
Because this input is used as required when the input  
capture (ICU) is performing input operations, and it is  
necessary to stop outputs from other functions unless  
such outputs are made intentionally.  
51 to 58 53 to 60 59 to 66 61 to 68 P70 to P77  
E
General-purpose I/O port  
(CMOS/H) This function is valid when waveform output from the  
output compare (OCU) is disabled.  
DOT0 to  
DOT7  
Waveform output pins of OCU0 and OCU1  
This function is valid when waveform output from  
the output compare (OCU) is enabled and output  
from the port is selected.  
*1: FPT-80P-M05  
*2: FPT-80P-M06  
*3: FPT-100P-M05  
*4: FPT-100P-M06  
(Continued)  
17  
MB90670/675 Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
P80  
Function  
General-purpose I/O port  
LQFP  
-80*1  
QFP  
-80*2  
LQFP  
QFP  
-100*3 -100*4  
59  
61  
25 27  
E
(CMOS/H) This function is valid when waveform output from  
8/16-bit PPG timer 1 is disabled.  
PPG1  
Output pin of 8/16-bit PPG timer 1  
This function is valid when waveform output from  
8/16-bit PPG timer 1 is enabled.  
26 to 31 28 to 33 P81 to P86  
E
General-purpose I/O port  
(CMOS/H) This function is always valid.  
45  
47  
P90  
D
I/O port of an open-drain type  
(NMOS/H) This function is always valid.  
I/O pin of the I2C interface  
SDA  
This function is valid when operation of the I2C  
interface is enabled.  
Hold the port output in the high-impedance status  
(PDR = 1) when the I2C interface is in operation.  
46  
48  
P91  
SCL  
D
I/O port of an open-drain type  
(NMOS/H) This function is always valid.  
Clock I/O pin of the I2C interface  
This function is valid when operation of the I2C  
interface is enabled.  
Hold the port output in the high-impedance status  
(PDR = 1) when the I2C interface is in operation.  
67 to 74 69 to 76 PA0 to PA7  
76 to 78 78 to 80 PB0 to PB2  
E
General-purpose I/O port  
(CMOS/H) This function is always valid.  
General-purpose I/O port  
(CMOS/H) This function is always valid.  
E
64  
66  
21,  
82  
23,  
84  
VCC  
VSS  
Power  
supply  
Power supply to the digital circuit  
9,  
32,  
61  
11,  
34,  
63  
9,  
40,  
79  
11,  
42,  
81  
Power  
supply  
Ground level of the digital circuit  
26  
28  
32  
34  
AVCC  
Power  
supply  
Power supply to the analog circuit  
Make sure to turn on/turn off this power supply  
with a voltage exceeding AVCC applied to VCC.  
27  
29  
33  
35  
AVRH  
Power  
supply  
Reference voltage input to the analog circuit  
Make sure to turn on/turn off this power supply  
with a voltage exceeding AVRH applied to AVCC.  
28  
29  
30  
31  
34  
35  
36  
37  
AVRL  
AVSS  
Power  
supply  
Reference voltage input to the analog circuit  
Power  
supply  
Ground level of the analog circuit  
*1: FPT-80P-M05  
*2: FPT-80P-M06  
*3: FPT-100P-M05  
*4: FPT-100P-M06  
18  
MB90670/675 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• External clock frequency 3 MHz to 32 MHz  
• Oscillation feedback resistor approx.  
1MΩ  
X1  
Clock input  
P-ch  
X0  
N-ch  
Standby control signal  
B
• CMOS level input/output  
(with standby control)  
• Pull-up option selectable  
(with standby control)  
R
P-ch  
N-ch  
Digital output  
Digital output  
• No pull-up resistor in the MB90V670  
Digital input  
Standby control signal  
C
• N-ch open-drain output  
• CMOS level hystheresis input  
(with A/D control)  
Digital output  
A/D input  
Digital input  
A/D disable  
D
• NMOS open-drain output  
• CMOS level hysteresis input  
(with standby control)  
P-ch  
N-ch  
Digital output  
Digital input  
Standby control signal  
(Continued)  
19  
MB90670/675 Series  
(Continued)  
Type  
Circuit  
Remarks  
• CMOS level output  
E
• CMOS level hysteresis input  
(with standby control)  
• Pull-up option selectable  
(with standby control)  
R
P-ch  
Digital output  
Digital output  
• No pull-up resistor in the MB90V670  
N-ch  
Digital input  
Standby control signal  
F
• CMOS level input/output  
(without standby control)  
• Pull-up/pull-down option selectable  
(without stand-by control)  
• In mask ROM versions, MD2 pin is fixed  
to pull-down resistor, and optionally  
selectable the resistor in other pins.  
• The MB90V670 has no pull-up/pull-down  
resistors.  
R
R
P-ch  
N-ch  
Digital input  
G
• CMOS level hysteresis input  
(without standby control)  
P-ch  
N-ch  
Digital input  
H
• CMOS level hysteresis input  
(without standby control)  
R
• Pull-up option selectable  
(without standby control)  
• No pull-up resistor in the MB90V670  
P-ch  
N-ch  
Digital input  
20  
MB90670/675 Series  
HANDLING DEVICES  
1. Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).  
In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding VCC or an voltage below VSS is  
applied to input or output pins or a voltage exceeding the rating is applied across VCC and VSS.  
When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal  
break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.  
In turning on/turning off the analog power supply, make sure the analog power voltage (AVCC, AVRH) and analog  
input voltages not exceed the digital voltage (VCC).  
2. Connection of Unused Pins  
Leaving unused pins open may result in abnormal operations. Clamp the pin level by connecting it to a pull-up  
or a pull-down resistor.  
3. Notes on Using External Clock  
In using the external clock, drive X0 pin only and leave X1 pin unconnected.  
Using external clock  
X0  
Open  
X1  
MB90670/675 series  
4. Power Supply Pins  
In products with multiple VCC or VSS pins, the pins of a same potential are internally connected in the device to  
avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to  
lower the electro-magnetic emission level and abnormal operation of strobe signals caused by the rise in the  
ground level, and to conform to the total current rating.  
Make sure to connect VCC and VSS pins via lowest impedance to power lines.  
It is recommended to provide a bypass capacitor of around 0.1 µF between VCC and VSS pin near the device.  
5. Crystal Oscillator Circuit  
Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass  
capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and  
make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.  
It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand  
area for stabilizing the operation.  
21  
MB90670/675 Series  
6. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs  
Make sure to turn on the A/D converter power supply (AVCC, AVRH, AVRL) and analog inputs (AN0 to AN7)  
after turning-on the digital power supply (VCC).  
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure  
that the voltage not exceed AVRH or AVCC (turning on/off the analog and digital power supplies simultaneously  
is acceptable).  
7. Connection of Unused Pins of A/D Converter  
Connect unused pins of A/D converter to AVCC = VCC, AVSS = AVRH = VSS.  
8. “MOV @AL, AH”, “MOVW @AL, AH” Instructions  
When the above instruction is performed to I/O space, an unnecessary writing operation (#FF, #FFFF) may be  
performed in the internal bus.  
Use the compiler function for inserting an NOP instruction before the above instructions to avoid the writing  
operation.  
Accessing RAM space with the above instruction does not cause any problem.  
9. Initialization  
In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers,  
turning on the power again.  
22  
MB90670/675 Series  
PROGRAMMING TO THE ONE-TIME PROM ON THE MB90P673/P678  
The MB90P673 and MB90P678 has a PROM mode for emulation operation of the MBM27C1000/1000A, to  
which writing codes by a general-purpose ROM writer can be done via a dedicated adapter. Please note that  
the device is not compatible with the electronic signature (device ID code) mode.  
1. Writing Sequence  
The memory map for the PROM mode is shown as follows. Write option data to the option setting area according  
by referring to “7. PROM Option Bit Map”.  
PROM mode  
Normal operation mode  
FFFFFFH  
1FFFFFH  
Programarea  
(PROM)  
Programarea  
(PROM)  
Address*1  
Address*2  
010000H  
ROM image  
004000H  
000000H  
0002CH  
00000H  
Option  
setting area  
Type  
MB90P673  
MB90P678  
Address*1  
14000H  
Address*2  
FF4000H  
FF0000H  
Number of bytes  
48 Kbytes  
64 Kbytes  
10000H  
Note: The ROM image size for bank 00 is 48 Kbytes (ROM image for between FF4000H to FFFFFFH).  
Write data to the one-time PROM microcontrollers according to the following sequence.  
(1) Set the PROM programer to select the MBM27C1000/1000A.  
(2) Load the program data to the ROM programer address *1 to 1FFFFH. To select a PROM option, load the  
option data from 00000H to 0002CH referring to “7. PROM Option Bit Map”.  
(3) Set the chip to the adapter socket and load the socket to the ROM programer. Make sure that the device  
and adapter socket are properly oriented.  
(4) Program from 00000H to 1FFFFH.  
Notes: • In mask-ROM products, there is no PROM mode and it is impossible to read data by a ROM programer.  
• Contact sales personnel when purchasing a ROM programer.  
2. Program Mode  
In the MB90P673/P678, all the bits are set to “1” upon shipping from FUJITSU or erasing operation. To write  
data, set desired bit selectively to “0”. However it is impossible to write electronically to the bits.  
23  
MB90670/675 Series  
3. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening precedure for a product with a blanked  
One-time PROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
4. Programming Yield  
All bits cannnot be programmed at Fujitsu shipping test to a blanked One-time PROM microcomputer, due to  
its nature. For this reason, a programming yield of 100% cannnot be assured at all times.  
5. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer  
Part no.  
Package  
MB90P673PF MB90P673PFV MB90P678PF MB90P678PFV  
QFP-80  
LQFP-80  
QFP-100  
LQFP-100  
Compatible socket adapter  
Sun Hayato Co., Ltd.  
ROM-80QF-  
32DP-16L  
ROM-80SQF- ROM-100QF- ROM-100SQF-  
32DP-16L  
32DP-16L  
32DP-16L  
1890A  
1891  
Recommended  
Minato Electronics Inc.  
Recommended  
Recommended  
Recommended  
Recommended  
Recommended  
1930  
UNISITE  
3900  
Data I/O Co., Ltd.  
2900  
Inquiry: San Hayato Co., Ltd.: TEL: (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
Minato Electronics Inc.: TEL: USA (1)-916-348-6066  
JAPAN (81)-45-591-5611  
Data I/O Co., Ltd.: TEL: USA/ASIA (1)-206-881-6444  
EUROPE (49)-8-985-8580  
24  
MB90670/675 Series  
6. Pin Assignment for EPROM Mode  
• MBM27C1000/1000A pin compatible  
MBM27C1000/1000A  
MB90P673/MB90P678  
MBM27C1000/1000A  
MB90P673/MB90P678  
Pin no. Pin name  
VCC  
Pin no.  
Pin name  
VPP  
Pin no.  
Pin name  
MD2  
P32  
Pin no.  
32  
Pin name  
VCC  
1
2
OE  
31  
PGM  
N.C.  
A14  
A13  
A08  
A09  
A11  
A16  
A10  
CE  
P33  
3
A15  
A12  
A07  
A06  
A05  
A04  
A03  
A02  
A01  
A00  
D00  
D01  
D02  
GND  
P17  
30  
4
P14  
29  
P16  
P15  
P10  
P11  
P13  
P30  
P12  
P31  
P07  
P06  
P05  
P04  
P03  
5
P27  
28  
6
P26  
27  
7
P25  
26  
8
P24  
25  
9
P23  
24  
10  
11  
12  
13  
14  
15  
16  
P22  
23  
P21  
22  
P20  
21  
D07  
D06  
D05  
D04  
D03  
P00  
20  
P01  
19  
P02  
18  
VSS  
17  
• Pin assignments for products not compatible  
with MBM27C1000/1000A  
• Power supply, GND connected pin  
Pin no.  
Pin name  
processing  
Type  
Pin no.  
Refer to pin  
Pin name  
MD0  
MD1  
X0  
HST  
VCC  
Power supply  
Connect a pull-up  
resistor of 4.7 k.  
assignments.  
P34  
P35  
P36  
RST  
AVRL  
AVSS  
VSS  
X1  
OPEN  
Refer to pin  
assignments.  
AVCC  
AVRH  
P37  
P40 to P47  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P86  
P90  
GND  
Connect a pull-up  
resistor having  
a resistance of  
approximately  
1 Mto each pin.  
P91  
PA0 to PA7  
PB0 to PB2  
Note: Only MB90675 series has P81 to P86, P90, P91, PA0 to PA7, PB0 to PB2 pins.  
25  
MB90670/675 Series  
7. PROM Option Bit Map  
Address  
bit 7  
bit 6  
RST  
bit 5  
bit 4  
MD1  
bit 3  
MD1  
bit 2  
MD0  
bit 1  
MD0  
bit 0  
Vacancy  
Vacancy  
Vacancy  
Pull-up  
1: No  
Pull-up  
1: No  
Pull-down Pull-up  
Pull-down  
1: No  
00000H  
1: No  
1: No  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
00004H  
00008H  
0000CH  
00010H  
00014H  
0001CH  
00020H  
00024H  
00028H  
0002CH  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P27  
P26  
P25  
P24  
P23  
P22  
P21  
P20  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P47  
P46  
P45  
P44  
P43  
P42  
P41  
P40  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P67  
P66  
P65  
P64  
P63  
P62  
P61  
P60  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P77  
P76  
P75  
P74  
P73  
P72  
P71  
P70  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
P86  
P85  
P84  
P83  
P82  
P81  
P80  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
Vacancy  
Vacancy  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
PB2  
PB1  
PB0  
PA7  
PA6  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Notes: • Data “1” must be programed to the reserved bits and address other than listed above.  
• Only MB90P678 has pull-up options for P81 to P86, PA0 to PA7, and PB0 to PB2 pins.  
• Data “1” must be programed for the MB90P673.  
26  
MB90670/675 Series  
BLOCK DIAGRAM  
F2MC–16L  
CPU  
Interrupt controller  
Port 5  
8
P50/AN0 to  
P57/AN7  
X0  
X1  
RST  
HST  
Clock control block  
(including timebase timer)  
8
AVCC  
8/10-bit  
A/D converter  
AVRH  
AVRL  
AVSS  
8
8
P10/AD08/WI0 to  
P17/AD15/WI7  
Wake-up  
interrupt  
P47/ATG  
Port 0, 1  
16  
Port 4  
8
P00/AD00 to  
P07/AD07  
P40/SIN0  
P41/SOT0  
P42/SCK0  
UART0  
4
P20/A16 to P23/A19  
P30/ALE  
P31/RD  
P32/WRL/WR  
P33/WRH  
P34/HRQ  
P43/SIN1  
P44/SOT1  
P45/SCK1  
UART1  
(SCI)  
External bus  
interface  
2
16-bit PPG timer  
10  
8-bit  
PPG timer 0  
P46/PPG0  
P35/HAK  
P36/RDY  
P37/CLK  
8-bit  
PPG timer 1  
P80/PPG1  
P81 to P86  
Port 2, 3  
6
P24/TIN0  
P26/TOT0  
16-bit  
Port 8  
Port 6  
reload timer 0  
P25/TIN1  
P27/TOT1  
16-bit  
reload timer 1  
4
4
DTP/external  
interrupt circuit  
0 to 3  
4
4
P60/INT0 to  
P63/INT3  
Port 7  
Input capture  
(ICU)  
P64/ASR0 to  
P67/ASR3  
4
Output compare  
(unit 0)  
8
P70/DOT0 to  
P77/DOT7  
24-bit  
free-run timer  
4
Output compare  
8
3
(unit 1)  
PA0 to PA7  
PB0 to PB2  
Port A, B *  
Port 9*  
P90/SDA  
P91/SCL  
Other pins  
RAM  
ROM  
2
I2C interface *  
VCC,VSS,  
MD0 to MD2  
* : Not included in the MB90670 series.  
27  
MB90670/675 Series  
MEMORY MAP  
External ROM  
external bus mode  
Internal ROM  
external bus mode  
Single-chip mode  
FFFFFFH  
1
*
ROM area  
Address#1  
ROM area  
100000H  
Externalarea  
010000H  
ROM area  
(image of  
bank FF)  
ROM area  
(image of  
bank FF)  
Externalarea  
Address #2  
004000H  
Externalarea  
002000H  
Address #3  
Register  
RAM  
Register  
RAM  
Register  
RAM  
000100H  
0000C0H  
000000H  
Externalarea  
Peripheral  
Externalarea  
Peripheral  
Peripheral  
Part number  
MB90671  
Address #1*2  
Address #2*2  
00C000H  
008000H  
004000H  
Address #3*2  
000380H  
000780H  
000900H  
000900H  
000900H  
000780H  
000900H  
000D00H  
000D00H  
000D00H  
FFC000H  
FF8000H  
FF4000H  
MB90672  
MB90673  
MB90T673  
MB90P673  
MB90676  
FF4000H  
FF8000H  
FF4000H  
FF0000H  
004000H  
008000H  
004000H  
004000H  
MB90677  
MB90678  
MB90T678  
MB90P678  
FF0000H  
004000H  
: Internal access memory  
: Enternal access memory  
: Inhibited area  
*1: The same external memory is accessed for bank 0F, 1F, 2F through FF.  
*2: Addresses #1, #2 and #3 are unique to the product type.  
Notes: • The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C  
compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 is assigned to the same  
address, enabling reference of the table on the ROM without stating “far”.  
However, the ROM area of the MB90678/P678 exceeds 48 Kbytes, and for this reason, the image from  
FF4000H to FFFFFFH is reflected on bank 00 and image from FF0000H to FF3FFFH bank FF only.  
• In the MB90670/675 series, the upper 4-bit of the address are not output to the external bus. For this  
reason, the maximum area accessible is 1 Mbyte. The same address is accessed through different banks  
in different images.  
For example, accessing “A00000H” and “B00000H” accesses the same address on the external bus.  
To prevent the memory or I/O from being accessed through images, and the data from being destroyed,  
it is recommended to limit number of banks to a maximum of 16 so that the banks are mapped without  
interfering each other. Caution must be also taken when masking the upper address with the external  
address output control register (HACR).  
28  
MB90670/675 Series  
F2MC-16L CPU PROGRAMMING MODEL  
(1) Dedicated Registers  
: Accumlator (A)  
AH  
AL  
Dual 16-bit register used for storing results of calculation etc. The two 16-bit  
registers can be combined to be used as a 32-bit register.  
: User stack pointer (USP)  
The 16-bit pointer indicating a user stack address.  
USP  
SSP  
PS  
: System stack pointer (SSP)  
The 16-bit pointer indicating the status of the system stack address.  
: Processor status (PS)  
The 16-bit register indicating the system status.  
: Program counter (PC)  
The 16-bit register indicating storing location of the current instruction code.  
PC  
: Direct page register (DPR)  
DPR  
The 8-bit register for specifying bit 8 through 15 of the operand address in the  
short direct addressing mode.  
: Program bank register (PCB)  
The 8-bit register indicating the program space.  
PCB  
DTB  
USB  
SSB  
: Data bank register (DTB)  
The 8-bit register indicating the data space.  
: User stack bank register (USB)  
The 8-bit register indicating the user stack space.  
: System stack bank register (SSB)  
The 8-bit register indicating the system stack space.  
: Additional data bank register (ADB)  
The 8-bit register indicating the additional space.  
ADB  
8-bit  
16-bit  
32-bit  
29  
MB90670/675 Series  
(2) General-purpose Registers  
Maximum of 32 banks  
RW7  
R7  
R6  
RL3  
RL2  
RL1  
RL0  
RW6  
RW5  
RW4  
R5  
R3  
R4  
R2  
R1  
R0  
RW3  
RW2  
RW1  
RW0  
000180 H + (RP × 10 H )  
16-bit  
(3) Processor Status (PS)  
ILM  
RP  
CCR  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
PS  
ILM2 ILM1 ILM0 B4  
B3  
0
B2  
0
B1  
0
B0  
0
I
S
1
T
X
N
X
Z
X
V
X
C
X
Initial value  
0
0
0
0
0
— : Unused  
X : Indeterminate  
30  
MB90670/675 Series  
I/O MAP  
Abbreviated  
Read/  
Resource  
name  
Address  
Register name  
Port 0 data register  
Initial value  
register name  
write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
000000H  
000001H  
000002H  
000003H  
000004H  
000005H  
000006H  
000007H  
000008H  
000009H  
00000AH  
00000BH  
PDR0  
Port 0  
Port 1  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
1 1 1 1 1 1 1 1 B  
X X X X X X X X B  
X X X X X X X X B  
– X X X X X X X B  
– – – – – – 1 1 B  
X X X X X X X X B  
– – – – – X X X B  
PDR1  
Port 1 data register  
Port 2 data register  
Port 3 data register  
Port 4 data register  
Port 5 data register  
Port 6 data register  
Port 7 data register  
Port 8 data register  
Port 9 data register  
Port A data register  
Port B data register  
PDR2  
Port 2  
PDR3  
Port 3  
PDR4  
Port 4  
PDR5  
Port 5  
PDR6  
Port 6  
PDR7  
Port 7  
Port 8*5  
Port 9*5  
Port A*5  
Port B*5  
PDR8  
R/W  
R/W  
R/W  
R/W  
PDR9  
PDRA  
PDRB  
00000CH  
to  
(Vacancy)*3  
00000EH  
Wake-up  
interrupt  
00000FH  
EIFR  
Wake-up interrupt flag register  
R/W  
– – – – – – – 0 B  
000010H  
000011H  
000012H  
000013H  
000014H  
DDR0  
DDR1  
DDR2  
DDR3  
DDR4  
Port 0 data direction register  
Port 1 data direction register  
Port 2 data direction register  
Port 3 data direction register  
Port 4 data direction register  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
Port 5,  
analog input  
000015H  
ADER  
Analog input enable register  
R/W  
1 1 1 1 1 1 1 1 B  
000016H  
000017H  
000018H  
000019H  
00001AH  
00001BH  
DDR6  
DDR7  
DDR8  
Port 6 data direction register  
Port 7 data direction register  
Port 8 data direction register  
R/W  
R/W  
R/W  
Port 6  
Port 7  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
– 0 0 0 0 0 0 0 B  
Port 8*5  
(Vacancy)*3  
Port A*5  
Port B*5  
DDRA  
DDRB  
Port A data direction register  
Port B data direction register  
R/W  
R/W  
0 0 0 0 0 0 0 0 B  
– – – – – 0 0 0 B  
00001CH  
to  
(Vacancy)*3  
00001EH  
Wake-up  
interrupt  
00001FH  
EICR  
Wake-up interrupt enable register  
W
0 0 0 0 0 0 0 0 B  
(Continued)  
31  
MB90670/675 Series  
Abbreviated  
register name  
Read/  
write  
Resource  
name  
Address  
Register name  
Initial value  
000020H  
000021H  
UMC0  
Mode control register 0  
Status register 0  
R/W!  
R/W!  
0 0 0 0 0 1 0 0 B  
0 0 0 1 0 0 0 0 B  
USR0  
UART0  
UIDR0/  
UODR0  
Input data register 0/  
output data register 0  
000022H  
R/W  
X X X X X X X X B  
000023H  
000024H  
000025H  
URD0  
SMR1  
SCR1  
Rate and data register 0  
Mode register 1  
R/W  
R/W  
R/W!  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 1 0 0 B  
Control register 1  
UART1  
(SCI)  
SIDR1/  
SODR1  
Input data register 1/  
output data register 1  
000026H  
R/W  
X X X X X X X X B  
000027H  
000028H  
000029H  
00002AH  
00002BH  
00002CH  
00002DH  
00002EH  
00002FH  
SSR1  
ENIR  
EIRR  
ELVR  
Status register 1  
R/W!  
R/W  
R/W  
R/W  
0 0 0 0 1 – 0 0 B  
– – – – 0 0 0 0 B  
– – – – 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
DTP/interrupt enable register  
DTP/interrupt factor register  
Request level setting register  
DTP/external  
interrupt circuit  
(Vacancy)*3  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
0 0 0 0 0 0 X X B  
A/D convertor control status  
register  
ADCS  
ADCR  
R/W!  
8/10-bit A/D  
converter  
A/D convertor data register  
R/W!*4  
PPG0 operating mode control  
register  
8/16-bit PPG  
timer 0  
000030H  
000031H  
PPGC0  
PPGC1  
R/W!  
R/W!  
0 – 0 0 0 0 0 1 B  
0 0 0 0 0 0 0 0 B  
PPG1 operating mode control  
register  
8/16-bit PPG  
timer 1  
000032H  
000033H  
000034H  
000035H  
000036H  
000037H  
000038H  
000039H  
00003AH  
00003BH  
00003CH  
00003DH  
00003EH  
00003FH  
(Vacancy)*3  
PRLL0  
PRLH0  
PRLL1  
PRLH1  
R/W  
R/W  
R/W  
R/W  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
– – – – 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
– – – – 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
(Continued)  
8/16-bit PPG  
timer 0  
PPG0 reload register  
8/16-bit PPG  
timer 1  
PPG1 reload register  
TMCSR0  
Timer control status register 0  
R/W!  
R/W  
R/W!  
R/W  
16-bit reload  
timer 0  
TMR0/  
TMRLR0  
16-bit timer register 0/  
16-bit reload register 0  
TMCSR1  
Timer control status register 1  
16-bit reload  
timer 1  
TMR1/  
TMRLR1  
16-bit timer register 1/  
16-bit reload register 1  
32  
MB90670/675 Series  
Abbreviated  
register name  
Read/  
write  
Resource  
name  
Address  
Register name  
Initial value  
I2C bus status register  
I2C bus control register  
I2C bus clock control register  
I2C bus address register  
I2C bus data register  
000040H  
000041H  
000042H  
000043H  
000044H  
IBSR  
IBCR  
ICCR  
IADR  
IDAR  
R
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
– – 0 X X X X X B  
– X X X X X X X B  
X X X X X X X X B  
R/W  
R/W  
R/W  
R/W  
I2C interface*6  
000045H  
to  
(Vacancy)*3  
00004FH  
000050H  
000051H  
000052H  
000053H  
000054H  
000055H  
000056H  
000057H  
000058H  
000059H  
00005AH  
00005BH  
00005CH  
00005DH  
00005EH  
00005FH  
000060H  
000061H  
000062H  
000063H  
000064H  
000065H  
000066H  
000067H  
000068H  
000069H  
1 1 0 0 0 0 0 0 B  
– – 1 1 1 1 1 1 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
1 1 1 1 0 0 0 0 B  
– – – – 0 0 0 0 B  
– – – – 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
1 1 1 1 0 0 0 0 B  
– – – – 0 0 0 0 B  
– – – – 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
24-bit free-run  
timer  
TCCR  
ICC  
Free-run timer control register  
ICU control register  
R/W!  
R/W  
R
Input capture  
(ICU)  
TCRL  
Free-run timer lower data register  
Free-run timer upper data register  
OCU control register 00  
OCU control register 01  
OCU control register 10  
OCU control register 11  
ICU lower data register 0  
ICU upper data register 0  
ICU lower data register 1  
ICU upper data register 1  
ICU lower data register 2  
24-bit free-run  
timer  
TCRH  
R
CCR00  
CCR01  
CCR10  
CCR11  
ICDR0L  
ICDR0H  
ICDR1L  
ICDR1H  
ICDR2L  
R/W  
R/W  
R/W  
R/W  
R
Output compare  
(OCU)  
(unit 0)  
Output compare  
(OCU)  
(unit 1)  
R
Input capture  
(ICU)  
R
R
R
(Continued)  
33  
MB90670/675 Series  
Abbreviated  
register name  
Read/  
write  
Resource  
name  
Address  
Register name  
Initial value  
00006AH  
00006BH  
00006CH  
00006DH  
00006EH  
00006FH  
000070H  
000071H  
000072H  
000073H  
000074H  
000075H  
000076H  
000077H  
000078H  
000079H  
00007AH  
00007BH  
00007CH  
00007DH  
00007EH  
00007FH  
000080H  
000081H  
000082H  
000083H  
000084H  
000085H  
000086H  
000087H  
000088H  
000089H  
00008AH  
00008BH  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
ICDR2H  
ICU upper data register 2  
ICU lower data register 3  
ICU upper data register 3  
R
Input capture  
(ICU)  
ICDR3L  
ICDR3H  
CPR00L  
CPR00H  
CPR01L  
CPR01H  
CPR02L  
CPR02H  
CPR03L  
CPR03H  
CPR04L  
CPR04H  
CPR05L  
CPR05H  
CPR06L  
CPR06H  
R
R
OCU compare lower data  
register 0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OCU compare upper data  
register 0  
OCU compare lower data  
register 1  
OCU compare upper data  
register 1  
Output compare  
(OCU)  
(unit 0)  
OCU compare lower data  
register 2  
OCU compare upper data  
register 2  
OCU compare lower data  
register 3  
OCU compare upper data  
register 3  
OCU compare lower data  
register 4  
OCU compare upper data  
register 4  
OCU compare lower data  
register 5  
Output compare  
(OCU)  
(unit 1)  
OCU compare upper data  
register 5  
OCU compare lower data  
register 6  
OCU compare upper data  
register 6  
(Continued)  
34  
MB90670/675 Series  
Abbreviated  
register name  
Read/  
write  
Resource  
name  
Address  
Register name  
Initial value  
00008CH  
00008DH  
00008EH  
00008FH  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
OCU compare lower data  
register 7  
CPR07L  
CPR07H  
R/W  
Output compare  
(OCU)  
(unit 1)  
OCU compare upper data  
register 7  
R/W  
000090H  
to  
(System reservation area)*1  
00009EH  
Delayed  
interrupt  
generation  
module  
Delayed interrupt factor  
generation/  
cancellation register  
00009FH  
DIRR  
R/W  
– – – – – – – 0 B  
Low-power  
consumption  
(stand-by) mode  
Low-power consumption mode  
control register  
0000A0H  
0000A1H  
LPMCR  
CKSCR  
R/W!  
R/W!  
0 0 0 1 1 0 0 0 B  
1 1 1 1 1 1 0 0 B  
Low-power  
consumption  
Clock selection register  
(stand-by) mode  
0000A2H  
to  
(Vacancy)*3  
0000A4H  
Automatic ready function select  
register  
0000A5H  
ARSR  
W
External bus pin  
0 0 1 1 – – 0 0 B  
0000A6H  
0000A7H  
0000A8H  
0000A9H  
HACR  
EPCR  
WDTC  
TBTC  
Upper address control register  
Bus control signal select register  
Watchdog timer control register  
Timebase timer control register  
W
External bus pin  
External bus pin  
Watchdog timer  
Timebase timer  
– – – – 0 0 0 0 B  
0 0 0 0 * 0 0 – B  
X X X X X 1 1 1 B  
1 – – 0 0 1 0 0 B  
W
R/W!  
R/W!  
0000AAH  
to  
(Vacancy)*3  
0000AFH  
0000B0H  
0000B1H  
0000B2H  
0000B3H  
0000B4H  
0000B5H  
0000B6H  
0000B7H  
0000B8H  
0000B9H  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
Interrupt control register 00  
Interrupt control register 01  
Interrupt control register 02  
Interrupt control register 03  
Interrupt control register 04  
Interrupt control register 05  
Interrupt control register 06  
Interrupt control register 07  
Interrupt control register 08  
Interrupt control register 09  
R/W!  
R/W!  
R/W!  
R/W!  
R/W!  
R/W!  
R/W!  
R/W!  
R/W!  
R/W!  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
Interrupt  
controller  
(Continued)  
35  
MB90670/675 Series  
(Continued)  
Abbreviated  
register name  
Read/  
write  
Resource  
name  
Address  
Register name  
Initial value  
0000BAH  
0000BBH  
0000BCH  
0000BDH  
0000BEH  
0000BFH  
ICR10  
Interrupt control register 10  
Interrupt control register 11  
Interrupt control register 12  
Interrupt control register 13  
Interrupt control register 14  
Interrupt control register 15  
R/W!  
R/W!  
R/W!  
R/W!  
R/W!  
R/W!  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
ICR11  
ICR12  
Interrupt  
controller  
ICR13  
ICR14  
ICR15  
0000C0H  
to  
(External area)*2  
0000FFH  
36  
MB90670/675 Series  
Descriptions for read/write  
R/W: Readable and writable  
R: Read only  
W: Write only  
R/W!: Bits for reading operation only or writing operation only are included. Refer to the register lists for specific  
resource for detailed information.  
Descriptions for initial value  
0 : The initial value of this bit is “0”.  
1 : The initial value of this bit is “1”.  
* : The initial value of this bit is “1” or “0” (decided by levels on pins of MD0 through MD2).  
X : The initial value of this bit is indeterminate.  
– : This bit is not used. The initial value is indeterminate.  
*1: Access prohibited.  
*2: This area is the only external access area having an address of 0000FFH or lower. An access operation to this  
area is handled as that to external I/O area.  
*3: The area corresponding to the “(Vacancy)” on the I/O map is reserved, and accessing operation to this area is  
handled as that to internal area. No access signal to external devices are generated.  
*4: Only bit 15 is writable. Reading bit 10 through bit 15 returns “0” as a reading result.  
*5: In the MB90670 series, P81 through P86, P90, P91, PA0 through PA7, PB0 through PB2 are not present. For  
this reason, bits corresponding to these pins are not used.  
*6: The MB90670 series does not have the I2C interface. For this reason, this area is “(Vacancy)” in the MB90670  
series.  
Note: For bits that is only allowed to program, the initial value set by the reset operation is listed as an initial value.  
Note that the values are different from reading results.  
For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending  
on the types of the reset. However initial value for resets that initializes the value are listed.  
37  
MB90670/675 Series  
INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER  
Interrupt vector  
Number Address  
Interrupt control register  
EI2OS  
Interrupt source  
Priority*4  
support  
ICR  
Address  
Reset  
×
×
×
# 08  
# 09  
# 10  
08H  
09H  
0AH  
FFFFDCH  
FFFFD8H  
FFFFD4H  
High  
INT9 instruction  
Exception  
DTP/external interrupt circuit  
Channel 0  
# 11  
0BH  
FFFFD0H  
FFFFCCH  
FFFFC8H  
FFFFC4H  
ICR00  
ICR01  
0000B0H*2  
0000B1H*2  
DTP/external interrupt circuit  
Channel 1  
# 12 0CH  
# 13 0DH  
DTP/external interrupt circuit  
Channel 2  
DTP/external interrupt circuit  
Channel 3  
# 14  
0EH  
Output compare Channel 0  
Output compare Channel 1  
Output compare Channel 2  
Output compare Channel 3  
Output compare Channel 4  
Output compare Channel 5  
Output compare Channel 6  
Output compare Channel 7  
24-bit free-run timer Overflow  
# 15  
# 16  
# 17  
# 18  
# 19  
# 20  
# 21  
# 22  
# 23  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
FFFFC0H  
FFFFBCH  
FFFFB8H  
FFFFB4H  
FFFFB0H  
FFFFACH  
FFFFA8H  
FFFFA4H  
FFFFA0H  
0000B2H*2  
0000B3H*2  
0000B4H*2  
0000B5H*2  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
0000B6H*2  
24-bit free-run timer Intermediate  
bit  
# 24  
18H  
FFFF9CH  
Input capture Channel 0  
Input capture Channel 1  
Input capture Channel 2  
Input capture Channel 3  
# 25  
# 26  
# 27  
19H  
1AH  
1BH  
FFFF98H  
FFFF94H  
FFFF90H  
FFFF8CH  
0000B7H*2  
0000B8H*2  
ICR07  
ICR08  
# 28 1CH  
# 29 1DH  
16-bit reload timer/  
8/16-bit PPG timer 0  
FFFF88H  
FFFF84H  
FFFF80H  
ICR09  
0000B9H*2, *3  
16-bit reload timer/  
8/16-bit PPG timer 1  
# 30  
# 31  
1EH  
1FH  
8/10-bit A/D converter  
measurement complete  
ICR10  
ICR11  
0000BAH  
Wake-up interrupt  
×
×
# 33  
# 34  
21H  
22H  
FFFF78H  
FFFF74H  
0000BBH*2  
Timebase timer interval interrupt  
Low  
(Continued)  
38  
MB90670/675 Series  
(Continued)  
Interrupt source  
Interrupt control  
Interrupt vector  
Number Address  
EI2OS  
support  
register  
Priority*4  
ICR  
Address  
UART1 (SCI) transmission  
complete  
# 35  
23H  
FFFF70H  
High  
0000BCH*2  
ICR12  
UART0 transmission complete  
UART1 (SCI) reception complete  
I2C interface*1  
# 36  
24H  
25H  
FFFF6CH  
FFFF68H  
FFFF64H  
# 37  
ICR13  
0000BDH*2  
×
×
# 38 26  
H
UART0 reception complete  
# 39  
# 42  
27H  
2AH  
FFFF60H  
FFFF54H  
ICR14  
ICR15  
0000BEH  
0000BFH  
Delayed interrupt generation  
module  
Low  
: Can be used  
×
: Can not be used  
: Can be used. With EI2OS stop function.  
: Can be used if interrupt request using ICR are not commonly used.  
*1: In MB90670 series, this interrupt vector is not used because the series does not have the I2C interface.  
*2: • Interrupt levels for peripherals that commonly use the ICR register are in the same level.  
• When the extended intelligent I/O service (EI2OS) is specified in a peripheral device commonly using the ICR  
register, only one of the functions can be used.  
• When the extended intelligent I/O service (EI2OS) is specified for one of the peripheral functions, interrupts  
can not be used on the other function.  
*3: Only 16-bit reload timer conforms to the extended intelligent I/O service (EI2OS). Because the 8/16-bit PPG  
timer does not conform to the extended intelligent I/O service (EI2OS), disable interrupts of the 8/16-bit PPG  
timer when using the extended intelligent I/O service (EI2OS) in the 16-bit reload timer.  
*4: The level shows priority of same level of interrupt invoked simultaneously.  
39  
MB90670/675 Series  
PERIPHERALS  
1. I/O Port  
(1) Input/output Port  
Port 0 to 4, 6, 8, A, and B are general-purpose I/O ports having a combined function as an external bus pin and  
a resource input. The input output ports function as general-purpose I/O port only in the single-chip mode. In  
the external bus mode, the ports are configured as external bus pins, and part of pins for port 3 can be configured  
as general-purpose I/O port by setting the bus control signal select register (ECSR). Each pin corresponding  
to upper 4-bit of the port 2 can be switched between a resource and a port bitwise.  
Only MB90675 series has port A and port B.  
• Operation as output port  
The pin is configured as an output port by setting the corresponding bit of the DDR register to “1”.  
Writing data to PDR register when the port is configured as output, the data is retained in the output latch in  
the PDR and directly output to the pin.  
The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR  
register.  
Note: When a read-modify-write instruction (e.g. bit set instruction) is performed to the port data register, the  
destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR  
register for output, however, values of bits configured by the DDR register as inputs are changed because  
input values to the pins are written into the output latch. To avoid this situation, configure the pins by the  
DDR register as output after writing output data to the PDR register when configuring the bit used as  
input as outputs.  
• Operation as input port  
The pin is configured as an input by setting the corresponding bit of the DDR register to “0”.  
When the pin is configured as an input, the output buffer is turned-off and the pin is put into a high-impedance  
status.  
When a data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs  
are unaffected.  
Reading the PDR register reads out the pin level (“0” or “1”).  
• Block diagram  
PDR (port data register)  
PDR read  
Output latch  
P-ch  
PDR write  
Pin  
DDR (port direction register)  
N-ch  
Direction latch  
DDR write  
Standby control (SPL=1)  
DDR read  
Standby control: Stop, timebase timer mode and SPL=1, or hardware standby mode  
40  
MB90670/675 Series  
(2) N-ch Open-drain Port  
Port 5 and port 9 are general-purpose I/O ports having a combined function as resource input/output. Each pin  
can be switched between resource and port bitwise.  
Only MB90675 series has port 9.  
• Operation as output port  
When a data is written into the PDR register, the data is latched to the output latch of PDR. When the output  
latch value is set to “0”, the output transistor is turned on and the pin status is put into an “L” level output, while  
writing “1” turns off the transistor and put the pin in a high-impedance status.  
If the output pin is pulled-up, setting output latch value to “1” puts the pin in the pull-up status.  
Reading the PDR register returns the pin value (same as the output latch value in the PDR).  
Note: Execution of a read-modify-write instruction (e.g. bit set instruction) reads out the output latch value rather  
than the pin value, leaving output latch that is not manipulated unchanged.  
• Operation as input port  
Setting corresponding bit of the PDR register to “1” turns off the output transistor and the pin is put into a high-  
impedance status.  
Reading the PDR register returns the pin level (“0” or “1”).  
• Block diagram of port 5  
ADER (analog input enable register)  
To analog input  
ADER read  
ADER latch  
ADER write  
PDR (port data register)  
RMW  
(read-modify-write  
instruction)  
PDRread  
Pin  
Output trigger  
Output latch  
PDR write  
Standby control (SPL=1)  
Standby control: Stop, timebase timer mode and SPL=1, or hardware standby mode  
• Block diagram of port 9  
From resource output  
Standby control  
(SPL=1)  
To resource input  
PDR (port data register)  
PDRread  
RMW  
(read-modify-  
write instruc-  
tion)  
Output  
trigger  
Pin  
Output latch  
PDR write  
Standby control: Stop, timebase timer mode and SPL=1, or hardware standby mode  
41  
MB90670/675 Series  
(3) Output Port  
Port 7 is a general-purpose output port having a combined function as an output compare (OCU) output. Note  
that only OCU output can be output when the pin is configured as an output, and it is not used for outputting  
given data by writing to the data register. Each pin can be switched between an output compare output and a  
port bitwise.  
• Operation as output port (operation of OCU output)  
Setting the corresponding bit of the DDR register to “1” configures the pin as an output port. In this case, lower  
4-bit of CCR01 and CCR register are output.  
When configured as an output, the output buffer is turned on and data retained in the output latch in the PDR  
of the output compare is output to the pin.  
Writing data to DOT bit of the OCU control register (CCR01, CCR11) corresponding to each pin writes data  
in synchronization to a match operation of the output compare and output to the pin.  
Reading the PDR register returns the pin level (same as the output latch value of the PDR).  
When output of output compare is enabled, an output value from the output compare can be read out.  
• Operation as input port  
Setting corresponding bit of the DDR register to “0” configures the pin as input port.  
When the pin is configured as an input port, the output buffer is turned off and the pin is put into a high-  
impedance status.  
Reading the PDR register returns the pin level (“0” or “1”).  
• Block diagram  
PDR (port data register)  
PDR read  
OCU control register  
P-ch  
OCU control register write  
Pin  
DDR (port direction register)  
N-ch  
Direction latch  
DDR write  
DDR read  
Standby control (SPL=1)  
Standby control: Stop, timebase timer mode and SPL=1, or hardware standby mode  
42  
MB90670/675 Series  
(4) Register Configuration  
. . . . . . . . . . . .  
Address bit 15  
000000H  
bit 8 bit 7  
P07  
bit 6  
P06  
R/W  
bit 5  
P05  
R/W  
bit 4  
P04  
R/W  
bit 3  
P03  
R/W  
bit 2  
P02  
R/W  
bit 1  
P01  
R/W  
bit 0  
P00  
R/W  
Port 0 data register  
(PDR0)  
(PDR1)  
R/W  
. . . . . . . . . . . .  
bit 0  
Address  
000001H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
Port 1 data register  
(PDR1)  
(PDR0)  
P17  
R/W  
P16  
R/W  
P15  
R/W  
P14  
R/W  
P13  
R/W  
P12  
R/W  
P11  
R/W  
P10  
R/W  
. . . . . . . . . . . .  
Address bit 15  
000002H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
P20  
R/W  
Port 2 data register  
(PDR2)  
(PDR3)  
P27  
R/W  
P26  
R/W  
P25  
R/W  
P24  
R/W  
P23  
R/W  
P22  
R/W  
P21  
R/W  
. . . . . . . . . . . .  
bit 0  
Address  
000003H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
P30  
Port 3 data register  
(PDR3)  
P37  
R/W  
P36  
R/W  
P35  
R/W  
P34  
R/W  
P33  
R/W  
P32  
R/W  
P31  
R/W  
(PDR2)  
R/W  
. . . . . . . . . . . .  
Address bit 15  
000004H  
bit 8 bit 7  
P47  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P42  
R/W  
bit 1  
P41  
R/W  
bit 0  
P40  
R/W  
Port 4 data register  
(PDR4)  
(PDR5)  
P46  
R/W  
P45  
R/W  
P44  
R/W  
P43  
R/W  
R/W  
. . . . . . . . . . . .  
bit 0  
Address  
000005H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
P50  
Port 5 data register  
(PDR5)  
P57  
R/W  
P56  
P55  
R/W  
P54  
R/W  
P53  
R/W  
P52  
R/W  
P51  
R/W  
(PDR4)  
R/W  
R/W  
. . . . . . . . . . . .  
Address bit 15  
000006H  
bit 8 bit 7  
P67  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P62  
R/W  
bit 1  
P61  
R/W  
bit 0  
P60  
R/W  
Port 6 data register  
(PDR6)  
(PDR7)  
P66  
R/W  
P65  
R/W  
P64  
R/W  
P63  
R/W  
R/W  
. . . . . . . . . . . .  
bit 0  
Address  
000007H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
P70  
Port 7 data register  
(PDR7)  
P77  
R/W  
P76  
R/W  
P75  
R/W  
P74  
R/W  
P73  
R/W  
P72  
R/W  
P71  
R/W  
(PDR6)  
R/W  
. . . . . . . . . . . .  
Address bit 15  
000008H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P82  
R/W  
bit 1  
P81  
R/W  
bit 0  
P80  
R/W  
Port 8 data register  
(PDR8)  
(PDR9)  
P86  
R/W  
P85  
R/W  
P84  
R/W  
P83  
R/W  
R/W  
. . . . . . . . . . . .  
bit 0  
Address  
000009H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
P90  
Port 9 data register  
(PDR9)  
P91  
R/W  
(PDR8)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
. . . . . . . . . . . .  
Address bit 15  
00000AH  
bit 8 bit 7  
PA7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PA2  
R/W  
bit 1  
PA1  
R/W  
bit 0  
PA0  
R/W  
Port A data register  
(PDRA)  
(PDRB)  
PA6  
R/W  
PA5  
R/W  
PA4  
R/W  
PA3  
R/W  
R/W  
. . . . . . . . . . . .  
bit 0  
Address  
00000BH  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
PB0  
Port B data register  
(PDRB)  
PB2  
R/W  
PB1  
R/W  
(PDRA)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
(Continued)  
43  
MB90670/675 Series  
(Continued)  
. . . . . . . . . . . .  
bit-15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address  
000010H  
Port 0 data direction register  
(DDR0)  
(DDR1)  
P07  
R/W  
P06  
R/W  
P05  
R/W  
P04  
R/W  
P03  
R/W  
P02  
R/W  
P01  
R/W  
P00  
R/W  
. . . . . . . . . . . .  
bit 0  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
Address  
000011H  
Port 1 data direction register  
(DDR1)  
(DDR0)  
P17  
R/W  
P16  
R/W  
P15  
R/W  
P14  
R/W  
P13  
R/W  
P12  
R/W  
P11  
R/W  
P10  
R/W  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
P27  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P22  
R/W  
bit 1  
P21  
R/W  
bit 0  
P20  
R/W  
Address  
000012H  
Port 2 data direction register  
(DDR2)  
(DDR3)  
P26  
R/W  
P25  
R/W  
P24  
R/W  
P23  
R/W  
R/W  
. . . . . . . . . . . .  
bit 0  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
Address  
000013H  
Port 3 data direction register  
(DDR3)  
P37  
R/W  
P36  
R/W  
P35  
R/W  
P34  
R/W  
P33  
R/W  
P32  
R/W  
P31  
R/W  
P30  
R/W  
(DDR2)  
. . . . . . . . . . . .  
Address bit 15  
000014H  
bit 8 bit 7  
P47  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P42  
R/W  
bit 1  
P41  
R/W  
bit 0  
P40  
R/W  
Port 4 data direction register  
(DDR4)  
(ADER)  
P46  
R/W  
P45  
R/W  
P44  
R/W  
P43  
R/W  
R/W  
. . . . . . . . . . . .  
bit 0  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
Address  
000015H  
Analog input enable register  
(ADER)  
P57  
R/W  
P56  
R/W  
P55  
R/W  
P54  
R/W  
P53  
R/W  
P52  
R/W  
P51  
R/W  
P50  
(DDR4)  
R/W  
. . . . . . . . . . . .  
Address bit 15  
000016H  
bit 8 bit 7  
P67  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P62  
bit 1  
P61  
bit 0  
P60  
R/W  
Port 6 data direction register  
(DDR6)  
(DDR7)  
P66  
R/W  
P65  
R/W  
P64  
R/W  
P63  
R/W  
R/W  
R/W  
R/W  
. . . . . . . . . . . .  
bit 0  
Address  
000017H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
Port 7 data direction register  
(DDR7)  
P77  
P76  
P75  
R/W  
P74  
R/W  
P73  
R/W  
P72  
R/W  
P71  
R/W  
P70  
(DDR6)  
R/W  
R/W  
R/W  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P82  
bit 1  
P81  
bit 0  
P80  
Address  
000018H  
Port 8 data direction register  
(DDR8)  
(Vacancy)  
P86  
P85  
P84  
P83  
R/W  
R/W  
bit 6  
R/W  
bit 5  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
. . . . . . . . . . . .  
Address bit 15  
00001AH  
bit 8 bit 7  
Port A data direction register  
(DDRA)  
(DDRB)  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
. . . . . . . . . . . .  
bit 0  
Address  
00001BH  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
PB0  
Port B data direction register  
(DDRB)  
PB2  
R/W  
PB1  
R/W  
(DDRA)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: Only MB90675 series has P81 through P86, P90, PA0 through PA7, and PB0 through PB2, and MB90670 series does not  
have such pins.  
44  
MB90670/675 Series  
2. Timebase Timer  
The timebase timer is a 18-bit free-run counter (timebase counter) for counting up in synchronization to the  
internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from  
four types of 212/HCLK, 214/HCLK, 216/HCLK, and 219/HCLK.  
The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation  
stabilization time or the watchdog timer etc.  
(1) Register Configuration  
• Timebase timer control register (TBTC)  
. . . . . . . . . . . .  
Address  
0000A9H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
TBIE TBOF TBR TBC1 TBC0  
R/W R/W R/W R/W  
bit 0  
Initial value  
1--00100B  
(WDTC)  
RESV  
R/W  
W
R/W: Readable and writable  
W : Read only  
— : Unused  
(2) Block Diagram  
To watchdog timer  
To PPG timer  
Timebase timer counter  
× 21 × 22 × 23  
× 28 × 29  
× 210  
× 211 × 212 × 213 × 214 × 215 × 216 × 217 × 218  
. . . . . .  
Divided-by-2  
of HCLK  
OF  
OF  
OF  
OF  
To oscillation stabilization  
time selector of clock control block  
Power-on reset  
Counter  
clear circuit  
Interval  
timer selector  
Start stop mode  
CKSCR : MCS = 10*1  
Set TBOF  
Clear TBOF  
Timebase timer control register  
(TBTC)  
TBIE TBOF TBR TBC1 TBC0  
Timebase timer  
interrupt signal  
#34(22H)*2  
OF : Overflow  
HCLK: Oscillation clock  
*1  
*2  
: Switch machine clock from oscillation clock to PLL clock  
: Interrupt number  
45  
MB90670/675 Series  
3. Watchdog Timer  
The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when  
the counter is not cleared for a preset period of time.  
(1) Register Configuration  
• Watchdog timer control register (WDTC)  
. . . . . . . . . . . .  
(TBTC)  
Address bit 15  
0000A8H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
WT1  
W
bit 0  
WT0  
W
Initial value  
B
PONR STBR WRST ERST SRST WTE  
XXXXX111  
R
R
R
R
R
W
R : Read only  
W: Write only  
X : Indeterminate  
(2) Block Diagram  
Watchdog timer control register (WDTC)  
PONR STBR WRST ERST SRST WTE WT1 WT0  
2
Watchdog timer  
CLR and start  
Overflow  
CLR  
Start sleep mode  
Counter clear  
control circuit  
Count clock  
selector  
2-bit  
counter  
Watchdog reset  
generation circuit  
To internal reset  
generation circuit  
Start hold status  
Start stop mode  
CLR  
4
Clear  
(Timebase timer counter)  
Divided-by-2  
of HCLK  
× 29 × 210 × 211 × 212 × 213 × 214 × 215 × 216 × 217 × 218  
× 28  
× 21 × 22  
. . .  
HCLK: Oscillation clock  
46  
MB90670/675 Series  
4. 8/16-bit PPG Timer  
The 8/16-bit PPG timer is 2-channel reload timer module for outputting pulse having given frequencies/duty  
ratios.  
The two modules performs the following operation by combining functions.  
• 8-bit PPG output 2-channel independent operation mode  
This is a mode for operating independent 2-channel 8-bit PPG timer, in which PPG0 and PPG1 pins correspond  
to outputs from PPG0 and PPG1 respectively.  
• 16-bit PPG output operation mode  
In this mode, PPG0 and PPG1 are combined to be operated as a 1-channel 8/16-bit PPG timer operating as  
a 16-bit timer. Because PPG0 and PPG1 outputs are reversed by an underflow from PPG1 outputting the  
same output pulses from PPG0 and PPG1 pins.  
• 8 + 8-bit PPG output operation mode  
In this mode, PPG0 is operated as an 8-bit prescaler, in which an underflow output of PPG0 is used as a clock  
source for PPG1. A toggle output of PPG0 and PPG output of PPG1 are output from PPG0 and PPG1  
respectively.  
The module can also be used as a D/A converter with an external add-on circuit.  
(1) Register Configuration  
• PPG0 operating mode control register (PPGC0)  
. . . . . . . . . . . .  
Address bit 15  
bit 8 bit 7  
bit 6  
bit 5  
POE0 PIE0 PUF0 PCM1 PCM0 RESV  
R/W R/W R/W R/W R/W R/W  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
000030H  
(PPGC1)  
PEN0  
R/W  
B
0 - 000001  
• PPG1 operating mode control register (PPGC 1)  
. . . . . . . . . . . .  
(PPGC0)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
000031H  
B
PEN1 PCS1 POE1 PIE1 PUF1 MD1  
MD0 RESV  
R/W R/W  
00000001  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
• PPG reload register (PRLL0,PRLH0,PRLL1,PRLH1)  
. . . . . . . . . . . .  
Address bit 15  
PRLH0:000035H  
PRLH1:000037H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
Initial value  
(PRLH0,PRLH1 )  
B
XXXXXXXX  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
PRLL0:000034H  
PRLL1:000036H  
. . . . . . . . . . . .  
bit 0  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
Initial value  
(PRLL0,PRLL1)  
B
XXXXXXXX  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W: Readable and writable  
— : Unused  
X : Indeterminate  
47  
MB90670/675 Series  
(2) Block Diagram  
• Block diagram of 8/16-bit PPG timer 0  
Data bus for “H” digits  
Data bus for “L” digits  
PPG0 reload  
register  
PPG0 operating mode control register (PPGC0)  
PEN0  
POE0 PIE0 PUF0 PCM1 PCM0 RESV  
PRLH0  
PRLL0  
R
S
Temporary buffer  
(PRLBH0)  
Interrupt request  
#29 (1DH)*  
Q
2
Mode control signal  
Select signal  
Reload selector  
(L/H selector)  
PPG1 underflow  
PPG0 underflow  
(to PPG1)  
Count value  
reload  
Clear  
Pulse selector  
Underflow  
Down counter  
(PCNT0)  
CLK  
PPG0  
output latch  
Pin  
Reverse  
P46/PPG0  
PPG output  
control circuit  
Timebase timer output (512/HCLK)  
Peripheral clock (16/φ)  
Peripheral clock (4/φ)  
Peripheral clock (1/φ)  
Count clock selector  
2
Select signal  
*
: Interrupt number  
HCLK: Oscillation clock  
: Machine clock frequency  
φ
48  
MB90670/675 Series  
• Block diagram of 8/16-bit PPG timer 1  
Data bus for “H” digits  
Data bus for “L” digits  
PPG1 operating mode control register (PPGC1)  
PPG1 reload  
register  
PEN1 PCS1 POE1 PIE1 PUF1 MD1 MD0 RESV  
PRLH1  
PRLL1  
2
Operating mode  
control signal  
R
S
Temporary buffer  
(PRLBH0)  
Interrupt request  
#30 (1EH)*  
Q
reload selector  
(L/H selector)  
Select signal  
Count value  
reload  
Clear  
Underflow  
Down counter  
(PCNT1)  
PPG1  
Pin  
output latch  
Reverse  
MD0  
P80/PPG1  
CLK  
PPG output control circuit  
PPG1 underflow  
(to PPG0)  
PPG0 underflow  
Timebase timer output (512/HCLK)  
Peripheral clock (1/φ)  
Count clock selector  
Select signal  
*
: Interrupt number  
HCLK: Oscillation clock  
: Machine clock frequency  
φ
49  
MB90670/675 Series  
5. 16-bit Reload Timer  
The 16-bit reload timer has an internal clock mode for counting down in synchronization to three types of internal  
clocks and an event count mode for counting down detecting a given edge of the pulse input to the external bus  
pin, and either of the two functions can be selectively used.  
For this timer, an “underflow” is defined as the counter value of “0000H” to “FFFFH”. According to this definition,  
an underflow occurs after [reload register setting value + 1] counts.  
In operating the counter, the reload mode for repeating counting operation after reloading a counter setting  
value after an underflow or the one-shot mode for stopping the counting operation after an underflow can be  
selectively used.  
Because the timer can generate an interrupt upon an underflow, the timer conforms to the extended intelligent  
I/O service (EI2OS).  
The MB90670/675 series has 2 channels of 16-bit reload timers.  
(1) Register Configuration  
• Timer control status register upper digits (TMCSR0,TMCSR1 : H)  
. . . . . . . . . . . . .  
(TMCSR : L)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
CSL1 CSL0 MOD2 MOD1  
R/W R/W R/W R/W  
bit 0  
Initial value  
Address  
TMCSR0:000039H  
TMCSR1:00003DH  
B
- - - -0000  
• Timer control status register lower digits (TMCSR0,TMCSR1 : L)  
. . . . . . . . . . . . .  
bit 15 bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
CNTE TRG  
R/W R/W  
bit 0  
Initial value  
Address  
TMCSR0:000038H  
TMCSR1:00003CH  
B
00000000  
(TMCSR : H)  
MOD1 OUTE OUTL RELD INTE  
R/W R/W R/W R/W R/W  
UF  
R/W  
• 16-bit timer register 0, 1 (TMR0,TMR1)  
bit 15bit 14bit 13bit 12bit 11bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
Initial value  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
Address  
00003AH  
00003BH  
00003EH  
00003FH  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
• 16-bit reload register 0, 1 (TMRL0,TMRL1)  
bit 15bit 14bit 13bit 12bit 11bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
Initial value  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
Address  
00003AH  
00003BH  
00003EH  
00003FH  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
R/W : Readable and writable  
: Read only  
R
W : Write only  
— : Unused  
X
: Indeterminate  
50  
MB90670/675 Series  
(2) Block Diagram  
Internal data bus  
TMRLR0*1  
<TMRLR1>  
16-bit reload register  
reload signal  
reload  
control circuit  
TMRR0*1  
<TMR1>  
16-bit timer register (down counter) UF  
CLK  
Count clock generation circuit  
Gate input  
Wait signal  
3
Valid clock  
decision  
circuit  
Prescaler  
φ
To UART0, 1*1  
<To 8/10-bit A/D converter>  
Clear  
CLK  
Internal  
clock  
Output control circuit  
Output  
Input  
control  
circuit  
Pin  
generation circuit  
Clock  
selector  
Pin  
P26/TOT0*1  
<P27/TOT1>  
Reverse  
EN  
External  
clock  
P24/TIN0*1  
<P25/TIN1>  
3
2
Select  
signal  
Operation  
control circuit  
Function select  
— CSL1CSL0MOD2 MOD1 MOD0 OUTE OUTL RELD INTE UF CNTE TRG  
Timer control status register (TMCSR0)*1  
<TMCSR1>  
Interrupt request signal  
#29 (1DH)*2  
<#30 (1EH)>  
*1: The timer has ch.0 and ch.1, and listed in the parenthesis <> are for ch.1.  
*2: Interrupt number  
φ: Machine clock frequency  
51  
MB90670/675 Series  
6. 24-bit Free-run Timer  
The 24-bit free-run timer is a 24-bit up counter for counting up in synchronization to divided-by-3 or divided-by-  
4 of the machine clock, in which an interrupt factor can be selected from the overflow interrupt and four types  
of timer intermediate bit interrupt to be operated as an interval timer.  
The free-run timer can be used to generating reference timing signals for the input capture (ICU) and output  
compare (OCU).  
(1) Register Configuration  
• Free-run timer control register upper digits (TCCR : H)  
. . . . . . . . . . . . .  
(TCCR : L)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
RESV RESV RESV RESV RESV PR0  
R/W R/W R/W R/W R/W R/W  
bit 0  
Initial value  
Address  
000051H  
B
- -111111  
• Free-run timer control register lower digits (TCCR : L)  
. . . . . . . . . . . . .  
Address  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
TIME TIS1  
R/W R/W  
bit 1  
bit 0  
TIS0  
R/W  
Initial value  
11000000B  
000050H  
(TCCR : H)  
STP  
W
CLR  
W
IVF  
IVFE  
R/W  
TIM  
R/W  
R/W  
• Free-run timer upper data register (TCRH)  
bit 15bit 14bit 13bit 12bit 11bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
Address  
000056H  
000057H  
Initial value  
00000000B  
00000000B  
R
R
R
R
R
R
R
R
T23 T22 T21 T20 T19 T18 T17 T16  
R
R
R
R
R
R
R
R
• Free-run timer lower data register (TCRL)  
bit 15bit 14bit 13bit 12bit 11bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
Address  
000054H  
000055H  
Initial value  
00000000B  
00000000B  
T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R/W : Readable and writable  
R
: Read only  
W : Write only  
— : Unused  
52  
MB90670/675 Series  
(2) Block Diagram  
Internal data bus  
24-bit counter  
(TCR)  
Output buffer  
8
T16 to T23 To output compare (OCU)  
16  
T0 to T15  
To input capture (ICU)  
TCRH  
TCRL  
Carry  
Upper 8-bit counter  
Lower 16-bit counter  
Carry  
4
Prescaler  
φ
φ/3  
Count  
clock  
selector  
Intermediate  
bit interrupt  
φ/4  
control circuit  
Select signal  
Pause  
Carry  
detection  
Overfolw  
RESV RESV RESV RESV RESV PR0 STP CLR IVF IVFE TIM TIME TIS1 TIS0  
Free-run timer control register (TCCR)  
Intermediate bit interrupt  
request signal  
#24 (18H)*  
* : Interrupt number  
φ: Machine clock frequency  
Overflow interrupt  
request signal  
#23 (17H)*  
53  
MB90670/675 Series  
7. Input Capture (ICU)  
The input capture (ICU) generates an interrupt request to the CPU simultaneously with a storing operation of  
current counter value of the 24-bit free-run timer to the ICU data register (ICDR) upon an input of a trigger edge  
to the external pin.  
There are four sets (four channels) of the input capture external pins and ICU data registers (ICDR), enabling  
measurements of maximum of four events.  
• The input capture has four sets of external input pins (ASR0 to ASR3) and ICU registers (ICDR), enabling  
measurements of maximum of four events.  
• A trigger edge direction can be selected from rising/falling/both edges.  
• The input capture can be set to generate an interrupt request at the storage timing of the counter value of the  
24-bit free-run timer to the ICU data register (ICDR).  
• The input compare conforms to the extended intelligent I/O service (EI2OS).  
• The input capture function is suited for measurements of intervals (frequencies) and pulse-widths.  
(1) Register Configuration  
• ICU control register upper digits (ICC : H)  
. . . . . . . . . . . . .  
(ICC : L)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
00000000B  
IRE3 IRE2  
R/W R/W  
IRE1 IRE0  
R/W R/W  
IR3  
IR2  
IR1  
IR0  
000053H  
R/W  
R/W  
R/W  
R/W  
• ICU control register lower digits (ICC : L)  
. . . . . . . . . . . .  
bit 15  
Address  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000000B  
(ICC : H)  
EG3B EG3A EG2B EG2A EG1B EG1A EG0B EG0A  
000052H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
• ICU upper data register 0 to 3 (ICDR0H to ICDR3H)  
Address  
ICDR0H : 000063H  
ICDR1H : 000067H  
ICDR2H : 00006BH  
ICDR3H : 00006FH  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8  
Initial value  
00000000B  
R
R
R
R
R
R
R
R
Address  
ICDR0H : 000062H  
ICDR1H : 000066H  
ICDR2H : 00006AH  
ICDR3H : 00006EH  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D16  
R
Initial value  
D23  
R
D22  
R
D21  
R
D20  
R
D19  
R
D18  
R
D17  
R
XXXXXXXXB  
• ICU lower data register 0 to 3 (ICDR0L to ICDR3L)  
Address  
ICDR0L : 000061H  
ICDR1L : 000065H  
ICDR2L : 000069H  
ICDR3L : 00006DH  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8  
Initial value  
D15  
R
D14  
R
D13  
R
D12  
R
D11  
R
D10  
R
D9  
R
D8  
R
XXXXXXXXB  
Address  
ICDR0L : 000060H  
ICDR1L : 000064H  
ICDR2L : 000068H  
ICDR3L : 00006CH  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D0  
R
Initial value  
D7  
R
D6  
R
D5  
R
D4  
R
D3  
R
D2  
R
D1  
R
XXXXXXXXB  
R/W : Readable and writable  
R
: Read only  
— : Unused  
: Indeterminate  
X
54  
MB90670/675 Series  
(2) Block Diagram  
Internal data bus  
Output latch  
Latch  
signal  
ICU data register  
(ICDR)  
Edge detection circuit  
P61/ASR0  
Pin  
24  
Data latch signal  
ICDR0H  
ICDR1H  
ICDR2H  
ICDR3H  
ICDR0L  
2
P65/ASR1  
Pin  
24  
ICDR1L  
2
24-bit free-run  
P66/ASR2  
Pin  
24  
24  
timer  
ICDR2L  
ICDR3L  
2
P67/ASR3  
Pin  
2
ICU control  
register (ICC)  
IRE3 IRE2 IRE1 IRE0 IR3 IR2 IR1 IR0 EG3B EG3A EG2B EG2A EG1B EG1A EG0B EG0A  
#25 (19H)*  
#26 (1AH)*  
Input capature interrupt  
request signal  
#27 (1BH)*  
#28 (1CH)*  
*: Interrupt number  
55  
MB90670/675 Series  
8. Output Compare (OCU)  
The output compare (OCU) is two sets of compare units consisting of four-channel OCU compare data registers,  
a comparator and a control register.  
An interrupt request can be generated for each channel upon a match detection by performing time-division  
comparison between the OCU compare data register setting value and the counter value of the 24-bit free-run  
timer.  
The DOT pin can be used as a waveform output pin for reversing output upon a match detection or a general-  
purpose output port for directly outputting the setting value of the DOT bit.  
(1) Register Configuration  
• OCU control register 00 upper digits (CCR00 : H)  
. . . . . . . . . . . . .  
(CCR00 : L)  
Address  
000059H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
bit 0  
Initial value  
B
MD3  
R/W  
MD2 MD1  
R/W R/W  
MD0  
R/W  
- - - -0000  
• OCU control register 00 lower digits (CCR00 : L)  
. . . . . . . . . . . .  
bit 15  
Address  
000058H  
bit 8 bit 7  
RESV RESV RESV RESV CPE3 CPE2 CPE1 CPE0  
R/W R/W R/W R/W R/W R/W R/W R/W  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
11110000B  
(CCR00 : H)  
• OCU control register 01 upper digits (CCR01 : H)  
. . . . . . . . . . . . .  
(CCR01 : L)  
Address  
00005BH  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
bit 0  
Initial value  
00000000B  
ICE3  
R/W  
ICE2 ICE1  
R/W R/W  
ICE0  
R/W  
IC3  
IC2  
IC1  
IC0  
R/W  
R/W  
R/W  
R/W  
• OCU control register 01 lower digits (CCR01 : L)  
. . . . . . . . . . . .  
bit 15  
Address  
00005AH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
DOT3 DOT2 DOT1 DOT0  
R/W R/W R/W R/W  
bit 2  
bit 1  
bit 0  
Initial value  
B
- - - -0000  
(CCR01 : H)  
R/W : Readable and writable  
— : Unused  
(Continued)  
56  
MB90670/675 Series  
(Continued)  
• OCU compare upper data register 0 to 7 (CPR00H to CPR07H)  
Address  
CPR00H : 000073H  
CPR01H : 000077H  
CPR02H : 00007BH  
CPR03H : 00007FH  
CPR04H : 000083H  
CPR05H : 000087H  
CPR06H : 00008BH  
CPR07H : 00008FH  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Initial value  
00000000B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
CPR00H : 000072H  
CPR01H : 000076H  
CPR02H : 00007AH  
CPR03H : 00007EH  
CPR04H : 000082H  
CPR05H : 000086H  
CPR06H : 00008AH  
CPR07H : 00008EH  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D16  
R/W  
Initial value  
00000000B  
D23  
R/W  
D22  
R/W  
D21  
R/W  
D20  
R/W  
D19  
R/W  
D18  
R/W  
D17  
R/W  
• OCU compare lower data register 0 to 7 (CPR00L to CPR07L)  
Address  
CPR00L : 000071H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Initial value  
00000000B  
CPR01L : 000075H  
CPR02L : 000079H  
CPR03L : 00007DH  
CPR04L : 000081H  
CPR05L : 000085H  
CPR06L : 000089H  
CPR07L : 00008DH  
D15  
R/W  
D14  
R/W  
D13  
R/W  
D12  
R/W  
D11  
R/W  
D10  
R/W  
D9  
D8  
R/W  
R/W  
Address  
CPR00L : 000070H  
CPR01L : 000074H  
CPR02L : 000078H  
CPR03L : 00007CH  
CPR04L : 000080H  
CPR05L : 000084H  
CPR06L : 000088H  
CPR07L : 00008CH  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D0  
Initial value  
00000000B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W : Readable and writable  
— : Unused  
57  
MB90670/675 Series  
(2) Block Diagram of Output Compare (OCU)  
• Overall block diagram  
Free-run timer data  
Output compare unit  
4
MATCH0 to MATCH3  
23  
T1 to T23  
4
4
Interrupt request  
(ICOMP0 to ICOMP3)  
ICOMP0 to ICOMP3  
16  
RB15 to RB0  
Output compare unit 00 to 03  
(unit 0)  
DOT0 to DOT3  
Pin  
P70/DOT0 to P73/DOT3  
4
EXT0 to EXT3  
OPEN  
MATCH4 to MATCH7  
T1 to T23  
4
4
Interrupt request  
(ICOMP4 to ICOMP7)  
ICOMP4 to ICOMP7  
16  
RB15 to RB0  
Output compare unit 04 to 07  
(unit 1)  
DOT4 to DOT7  
Pin  
P74/DOT4 to P77/DOT7  
EXT0 to EXT3  
58  
MB90670/675 Series  
• Block diagram of unit 0  
OCU control register 00 (CCR00)  
MD3 MD2 MD1 MD0 RESV RESV RESV RESV CPE3 CPE2 CPE1 CPE0  
4
Match operation enabled  
4
General-purpose port/  
compare pin switching  
MATCH0 to MATCH3  
(to unit 1)  
Compare circuit  
24-bit free-run timer  
Output  
control circuit  
T1 T0  
2
bit 23 to bit 2  
Compare  
control  
Clock  
selector  
4
Compare control block  
Data latch  
Match  
signal  
4
4
P73/DOT3  
Pin  
CPR00H  
CPR01H  
CPR02H  
CPR03H  
CPR00L  
CPR01L  
CPR02L  
CPR03L  
P72/DOT2  
Pin  
Output  
latch  
P71/DOT1  
Pin  
P70/DOT0  
Pin  
OCU compare data register 0 to 3  
ICE3 ICE2 ICE1 ICE0 IC3 IC2  
IC1 IC0  
DOT3 DOT2 DOT1 DOT0  
OCU control register 01 (CCR01)  
#15 (0FH)*  
#16 (10H)*  
Output compare  
interrupt request signal  
#17 (11H)*  
#18 (12H)*  
* : Interrupt number  
59  
MB90670/675 Series  
• Block diagram of unit 1  
OCU control register10 (CCR10)  
MD3 MD2 MD1 MD0 SEL3 SEL2 SEL1 SEL0 CPE3 CPE2 CPE1 CPE0  
4
4
Output control circuit  
4
General-purpose port/compare pin switching  
MATCH0 to MATCH3  
(from unit 0)  
4
Factor  
selector  
4
Compare circuit  
Match  
operation  
enabled  
2
24-bit free-run timer  
bit 23 to bit 2  
T1 T0  
Compare  
control  
Clock  
selector  
4
Compare control block  
Match  
signal  
4
4
Data latch  
P77/DOT7  
Pin  
CPR04H  
CPR05H  
CPR06H  
CPR04L  
P76/DOT6  
Pin  
CPR05L  
CPR06L  
CPR07L  
Output  
latch  
P75/DOT5  
Pin  
P74/DOT4  
Pin  
CPR07H  
OCU compare data register 4 to 7  
ICE3 ICE2 ICE1 ICE0 IC3  
IC2  
IC1 IC0  
DOT3 DOT2 DOT1 DOT0  
OCU control register 11 (CCR11)  
#19 (13H)*  
#20 (14H)*  
Output compare  
interrupt request signal  
#21 (15H)*  
#22 (16H)*  
* : Interrupt number  
60  
MB90670/675 Series  
9. I2C Interface (Included Only in MB90675 Series)  
The I2C interface is a serial I/O port supporting Inter IC BUS operating as master/slave devices on I2C bus and  
has the following features.  
• Master/slave transmission/reception  
• Arbitration function  
• Clock synchronization function  
• Slave address/general call address detection function  
Transmission direction detection function  
• Repeated generation function start condition and detection function  
• Bus error detection function  
(1) Register Configuration  
• I2C bus status register (IBSR)  
. . . . . . . . . . . .  
Address bit 15  
000040H  
Initial value  
00000000B  
bit 8 bit 7  
BB  
bit 6  
bit 5  
AL  
bit 4  
LRB  
bit 3  
TRX  
bit 2  
AAS  
bit 1  
bit 0  
FBT  
(IBCR)  
RSC  
GCA  
R
R
R
R
R
R
R
R
• I2C bus control register (IBCR)  
. . . . . . . . . . . .  
Address  
000041H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
INT  
bit 0  
Initial value  
00000000B  
(IBSR)  
BER BEIE SCC  
R/W R/W R/W  
MSS  
R/W  
ACK GCAA INTE  
R/W R/W R/W  
R/W  
• I2C bus clock control register (ICCR)  
. . . . . . . . . . . .  
Address bit 15  
000042H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
CS2  
R/W  
bit 1  
CS1  
R/W  
bit 0  
CS0  
R/W  
Initial value  
--0XXXXXB  
(IADR)  
EN  
CS4  
R/W  
CS3  
R/W  
R/W  
• I2C address register (IADR)  
. . . . . . . . . . . .  
bit 0  
Address  
000043H  
(IADR)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
A0  
Initial value  
-XXXXXXXB  
(ICCR)  
A6  
A5  
A4  
A3  
A2  
A1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
. . . . . . . . . . . .  
Address bit 15  
000044H  
(IDAR)  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
D2  
bit 1  
D1  
bit 0  
D0  
R/W  
Initial value  
(Reserved area)  
D7  
D6  
D5  
D4  
D3  
XXXXXXXXB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W: Readable and writable  
R : Read only  
— : Uunsed  
X : Indeterminate  
61  
MB90670/675 Series  
(2) Block Diagram  
Internal data bus  
I2C bus status register  
I2C bus control register  
(IBCR)  
(IBSR)  
BER BEIE SCC MSS ACK GCAA INTE INT  
BB RSC AL LRB TRX AAS GCA FBT  
Number of  
interrupt  
Start stop condition  
generation circuit  
Start stop condition  
detection circuit  
request  
generated  
Interrupt request signal  
#38 (26H)*  
SDA line  
CCL line  
Pin  
P90/SDA  
I2C enable  
Pin  
P91/SCL  
IDAR register  
Arbitration lost  
detection circuit  
Slave address  
comparison circuit  
IADR register  
Clock control block  
Sync  
Clock  
4
Count  
clock  
selector 1  
8
Count  
clock  
selector 2  
Shift clock  
generation  
circuit  
divider 1  
(1/5 to  
1/8)  
Clock  
divider 2  
φ
I2C enable  
EN CS4 CS3 CS2 CS1 CS0  
I2C bus clock control register  
(ICCR)  
φ: Machine clock frequency  
* : Interrupt number  
62  
MB90670/675 Series  
10. UART0  
UART0 is a general-purpose serial data communication interface for performing synchronous or asynchronous  
communication (start-stop synchronization system). In addition to the normal duplex communication function  
(normal mode), UART0 has a master/slave type communication function (multi-processor mode).  
• Data buffer: Full-duplex double buffer  
Transfer mode: Clock synchronized (with start and stop bit)  
Clock asynchronized (start-stop synchronization system)  
• Baud rate: With dedicated baud rate generator, selectable from 12 types  
External clock input possible  
Internal clock (a clock supplied from 16-bit reload timer can be used.)  
• Data length: 7 bits to 9 bits selective (with a parity bit)  
6 bits to 8 bits selective (without a parity bit)  
• Signal format: NRZ (Non Return to Zero) system  
• Reception error detection: Framing error  
Overrun error  
Parity error (not available in multi-processor mode)  
• Interrupt request: Receive interrupt (reception complete, receive error detection)  
Receive interrupt (transmission complete)  
Transmit/receive conforms to extended intelligent I/O service (EI2OS)  
• Master/slave type communication function (multi-processor mode): 1 (master) to n (slave) communication  
possible  
(1) Register Configuration  
• Status register 0 (USR0)  
. . . . . . . . . . . . .  
(UMC0)  
Address  
000021H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
00100000B  
RDRF ORFE  
R/W R/W  
PE  
TDRE RIE  
R/W R/W  
TIE  
RBF  
R/W  
TBF  
R/W  
R/W  
R/W  
• Mode control register 0 (UMC0)  
. . . . . . . . . . . .  
Address  
000020H  
bit 15  
bit 8 bit 7  
PEN  
bit 6  
bit 5  
MC1 MC0 SMDE RFC SCKE SOE  
R/W R/W R/W R/W R/W R/W  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000100B  
(USR0)  
SBL  
R/W  
R/W  
• Rate and data register 0 (URD0)  
. . . . . . . . . . . . .  
Address  
000023H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
00000000B  
(UIDR0/UODR0)  
BCH RC3  
R/W R/W  
RC2  
R/W  
RC1  
R/W  
RC0 BCH0  
R/W R/W  
P
D8  
R/W  
R/W  
• Input data register 0 (UIDR0)  
. . . . .  
bit 9 bit 8  
Address  
000022H  
bit 15  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
D2  
R
bit 1  
D1  
R
bit 0  
D0  
R
Initial value  
(URD0) D8  
D7  
R
D6  
R
D5  
R
D4  
R
D3  
R
XXXXXXXXB  
R
• Output data register 0 (UODR)  
. . . . .  
Address  
bit 15  
bit 9 bit 8  
bit 7  
D7  
W
bit 6  
D6  
W
bit 5  
D5  
W
bit 4  
D4  
W
bit 3  
D3  
W
bit 2  
D2  
W
bit 1  
D1  
W
bit 0  
D0  
W
Initial value  
000022H  
(URD0)  
D8  
W
XXXXXXXXB  
R/W : Readable and writable  
: Read only  
W : Write only  
: Indeterminate  
R
X
63  
MB90670/675 Series  
(2) Block Diagram  
Control bus  
Receive  
interrupt signal  
#39 (27H)*  
Dedicated baud  
rate generator  
Transmit  
clock  
Transmit  
interrupt signal  
#36 (24H)*  
Clock  
16-bit reload  
timer 0  
selector  
Receive  
clock  
Transmit  
control circuit  
Receive  
control circuit  
Pin  
P42/SCK0  
Start bit  
detection circuit  
Transmit start  
circuit  
Receive bit  
counter  
Transmit bit  
counter  
Receive parity  
counter  
Transmit parity  
counter  
Pin  
P42/SOT0  
Shift register for  
reception  
Shift register for  
transmission  
Pin  
P40/SIN0  
Reception  
complete  
Start transmission  
UIDR0  
UODR0  
Receive condition  
decision circuit  
To EI2OS reception  
error generation  
signal (to CPU)  
Internal data bus  
BCH  
RC3  
RDRF  
ORFE  
PE  
TDRE  
RIE  
TIE  
RBF  
TBF  
PEN  
SBL  
RC2  
RC1  
RC0  
BCH0  
P
MC1  
MC0  
SMDE  
RFC  
SCKE  
SOE  
UMC0  
register  
USR0  
register  
URD0  
register  
D8  
* : Interrupt number  
64  
MB90670/675 Series  
11. UART1 (SCI)  
UART1 (SCI) is a general-purpose serial data communication interface for performing synchronous or  
asynchronous communication (start-stop synchronization system). In addition to the normal duplex  
communication function (normal mode), UART1 has a master-slave type communication function (multi-  
processor mode).  
• Data buffer: Full-duplex double buffer  
Transfer mode: Clock synchronized (no start or stop bit)  
Clock asynchronized (start-stop synchronization system)  
• Baud rate: With dedicated baud rate generator, selectable from 8 types  
External clock input possible  
Internal clock (a internal clock supplied from 16-bit reload timer can be used.)  
• Data length: 7 bits (for asynchronous normal mode only)  
8 bits  
• Signal format: NRZ (Non Return to Zero) system  
• Reception error detection: Framing error  
Overrun error  
Parity error (not available in multi-processor mode)  
• Interrupt request: Receive interrupt (receptioncomplete, receive error detection)  
Receive interrupt (transmission complete)  
Transmit/receive conforms to extended intelligent I/O service (EI2OS)  
• Master/slave type communication function (multi-processor mode):1 (master) to n (slave) communication  
possible (supported only for master station)  
(1) Register Configuration  
• Control register 1 (SCR1)  
............  
(SMR1)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7  
PEN SBL CL A/D REC RXE TXE  
R/W R/W R/W R/W R/W R/W R/W R/W  
bit 0  
Initial value  
00000100B  
P
000025H  
• Mode register 1 (SMR1)  
............  
(SCR1)  
Address bit 15  
bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
MD1 MD0 CS2 CS1 CS0 BCH SCKE SOE  
R/W R/W R/W R/W R/W R/W R/W R/W  
Initial value  
00000000B  
000024H  
• Status register 1 (SSR1)  
............  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7  
bit 0  
Initial value  
00001-00B  
PE ORE FRE RDRF TDRE  
RIE TIE (SIDR1/SODR1)  
R/W R/W  
000027H  
R
R
R
R
R
• Input data register 1 (SIDR1)  
............  
Address bit 15  
bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
Initial value  
(SSR1)  
D7  
R
D6  
R
D5  
R
D4  
R
D3  
R
D2  
R
D1  
R
D0  
R
000026H  
XXXXXXXXB  
• Output data register 1 (SODR1)  
............  
Address bit 15  
bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
Initial value  
(SSR1)  
D7  
W
D6  
W
D5  
W
D4  
W
D3  
W
D2  
W
D1  
W
D0  
W
000026H  
XXXXXXXXB  
R/W: Readable and writable  
R : Read only  
W : Write only  
— : Unused  
X : Indeterminate  
65  
MB90670/675 Series  
(2) Block Diagram  
Control bus  
Receive  
interrupt signal  
#37 (25H)*  
Transmit  
interrupt signal  
#35 (23H)*  
Dedicated baud  
rate generator  
Transmit  
clock  
Clock  
selector  
16-bit reload  
timer 1  
Receive  
clock  
Transmit  
control circuit  
Receive  
control circuit  
Pin  
P45/SCK1  
Start bit  
Transmit start  
detection circuit  
circuit  
Receive bit  
counter  
Transmit bit  
counter  
Receive parity  
counter  
Transmit parity  
counter  
Pin  
P44/SOT1  
Shift register for  
reception  
Shift register for  
transmission  
Pin  
P43/SIN1  
Reception  
complete  
Start transmission  
SIDR1  
SODR1  
Receive condition  
decision circuit  
To EI2OS reception  
error generation  
signal (to CPU)  
s
l data bu  
Interna  
MD1  
MD0  
CS2  
CS1  
CS0  
BCH  
PEN  
P
PE  
ORE  
FRE  
RDRF  
TDRE  
SBL  
CL  
A/D  
REC  
RXE  
TXE  
SMR1  
register  
SCR1  
register  
SSR1  
register  
SCKE  
SOE  
RIE  
TIE  
*: Interrupt number  
66  
MB90670/675 Series  
12. DTP/External Interrupt Circuit  
TheDTP(DataTransferPeripheral)/externalinterruptcircuitislocatedbetweenperipheralequipmentconnected  
externally and the F2MC-16L CPU and transmits interrupt requests or data transfer requests generated by  
peripheral equipment to the CPU, generates external interrupt request and starts the extended intelligent I/O  
service (EI2OS).  
(1) Register Configuration  
• DTP/interrupt factor register (EIRR)  
. . . . . . . . . . . .  
(ENIR)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
000029H  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
B
ER3  
R/W  
ER2  
R/W  
ER1  
R/W  
ER0  
R/W  
- - - - 0000  
• DTP/interrupt enable register (ENIR)  
. . . . . . . . . . . .  
Address bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EN0  
Initial value  
000028H  
B
(EIRR)  
EN3  
R/W  
EN2  
R/W  
EN1  
R/W  
- - - - 0000  
R/W  
• Request level setting register (ELVR)  
. . . . . . . . . . . .  
Address bit 15  
00002AH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000000B  
(Vacancy)  
LB3  
R/W  
LA3  
R/W  
LB2  
R/W  
LA2  
R/W  
LB1  
R/W  
LA1  
R/W  
LB0  
R/W  
LA0  
R/W  
R/W: Readable and writable  
— : Unused  
67  
MB90670/675 Series  
(2) Block Diagram  
Request level setting register (ELVR)  
LB3 LA3 LB2 LA2 LB1 LA1 LB0 LA0  
2
2
2
Pin  
2
P60/INT0  
Level edge  
selector 3  
Level edge  
selector 1  
Pin  
Level edge  
selector 2  
Level edge  
selector 0  
P61/INT1  
DTP/external interrupt input  
detection circuit  
Pin  
P62/INT2  
Pin  
P63/INT3  
DTP/interrupt factor register  
(EIRR)  
ER3 ER2 ER1 ER0  
Interrupt request signal  
#14 (0EH)*  
#13 (0DH)*  
#14 (0CH)*  
#11 (0BH)*  
DTP/interrupt enable register  
(ENIR)  
EN3 EN2 EN1 EN0  
*: Interrupt signal  
68  
MB90670/675 Series  
13. Wake-up Interrupt  
Wake-up interrupts transmits interrupt request (“L” level) generated by peripheral device located between  
external peripheral devices and the F2MC-16L CPU to the CPU and invokes interrupt processing.  
The interrupt does not conform to the extended intelligent I/O service (EI2OS).  
(1) Register Configuration  
• Wake-up interrupt flag register (EIFR)  
Address  
00000FH  
. . . . . . . . . . . .  
(Vacancy)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
bit 0  
Initial value  
WIF  
R/W  
B
- - - - - - - 0  
• Wake-up interrupt enable register (EICR)  
Address  
. . . . . . . . . . . .  
(Vacancy)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
Initial value  
00000000B  
00001FH  
EN7  
R/W  
EN6  
R/W  
EN5  
R/W  
EN4  
R/W  
EN3  
R/W  
EN2  
R/W  
EN1  
R/W  
EN0  
R/W  
R/W: Readable and writable  
— : Unused  
(2) Block Diagram  
Internal data bus  
Wake-up interrupt  
enable register (EICR)  
Wake-up interrupt flag  
register (EIFR)  
EN7 EN6 EN5 EN4 EN3 EN2 EN1 EN0  
WIF  
Interrupt request detection circuit  
P10/AD08/WI0  
P11/AD09/WI1  
P12/AD10/WI2  
Pin  
Pin  
Pin  
Wake-up interrupt  
request  
#33 (21H)*  
P13/AD11/WI3  
P14/AD12/WI4  
P15/AD13/WI5  
P16/AD14/WI6  
P17/AD15/WI7  
Pin  
Pin  
Pin  
Pin  
Pin  
*: Interrupt number  
69  
MB90670/675 Series  
14. Delayed Interrupt Generation Module  
The delayed interrupt generation module generates interrupts for switching tasks for development on a real-  
time operating system (REALOS software). The module can be used to generate hardware interrupt requests  
to the CPU with software and cancel the interrupt requests.  
This module does not conform to the extended intelligent I/O service (EI2OS).  
(1) Register Configuration  
• Delayed interrupt factor generation/cancellation register (DIRR)  
. . . . . . . . . . . .  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
00009FH  
R0  
(Reserved area)  
B
- - - - - - - 0  
R/W  
R/W: Readable and writable  
— : Unused  
(2) Block Diagram  
Internal data bus  
R0  
S factor  
R latch  
Interrupt request signal  
#42 (2AH)*  
Delayed interrupt factor generation/  
cancellation register (DIRR)  
*: Interrupt signal  
70  
MB90670/675 Series  
15. 8/10-bit A/D Converter  
The 8/10-bit A/D converter has a function of converting analog voltage input to the analog input pins (input  
voltage) to digital values (A/D conversion) and has the following features.  
• Minimum conversion time: 6.13 µs (at machine clock of 16 MHz, including sampling time)  
• Minimum sampling time: 3.75 µs (at machine clock of 16 MHz)  
• Conversion method: RC successive approximation method with a sample and hold circuit.  
• Resolution: 10-bit or 8-bit selective  
• Analog input pins: Selectable from eight channels by software  
One-shot conversion mode:Stops conversion after completing a conversion for a stopped channel (one  
channel only) or for successive channels (maximum of eight channels can be  
specified)  
Continuous conversion mode:Continues conversions for a specified channel (one channel only) or for  
successive channels (maximum of eight channels can be specified)  
Stop conversion mode:Stops conversion after completing a conversion for one channel and wait for the next  
activation.  
• Interrupt requests can be generated and the extended intelligent I/O service (EI2OS) can be started after the  
end of A/D conversion.  
• When interrupts are enabled, there is no loss of data even in continuous operations because the conversion  
data protection function is in effect.  
• Starting factors for conversion: Selected from software activation, 16-bit reload timer 1 output (rising edge),  
and external trigger (falling edge).  
(1) Register Configuration  
• A/D control status register upper digits (ADCS: H)  
. . . . . . . . . . . .  
(ADCS: L)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
INTE PAUS STS1 STS0 STRT RESV  
R/W R/W R/W R/W R/W  
bit 8 bit 7  
bit 0  
Initial value  
00000000B  
00002DH  
BUSY INT  
R/W R/W  
W
• A/D control status register lower digits (ADCS: L)  
. . . . . . . . . . . .  
Address bit 15  
bit 8 bit 7  
bit 6  
MD0 ANS2 ANS1 ANS0 ANE2 ANE1 ANE0  
R/W R/W R/W R/W R/W R/W R/W  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000000B  
00002CH  
(ADCS: H)  
MD1  
R/W  
• A/D data register (ADCR)  
Address bit 15bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
Initial value  
XXXXXXXXB  
0000000XB  
00002EH  
S10  
R/W  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
R
R
R
R
R
R
R
R
R
R
R/W: Readable and writable  
R : Read only  
W : Write only  
— : Unused  
X : Indeterminate  
71  
MB90670/675 Series  
(2) Block Diagram  
A/D control status  
register (ADCS)  
Interrupt request signal #31 (1FH)*  
BUSY  
INT INTE PAUS STS1 STS0 STRT RESV MD1 MD0 ANS2 ANS1 ANS0 ANE2 ANE1 ANE0  
6
2
P47/ATG  
TO  
Clock selector  
Decoder  
φ
Comparator  
P57/AN7  
P56/AN6  
P55/AN5  
P54/AN4  
P53/AN3  
P52/AN2  
P51/AN1  
P50/AN0  
Sample hold  
circuit  
Control circuit  
Analog  
channel  
selector  
AVR  
AVCC  
AVSS  
D/A converter  
A/D data register  
(ADCR)  
S10  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
φ : Machine clock frequency  
TO : 16-bit reload timer channel 1 output  
: Interrupt number  
*
72  
MB90670/675 Series  
16. Low-power Consumption (Standby) Mode  
The F2MC-16L has the following CPU operating mode configured by selection of an operating clock and clock  
operation control.  
• Clock mode  
PLL clock mode: A mode in which the CPU and peripheral equipment are driven by PLL-multiplied oscillation  
clock (HCLK).  
Main clock mode: A mode in which the CPU and peripheral equipment are driven by divided-by-2 of the  
oscillation clock (HCLK).  
The PLL multiplication circuits stops in the mainclock mode.  
• CPU intermittent operation mode  
The CPU intermittent operation mode is a mode for reducing power consumption by operating the CPU  
intermittently while external bus and peripheral functions are operated at a high-speed.  
• Hardware stand-by mode  
The hardware standby mode is a mode for reducing power consumption by stopping clock supply (sleep mode)  
to the CPU by the low-power consumption control circuit, stopping clock supplies to the CPU and peripheral  
functions (timebase timer mode), and stopping oscillation clock (stop mode, hardware standby mode).  
Of these modes, modes other than the PLL clock mode are power consumption modes.  
(1) Register Configuration  
• Clock select register (CKSCR)  
. . . . . . . . . . . .  
(LPMCR)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
CS1  
W
bit 8 bit 7  
CS0  
bit 0  
Initial value  
0000A1H  
RESV MCM WS1 WS0 RESV MCS  
B
11111100  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
• Low-power consumption mode control register (LPMCR)  
. . . . . . . . . . . .  
Address bit 15  
bit 8 bit 7  
bit 6  
SLP  
W
bit 5  
SPL  
R/W  
bit 4  
RST RESV CG1  
R/W R/W  
bit 3  
bit 2  
bit 1  
CG0 RESV  
R/W R/W  
bit 0  
Initial value  
0000A0H  
B
(CKSCR)  
STP  
00011000  
W
W
R/W: Readable and writable  
R : Read only  
W : Write only  
73  
MB90670/675 Series  
(2) Block Diagram  
Low-power consumption mode control register (LPMCR)  
STP SLP SPL RST RESV CG1 CG0 RESV  
Pin  
Pin Hi-z control  
Internal reset  
high-impedance  
control circuit  
Internal reset  
generation  
circuit  
RST Pin  
CPUintermittent  
operation  
Select intermittent cycle  
CPU clock  
selector  
CPU clock  
control circuit  
Cancellation of reset  
RST  
2
Stop and sleep signal  
Standby control  
circuit  
Cancellation of interrupt  
HST Pin  
Stop signal  
Machine clock  
Cancellation of  
oscillation  
stabilization time  
Peripheral clock  
control circuit  
Peripheral clock  
Clock  
generation  
block  
Oscillation  
stabilization  
time selector  
Clock selector  
2
2
PLL multiplication  
circuit  
RESV MCM WS1 WS0 RESV MCS CS1 CS0  
Clock selection register (CKSCR)  
System clock  
generation  
circuit  
Divided  
-by-2  
Divided  
-by-2048  
Divided  
-by-4  
Divided  
-by-4  
Divided  
-by-8  
X0  
X1  
Pin  
Pin  
Main clock  
Timebase timer  
74  
MB90670/675 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VSS + 7.0  
V
V
AVCC  
*1  
*1  
Power supply voltage  
AVRH,  
AVRL  
VSS – 0.3  
VSS + 7.0  
V
Input voltage  
VI  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
VCC + 0.3  
15  
V
*2  
*2  
*3  
*4  
Output voltage  
VO  
IOL  
V
“L” level maximum output current  
“L” level average output current  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
°C  
IOLAV  
4
“L” level total maximum output current ΣIOL  
100  
“L” level total average output current  
“H” level maximum output current  
“H” level average output current  
ΣIOLAV  
50  
*5  
*3  
*4  
IOH  
–15  
IOHAV  
–4  
“H” level total maximum output current ΣIOH  
–100  
–50  
“H” level total average output current  
Power consumption  
ΣIOHAV  
*5  
PD  
400  
Operating temperature  
TA  
–40  
–55  
+85  
Storage temperature  
Tstg  
+150  
°C  
*1: AVCC, AVRH, and AVRL shall never exceed VCC. AVRL shall never exceed AVRH.  
*2: VI and VO shall never exceed VCC + 0.3 V.  
*3: The maximum output current is a peak value for a corresponding pin.  
*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.  
*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
75  
MB90670/675 Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Remarks  
Normal operation  
Value  
Symbol  
Unit  
Parameter  
Min.  
Max.  
VCC  
VCC  
2.7  
5.5  
V
V
Power supply voltage  
Retains status at the time of  
operation stop  
2.0  
5.5  
Operating temperature TA  
–40  
+85  
°C  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device's electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
76  
MB90670/675 Series  
3. DC Characteristics  
Parameter Symbol  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin name  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
Pins other than VIHS  
and VIHM  
VIH  
0.7 VCC  
VCC + 0.3  
V
Hysteresis input pins  
P24 to P27, P40 to P47,  
P60 to P67, P70 to P77,  
P80, HST, RST  
MB90670  
series  
VIHS  
0.8 VCC  
0.8 VCC  
VCC + 0.3  
VCC + 0.3  
V
“H” level  
input  
voltage  
Hysteresis input pins  
P24 to P27, P40 to P47,  
P60 to P67, P70 to P77,  
P80 to P86, HST, RST,  
P90, P91, PA0 to PA7,  
PB0 to PB2  
MB90675  
series  
VIHS  
V
VIHM  
VIL  
MD pin input  
VCC – 0.3  
VSS – 0.3  
VCC + 0.3  
0.3 VCC  
V
V
Pins other than VILS  
and VILM  
Hysteresis input pins  
P24 to P27, P40 to P47,  
P60 to P67, P70 to P77,  
P80, HST, RST  
MB90670  
series  
VILS  
VSS – 0.3  
VSS – 0.3  
0.2 VCC  
0.2 VCC  
V
“L” level  
input  
voltage  
Hysteresis input pins  
P24 to P27, P40 to P47,  
P60 to P67, P70 to P77,  
P80 to P86, HST, RST,  
P90, P91, PA0 to PA7,  
PB0 to PB2  
MB90675  
series  
VILS  
V
VILM  
VOH  
MD pin input  
VSS – 0.3  
VCC – 0.5  
VSS + 0.3  
V
V
Other than P50 to  
P57  
VCC = 4.5 V  
IOH = –4.0 mA  
“H” level  
output  
voltage  
Other than P50 to  
P57  
VCC = 2.7 V  
IOH = –1.6 mA  
VOH  
VOL  
VOL  
VCC – 0.3  
V
V
V
VCC = 4.5 V  
IOL = 4.0 mA  
All output pins  
All output pins  
0.4  
0.4  
“L” level  
output  
voltage  
VCC = 2.7 V  
IOL = 2.0 mA  
Open-drain  
output  
leakage  
P50 to P57, P90,  
P91*1  
Ileak  
0.1  
10  
µA  
µA  
current  
Input  
leakage  
current  
Other than P50 to  
P57, P90 and P91  
VCC = 5.5 V  
VSS < VI < VCC  
IIL  
–10  
10  
R
R
VCC = 5.0 V  
VCC = 3.0 V  
25  
40  
45  
95  
100  
200  
kΩ  
Pull-up  
resistance  
kΩ  
(Continued)  
77  
MB90670/675 Series  
(Continued)  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
25  
Typ.  
50  
Max.  
200  
R
R
VCC = 5.0 V  
VCC = 3.0 V  
kΩ  
kΩ  
Pull-down  
resistance  
40  
100  
400  
Internal  
operation at  
16 MHz  
Normal  
mA  
ICC  
50  
10  
12  
2.5  
70  
30  
20  
10  
operation*2  
VCC at 5.0 V  
Internal  
operation at  
16 MHz  
In sleep  
mA  
ICCS  
mode*2  
VCC at 5.0 V  
Internal  
operation at  
8 MHz  
Normal  
mA  
Power  
supply  
current  
ICC  
operation*2  
V
CC at 3.0 V  
Internal  
operation at  
8 MHz  
In sleep  
mA  
ICCS  
mode*2  
VCC at 3.0 V  
In stop  
mode and  
µA hardware  
standby  
ICCH  
TA = +25°C  
0.1  
10  
10  
mode*2  
Input  
capacitance  
Other than AVCC,  
AVSS, VCC, VSS  
CIN  
pF  
*1: Only MB90675 series has P90 and P91 pins.  
*2: The current value is preliminary value and may be subject to change for enhanced characteristics without  
previous notice.  
78  
MB90670/675 Series  
4. AC Characteristics  
(1) Reset Input Timing, Hardware Standby Input Timing  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Reset input time  
tRSTL  
RST  
HST  
16 tCP*  
16 tCP*  
ns  
ns  
Hardware standby input time tHSTL  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
tRSTL, tHSTL  
RST  
HST  
0.2 VCC  
0.2 VCC  
• Measurement conditions for AC ratings  
Pin  
CL  
CL is a load capacitance connected to a pin under test.  
CLK, ALE: CL = 30 pF  
Address data bus (AD15 to AD00), RD, WR: CL = 80 pF  
79  
MB90670/675 Series  
(2) Specification for Power-on Reset  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Power supply rising time  
Power supply cut-off time  
tR  
VCC  
VCC  
30  
ms  
ms  
*
Due to repeated  
operations  
tOFF  
1
* : VCC must be kept lower than 0.2 V before power-on.  
Notes: • The above ratings are values for causing a power-on reset.  
• When HST is set to “L” level, apply power according to this table to cause a power-on reset irrespective  
of whether or not a power-on reset is required.  
• For built-in resources in the device, re-apply power to the resources to cause a power-on reset.  
• There are internal registers which can be initialized only by a power-on reset. Apply power according to  
this rating to ensure initialization of the registers.  
tR  
2.7 V  
0.2 V  
VCC  
0.2 V  
0.2 V  
tOFF  
Sudden changes in the power supply voltage may cause a power-on reset.  
To change the power supply voltage while the device is in operation, it is recommended to raise the voltage  
smoothly to suppress fluctuations as shown below.  
Main power  
supply voltage  
VCC  
It is recommended to keep the rising  
speed of the supply voltage at 50 mV/ms  
or slower.  
Sub power supply voltage  
VSS  
RAM data retained  
80  
MB90670/675 Series  
(3) Clock Timing  
• Operation at 5.0 V ± 10%  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
3
Typ. Max.  
Clock frequency  
Clock cycle time  
FC  
tC  
X0, X1  
32  
MHz  
ns  
X0, X1  
31.25  
333  
Recommended  
ns duty ratio of  
PWH,  
PWL  
Input clock pulse width  
X0  
10  
30% to 70%  
tCR,  
tCF  
Input clock rising/falling time  
X0  
1.5  
62.5  
5
16  
666  
3
ns  
MHz  
ns  
Internal operating clock  
frequency  
fCP  
tCP  
f  
Internal operating clock cycle  
time  
Frequency fluctuation rate  
locked  
P37/CLK  
%
*
* : The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied  
PLL signal is locked.  
+
+ α  
| α |  
fO  
f =  
× 100 (%)  
Center frequency fO  
α  
The PLL frequency deviation changes periodically from the preset frequency “(about CLK × (1CYC to 50 CYC)”,  
thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with  
long intervals).  
81  
MB90670/675 Series  
• Operation at VCC = 2.7 V (minimum value)  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Clock frequency  
Min.  
3
Typ. Max.  
FC  
tC  
X0, X1  
X0, X1  
16  
MHz  
ns  
Clock cycle time  
62.5  
333  
Recommended  
ns duty ratio of  
30% to 70%  
PWH,  
PWL  
Input clock pulse width  
X0  
20  
tCR,  
tCF  
Input clock rising/falling time  
X0  
1.5  
125  
5
8
ns  
MHz  
ns  
Internal operating clock  
frequency  
fCP  
tCP  
f  
Internal operating clock cycle  
time  
666  
3
Frequency fluctuation rate  
locked  
P37/CLK  
%
*
* : The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied  
PLL signal is locked.  
+
+ α  
| α |  
fO  
f =  
× 100 (%)  
Center frequency fO  
α  
The PLL frequency deviation changes periodically from the preset frequency “(about CLK × (1CYC to 50 CYC)”,  
thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with  
long intervals).  
82  
MB90670/675 Series  
• Clock timing  
tC  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.8 VCC  
0.2 VCC  
PWH  
PWL  
tCF  
tCR  
• PLL operation guarantee range  
Relationship between internal operating clock  
frequency and power supply voltage  
(V)  
5.5  
4.5  
Normal operation  
range  
PLL operation  
guarantee range  
3.3  
2.7  
1.5  
3
8
16  
(MHz)  
Internal clock fCP  
Relationship between clock frequency, internal  
operating clock frequency, and power supply voltage  
(MHz)  
Multiplied-by-4  
Multiplied-by-3  
Not multiplied  
Multiplied-by-1  
Multiplied-  
by-2  
3 4  
8
16  
24  
32 (MHz)  
Oscillation clock FC  
Note: The operation guarantee range on the lower voltage is 2.7 V for the evaluation chips.  
The AC ratings are measured for the following measurement reference voltages.  
• Input signal waveform  
• Output signal waveform  
Hystheresis input pin  
0.8 VCC  
Output pin  
2.4 V  
0.2 VCC  
0.8 V  
Pins other than hystheresis input/MD input  
0.7 VCC  
0.3 VCC  
83  
MB90670/675 Series  
(4) Recommended Resonator Manufacturers  
• Sample application of piezoelectric resonator (FAR family)  
X0  
X1  
R
FAR*1  
C1*2  
C2*2  
*1: Fujitsu Acoustic Resonator  
Temperature  
characteristics of  
FAR frequency  
(TA = –20°C to  
+60°C)  
Initial deviation  
of FAR  
frequency  
(TA = +25°C)  
Frequency Dumping  
Loading  
FAR part number  
(built-in capacitor type)  
(MHz)  
resistor  
capacitors*2  
2.00  
4.00  
510 Ω  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
FAR-C4 C-2000- 20  
FAR-C4 A-4000- 01  
FAR-C4 B-4000- 02  
FAR-C4 B-4000- 00  
FAR-C4 B-8000- 02  
FAR-C4 B-12000- 02  
FAR-C4 B-16000- 02  
FAR-C4 B-20000-L14B  
FAR-C4 B-24000-L14A  
4.00  
4.00  
8.00  
12.00  
16.00  
20.00  
24.00  
Inquiry: FUJITSU LIMITED  
84  
MB90670/675 Series  
• Sample application of ceramic resonator  
X0  
X1  
R
*
C1  
C2  
• Mask ROM product  
Frequency  
(MHz)  
Resonator  
Resonator  
KBR-2.0MS  
C1 (pF)  
C2 (pF)  
R
manufacturer  
2.00  
2.00  
4.00  
4.00  
4.00  
4.00  
6.00  
6.00  
6.00  
6.00  
8.00  
8.00  
8.00  
10.00  
10.00  
12.00  
12.00  
2.00  
2.00  
4.00  
4.00  
6.00  
6.00  
8.00  
8.00  
150  
150  
150  
150  
Not required  
Not required  
680 Ω  
PBRC-2.00A  
KBR-4.0MSA  
KBR-4.0MKS  
PBRC4.00A  
PBRC4.00B  
KBR-6.0MSA  
KBR-6.0MKS  
PBRC6.00A  
PBRC6.00B  
KBR-8.0M  
33  
33  
Built-in  
33  
Built-in  
33  
680 Ω  
680 Ω  
Built-in  
33  
Built-in  
33  
680 Ω  
Not required  
Not required  
Not required  
Not required  
560 Ω  
Built-in  
33  
Built-in  
33  
Kyocera  
Corporation  
Built-in  
33  
Built-in  
33  
PBRC8.00A  
PBRC8.00B  
KBR-10.0M  
33  
33  
Not required  
Not required  
330 Ω  
Built-in  
33  
Built-in  
33  
PBRC10.00B  
KBR-12.0M  
Built-in  
33  
Built-in  
33  
680 Ω  
330 Ω  
PBRC-12.00B  
CSA2.00MG040  
CST2.00MG040  
CSA4.00MG040  
Built-in  
100  
Built-in  
100  
680 Ω  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Built-in  
100  
Built-in  
100  
CST4.00MGW040  
CSA6.00MG  
Built-in  
30  
Built-in  
30  
Murata  
Mfg. Co., Ltd.  
CST6.00MGW  
CSA8.00MTZ  
CST8.00MTW  
Built-in  
30  
Built-in  
30  
Built-in  
Built-in  
(Continued)  
85  
MB90670/675 Series  
(Continued)  
Frequency  
(MHz)  
Resonator  
Resonator  
C1 (pF)  
C2 (pF)  
R
manufacturer  
CSA10.0MTZ  
CST10.0MTW  
CSA12.0MTZ  
CST12.0MTW  
CSA16.00MXZ040  
10.00  
10.00  
12.00  
12.00  
16.00  
16.00  
20.00  
24.00  
24.00  
32.00  
32.00  
4.00  
30  
Built-in  
30  
30  
Built-in  
30  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Built-in  
15  
Built-in  
15  
Murata  
Mfg. Co., Ltd.  
CST16.00MXW0C3  
Built-in  
10  
Built-in  
10  
CSA20.00MXZ040  
CSA24.00MXZ040  
5
5
CST24.00MXW0H1  
Built-in  
5
Built-in  
5
CSA32.00MXZ040  
CST32.00MXW040  
Built-in  
Built-in  
Built-in  
Built-in  
TDK Corporation FCR4.0MC5  
• One-time product  
Frequency  
(MHz)  
Resonator  
Resonator  
C1 (pF)  
C2 (pF)  
R
manufacturer  
CSTCS4.00MG0C5  
CST8.00MTW  
4.0  
8.00  
8.00  
10.00  
10.00  
4.00  
Built-in  
Built-in  
30  
Built-in  
Built-in  
30  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Murata  
Mfg. Co., Ltd.  
CSACS8.00MT  
CSA10.0MTZ  
CST10.0MTW  
30  
30  
Built-in  
Built-in  
Built-in  
Built-in  
TDK Corporation FCR4.0MC5  
Inquiry:Kyocera Corporation  
• AVX Corporation  
North American Sales Headquarters: TEL 1-803-448-9411  
• AVX Limited  
European Sales Headquarters: TEL 44-1252-770000  
• AVX/Kyocera H.K. Ltd.  
Asian Sales Headquarters: TEL 852-363-3303  
Murata Mfg. Co., Ltd.  
• Murata Electronics North America, Inc.: TEL 1-404-436-1300  
• Murata Europe Management GmbH: TEL 49-911-66870  
• Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233  
TDK Corporation  
• TDK Corporation of America  
Chicago Regional Office: TEL 1-708-803-6100  
• TDK Electronics Europe GmbH  
Components Division: TEL 49-2102-9450  
• TDK Singapore (PTE) Ltd.: TEL 65-273-5022  
• TDK Hongkong Co., Ltd.: TEL 852-736-2238  
• Korea Branch, TDK Corporation: TEL 82-2-554-6633  
86  
MB90670/675 Series  
(5) Clock Output Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
CLK  
CLK  
Condition  
Unit Remarks  
Parameter  
Cycle time  
CLK ↑ → CLK ↓  
Min.  
Max.  
tCYC  
1 tCP*  
ns  
tCHCL  
1 tCP*/2 – 20 1 tCP*/2 + 20 ns  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timing”.  
tCYC  
tCHCL  
2.4 V  
2.4 V  
CLK  
0.8 V  
87  
MB90670/675 Series  
(6) Bus Read Timing  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
tLHLL  
tLHLL  
tAVLL  
tAVLL  
ALE  
ALE  
VCC = 5.0 V ±10% 1 tCP*/2 – 20  
VCC = 3.0 V ±10% 1 tCP*/2 – 35  
ns  
ns  
ns  
ns  
ALE pulse width  
AD15 to AD00 VCC = 5.0 V ±10% 1 tCP*/2 – 25  
AD15 to AD00 VCC = 3.0 V ±10% 1 tCP*/2 – 40  
Effective address →  
ALE time  
ALE ↓ → address  
effective time  
tLLAX  
AD15 to AD00  
AD15 to AD00  
1 tCP*/2 – 15  
1 tCP* – 15  
ns  
ns  
Effective address RD  
time  
tAVRL  
tAVDV  
tAVDV  
tRLRH  
tRLDV  
tRLDV  
AD15 to AD00 VCC = 5.0 V ±10%  
AD15 to AD00 VCC = 3.0 V ±10%  
5 tCP*/2 – 60 ns  
5 tCP*/2 – 80 ns  
Effective address →  
read data time  
RD pulse width  
RD  
3 tCP*/2 – 20  
ns  
AD15 to AD00 VCC = 5.0 V ±10%  
3 tCP*/2 – 60 ns  
3 tCP*/2 – 80 ns  
RD ↓ → read data time  
AD15 to AD00 VCC = 3.0 V ±10%  
0
RD ↑ → data hold time tRHDX  
AD15 to AD00  
RD, ALE  
RD,  
ns  
ns  
RD ↑ → ALE time  
tRHLH  
1 tCP*/2 – 15  
RD ↑ → address  
disappear time  
tRHAX  
1 tCP*/2 – 10  
ns  
A19 to A16  
Effective address →  
CLK time  
CLK,  
A19 to A16  
tAVCH  
tRLCH  
1 tCP*/2 – 20  
1 tCP*/2 – 20  
ns  
ns  
RD ↓ → CLK time  
RD, CLK  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timing”.  
88  
MB90670/675 Series  
tAVCH  
tRLCH  
2.4 V  
2.4 V  
CLK  
tRHLH  
2.4 V  
0.8 V  
2.4 V  
tLHLL  
tAVLL  
2.4 V  
ALE  
RD  
tLLAX  
tRLRH  
2.4 V  
0.8 V  
tRHAX  
tAVRL  
tRLDV  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
AD19 to AD16  
AD15 to AD00  
tAVDV  
tRHDX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
0.7 VCC  
0.3 VCC  
0.7 VCC  
0.3 VCC  
Address  
Read data  
89  
MB90670/675 Series  
(7) Bus Write Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
Effective address WR  
time  
tAVWL  
A19 to A00  
1 tCP – 15  
ns  
WR pulse width  
tWLWH  
WR  
3 tCP*/2 – 20  
ns  
ns  
ns  
ns  
Write data WR time tDVWH  
AD15 to AD00  
3 tCP*/2 – 20  
tWHDX  
WR ↑ → data hold time  
tWHDX  
AD15 to AD00 VCC = 5.0 V ±10%  
AD15 to AD00 VCC = 3.0 V ±10%  
20  
30  
WR ↑ → address  
tWHAX  
A19 to A00  
1 tCP*/2 – 10  
ns  
disappear time  
WR ↑ → ALE time  
WR ↓ → CLK time  
tWHLH  
tWLCH  
WRL, ALE  
1 tCP*/2 – 15  
1 tCP*/2 – 20  
ns  
ns  
WRH, CLK  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timing”.  
tWLCH  
2.4 V  
CLK  
tWHLH  
2.4 V  
ALE  
tAVWL  
tWLWH  
WRL, WRH  
2.4 V  
0.8 V  
tWHAX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
A19 to A16  
tDVWH  
tWHDX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
Address  
Write data  
AD15 to AD00  
90  
MB90670/675 Series  
(8) Ready Input Timing  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
45  
70  
0
Max.  
tRYHS  
tRYHS  
tRYHH  
RDY  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
ns  
ns  
ns  
RDY setup time  
RDY hold time  
RDY  
RDY  
Note: Use the auto-ready function when the setup time for the rising of the RDY signal is not sufficient.  
2.4 V  
2.4 V  
CLK  
ALE  
RD/WR  
tRYHS  
0.2 VCC  
tRYHS  
RDY  
(WAIT inserted)  
0.2 VCC  
RDY  
(WAIT inserted)  
0.8 VCC  
0.8 VCC  
tRYHH  
(9) Hold Timing  
Parameter  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
30  
Max.  
1 tCP*  
2 tCP*  
Pins in floating status →  
HAK time  
tXHAL  
HAK  
HAK  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timing”.  
ns  
ns  
HAK ↑ → pin valid time tHAHV  
1 tCP*  
Note: More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.  
HAK  
2.4 V  
0.8 V  
tXHAL  
2.4 V  
0.8 V  
tHAHV  
2.4 V  
0.8 V  
Pins  
High impedance  
91  
MB90670/675 Series  
(10) UART0 Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit  
Remarks  
Parameter  
Min.  
8 tCP*  
– 80  
– 120  
100  
Max.  
Serial clock cycle time  
tSCYC  
tSLOV  
tSLOV  
tIVSH  
tIVSH  
ns  
ns  
ns  
ns  
ns  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
80  
SCK ↓ → SOT delay  
Internal shift  
clock mode  
CL = 80 pF  
+ 1 TTL for an  
output pin  
time  
120  
Valid SIN SCK ↑  
200  
SCK ↑ → valid SIN hold  
tSHIX  
tSHSL  
tSLSH  
1 tCP*  
4 tCP*  
4 tCP*  
ns  
ns  
ns  
time  
Serial clock “H” pulse  
width  
Serial clock “L” pulse  
width  
External shift  
clock mode  
CL = 80 pF  
+ 1 TTL for an  
output pin  
tSLOV  
tSLOV  
tIVSH  
tIVSH  
tSHIX  
tSHIX  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
150  
200  
ns  
ns  
ns  
ns  
ns  
ns  
SCK ↓ → SOT delay  
time  
60  
Valid SIN SCK ↑  
120  
60  
SCK ↑ → valid SIN hold  
time  
120  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timing”.  
Notes: • These are AC ratings in the CLK synchronous mode.  
• CL is the load capacitor connected to pins while testing.  
92  
MB90670/675 Series  
• Internal shift clock mode  
tSCYC  
SCK  
2.4 V  
0.8 V  
tSLOV  
0.8 V  
2.4 V  
0.8 V  
SOT  
SIN  
tIVSH  
tSHIX  
2.4 VCC  
0.8 VCC  
2.4 VCC  
0.8 VCC  
• External shift clock mode  
tSLSH  
tSHSL  
SCK  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tIVSH  
2.4 V  
0.2 V  
SOT  
SIN  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
93  
MB90670/675 Series  
(11) UART1 Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit  
Remarks  
Parameter  
Min.  
8 tCP*  
– 80  
– 120  
100  
Max.  
Serial clock cycle time  
tSCYC  
tSLOV  
tSLOV  
tIVSH  
tIVSH  
ns  
ns  
ns  
ns  
ns  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
80  
SCK ↓ → SOT delay  
Internal shift  
clock mode  
CL = 80 pF  
+ 1 TTL for an  
output pin  
time  
120  
Valid SIN SCK ↑  
200  
SCK ↑ → valid SIN hold  
tSHIX  
tSHSL  
tSLSH  
1 tCP*  
4 tCP*  
4 tCP*  
ns  
ns  
ns  
time  
Serial clock “H” pulse  
width  
Serial clock “L” pulse  
width  
External shift  
clock mode  
CL = 80 pF  
+ 1 TTL for an  
output pin  
tSLOV  
tSLOV  
tIVSH  
tIVSH  
tSHIX  
tSHIX  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
150  
200  
ns  
ns  
ns  
ns  
ns  
ns  
SCK ↓ → SOT delay  
time  
60  
Valid SIN SCK ↑  
120  
60  
SCK ↑ → valid SIN hold  
time  
120  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timing”.  
Notes: • These are AC ratings in the CLK synchronous mode.  
• CL is the load capacitor connected to pins while testing.  
94  
MB90670/675 Series  
• Internal shift clock mode  
tSCYC  
SCK  
2.4 V  
0.8 V  
tSLOV  
0.8 V  
2.4 V  
0.2 V  
SOT  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SIN  
• External shift clock mode  
tSLSH  
tSHSL  
SCK  
SOT  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SIN  
95  
MB90670/675 Series  
(12) Timer Input Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
tTIWH,  
tTIWL  
Input pulse width  
TIN0, TON1  
4 tCP*  
ns  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timing”.  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
TIN  
tTIWH  
tTIWL  
(13) Timer Output Timing  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
30  
Max.  
tTO  
tTO  
TOT0, TOT1  
TOT0, TOT1  
VCC = 5.0 V ±10%  
VCC = 3.0 V ±10%  
ns  
ns  
CLK ↑ → TOUT  
transition time  
80  
2.4 V  
CLK  
TOUT  
2.4 V  
0.8 V  
tTO  
96  
MB90670/675 Series  
(14) I2C Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
SCL clock frequency  
fSCL  
0
100  
kHz  
Bus free time between  
stop and start conditions  
tBUS  
4.7  
4.0  
µs  
The first clock  
pulse is  
Hold time  
(re-transmission) start  
tHDSTA  
µs generated  
after this  
period.  
LOW status hold time of  
SCL clock  
tLOW  
4.7  
4.0  
µs  
µs  
HIGH status hold time of  
SCL clock  
tHIGH  
Setup time for  
conditions for starting  
tSUSTA  
4.7  
µs  
re-transmission  
Data hold time  
Data setup time  
tHDDAT  
tSUDAT  
0
µs  
250  
ns  
Rising time of SDA and  
SCL signals  
tR  
1000  
300  
ns  
ns  
µs  
Falling time of SDA and  
SCL signals  
tF  
Setup time for stop  
conditions  
tSUSTO  
4.0  
Note: Only MB90675 series has I2C.  
0.8 VCC  
0.2 VCC  
SDA  
tBUS  
tLOW  
tR  
tF  
tHDSTA  
0.8 VCC  
tSUSTA  
SCL  
0.2 VCC  
tHDSTA  
tSUDAT  
tSUSTO  
tHDDAT  
tHIGH  
fSCL  
97  
MB90670/675 Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, 2.7 V AVRH – AVRL, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit  
Parameter  
Min.  
Typ.  
Max.  
10  
Resolution  
bit  
Total error  
±3.0  
±2.0  
±1.5  
AVRL  
LSB  
LSB  
LSB  
Linearity error  
Differential linearity error  
AN0 to  
AN7  
AVRL  
AVRL  
Zero transition voltage  
VOT  
VFST  
mV  
mV  
– 1.5 LSB + 0.5 LSB + 2.5 LSB  
AN0 to  
AN7  
AVRH  
+ 0.5 LSB  
AVRH  
AVRH  
– 4.5 LSB – 1.5 LSB  
Full-scale transition voltage  
VCC = 5.0 V ±10%  
at machine clock of 6.125  
16 MHz  
µs  
µs  
Conversion time  
VCC = 3.0 V ±10%  
at machine clock of 12.25  
8 MHz  
AN0 to  
AN7  
Analog port input current  
Analog input voltage  
IAIN  
0.1  
10  
µA  
V
AN0 to  
AN7  
VAIN  
AVRL  
AVRH  
AVCC  
AVRL  
– 2.7  
AVRH  
V
Reference voltage  
AVRH  
– 2.7  
AVRL  
AVCC  
0
3
V
IA  
5
mA  
Supply current  
when CPU  
stopped and A/D  
converter not in  
operation  
(VCC = AVCC =  
AVRH = 5.0 V)  
Power supply current  
IAH  
AVCC  
200  
µA  
µA  
µA  
IR  
AVRH  
AVRH  
5
Supply current  
when CPU  
stopped and A/D  
converter not in  
operation  
Reference voltage supply  
current  
IRH  
(VCC = AVCC =  
AVRH = 5.0 V)  
AN0 to  
AN7  
Offset between channels  
4
LSB  
98  
MB90670/675 Series  
6. A/D Converter Glossary  
Resolution: Analog changes that are identifiable with the A/D converter  
Linearity error: The deviation of the straight line connecting the zero transition point (“00 0000 0000” “00  
0000 0001”) with the full-scale transition point (“11 1111 1110” “11 1111 1111”) from actual  
conversion characteristics  
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the  
theoretical value  
Total error: The total error is defined as a difference between the actual value and the theoretical value, which  
includes zero-transition error/full-scale transition error and linearity error.  
Total error  
3FF  
0.5 LSB’  
3FE  
3FD  
Actual conversion  
characteristics  
{1 LSB × (N – 1) + 0.5 LSB}  
004  
003  
002  
001  
VNT  
(Mesured value)  
Actual conversion  
characteristics  
Theoretical  
characteristics  
0.5 LSB’  
AVRL  
AVRH  
Analog input  
AVRH – AVRL  
1024  
VNT – {1 LSB’ × (N – 1) + 0.5 LSB’}  
1 LSB’ = (Theoretical value)  
[V]  
Total error for digital output N  
[LSB]  
=
1 LSB’  
VNT: Voltage at a transition of digital output from (N – 1) to N  
VOT’ (Theoretical value) = AVRL + 0.5 LSB’ [V]  
VFST’ (Theoretical value) = AVRH – 1.5 LSB’ [V]  
(Continued)  
99  
MB90670/675 Series  
(Continued)  
Linearity error  
Differential linearity error  
Theoretical  
3FF  
characteristics  
Actual conversion  
characteristics  
3FE  
Actual conversion  
characteristics  
N + 1  
{1 LSB × (N – 1)  
+ VOT’}  
3FD  
VFST  
(Mesured value)  
N
VNT  
004  
003  
002  
001  
V(N + 1)T  
(Mesured value)  
Actual conversion  
characteristics  
N – 1  
N – 2  
VNT (Mesured value)  
Theoretical  
characteristics  
Actual conversion  
characteristics  
VOT (Mesured value)  
Analog input  
AVRL  
AVRH  
AVRL  
Analog input  
AVRH  
Linearity error of  
digital output N  
VNT – {1 LSB × (N – 1) + VOT}  
Differential linearity error  
of digital output N  
V(N + 1)T – VNT  
1 LSB’  
[LSB]  
– 1 LSB [LSB]  
=
=
1 LSB’  
AVRH – AVRL  
1022  
1 LSB  
[V]  
=
VOT: Voltage at transition of digital output from “000H” to “001H”  
VFST: Voltage at transition of digital output from “3FEH” to “3FFH”  
7. Notes on Using A/D Converter  
Select the output impedance value for the external circuit of analog input according to the following conditions.  
Output impedance values of the external circuit of 7 kor lower are recommended.  
When capacitors are connected to externalpins, the capacitance of severalthousand timesthe internalcapacitor  
value is recommended to minimized the effect of voltage distribution between the external capacitor and internal  
capacitor.  
When the output impedance of the external circuit is too high, the sampling time for analog voltages may not  
be sufficient (sampling time = 3.75 µs @machine clock of 16 MHz).  
• Block diagram of analog input circuit model  
Sample hold circuit  
Analog input  
C0  
Comparator  
RON1  
RON2  
RON3  
RON4  
C1  
RON1: Approx. 1.5 k(VCC = 5.0 V)  
RON2: Approx. 0.5 k(VCC = 5.0 V)  
RON3: Approx. 0.5 k(VCC = 5.0 V) C0: Approx. 60 pF  
RON4: Approx. 0.5 k(VCC = 5.0 V) C1: Approx. 4 pF  
Note: Listed values must be considered as standards.  
• Error  
The smaller the | AVRH – AVRL |, the greater the error would become relatively.  
100  
MB90670/675 Series  
EXAMPLE CHARACTERISTICS  
(1) “H” Level Output Voltage  
(2) “L” Level Output Voltage  
VOH (V)  
1.0  
VOH vs. IOH  
VOL (V)  
1.0  
VOL vs. IOL  
VCC = 2.7 V  
TA = +25°C  
TA = +25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.0 V  
VCC = 3.5 V  
VCC = 4.0 V  
VCC = 4.5 V  
VCC = 5.0 V  
VCC = 3.5 V  
VCC = 4.0 V  
VCC = 4.5 V  
VCC = 5.0 V  
–2  
–4  
–6  
–8  
IOH (mA)  
2
4
6
8
IOL (mA)  
(3) “H” Level Input Voltage/“L” Level Input Voltage (4) “H” Level Input Voltage/“L” Level Input Voltage  
(CMOS Input)  
(Hysteresis Input)  
VIN (V)  
5.0  
VIN vs. VCC  
TA = +25°C  
4.5  
VIN (V)  
VIN vs. VCC  
4.0  
5.0  
VIHS  
VILS  
3.5  
TA = +25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2
3
4
5
6
VCC (V)  
VIHS: Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
2
3
4
5
6
VCC (V)  
VILS: Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
101  
MB90670/675 Series  
(5) Power Supply Current (fCP = Internal Operating Clock Frequency)  
ICC vs. VCC  
ICCS vs. VCC  
ICC (mA)  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
ICCS (mA)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
fCP = 16 MHz  
TA = +25°C  
TA = +25°C  
fCP = 16 MHz  
fCP = 12.5 MHz  
fCP = 12.5 MHz  
fCP = 8 MHz  
fCP = 4 MHz  
fCP = 8 MHz  
fCP = 4 MHz  
4
3
2
1
0
0
3.0  
4.0  
5.0  
6.0  
VCC (V)  
3.0  
4.0  
5.0  
6.0  
VCC (V)  
IA vs. AVCC  
IR vs. AVR  
IA (mA)  
6.0  
IA (mA)  
0.30  
TA = +25°C  
fCP = 16 MHz  
TA = +25°C  
fCP = 16 MHz  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.20  
0.10  
0
3.0  
4.0  
5.0  
6.0  
AVCC (V)  
3.0  
4.0  
5.0  
6.0  
AVR (V)  
(6) Pull-up Resistance  
R vs. VCC  
R (k)  
1000  
TA = +25°C  
100  
10  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC (V)  
102  
MB90670/675 Series  
INSTRUCTIONS (340 INSTRUCTIONS)  
Table 1 Explanation of Items in Tables of Instructions  
Meaning  
Upper-case letters and symbols: Represented as they appear in assembler.  
Item  
Mnemonic  
Lower-case letters: Replaced when described in assembler.  
Numbers after lower-case letters:Indicate the bit width within the instruction.  
#
~
Indicates the number of bytes.  
Indicates the number of cycles.  
m: When branching  
n : When not branching  
See Table 4 for details about meanings of other letters in items.  
RG  
B
Indicates the number of accesses to the register during execution of the instruction.  
It is used calculate a correction value for intermittent operation of CPU.  
Indicates the correction value for calculating the number of actual cycles during execution of the  
instruction. (Table 5)  
The number of actual cycles during execution of the instruction is the correction value summed  
with the value in the “~” column.  
Operation  
LH  
Indicates the operation of instruction.  
Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator.  
Z : Transfers “0”.  
X : Extends with a sign before transferring.  
– : Transfers nothing.  
AH  
Indicates special operations involving the upper 16 bits in the accumulator.  
* : Transfers from AL to AH.  
– : No transfer.  
Z : Transfers 00H to AH.  
X : Transfers 00H or FFH to AH by signing and extending AL.  
I
S
Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),  
N (negative), Z (zero), V (overflow), and C (carry).  
* : Changes due to execution of instruction.  
– : No change.  
S : Set by execution of instruction.  
R : Reset by execution of instruction.  
T
N
Z
V
C
RMW  
Indicates whether the instruction is a read-modify-write instruction. (a single instruction that  
reads data from memory, etc., processes the data, and then writes the result to memory.)  
* : Instruction is a read-modify-write instruction.  
– : Instruction is not a read-modify-write instruction.  
Note: A read-modify-write instruction cannot be used on addresses that have different  
meanings depending on whether they are read or written.  
103  
MB90670/675 Series  
Table 2 Explanation of Symbols in Tables of Instructions  
Meaning  
Symbol  
A
32-bit accumulator  
The bit length varies according to the instruction.  
Byte : Lower 8 bits of AL  
Word : 16 bits of AL  
Long : 32 bits of AL:AH  
AH  
AL  
Upper 16 bits of A  
Lower 16 bits of A  
SP  
PC  
Stack pointer (USP or SSP)  
Program counter  
PCB  
DTB  
ADB  
SSB  
USB  
SPB  
DPR  
brg1  
brg2  
Ri  
Program bank register  
Data bank register  
Additional data bank register  
System stack bank register  
User stack bank register  
Current stack bank register (SSB or USB)  
Direct page register  
DTB, ADB, SSB, USB, DPR, PCB, SPB  
DTB, ADB, SSB, USB, DPR, SPB  
R0, R1, R2, R3, R4, R5, R6, R7  
RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7  
RW0, RW1, RW2, RW3  
RWi  
RWj  
RLi  
RL0, RL1, RL2, RL3  
dir  
Compact direct addressing  
addr16  
addr24  
ad24 0 to 15  
ad24 16 to 23  
Direct addressing  
Physical direct addressing  
Bit 0 to bit 15 of addr24  
Bit 16 to bit 23 of addr24  
io  
I/O area (000000H to 0000FFH)  
imm4  
imm8  
4-bit immediate data  
8-bit immediate data  
imm16  
imm32  
ext (imm8)  
16-bit immediate data  
32-bit immediate data  
16-bit data signed and extended from 8-bit immediate data  
disp8  
disp16  
8-bit displacement  
16-bit displacement  
bp  
Bit offset  
vct4  
vct8  
Vector number (0 to 15)  
Vector number (0 to 255)  
( )b  
Bit address  
(Continued)  
104  
MB90670/675 Series  
(Continued)  
Symbol  
Meaning  
rel  
Branch specification relative to PC  
ear  
eam  
Effective addressing (codes 00 to 07)  
Effective addressing (codes 08 to 1F)  
rlst  
Register list  
Table 3 Effective Address Fields  
Address format  
Number of bytes in address  
extension *  
Code  
Notation  
00  
01  
02  
03  
04  
05  
06  
07  
R0  
RW0  
RW1  
RW2  
RW3  
RW4  
RW5  
RW6  
RW7  
RL0 Register direct  
(RL0)  
RL1 “ea” corresponds to byte, word, and  
(RL1) long-word types, starting from the  
RL2 left  
(RL2)  
RL3  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
(RL3)  
08  
09  
0A  
0B  
@RW0  
Register indirect  
@RW1  
@RW2  
@RW3  
0
0
0C  
0D  
0E  
0F  
@RW0 +  
@RW1 +  
@RW2 +  
@RW3 +  
Register indirect with post-increment  
10  
11  
12  
13  
14  
15  
16  
17  
@RW0 + disp8  
@RW1 + disp8  
@RW2 + disp8  
@RW3 + disp8  
@RW4 + disp8  
@RW5 + disp8  
@RW6 + disp8  
@RW7 + disp8  
Register indirect with 8-bit  
displacement  
1
2
18  
19  
1A  
1B  
@RW0 + disp16  
@RW1 + disp16  
@RW2 + disp16  
@RW3 + disp16  
Register indirect with 16-bit  
displacement  
1C  
1D  
1E  
1F  
@RW0 + RW7  
@RW1 + RW7  
@PC + disp16  
addr16  
Register indirect with index  
Register indirect with index  
PC indirect with 16-bit displacement  
Direct address  
0
0
2
2
Note: The number of bytes in the address extension is indicated by the “+” symbol in the “#” (number of bytes)  
column in the tables of instructions.  
105  
MB90670/675 Series  
Table 4 Number of Execution Cycles for Each Type of Addressing  
(a)  
Number of register  
accesses for each type of  
addressing  
Code  
Operand  
Number of execution cycles  
for each type of addressing  
Ri  
RWi  
00 to 07  
Listed in tables of instructions Listed in tables of instructions  
RLi  
08 to 0B  
0C to 0F  
10 to 17  
18 to 1B  
@RWj  
2
4
2
2
1
2
1
1
@RWj +  
@RWi + disp8  
@RWj + disp16  
1C  
1D  
1E  
1F  
@RW0 + RW7  
@RW1 + RW7  
@PC + disp16  
addr16  
4
4
2
1
2
2
0
0
Note: “(a)” is used in the “~” (number of states) column and column B (correction value) in the tables of instructions.  
Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles  
(b) byte  
(c) word  
(d) long  
Number  
Number  
Number  
Operand  
Number  
of cycles  
Number  
of cycles  
Number  
of cycles  
of  
of  
of  
access  
access  
access  
Internal register  
+0  
1
+0  
1
+0  
2
Internal memory even address  
Internal memory odd address  
+0  
+0  
1
1
+0  
+2  
1
2
+0  
+4  
2
4
Even address on external data bus (16 bits)  
Odd address on external data bus (16 bits)  
+1  
+1  
1
1
+1  
+4  
1
2
+2  
+8  
2
4
External data bus (8 bits)  
+1  
1
+4  
2
+8  
4
Notes: “(b)”, “(c)”, and “(d)” are used in the “~” (number of states) column and column B (correction value)  
in the tables of instructions.  
When the external data bus is used, it is necessary to add in the number of wait cycles used for ready  
input and automatic ready.  
Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles  
Instruction  
Internal memory  
Byte boundary  
Word boundary  
+3  
+2  
+3  
External data bus (16 bits)  
External data bus (8 bits)  
Notes: When the external data bus is used, it is necessary to add in the number of wait cycles used for ready  
input and automatic ready.  
Because instruction execution is not slowed down by all program fetches in actuality, these correction  
values should be used for “worst case” calculations.  
106  
MB90670/675 Series  
Table 7 Transfer Instructions (Byte) [41 Instructions]  
R
G
L
H
A
H
RM  
W
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
A, dir  
A, addr16  
A, Ri  
A, ear  
A, eam  
A, io  
A, #imm8  
A, @A  
A, @RLi+disp8  
2
3
1
2
3
4
2
2
0
0
1
1
(b) byte (A) (dir)  
(b) byte (A) (addr16)  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
byte (A) (Ri)  
byte (A) (ear)  
2+ 3+ (a) 0  
(b) byte (A) (eam)  
(b) byte (A) (io)  
2
2
2
3
1
3
2
3
10  
0
0
0
2
0
0
byte (A) imm8  
(b) byte (A) ((A))  
(b) byte (A) ←  
MOVN A, #imm4  
1
0
((RLi)+disp8)  
byte (A) imm4  
R
MOVX A, dir  
MOVX A, addr16  
MOVX A, Ri  
MOVX A, ear  
MOVX A, eam  
MOVX A, io  
MOVX A, #imm8  
MOVX A, @A  
MOVX A,@RWi+disp8  
MOVX A, @RLi+disp8  
2
3
2
2
3
4
2
2
0
0
1
1
(b)  
X
X
X
X
X
X
X
X
X
X
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
(b) byte (A) (dir)  
0
0
(b) byte (A) (ear)  
(b) byte (A) (eam)  
byte (A) (addr16)  
byte (A) (Ri)  
2+ 3+ (a) 0  
2
2
2
2
3
3
2
3
5
10  
0
0
0
1
2
0
byte (A) (io)  
(b) byte (A) imm8  
(b) byte (A) ((A))  
(b) byte (A) ←  
((RWi)+disp8)  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
dir, A  
addr16, A  
Ri, A  
ear, A  
eam, A  
io, A  
@RLi+disp8, A  
Ri, ear  
Ri, eam  
ear, Ri  
eam, Ri  
Ri, #imm8  
io, #imm8  
dir, #imm8  
ear, #imm8  
eam, #imm8  
@AL, AH  
2
3
1
2
3
4
2
2
0
0
1
1
(b) byte (A) ←  
(b) ((RLi)+disp8)  
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
byte (dir) (A)  
2+ 3+ (a) 0  
(b) byte (addr16) (A)  
(b) byte (Ri) (A)  
(b) byte (ear) (A)  
2
3
2
3
10  
3
0
2
2
0
byte (eam) (A)  
2+ 4+ (a) 1  
2
2+ 5+ (a) 1  
2
3
3
3
(b) byte (io) (A)  
4
2
0
byte ((RLi) +disp8) ←  
(b) (A)  
2
5
5
2
1
0
0
1
0
byte (Ri) (ear)  
(b) byte (Ri) (eam)  
(b) byte (ear) (Ri)  
0
byte (eam) (Ri)  
3+ 4+ (a) 0  
2
(b) byte (Ri) imm8  
(b) byte (io) imm8  
byte (dir) imm8  
3
0
/MOV @A, T  
byte (ear) imm8  
byte (eam) imm8  
2+ 5+ (a) 0 2× (b) byte ((A)) (AH)  
XCH  
XCH  
XCH  
XCH  
A, ear  
2
4
2
0
Z
Z
A, eam  
Ri, ear  
Ri, eam  
2
7
4
0
2+ 9+ (a) 2 2× (b)  
byte (A) (ear)  
byte (A) (eam)  
byte (Ri) (ear)  
byte (Ri) (eam)  
Note: Foran explanation of “(a)” to “(d)”, referto Table 4, “Number of Execution CyclesforEach Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
107  
MB90670/675 Series  
Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]  
R
G
L
A
H
RM  
W
Mnemonic  
MOVW A, dir  
MOVW A, addr16  
MOVW A, SP  
MOVW A, RWi  
MOVW A, ear  
MOVW A, eam  
MOVW A, io  
MOVW A, @A  
#
~
B
Operation  
I
S
T
N
Z
V
C
H
2
3
1
1
2
3
4
1
2
2
0
0
0
1
1
(c) word (A) (dir)  
(c) word (A) (addr16)  
0
0
0
(c) word (A) (eam)  
(c) word (A) (io)  
(c) word (A) ((A))  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
word (A) (SP)  
word (A) (RWi)  
word (A) (ear)  
2+ 3+ (a) 0  
2
2
3
2
3
3
3
2
5
10  
0
0
0
1
2
MOVW A, #imm16  
MOVW A, @RWi+disp8  
MOVW A, @RLi+disp8  
0
word (A) imm16  
(c) word (A) ((RWi)  
(c) +disp8)  
word (A) ((RLi)  
(c) +disp8)  
(c)  
0
0
0
(c) word (RWi) (A)  
(c) word (ear) (A)  
(c) word (eam) (A)  
(c) word (io) (A)  
(0) word ((RWi) +disp8) ←  
(c) (A)  
MOVW dir, A  
MOVW addr16, A  
MOVW SP, A  
MOVW RWi, A  
MOVW ear, A  
MOVW eam, A  
MOVW io, A  
MOVW @RWi+disp8, A  
MOVW @RLi+disp8, A  
MOVW RWi, ear  
MOVW RWi, eam  
MOVW ear, RWi  
MOVW eam, RWi  
MOVW RWi, #imm16  
MOVW io, #imm16  
MOVW ear, #imm16  
MOVW eam, #imm16  
2
3
1
1
2
3
4
1
2
2
0
0
0
1
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
word (dir) (A)  
word (addr16) (A)  
word (SP) (A)  
2+ 3+ (a) 0  
2
2
3
2
3
5
10  
3
0
1
2
2
2+ 4+ (a) 1  
2
4
2
0
word ((RLi) +disp8) ←  
2+ 5+ (a) 1  
(c) (A)  
0
(c) word (RWi) (eam)  
0
(c) word (eam) (RWi)  
word (RWi) imm16  
(c) word (io) imm16  
word (ear) imm16  
word (eam) imm16  
0
3
4
4
2
5
2
1
0
1
word (RWi) (ear)  
word (ear) (RWi)  
4+ 4+ (a) 0  
MOVW AL, AH  
/MOVW @A, T  
2
2
3
4
0
2
*
*
XCHW A, ear  
XCHW A, eam  
XCHW RWi, ear  
XCHW RWi, eam  
2+ 5+ (a) 0 2× (c) word ((A)) (AH)  
2
7
4
0
2+ 9+ (a) 2 2× (c)  
word (A) (ear)  
word (A) (eam)  
word (RWi) (ear)  
word (RWi) (eam)  
MOVL A, ear  
MOVL A, eam  
MOVL A, #imm32  
2
4
2
0
long (A) (ear)  
*
*
*
*
*
*
2+ 5+ (a) 0  
5
(d) long (A) (eam)  
0
3
0
long (A) imm32  
MOVL ear, A  
MOVL eam, A  
2
4
2
0
long (ear) (A)  
*
*
*
*
2+ 5+ (a) 0  
(d) long (eam) (A)  
Note: Foran explanation of “(a)” to “(d)”, referto Table 4, “Number of Execution CyclesforEach Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
108  
MB90670/675 Series  
Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]  
R
G
L
A
H
RM  
W
Mnemonic  
ADD  
#
~
B
Operation  
I
S
T
N
Z
V
C
H
2
2
2
2
5
3
0
0
1
0
byte (A) (A) +imm8  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A,#imm8  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
(b) byte (A) (A) +(dir)  
byte (A) (A) +(ear)  
(b) byte (A) (A) +(eam)  
byte (ear) (ear) + (A)  
2+ 5+ (a) 0 2× (b) byte (eam) (eam) + (A)  
A, dir  
A, ear  
A, eam  
ear, A  
eam, A  
A
0
2+ 4+ (a) 0  
2
3
2
0
1
2
2
3
0
1
0
0
byte (A) (AH) + (AL) + (C)  
byte (A) (A) + (ear) + (C)  
ADDC A, ear  
ADDC A, eam  
ADDDC A  
2+ 4+ (a) 0  
(b) byte (A) (A) + (eam) + (C)  
0
0
1
2
2
2
3
2
5
3
0
0
0
1
byte (A) (AH) + (AL) + (C)  
(decimal)  
SUB  
A,  
(b) byte (A) (A) –imm8  
byte (A) (A) – (dir)  
(b) byte (A) (A) – (ear)  
byte (A) (A) – (eam)  
2+ 5+ (a) 0 2× (b) byte (ear) (ear) – (A)  
#imm8  
SUB  
SUB  
SUB  
SUB  
SUB  
SUBC  
0
A, dir  
A, ear  
A, eam  
ear, A  
eam, A  
A
2+ 4+ (a) 0  
2
3
2
0
1
2
2
3
0
1
0
0
byte (eam) (eam) – (A)  
byte (A) (AH) – (AL) – (C)  
2+ 4+ (a) 0  
(b) byte (A) (A) – (ear) – (C)  
0
SUBC A, ear  
SUBC A, eam  
SUBDC A  
1
3
0
byte (A) (A) – (eam) – (C)  
byte (A) (AH) – (AL) – (C)  
(decimal)  
ADDW A  
ADDW A, ear  
ADDW A, eam  
ADDW  
#imm16  
ADDW ear, A  
ADDW eam, A  
ADDCWA, ear  
ADDCWA, eam  
SUBW A  
SUBW A, ear  
SUBW A, eam  
SUBW  
#imm16  
SUBW ear, A  
SUBW eam, A  
SUBCW A, ear  
SUBCW A, eam  
1
2
2
3
0
1
0
0
word (A) (AH) + (AL)  
word (A) (A) +(ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
2+ 4+ (a) 0  
3
2
(c) word (A) (A) +(eam)  
0
0
A,  
2
3
0
2
word (A) (A) +imm16  
word (ear) (ear) + (A)  
2+ 5+ (a) 0 2× (c) word (eam) (eam) + (A)  
word (A) (A) + (ear) + (C)  
(c) word (A) (A) + (eam) + (C)  
2
3
1
0
2+ 4+ (a) 0  
1
2
2
3
0
1
0
0
word (A) (AH) – (AL)  
word (A) (A) – (ear)  
2+ 4+ (a) 0  
3
2
(c) word (A) (A) – (eam)  
0
0
2
3
0
2
word (A) (A) –imm16  
word (ear) (ear) – (A)  
A,  
2+ 5+ (a) 0 2× (c) word (eam) (eam) – (A)  
word (A) (A) – (ear) – (C)  
(c) word (A) (A) – (eam) – (C)  
2
3
1
0
2+ 4+ (a) 0  
ADDL A, ear  
ADDL A, eam  
2
6
2
0
long (A) (A) + (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
2+ 7+ (a) 0  
5
2
2+ 7+ (a) 0  
5
(d) long (A) (A) + (eam)  
0
0
ADDL  
A,  
4
6
0
2
long (A) (A) +imm32  
long (A) (A) – (ear)  
#imm32  
SUBL A, ear  
SUBL A, eam  
(d) long (A) (A) – (eam)  
long (A) (A) –imm32  
4
0
0
SUBL  
A,  
#imm32  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
109  
MB90670/675 Series  
Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]  
R
G
L
H
A
H
RM  
W
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C
INC  
INC  
ear  
eam  
2
2
2
0
byte (ear) (ear) +1  
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (b) byte (eam) (eam) +1  
DEC  
DEC  
ear  
eam  
2
3
2
0
byte (ear) (ear) –1  
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (b) byte (eam) (eam) –1  
INCW ear  
INCW eam  
2
3
2
0
word (ear) (ear) +1  
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (c) word (eam) (eam) +1  
DECW ear  
DECW eam  
2
3
2
0
word (ear) (ear) –1  
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (c) word (eam) (eam) –1  
INCL ear  
INCL eam  
2
7
4
0
long (ear) (ear) +1  
*
*
*
*
*
*
*
2+ 9+ (a) 0 2× (d) long (eam) (eam) +1  
DECL ear  
DECL eam  
2
7
4
0
long (ear) (ear) –1  
*
*
*
*
*
*
*
2+ 9+ (a) 0 2× (d) long (eam) (eam) –1  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]  
R
G
L
H
A
H
RM  
W
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C
CMP  
A
1
2
1
2
0
1
0
0
byte (AH) – (AL)  
byte (A) (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CMP  
CMP  
CMP  
A, ear  
A, eam  
A, #imm8  
2+ 3+ (a) 0  
2
(b) byte (A) (eam)  
0
2
0
byte (A) imm8  
CMPW A  
1
2
1
2
0
1
0
0
word (AH) – (AL)  
word (A) (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CMPW A, ear  
CMPW A, eam  
CMPW A, #imm16  
2+ 3+ (a) 0  
3
(c) word (A) (eam)  
0
2
0
word (A) imm16  
CMPL A, ear  
CMPL A, eam  
CMPL A, #imm32  
2
6
2
0
word (A) (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
2+ 7+ (a) 0  
5
(d) word (A) (eam)  
word (A) imm32  
3
0
0
Note: Foran explanation of “(a)” to “(d)”, referto Table 4, “Number of Execution CyclesforEach Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
110  
MB90670/675 Series  
Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]  
R
G
L
A
H
RM  
W
Mnemonic  
#
1
~
B
Operation  
I
S
T
N
Z
V
*
C
*
H
1
DIVU  
A
0
1
0
1
0
0 word (AH) /byte (AL)  
Quotient byte (AL) Remainder →  
0 byte (AH)  
*
2
DIVU  
ear  
A,  
2
*
*
*
word (A)/byte (ear)  
Quotient byte (A) Remainder →  
byte (ear)  
word (A)/byte (eam)  
Quotient byte (A) Remainder →  
byte (eam)  
6
3
2+  
2
*
*
*
*
DIVU  
eam  
A,  
4
*
*
0
*
7
5
*
*
DIVUW A,  
ear  
2+  
*
*
long (A)/word (ear)  
Quotient word (A) Remainder →  
word (ear)  
long (A)/word (eam)  
Quotient word (A) Remainder →  
word (eam)  
8
0
0
(b)  
DIVUW A,  
eam  
1
2
2+  
*
0
1
0
9
*
10  
*
11  
12  
13  
0
MULU  
A
1
2
2+  
0
1
0
*
*
*
0 byte (AH) *byte (AL) word (A)  
(c) byte (A) *byte (ear) word (A)  
byte (A) *byte (eam) word (A)  
MULU A,  
ear  
MULU A,  
eam  
word (AH) *word (AL) long (A)  
word (A) *word (ear) long (A)  
word (A) *word (eam) long (A)  
MULUW A  
MULUW A,  
ear  
MULUW A,  
eam  
*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.  
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.  
*3: 6 + (a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.  
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.  
*5: 6 + (a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.  
*6: (b) when the result is zero or when an overflow occurs, and 2 × (b) normally.  
*7: (c) when the result is zero or when an overflow occurs, and 2 × (c) normally.  
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.  
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.  
*10: 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.  
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.  
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.  
*13: 5 + (a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
111  
MB90670/675 Series  
Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]  
R
G
L
A
H
RM  
W
Mnemonic  
AND A, #imm8  
#
~
B
Operation  
I
S
T
N
Z
V
C
H
2
2
2
3
0
1
0
0
byte (A) (A) and imm8  
byte (A) (A) and (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
AND  
AND  
AND  
AND  
A, ear  
A, eam  
ear, A  
2+ 4+ (a) 0  
(b) byte (A) (A) and (eam)  
0
2
3
2
byte (ear) (ear) and (A)  
eam, A  
2+ 5+ (a) 0 2× (b) byte (eam) (eam) and (A) –  
OR  
OR  
OR  
OR  
OR  
A, #imm8  
A, ear  
A, eam  
ear, A  
eam, A  
2
2
2
3
0
1
0
0
byte (A) (A) or imm8  
byte (A) (A) or (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
2+ 4+ (a) 0  
(b) byte (A) (A) or (eam)  
byte (ear) (ear) or (A)  
2+ 5+ (a) 0 2× (b) byte (eam) (eam) or (A)  
2
3
2
0
XOR A, #imm8  
XOR A, ear  
XOR A, eam  
XOR ear, A  
XOR eam, A  
2
2
2
3
0
1
0
0
byte (A) (A) xor imm8  
byte (A) (A) xor (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
2+ 4+ (a) 0  
2
2+ 5+ (a) 0 2× (b) byte (eam) (eam) xor (A) –  
(b) byte (A) (A) xor (eam)  
byte (ear) (ear) xor (A)  
3
2
0
NOT  
NOT  
NOT  
A
ear  
eam  
1
2
2
3
0
2
0
0
byte (A) not (A)  
byte (ear) not (ear)  
*
*
*
*
*
*
R
R
R
*
2+ 5+ (a) 0 2× (b) byte (eam) not (eam)  
ANDW A  
1
3
2
2
2
3
0
0
1
0
0
0
word (A) (AH) and (A)  
word (A) (A) and imm16  
word (A) (A) and (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
ANDW A, #imm16  
ANDW A, ear  
ANDW A, eam  
ANDW ear, A  
ANDW eam, A  
2+ 4+ (a) 0  
2
2+ 5+ (a) 0 2× (c) word (eam) (eam) and (A) –  
(c) word (A) (A) and (eam)  
0
3
2
word (ear) (ear) and (A)  
ORW  
A
1
3
2
2
2
3
0
0
1
0
0
0
word (A) (AH) or (A)  
word (A) (A) or imm16  
word (A) (A) or (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
ORW A, #imm16  
ORW A, ear  
ORW A, eam  
ORW ear, A  
2+ 4+ (a) 0  
2
2+ 5+ (a) 0 2× (c) word (eam) (eam) or (A) –  
(c) word (A) (A) or (eam)  
word (ear) (ear) or (A)  
3
2
0
ORW eam, A  
XORW A  
1
3
2
2
2
3
0
0
1
0
0
0
word (A) (AH) xor (A)  
word (A) (A) xor imm16  
word (A) (A) xor (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
XORW A, #imm16  
XORW A, ear  
XORW A, eam  
XORW ear, A  
XORW eam, A  
2+ 4+ (a) 0  
(c) word (A) (A) xor (eam)  
word (ear) (ear) xor (A)  
2+ 5+ (a) 0 2× (c) word (eam) (eam) xor (A)  
2
3
2
0
NOTW A  
NOTW ear  
NOTW eam  
1
2
2
3
0
2
0
0
word (A) not (A)  
word (ear) not (ear)  
*
*
*
*
*
*
R
R
R
*
2+ 5+ (a) 0 2× (c) word (eam) not (eam)  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
112  
MB90670/675 Series  
Table 14 Logical 2 Instructions (Long Word) [6 Instructions]  
R
G
L
H
A
H
RM  
W
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C
ANDL A, ear  
ANDL A, eam  
2
6
2
0
long (A) (A) and (ear)  
*
*
*
*
R
R
2+ 7+ (a) 0  
(d) long (A) (A) and (eam)  
ORL  
ORL  
A, ear  
A, eam  
2
6
2
0
long (A) (A) or (ear)  
*
*
*
*
R
R
2+ 7+ (a) 0  
(d) long (A) (A) or (eam)  
XORL A, ea  
XORL A, eam  
2
6
2
0
long (A) (A) xor (ear)  
*
*
*
*
R
R
2+ 7+ (a) 0  
(d) long (A) (A) xor (eam)  
Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]  
R
G
L
A
H
RM  
W
Mnemonic  
#
1
2
~
2
3
B
0
0
Operation  
byte (A) 0 – (A)  
byte (ear) 0 – (ear)  
I
S
T
N
Z
V
C
H
NEG  
A
0
X
*
*
*
*
NEG ear  
NEG eam  
2
*
*
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (b) byte (eam) 0 – (eam)  
NEGW A  
1
2
0
0
word (A) 0 – (A)  
*
*
*
*
NEGW ear  
NEGW eam  
2
3
2
0
word (ear) 0 – (ear)  
*
*
*
*
*
*
*
*
*
2+ 5+ (a) 0 2× (c) word (eam) 0 – (eam)  
Table 16 Normalize Instruction (Long Word) [1 Instruction]  
L
H
A
H
RM  
W
Mnemonic  
#
~
RG  
B
Operation  
I
S
T
N
Z
V
C
1
NRML A, R0  
2
1
0
long (A) Shift until first  
digit is “1”  
*
*
byte (R0) Current shift  
count  
*1: 4 when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
113  
MB90670/675 Series  
Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]  
R
G
L
A
RM  
W
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V C  
H H  
RORCA  
ROLC A  
2
2
2
2
0
0
0
0
byte (A) Right rotation with carry  
byte (A) Left rotation with carry  
*
*
*
*
*
*
RORCear  
RORCeam  
ROLC ear  
ROLC eam  
2
3
2
0
byte (ear) Right rotation with carry –  
*
*
*
*
*
*
*
*
*
*
*
*
*
2+ 5+ 0 2× (b) byte (eam) Right rotation with  
2
2+  
(a)  
3
5+  
(a)  
2
0
carry  
0 2× (b) byte (ear) Left rotation with carry  
byte (eam) Left rotation with carry  
*
ASR A, R0  
LSR A, R0  
LSL A, R0  
2
2
2
1
1
1
0
0
0
*
*
*
*
*
*
*
*
*
*
*
byte (A) Arithmetic right barrel shift (A,  
R0)  
byte (A) Logical right barrel shift  
1
*
1
*
1
(A, R0)  
*
byte (A) Logical left barrel shift (A,  
R0)  
ASRWA  
LSRWA/SHRW 1  
A
LSLW A/SHLW  
A
1
2
2
2
0
0
0
0
0
0
word (A) Arithmetic right shift (A, 1  
bit)  
word (A) Logical right shift (A, 1  
bit)  
word (A) Logical left shift (A, 1 bit)  
*
*
*
R
*
*
*
*
*
*
*
1
1
2
2
2
1
1
1
0
0
0
*
*
*
*
*
*
*
*
*
*
*
*
1
*
1
ASRWA, R0  
LSRWA, R0  
LSLW A, R0  
word (A) Arithmetic right barrel shift (A,  
R0)  
word (A) Logical right barrel shift  
*
(A, R0)  
word (A) Logical left barrel shift (A,  
R0)  
2
ASRL A, R0  
LSRL A, R0  
LSLL A, R0  
2
2
2
1
1
1
0
0
0
long (A) Arithmetic right shift (A,  
R0)  
long (A) Logical right barrel shift  
(A, R0)  
*
*
*
*
*
*
*
*
*
*
*
*
2
*
2
*
long (A) Logical left barrel shift (A,  
R0)  
*1: 6 when R0 is 0, 5 + (R0) in all other cases.  
*2: 6 when R0 is 0, 6 + (R0) in all other cases.  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
114  
MB90670/675 Series  
Table 18 Branch 1 Instructions [31 Instructions]  
L
H
A
H
RM  
W
Mnemonic  
#
~
RG  
B
Operation  
I
S
T
N
Z
V
C
1
BZ/BEQ  
BNZ/BNE rel  
BC/BLO  
BNC/BHS rel  
rel  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Branch when (Z) = 1  
Branch when (Z) = 0  
Branch when (C) = 1  
Branch when (C) = 0  
Branch when (N) = 1  
Branch when (N) = 0  
Branch when (V) = 1  
Branch when (V) = 0  
Branch when (T) = 1  
Branch when (T) = 0  
Branch when (V) xor (N) = 1  
Branch when (V) xor (N) = 0  
Branch when ((V) xor (N)) or  
(Z) = 1  
*
1
*
1
rel  
*
*
*
1
1
BN  
BP  
BV  
BNV  
BT  
BNT  
BLT  
BGE  
BLE  
BGT  
BLS  
BHI  
BRA  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
1
*
1
*
1
*
1
*
*
*
*
*
*
*
*
1
1
1
1
1
1
Branch when ((V) xor (N)) or  
(Z) = 0  
Branch when (C) or (Z) = 1  
Branch when (C) or (Z) = 0  
Branch unconditionally  
1
1
*
2
3
JMP  
JMP  
JMP  
JMP  
@A  
1
3
2
2+  
2
2+  
4
0
0
1
0
2
0
0
0
0
0
addr16  
@ear  
@eam  
3
4+ (a)  
5
6+ (a)  
4
word (PC) (A)  
(c) word (PC) addr16  
word (PC) (ear)  
(d) word (PC) (eam)  
JMPP @ear *3  
JMPP @eam *3  
JMPP addr24  
0
0
word (PC) (ear), (PCB) ←  
(ear +2)  
CALL @ear *4  
CALL @eam *4  
CALL addr16 *5  
CALLV #vct4 *5  
CALLP @ear *6  
6
7+ (a)  
6
7
10  
2
2+  
3
1
2
1
0
0
0
2
(c) word (PC) (eam), (PCB) ←  
2× (c) (eam +2)  
(c) word (PC) ad24 0 to 15,  
2× (c) (PCB) ad24 16 to 23  
2× (c) word (PC) (ear)  
word (PC) (eam)  
word (PC) addr16  
2
CALLP @eam *6  
CALLP addr24 *7  
11+ (a)  
10  
2+  
4
0
0
*
Vector call instruction  
word (PC) (ear) 0 to 15  
(PCB) (ear) 16 to 23  
word (PC) (eam) 0 to 15  
(PCB) (eam) 16 to 23  
word (PC) addr0 to 15,  
(PCB) addr16 to 23  
2× (c)  
*1: 4 when branching, 3 when not branching.  
*2: (b) + 3 × (c)  
*3: Read (word) branch address.  
*4: W: Save (word) to stack; R: read (word) branch address.  
*5: Save (word) to stack.  
*6: W: Save (long word) to W stack; R: read (long word) R branch address.  
*7: Save (long word) to stack.  
Note: Foran explanation of “(a)” to “(d)”, referto Table 4, “Number of Execution CyclesforEach Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
115  
MB90670/675 Series  
Table 19 Branch 2 Instructions [19 Instructions]  
L
H
A
H
RM  
W
Mnemonic  
#
~ RG  
B
Operation  
I
S
T
N
Z
V
C
1
CBNE A, #imm8, rel  
CWBNEA, #imm16, rel  
3
4
0
0
0
0
Branch when byte (A) ≠  
imm8  
Branch when word (A) ≠  
*
*
*
*
*
*
*
*
*
*
1
2
3
4
3
CBNE ear, #imm8, rel  
CBNE eam, #imm8,  
rel*9  
CWBNEear, #imm16,  
rel  
4
4+  
5
*
*
*
*
1
0
1
0
0
(b)  
0
imm16  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Branch when byte (ear) ≠  
5+  
(c) imm8  
Branch when byte (eam) ≠  
imm8  
Branch when word (ear) ≠  
2 2× (b) imm16  
Branch when word (eam) ≠  
5
3
2
0
*
*
*
*
*
*
*
CWBNEeam, #imm16,  
*
*
rel*9  
6
3+  
DBNZ ear, rel  
imm16  
5
3
*
*
2
2
0
*
*
*
*
*
*
*
DBNZ eam, rel  
Branch when byte (ear) =  
6
3+  
2× (c) (ear) – 1, and (ear) 0  
Branch when byte (eam) =  
(eam) – 1, and (eam) 0  
8× (c)  
6× (c)  
6× (c)  
8× (c)  
6× (c)  
DWBNZ ear, rel  
DWBNZ eam, rel  
2
3
4
1
1
0
0
0
0
0
R
R
R
R
*
S
S
S
S
*
*
*
*
*
*
20  
16  
17  
20  
15  
Branch when word (ear) =  
(ear) – 1, and (ear) 0  
Branch when word (eam) =  
INT  
INT  
#vct8  
addr16  
(eam) – 1, and (eam) 0  
INTP  
INT9  
RETI  
addr24  
(c)  
2
0
Software interrupt  
Software interrupt  
Software interrupt  
Software interrupt  
Return from interrupt  
6
LINK  
#local8  
(c)  
1
0
5
At constant entry, save old  
frame pointer to stack, set  
new frame pointer, and  
(c)  
(d)  
1
1
0
0
4
6
UNLINK  
allocate local pointer area  
At constant entry, retrieve  
old frame pointer from stack.  
RET *7  
RETP *8  
Return from subroutine  
Return from subroutine  
*1: 5 when branching, 4 when not branching  
*2: 13 when branching, 12 when not branching  
*3: 7 + (a) when branching, 6 + (a) when not branching  
*4: 8 when branching, 7 when not branching  
*5: 7 when branching, 6 when not branching  
*6: 8 + (a) when branching, 7 + (a) when not branching  
*7: Retrieve (word) from stack  
*8: Retrieve (long word) from stack  
*9: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
116  
MB90670/675 Series  
Table 20 Other Control Instructions (Byte/Word/Long Word) [28 Instructions]  
L
A
RM  
W
Mnemonic  
PUSHWA  
PUSHWAH  
PUSHWPS  
PUSHWrlst  
#
~
RG  
B
Operation  
I
S
T
N
Z
V C  
H H  
1
1
1
2
4
4
4
0
0
0
(c) word (SP) (SP) –2, ((SP)) ←  
(c) (A)  
(c) word (SP) (SP) –2, ((SP)) ←  
3
5
4
(AH)  
*
*
*
word (SP) (SP) –2, ((SP)) ←  
(PS)  
(SP) (SP) –2n, ((SP)) ←  
(rlst)  
POPW A  
1
1
1
2
*
*
*
*
*
*
*
*
3
3
4
0
0
0
(c)  
(c)  
(c)  
POPW AH  
POPW PS  
POPW rlst  
2
5
4
*
*
*
word (A) ((SP)), (SP) ← (SP)  
JCTX @A  
1
+2  
*
*
*
*
*
*
*
14  
0 6× (c)  
word (AH) ((SP)), (SP) ←  
(SP) +2  
word (PS) ((SP)), (SP) ←  
(SP) +2  
AND CCR,  
#imm8  
2
2
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3
3
0
0
0
0
OR  
CCR,  
#imm8  
2
2
(rlst) ((SP)), (SP) (SP)  
+2n  
2
2
0
0
0
0
MOV RP, #imm8  
MOV ILM, #imm8  
2
2+  
2
Context switch instruction  
*
3
1
0
0
0
0
2+ (a) 1  
MOVEA RWi, ear  
MOVEA RWi, eam 2+  
MOVEA A, ear  
byte (CCR) (CCR) and imm8 –  
byte (CCR) (CCR) or imm8  
1
0
*
1+ (a) 0  
MOVEA A, eam  
2
3
byte (RP) imm8  
byte (ILM) imm8  
3
3
0
0
0
0
ADDSP #imm8  
ADDSP #imm16  
1
2
2
word (RWi) ear  
word (RWi) eam  
word(A) ear  
Z
*
*
*
*
*
0
0
0
0
*
1
MOV A, brgl  
MOV brg2, A  
1
1
1
1
1
1
1
word (A) eam  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
NOP  
ADB  
DTB  
PCB  
SPB  
NCC  
CMR  
word (SP) (SP) +ext (imm8)  
word (SP) (SP) +imm16  
byte (A) (brgl)  
byte (brg2) (A)  
No operation  
Prefix code for accessing AD  
space  
Prefix code for accessing DT  
space  
Prefix code for accessing PC  
space  
Prefix code for accessing SP  
space  
Prefix code for no flag change  
Prefix code for common  
register bank  
*1: PCB, ADB, SSB, USB, and SPB : 1 state  
DTB, DPR : 2 states  
*2: 7 + 3 × (pop count) + 2 × (last register number to be popped), 7 when rlst = 0 (no transfer register)  
*3: 29 + (push count) – 3 × (last register number to be pushed), 8 when rlst = 0 (no transfer register)  
*4: Pop count × (c), or push count × (c)  
117  
MB90670/675 Series  
*5: Pop count or push count.  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
Table 21 Bit Manipulation Instructions [21 Instructions]  
L
A
RM  
W
Mnemonic  
#
~
RG  
B
Operation  
I
S
T
N
Z
V
C
H H  
MOVB A, dir:bp  
MOVB A,  
addr16:bp  
3
4
3
5
5
4
0
0
0
(b) byte (A) (dir:bp) b  
(b) byte (A) (addr16:bp) b  
(b) byte (A) (io:bp) b  
Z
Z
Z
*
*
*
*
*
*
*
*
*
MOVB A, io:bp  
3
4
3
7
7
6
0 2× (b) bit (dir:bp) b (A)  
0 2× (b) bit (addr16:bp) b (A)  
0 2× (b) bit (io:bp) b (A)  
*
*
*
*
*
*
*
*
*
MOVB dir:bp, A  
MOVB addr16:bp,  
A
MOVB io:bp, A  
3
4
3
7
7
7
0 2× (b) bit (dir:bp) b 1  
0 2× (b) bit (addr16:bp) b 1  
0 2× (b) bit (io:bp) b 1  
*
*
*
SETB dir:bp  
SETB addr16:bp  
SETB io:bp  
3
4
3
7
7
7
0 2× (b) bit (dir:bp) b 0  
0 2× (b) bit (addr16:bp) b 0  
0 2× (b) bit (io:bp) b 0  
*
*
*
CLRB dir:bp  
CLRB addr16:bp  
CLRB io:bp  
1
4
5
4
0
0
0
(b) Branch when (dir:bp) b = 0  
(b) Branch when (addr16:bp) b = 0  
(b) Branch when (io:bp) b = 0  
*
*
*
*
1
*
2
BBC dir:bp, rel  
BBC addr16:bp,  
rel  
*
1
4
5
4
0
0
0
(b) Branch when (dir:bp) b = 1  
(b) Branch when (addr16:bp) b = 1  
(b) Branch when (io:bp) b = 1  
*
*
*
*
1
BBC io:bp, rel  
*
2
*
BBS dir:bp, rel  
BBS addr16:bp,  
rel  
3
5
3
3
0 2× (b) Branch when (addr16:bp) b = 1, –  
*
*
*
bit = 1  
5
4
BBS io:bp, rel  
0
0
*
*
*
Wait until (io:bp) b = 1  
Wait until (io:bp) b = 0  
4
5
SBBS addr16:bp,  
rel  
*
WBTS io:bp  
WBTC io:bp  
*1: 8 when branching, 7 when not branching  
*2: 7 when branching, 6 when not branching  
*3: 10 when condition is satisfied, 9 when not satisfied  
*4: Undefined count  
*5: Until condition is satisfied  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
118  
MB90670/675 Series  
Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]  
R
G
L
A
H
RM  
W
Mnemonic  
SWAP  
SWAPW/XCHW AL, AH  
EXT  
EXTW  
ZEXT  
ZEXTW  
#
~
B
Operation  
I
S
T
N
Z
V
C
H
1
1
1
1
1
1
3
2
1
2
1
1
0
0
0
0
0
0
0 byte (A) 0 to 7 (A) 8 to 15  
0 word (AH) (AL)  
0 byte sign extension  
0 word sign extension  
0 byte zero extension  
0 word zero extension  
X
Z
*
X
Z
*
*
R
R
*
*
*
*
Table 23 String Instructions [10 Instructions]  
R
G
L
H
A
H
RM  
W
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C
2
5
3
MOVS/MOVSI  
MOVSD  
2
2
Byte transfer @AH+ @AL+, counter  
= RW0  
Byte transfer @AH– @AL–, counter  
= RW0  
*
*
*
*
2
5
3
*
*
1
5
4
SCEQ/SCEQI  
SCEQD  
2
2
*
*
*
*
*
*
*
*
*
*
*
*
1
5
4
*
*
Byte retrieval (@AH+) – AL, counter =  
RW0  
5
3
6m +6  
FISL/FILSI  
2
*
*
*
*
Byte retrieval (@AH–) – AL, counter =  
RW0  
Byte filling @AH+ AL, counter =  
RW0  
2
8
6
MOVSW/  
MOVSWI  
MOVSWD  
2
2
Word transfer @AH+ @AL+, counter –  
*
*
*
*
2
8
6
= RW0  
*
*
Word transfer @AH– @AL–, counter  
= RW0  
1
8
7
2
2
*
*
*
*
*
*
*
*
*
*
*
*
1
8
7
SCWEQ/  
SCWEQI  
SCWEQD  
*
*
Word retrieval (@AH+) – AL, counter =  
RW0  
8
6
6m +6  
2
*
*
*
*
Word retrieval (@AH–) – AL, counter =  
RW0  
FILSW/FILSWI  
Word filling @AH+ AL, counter =  
RW0  
m: RW0 value (counter value)  
n: Loop count  
*1: 5 when RW0 is 0, 4 + 7 × (RW0) for count out, and 7 × n + 5 when match occurs  
*2: 5 when RW0 is 0, 4 + 8 × (RW0) in any other case  
*3: (b) × (RW0) + (b) × (RW0) when accessing different areas for the source and destination, calculate (b) separately  
for each.  
*4: (b) × n  
*5: 2 × (RW0)  
*6: (c) × (RW0) + (c) × (RW0) when accessing different areas for the source and destination, calculate (c) separately  
for each.  
*7: (c) × n  
*8: 2 × (RW0)  
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
119  
MB90670/675 Series  
MASK OPTIONS  
• MB90670 series  
MB90671  
MB90672  
MB90673  
Part number  
MB90P673  
MB90V670  
No.  
Specify when ordering  
masking  
Set with EPROM  
programmer  
Specifying procedure  
Setting not possible  
Pull-up resistors  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P60 to P67,  
P70 to P77, P80,  
1
2
Specify by pin  
Specify by pin  
Specify by pin  
Without pull-up resistor  
Without pull-up resistor  
RST, MD1, MD0  
Pull-down resistors  
MD1, MD0  
Specify by pin  
• MB90675 series  
Part number  
MB90676  
MB90677  
MB90678  
MB90P678  
MB90V670  
No.  
Specify when ordering  
masking  
Set with EPROM  
programmer  
Specifying procedure  
Setting not possible  
Pull-up resistors  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P60 to P67,  
P70 to P77, P80 to P86,  
P90, P91, PA0 to PA7,  
PB0 to PB2,  
1
2
Specify by pin  
Specify by pin  
Specify by pin  
Without pull-up resistor  
Without pull-up resistor  
RST, MD1, MD0  
Pull-down resistors  
MD1, MD0  
Specify by pin  
Notes: • The pull-up register configured as a port pin is switched-off in the stop mode and during the  
hardware standby.  
• In turning on power, option settings can not be made until clocks are supplied because 8 machine cycles  
are needed for option settings for the MB90P670/P675.  
120  
MB90670/675 Series  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB90671PFV  
MB90672PFV  
MB90673PFV  
MB90T673PFV  
MB90P673PFV  
80-pin Plastic LQFP  
(FPT-80P-M05)  
MB90671PF  
MB90672PF  
MB90673PF  
MB90T673PF  
MB90P673PF  
80-pin Plastic QFP  
(FPT-80P-M06)  
MB90676PFV  
MB90677PFV  
MB90678PFV  
MB90T678PFV  
MB90P678PFV  
100-pin Plastic LQFP  
(FPT-100P-M05)  
MB90676PF  
MB90677PF  
MB90678PF  
MB90T678PF  
MB90P678PF  
100-pin Plastic QFP  
(FPT-100P-M06)  
121  
MB90670/675 Series  
PACKAGE DIMENSIONS  
80-pin Plastic LQFP  
(FPT-80P-M05)  
14.00±0.20(.551±.008)SQ  
1.50+00..2100  
.059 +..000048  
(Mounting height)  
12.00±0.10(.472±.004)SQ  
60  
41  
61  
40  
13.00  
(.512)  
NOM  
9.50  
(.374)  
REF  
INDEX  
80  
21  
1
20  
LEAD No.  
Details of "A" part  
"A"  
0.50±0.08  
(.0197±.0031)  
0.18+00..0038  
.007 +..000013  
0.127 +00..0025  
.005+..000012  
0.10±0.10  
(.004±.004)  
(STAND OFF)  
0.50±0.20(.020±.008)  
0.10(.004)  
0
10˚  
C
1995 FUJITSU LIMITED F80008S-2C-5  
Dimensions in mm (inches)  
80-pin Plastic QFP  
(FPT-80P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
0.05(.002)MIN  
(STAND OFF)  
64  
41  
65  
40  
12.00(.472)  
16.30±0.40  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
REF  
(.642±.016)  
INDEX  
80  
25  
"A"  
1
24  
LEAD No.  
0.80(.0315)TYP  
0.35±0.10  
(.014±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.16(.006)  
Details of "A" part  
0.25(.010)  
0.30(.012)  
"B"  
0.10(.004)  
0
10°  
0.18(.007)MAX  
0.58(.023)MAX  
18.40(.724)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
C
1994 FUJITSU LIMITED F80010S-3C-2  
Dimensions in mm (inches)  
122  
MB90670/675 Series  
100-pin Plastic LQFP  
(FPT-100P-M05)  
1.50+00..2100  
16.00±0.20(.630±.008)SQ  
14.00±0.10(.551±.004)SQ  
(Mounting height)  
.059 +..000048  
75  
51  
76  
50  
12.00  
(.472)  
REF  
15.00  
(.591)  
NOM  
Details of "A" part  
0.15(.006)  
INDEX  
0.15(.006)  
100  
26  
0.15(.006)MAX  
0.40(.016)MAX  
"B"  
1
25  
LEAD No.  
"A"  
0.50(.0197)TYP  
0.18+00..0038  
.007 +..000013  
0.127 +00..0025  
.005+..000012  
M
Details of "B" part  
0.08(.003)  
0.10±0.10  
(.004±.004)  
(STAND OFF)  
0.50±0.20(.020±.008)  
0.10(.004)  
0~10˚  
C
1995 FUJITSU LIMITED F100007S-2C-3  
Dimensions in mm (inches)  
100-pin Plastic QFP  
(FPT-100P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
0.05(.002)MIN  
(STAND OFF)  
80  
51  
81  
50  
12.35(.486)  
16.30±0.40  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
REF  
(.642±.016)  
INDEX  
31  
100  
"A"  
1
30  
LEAD No.  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.13(.005)  
Details of "A" part  
0.25(.010)  
"B"  
0.10(.004)  
0.30(.012)  
0.18(.007)MAX  
0.53(.021)MAX  
0
10°  
18.85(.742)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
C
1994 FUJITSU LIMITED F100008-3C-2  
Dimensions in mm (inches)  
123  
MB90670/675 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: 81(44) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: 81(44) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
Fax: (408) 922-9179  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
Fax: (408) 922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have an inherent chance of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for  
export of those products from Japan.  
Fax: (65) 281-0220  
http://www.fmap.com.sg/  
F9811  
FUJITSU LIMITED Printed in Japan  
1

相关型号:

MB90P673PFV

16-bit Proprietary Microcontroller
FUJITSU

MB90P678

16-bit Proprietary Microcontroller
FUJITSU

MB90P678PF

16-bit Proprietary Microcontroller
FUJITSU

MB90P678PFV

16-bit Proprietary Microcontroller
FUJITSU

MB90T552A

16-bit Proprietary Microcontroller
FUJITSU

MB90T552APF

16-bit Proprietary Microcontroller
FUJITSU

MB90T552APF

Microcontroller, 16-Bit, F2MC-16LX CPU, 16MHz, CMOS, PQFP100, 14 X 20 MM, 3.35 MM HEIGHT, 0.65 MM PITCH, PLASTIC, QFP-100
CYPRESS

MB90T552APFV

16-bit Proprietary Microcontroller
FUJITSU

MB90T552APMC

16-bit Proprietary Microcontroller
FUJITSU

MB90T552APV

Microcontroller
FUJITSU

MB90T553A

16-bit Proprietary Microcontroller
FUJITSU

MB90T553APF

16-bit Proprietary Microcontroller
FUJITSU