MB91101 [FUJITSU]

32-bit RISC Microcontroller; 32位RISC微控制器
MB91101
型号: MB91101
厂家: FUJITSU    FUJITSU
描述:

32-bit RISC Microcontroller
32位RISC微控制器

微控制器
文件: 总115页 (文件大小:1151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-16301-2E  
32-bit RISC Microcontroller  
CMOS  
FR30 Series  
MB91101/MB91101A  
DESCRIPTION  
The MB91101 is a standard single-chip microcontroller constructed around the 32-bit RISC CPU (FR* family)  
core with abundant I/O resources and bus control functions optimized for high-performance/high-speed CPU  
processing for embedded controller applications. To support the vast memory space accessed by the 32-bit  
CPU, the MB91101 normally operates in the external bus access mode and executes instructions on the internal  
1 Kbyte cache memory and 2 Kbytes RAM for enhanced performance.  
The MB91101 is optimized for applications requiring high-performance CPU processing such as navigation  
systems, high-performance FAXs and printer controllers.  
*: FR Family stands for FUJITSU RISC controller.  
FEATURES  
FR CPU  
• 32-bit RISC, load/store architecture, 5-stage pipeline  
• Operating clock frequency: Internal 50 MHz/external 25 MHz (PLL used at source oscillation 12.5 MHz)  
• General purpose registers: 32 bits × 16  
• 16-bit fixed length instructions (basic instructions), 1 instruction/1 cycle  
• Memory to memory transfer, bit processing, barrel shifter processing: Optimized for embedded applications  
• Function entrance/exit instructions, multiple load/store instructions of register contents, instruction systems  
supporting high level languages  
• Register interlock functions, efficient assembly language coding  
• Branch instructions with delay slots: Reduced overhead time in branch executions  
(Continued)  
PACKAGE  
100-pin Plastic LQFP  
100-pin Plastic QFP  
(FPT-100P-M05)  
(FPT-100P-M06)  
MB91101/MB91101A  
(Continued)  
• Internal multiplier/supported at instruction level  
Signed 32-bit multiplication: 5 cycles  
Signed 16-bit multiplication: 3 cycles  
• Interrupt (push PC and PS): 6 cycles, 16 priority levels  
External bus interface  
• Clock doubler: Internal 50 MHz, external bus 25 MHz operation  
• 25-bit address bus (32 Mbytes memory space)  
• 8/16-bit data bus  
• Basic external bus cycle: 2 clock cycles  
• Chip select outputs for setting down to a minimum memory block size of 64 Kbytes: 6  
• Interface supported for various memory technologies  
DRAM interface (area 4 and 5)  
• Automatic wait cycle insertion: Flexible setting, from 0 to 7 for each area  
• Unused data/address pins can be configured us input/output ports  
• Little endian mode supported (Select 1 area from area 1 to 5)  
DRAM interface  
• 2 banks independent control (area 4 and 5)  
• Normal mode (double CAS DRAM)/high-speed page mode (single CAS DRAM)/Hyper DRAM  
• Basic bus cycle: Normally 5 cycles, 2-cycle access possible in high-speed page mode  
• Programmable waveform: Automatic 1-cycle wait insertion to RAS and CAS cycles  
• DRAM refresh  
CBR refresh (interval time configurable by 6-bit timer)  
Self-refresh mode  
• Supports 8/9/10/12-bit column address width  
• 2CAS/1WE, 2WE/1CAS selective  
Cache memory  
• 1-Kbyte instruction cache memory  
• 32 block/way, 4 entry(4 word)/block  
• 2 way set associative  
• Lock function: For specific program code to be resident in cashe memory  
DMA controller (DMAC)  
• 8 channels  
Transfer incident/external pins/internal resource interrupt requests  
Transfer sequence: Step transfer/block transfer/burst transfer/continuous transfer  
Transfer data length: 8 bits/16 bits/32 bits selective  
• NMI/interrupt request enables temporary stop operation  
UART  
• 3 independent channels  
• Full-duplex double buffer  
• Data length: 7 bits to 9 bits (non-parity), 6 bits to 8 bits (parity)  
• Asynchronous (start-stop system), CLK-synchronized communication selective  
• Multi-processor mode  
• Internal 16-bit timer (U-TIMER) operating as a proprietary baud rate generator: Generates any given baud rate  
• Use external clock can be used as a transfer clock  
• Error detection: Parity, frame, overrun  
2
MB91101/MB91101A  
(Continued)  
10-bit A/D converter (successive approximation conversion type)  
• 10-bit resolution, 4 channels  
• Successive approximation type: Conversion time of 5.6 µs at 25 MHz  
• Internal sample and hold circuit  
• Conversion mode: Single conversion/scanning conversion/repeated conversion/stop conversion selective  
• Start: Software/external trigger/internal timer selective  
16-bit reload timer  
• 3 channels  
• Internal clock: 2 clock cycle resolution, divide by 2/8/32 selective  
Other interval timers  
• 16-bit timer: 3 channels (U-TIMER)  
• PWM timer: 4 channels  
• Watchdog timer: 1 channel  
Bit search module  
First bit transition “1” or “0” from MSB can be detected in 1 cycle  
Interrupt controller  
• External interrupt input: Non-maskable interrupt (NMI), normal interrupt × 4 (INT0 to INT3)  
• Internal interrupt incident:UART, DMA controller (DMAC), A/D converter, U-TIMER and delayed interrupt  
module  
• Priority levels of interrupts are programmable except for non-maskable interrupt (in 16 steps)  
Others  
• Reset cause: Power-on reset/hardware standby/watchdog timer/software reset/external reset  
• Low-power consumption mode: Sleep mode/stop mode  
• Clock control  
Gear function: Operating clocks for CPU and peripherals are independently selective  
Gear clock can be selected from 1/1, 1/2, 1/4 and 1/8 (or 1/2, 1/4, 1/8 and 1/16)  
However, operating frequency for peripherals is less than 25 MHz.  
• Packages: LQFP-100 and QFP-100  
• CMOS technology (0.35 µm)  
• Power supply voltage  
5 V: CPU power supply 5.0 V ±10% (internal regulator)  
A/D power supply 2.7 V to 3.6 V  
3 V: CPU power supply 2.7 V to 3.6 V (without internal regulator)  
A/D power supply 2.7 V to 3.6 V  
3
MB91101/MB91101A  
PIN ASSIGNMENT  
(Top view)  
CS1L/PB5/DREQ2  
CS1H/PB6/DACK2  
DW1/PB7  
VCC3  
CLK/PA6  
CS5/PA5  
CS4/PA4  
CS3/PA3/EOP1  
CS2/PA2  
CS1/PA1  
CS0  
NMI  
HST  
RST  
VSS  
MD0  
MD1  
MD2  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
AN3  
AN2  
AN1  
AN0  
AVSS/AVRL  
AVRH  
AVCC  
A24/EOP0  
A23/P67  
A22/P66  
VSS  
A21/P65  
A20/P64  
A19/P63  
A18/P62  
A17/P61  
A16/P60  
A15  
A14  
A13  
A12  
A11  
A10  
A09  
A08  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
RDY/P80  
BGRNT/P81  
BRQ/P82  
RD  
WR0  
WR1/P85  
D16/P20  
(FPT-100P-M05)  
4
MB91101/MB91101A  
(Top view)  
CS0H/PB2  
DW0/PB3  
RAS1/PB4/EOP2  
CS1L/PB5/DREQ2  
CS1H/PB6/DACK2  
DW1/PB7  
VCC3  
CLK/PA6  
CS5/PA5  
CS4/PA4  
CS3/PA3/EOP1  
CS2/PA2  
CS1/PA1  
CS0  
NMI  
HST  
RST  
VSS  
MD0  
MD1  
MD2  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SO0/TRG1/PF1  
SI0/TRG0/PF0  
AN3  
AN2  
AN1  
AN0  
AVSS/AVRL  
AVRH  
AVCC  
A24/EOP0  
A23/P67  
A22/P66  
VSS  
A21/P65  
A20/P64  
A19/P63  
A18/P62  
A17/P61  
A16/P60  
A15  
A14  
A13  
A12  
A11  
A10  
A09  
A08  
A07  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
RDY/P80  
BGRNT/P81  
BRQ/P82  
RD  
WR0  
WR1/P85  
D16/P20  
D17/P21  
D18/P22  
A06  
A05  
(FPT-100P-M06)  
5
MB91101/MB91101A  
PIN DESCRIPTION  
Pin no.  
LQFP*1 QFP*2  
Circuit  
type  
Pin name  
Function  
25 to 32 28 to 35 D16 to D23  
P20 to P27  
C
Bit 16 to bit 23 of external data bus  
Can be configured as I/O ports when external data bus width is  
set to 8-bit.  
33 to 39, 36 to 42, D24 to D30,  
C
F
F
Bit 24 to bit 31 of external data bus  
Bit 00 to bit 15 of external address bus  
Bit 16 to bit 23 of external address bus  
41  
44  
D31  
42,  
45,  
A00,  
44 to 58 47 to 61 A01 to A15  
59 to 64, 62 to 67, A16 to A21,  
66,  
67  
69,  
70  
A22,  
A23  
P60 to P65,  
P66,  
Can be configured as I/O ports when not used as address bus.  
P67  
68  
19  
71  
22  
A24  
L
Bit 24 of external address bus  
EOP0  
Can be configured as DMAC EOP output (ch. 0) when DMAC  
EOP output is enabled.  
RDY  
C
External ready input  
Inputs “0” when bus cycle is being executed and not  
completed.  
P80  
Can be configured as a port when RDY is not used.  
20  
21  
23  
24  
BGRNT  
F
External bus release acknowledge output  
Outputs “L” level when external bus is released.  
P81  
Can be configured as a port when BGRNT is not used.  
BRQ  
C
External bus release request input  
Inputs “1” when release of external bus is required.  
P82  
RD  
Can be configured as a port when BRQ is not used.  
Read strobe output pin for external bus  
22  
23  
25  
26  
L
L
WR0  
Write strobe output pin for external bus  
Relation between control signals and effective byte locations is  
as follows:  
16-bit bus width  
WR0  
8-bit bus width  
WR0  
D15 to D08  
D07 to D00  
24  
27  
WR1  
P85  
F
WR1  
(I/O port enabled)  
Note: WR1 is Hi-Z during resetting.  
Attach an external pull-up resister when using at 16-bit  
bus width.  
Can be configured as a port when WR1 is not used.  
(Continued)  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
6
MB91101/MB91101A  
Pin no.  
Circuit  
type  
Pin name  
CS0  
Function  
LQFP*1  
QFP*2  
11  
10  
14  
L
F
Chip select 0 output (“L” active)  
13  
CS1  
PA1  
CS2  
PA2  
CS3  
PA3  
Chip select 1 output (“L” active)  
Can be configured as a port when CS1 is not used.  
Chip select 2 output (“L” active)  
9
8
12  
11  
F
F
Can be configured as a port when CS2 is not used.  
Chip select 3 output (“L” active)  
Can be configured as a port when CS3 and EOP1 are not  
used.  
EOP1  
EOP output pin for DMAC (ch. 1)  
This function is available when EOP output for DMAC is  
enabled.  
7
6
5
10  
9
CS4  
PA4  
CS5  
PA5  
CLK  
F
F
F
Chip select 4 output (“L” active)  
Can be configured as a port when CS4 is not used.  
Chip select 5 output (“L” active)  
Can be configured as a port when CS5 is not used.  
8
System clock output  
Outputs clock signal of external bus operating frequency.  
PA6  
Can be configured as a port when CLK is not used.  
96  
97  
99  
100  
1
RAS0  
F
F
F
F
F
RAS output for DRAM bank 0  
Refer to the DRAM interface for details.  
PB0  
Can be configured as a port when RAS0 is not used.  
CS0L  
CASL output for DRAM bank 0  
Refer to the DRAM interface for details.  
PB1  
Can be configured as a port when CS0L is not used.  
98  
CS0H  
CASH output for DRAM bank 0  
Refer to the DRAM interface for details.  
PB2  
Can be configured as a port when CS0H is not used.  
99  
2
DW0  
WE output for DRAM bank 0 (“L” active)  
Refer to the DRAM interface for details.  
PB3  
Can be configured as a port when DW0 is not used.  
100  
3
RAS1  
RAS output for DRAM bank 1  
Refer to the DRAM interface for details.  
PB4  
Can be configured as a port when RAS1 and EOP2 are not  
used.  
EOP2  
DMAC EOP output (ch. 2)  
This function is available when DMAC EOP output is enabled.  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
(Continued)  
7
MB91101/MB91101A  
Pin no.  
Circuit  
type  
Pin name  
CS1L  
Function  
CASL output for DRAM bank 1  
LQFP*1  
QFP*2  
1
4
F
Refer to the DRAM interface for details.  
PB5  
Can be configured as a port when CS1L and DREQ2 are not  
used.  
DREQ2  
External transfer request input pin for DMA  
This pin is used for input when external trigger is selected to  
cause DMAC operation, and it is necessary to disable output for  
other functions from this pin unless such output is made  
intentionally.  
2
5
CS1H  
PB6  
F
CASH output for DRAM bank 1  
Refer to the DRAM interface for details.  
Can be configured as a port when CS1H and DACK2 are not  
used.  
DACK2  
External transfer request acknowledge output pin for DMAC (ch.  
2)  
This function is available when transfer request output for DMAC  
is enabled.  
3
6
DW1  
PB7  
F
WE output for DRAM bank 1 (“L” active)  
Refer to the DRAM interface for details.  
Can be configured as a port when DW1 is not used.  
16 to 18 19 to 21 MD0 to MD2  
G
Mode pins 0 to 2  
MCU basic operation mode is set by these pins.  
Directly connect these pins with VCC or VSS for use.  
92  
91  
14  
13  
12  
95  
94  
17  
16  
15  
X0  
A
A
B
H
H
F
Clock (oscillator) input  
X1  
Clock (oscillator) output  
RST  
HST  
NMI  
External reset input  
Hardware standby input (“L” active)  
NMI (non-maskable interrupt pin) input (“L” active)  
95,  
94  
98,  
97  
INT0,  
INT1  
External interrupt request input pins  
These pins are used for input during corresponding interrupt is  
enabled, and it is necessary to disable output for other functions  
from these pins unless such output is made intentionally.  
PE0,  
PE1  
Can be configured as a I/O port when INT0, INT1 are not used.  
89  
92  
INT2  
F
External interrupt request input pin  
This pin is used for input during corresponding interrupt is  
enabled, and it is necessary to disable output for other functions  
from this pin unless such output is made intentionally.  
SC1  
PE2  
Clock I/O pin for UART1  
Clock output is available when clock output of UART1 is enabled.  
Can be configured as a I/O port when INT2 and SC1 are not  
used.  
This function is available when UART1 clock output is disabled.  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
(Continued)  
8
MB91101/MB91101A  
Pin no.  
Circuit  
type  
Pin name  
INT3  
Function  
LQFP*1  
QFP*2  
88  
91  
F
External interrupt request input pin  
This pin is used for input during corresponding interrupt is enabled,  
and it is necessary to disable output for other functions from this  
pin unless such output is made intentionally.  
SC2  
PE3  
UART2 clock I/O pin  
Clock output is available when UART2 clock output is enabled.  
Can be configured as a I/O port when INT3 and SC2 are not used.  
This function is available when UART2 clock output is disabled.  
87,  
86  
90,  
89  
DREQ0,  
DREQ1  
F
External transfer request input pins for DMA  
These pins are used for input when external trigger is selected to  
cause DMAC operation, and it is necessary to disable output for  
other functions from these pins unless such output is made  
intentionally.  
PE4,  
PE5  
Can be configured as a I/O port when DREQ0, DREQ1 are not  
used.  
85  
84  
76  
88  
87  
79  
DACK0  
F
F
F
External transfer request acknowledge output pin for DMAC (ch. 0)  
This function is available when transfer request output for DMAC is  
enabled.  
PE6  
Can be configured as a I/O port when DACK0 is not used.  
This function is available when transfer request acknowledge  
output for DMAC or DACK0 output is disabled.  
DACK1  
PE7  
External transfer request acknowledge output pin for DMAC (ch. 1)  
This function is available when transfer request output for DMAC is  
enabled.  
Can be configured as a I/O port when DACK1 is not used.  
This function is available when transfer request output for DMAC or  
DACK1 output is disabled.  
SI0  
UART0 data input pin  
This pin is used for input during UART0 is in input operation, and it  
is necessary to disable output for other functions from this pin  
unless such output is made intentionally.  
TRG0  
PF0  
PWM timer external trigger input pin  
This pin is used for input during PWM timer external trigger is in  
input operation, and it is necessary to disable output for other  
functions from this pin unless such output is made intentionally.  
Can be configured as a I/O port when SI0 and TRG0 are not used.  
(Continued)  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
9
MB91101/MB91101A  
Pin no.  
Circuit  
type  
Pin name  
SO0  
Function  
LQFP*1  
QFP*2  
77  
80  
F
UART0 data output pin  
This function is available when UART0 data output is enabled.  
TRG1  
PF1  
PWM timer external trigger input pin  
This function is available when serial data output of PF1, UART0  
are disabled.  
Can be configured as a I/O port when SO0 and TRG1 are not  
used.  
This function is available when serial data output of UART0 is  
disabled.  
78  
79  
81  
82  
SC0  
F
F
UART0 clock I/O pin  
Clock output is available when UART0 clock output is enabled.  
OCPA3  
PF2  
PWM timer output pin  
This function is available when PWM timer output is enabled.  
Can be configured as a I/O port when SC0 and OCPA3 are not  
used.  
This function is available when UART0 clock output is disabled.  
SI1  
UART1 data input pin  
This pin is used for input during UART1 is in input operation, and it  
is necessary to disable output for other functions from this pin  
unless such output is made intentionally.  
TRG2  
PWM timer external trigger input pin  
This pin is used for input during PWM timer external trigger is in  
input operation, and it is necessary to disable output for other  
functions from this pin unless such output is made intentionally.  
PF3  
SO1  
Can be configured as a I/O port when SI1 and TRG2 are not used.  
80  
83  
F
UART1 data output pin  
This function is available when UART1 data output is enabled.  
TRG3  
PF4  
SI2  
PWM timer external trigger input pin  
This function is available when PF4, UART1 data outputs are  
disabled.  
Can be configured as a I/O port when SO1 and TRG3 are not  
used.  
This function is available when UART1 data output is disabled.  
81  
84  
F
UART2 data input pin  
This pin is used for input during UART2 is in input operation, and it  
is necessary to disable output for other functions from this pin  
unless such output is made intentionally.  
OCPA1  
PF5  
PWM timer output pin  
This function is available when PWM timer output is enabled.  
Can be configured as a I/O port when SI2 and OCPA1 are not  
used.  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
(Continued)  
10  
MB91101/MB91101A  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
SO2  
Function  
LQFP*1  
QFP*2  
82  
85  
F
UART2 data output pin  
This function is available when UART2 data output is enabled.  
OCPA2  
PF6  
PWM timer output pin  
This function is available when PWM timer output is enabled.  
Can be configured as a I/O port when SO2 and OCPA2 are not  
used.  
This function is available when UART2 data output is disabled.  
83  
86  
OCPA0  
PF7  
F
PWM timer output pin  
This function is available when PWM timer output is enabled.  
Can be configured as a I/O port when OCPA0 and ATG are not  
used.  
This function is available when PWM timer output is disabled.  
ATG  
External trigger input pin for A/D converter  
This pin is used for input when external trigger is selected to  
cause A/D converter operation, and it is necessary to disable  
output for other functions from this pin unless such output is  
made intentionally.  
72 to 75 75 to 78 AN0 to AN3  
D
Analog input pins of A/D converter  
This function is available when AIC register is set to specify  
analog input mode.  
69  
70  
72  
73  
AVCC  
Power supply pin (VCC) for A/D converter  
AVRH  
Reference voltage input (high) for A/D converter  
Make sure to turn on and off this pin with potential of AVRH or  
more applied to VCC.  
71  
74  
AVSS / AVRL  
VCC5  
Power supply pin (VSS) for A/D converter and reference voltage  
input pin (low)  
43,  
93  
46,  
96  
5 V power supply pin (VCC) for digital circuit  
Always two pins must be connected to the power supply  
(connect to 3 V power supply when operating at 3 V).  
4
7
VCC3  
VSS  
Bypass capacitor pin for internal capacitor.  
Also connect this pin to 3 V power supply when operating at  
3 V.  
15,  
40,  
65,  
90  
18,  
43,  
68,  
93  
Earth level (VSS) for digital circuit  
*1: FPT-100P-M05  
*2: FPT-100P-M06  
Note: In most of the above pins, I/O port and resource I/O are multiplexed e.g. P82 and BRQ. In case of conflict  
between output of I/O port and resource I/O, priority is always given to the output of resource I/O.  
11  
MB91101/MB91101A  
DRAM CONTROL PIN  
Data bus 16-bit mode  
Pin name  
Data bus 8-bit mode  
Remarks  
2CAS/1WR mode  
1CAS/2WR mode  
Correspondence of “L”  
“H” to lower address 1  
bit (A0) in data bus 16-  
bit mode  
“L”: “0”  
“H”: “1”  
CASL: CAS which A0  
corresponds to  
“0” area  
CASH: CAS which A0  
corresponds to  
“1” area  
WEL: WE which A0  
corresponds to  
“0” area  
WEH: WE which A0  
corresponds to  
“1” area  
RAS0  
RAS1  
CS0L  
CS0H  
CS1L  
CS1H  
CW0  
Area 4 RAS  
Area 4 RAS  
Area 5 RAS  
Area 4 CAS  
Area 4 WEL  
Area 5 CAS  
Area 5 WEL  
Area 4 WEH  
Area 5 WEH  
Area 4 RAS  
Area 5 RAS  
Area 4 CAS  
Area 4 CAS  
Area 5 CAS  
Area 5 CAS  
Area 4 WE  
Area 5 WE  
Area 5 RAS  
Area 4 CASL  
Area 4 CASH  
Area 5 CASL  
Area 5 CASH  
Area 4 WE  
DW1  
Area 5 WE  
12  
MB91101/MB91101A  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Oscillation feedback resistance 1 MΩ  
approx.  
With standby control  
X1  
X0  
Clock input  
Standby control signal  
B
• CMOS level  
Hysteresis input  
Without standby control  
With pull-up resistance  
VCC  
P-ch  
P-ch  
R
N-ch  
VSS  
Digital input  
C
• CMOS level I/O  
With standby control  
P-ch  
N-ch  
Digital output  
Digital output  
R
Digital input  
Standby control signal  
D
• Analog input  
P-ch  
Digital output  
Digital output  
Analog input  
N-ch  
R
(Continued)  
13  
MB91101/MB91101A  
Type  
Circuit  
Remarks  
E
• N-ch open-drain output  
• CMOS level input  
With standby control  
P-ch  
N-ch  
Digital output  
Digital input  
R
Standby control signal  
F
• CMOS level output  
• CMOS level  
Hysteresis input  
With standby control  
P-ch  
Digital output  
Digital output  
N-ch  
R
Digital input  
Standby control signal  
G
• CMOS level input  
Without standby control  
P-ch  
N-ch  
R
Digital input  
H
• CMOS level  
Hysteresis input  
Without standby control  
P-ch  
N-ch  
R
Digital input  
(Continued)  
14  
MB91101/MB91101A  
(Continued)  
Type  
Circuit  
Remarks  
I
• CMOS level output  
• CMOS level  
Hysteresis input  
Without standby control  
P-ch  
Digital output  
Digital output  
N-ch  
R
Digital input  
J
• CMOS level output  
• TTL level input  
With standby control  
P-ch  
N-ch  
Digital output  
Digital output  
R
Digital input  
TTL  
Standby control signal  
K
• CMOS level input/output  
With standby control  
• Large current drive  
P-ch  
Digital output  
Digital output  
N-ch  
R
Digital input  
Standby control signal  
L
• CMOS level output  
P-ch  
N-ch  
Digital output  
Digital output  
15  
MB91101/MB91101A  
HANDLING DEVICES  
1. Preventing Latchup  
In CMOS ICs, applying voltage higher than VCC or lower than VSS to input/output pin or applying voltage over  
rating across VCC and VSS may cause latchup.  
This phenomenon rapidly increases the power supply current, which may result in thermal breakdown of the  
device. Make sure to prevent the voltage from exceeding the maximum rating.  
Take care that the analog power supply (AVCC , AVR) and the analog input do not exceed the digital power  
supply (VCC) when the analog power supply turned on or off.  
2. Treatment of Unused Pins  
Unused pins left open may cause malfunctions. Make sure to connect them to pull-up or pull-down resistors.  
3. External Reset Input  
It takes at least 5 machine cycle to input “L” level to the RST pin and to ensure inner reset operation properly.  
4. Remarks for External Clock Operation  
When external clock is selected, supply it to X0 pin generally, and simultaneously the opposite phase clock to  
X0 must be supplied to X1 pin. However, in this case the stop mode must not be used (because X1 pin stops  
at “H” output in stop mode).  
And can be used to supply only to X0 pin with 5 V power supply at 12.5 MHz and less than.  
• Using an external clock  
X0  
X1  
MB91101  
Using an external clock (normal)  
Note: Can not be used stop mode (oscillation stop mode).  
X0  
Open  
X1  
MB91101  
Using an external clock (can be used at 12.5 MHz and less than.)  
(5 V power supply only)  
16  
MB91101/MB91101A  
5. Power Supply Pins  
When there are several VCC and VSS pins, each of them is equipotentially connected to its counterpart inside  
of the device, minimizing the risk of malfunctions such as latch up. To further reduce the risk of malfunctions,  
to prevent EMI radiation, to prevent strobe signal malfunction resulting from creeping-up of ground level and  
to observe the total output current standard, connect all VCC and VSS pins to the power supply or GND.  
It is preferred to connect VCC and VSS of MB91101 to power supply with minimal impedance possible.  
It is also recommended to connect a ceramic capacitor as a bypass capacitor of about 0.1 µF between VCC  
and VSS at a position as close as possible to MB91101.  
MB91101 has an internal regulator. When using with 5 V power supply, supply 5 V to VCC5 pin and make sure  
to connect about 0.1 µF bypass capacitor to VCC3 pin for regulator. And another 3 V power supply is needed  
for the A/D convertor. When using with 3 V power supply, connect both VCC5 pin and VCC3 pin to the 3 V power  
supply.  
• Connecting to a power supply  
[Using with 3 V power supply]  
[Using with 5 V power supply]  
3 V  
5 V  
VCC3  
VCC5  
AVCC  
AVRH  
AVSS  
VSS  
VCC3  
VCC5  
AVCC  
AVRH  
AVSS  
VSS  
3 V  
About  
0.1 µF  
GND  
GND  
6. Crystal Oscillator Circuit  
Noises around X0 and X1 pins may cause malfunctions of MB91101. In designing the PC board, layout X0,  
X1 and crystal oscillator (or ceramic oscillator) and bypass capacitor for grounding as close as possible.  
It is strongly recommended to design PC board so that X1 and X0 pins are surrounded by grounding area for  
stable operation.  
7. Turning-on Sequence of A/D Converter Power Supply and Analog Input  
Make sure to turn on the digital power supply (VCC) before turning on the A/D converter (AVCC, AVRH) and  
applying voltage to analog input (AN0 to AN3).  
Make sure to turn off digital power supply after power supply to A/D converters and analog inputs have been  
switched off. (There are no such limitations in turning on power supplies. Analog and digital power supplies  
may be turned on simultaneously.) Make sure that AVRH never exceeds AVCC when turning on/off power  
supplies.  
8. Treatment of N.C. Pins  
Make sure to leave N.C. pins open.  
17  
MB91101/MB91101A  
9. Fluctuation of Power Supply Voltage  
Warranty range for normal operation against fluctuation of power supply voltage VCC is as given in rating.  
However, sudden fluctuation of power supply voltage within the warranty range may cause malfunctions. It is  
recommended to make every effort to stabilize the power supply voltage to IC. It is also recommended that by  
controlling power supply as a reference of stabilizing, VCC ripple fluctuation (P-P value) at the commercial  
frequency (50 Hz to 60 Hz) should be less than 10% of the standard VCC value and the transient regulation  
should be less than 0.1 V/ms at instantaneous deviation like turning off the power supply.  
10. Mode Setting Pins (MD0 to MD2)  
Connect mode setting pins (MD0 to MD2) directly to VCC or VSS.  
Arrange each mode setting pin and VCC or VSS patterns on the printed circuit board as close as possible and  
make the impedance between them minimal to prevent mistaken entrance to the test mode caused by noises.  
11. Internal DC Regulator  
Internal DC regulator stops in stop mode. When the regulator stops owing to the increase of inner leakage  
current (ICCH) in stop mode, malfunction caused by noise or any troubles about power supply in normal  
operation,theinternal3Vpowersupplyvoltagemaydecreaselessthanthewarrantyrangefornormaloperation.  
So when using the internal regulator and stop mode with 5 V power supply, never fail to support externally so  
that 3 V power supply voltage might not decrease. However, even in such a case, the internal regulator can be  
restarted by inputting the reset procedure. (In this case, set the reset to “L” level within the oscillation stabilizing  
waiting time.)  
• Using STOP mode with 5 V power supply  
5 V  
VCC5  
3.6 kΩ  
VCC3  
6.8 kΩ  
0.1 µF  
approx.  
VSS  
12. Turning on the Power Supply  
When turning on the power supply, never fail to start from setting the RST pin to “L” level. And after the power  
supply voltage goes to VCC level, at least after ensuring the time for 5 machine cycle, then set to “H” level.  
13. Pin Condition at Turning on the Power Supply  
The pin condition at turning on the power supply is unstable. The circuit starts being initialized after turning on  
the power supply and then starting oscillation and then the operation of the internal regulator becomes stable.  
So it takes about 42 ms for the pin to be initialized from the oscillation starting at the source oscillation 12.5  
MHz. Take care that the pin condition may be output condition at initial unstable condition.  
(With the MB91101A, however, initalization can be achieved in less than about 42 ms after turning on the  
internal power supply by maintaining the RST pin at "L" level.)  
18  
MB91101/MB91101A  
14. Source Oscillation Input at Turning on the Power Supply  
At turning on the power supply, never fail to input the clock before cancellation of the oscillation stabilizing  
waiting.  
15. Hardware Stand-by at Turning on the Power Supply  
When turning on the power supply with the HST pin being set to “L” level, the hardware doesn’t stand by.  
However the HST pin becomes available after the reset cancellation, the HSTpin must once be back to “H” level.  
16. Power on Reset  
Make sure to make power on reset at turning on the power supply or returning on the power supply when the  
power supply voltage is below the warranty range for normal operation.  
19  
MB91101/MB91101A  
BLOCK DIAGRAM  
FR CPU  
RAM (2 Kbytes)  
Bit search module  
Instruction cache (1 Kbyte)  
3
DREQ0 to  
DREQ2  
Bus converter  
(HarvardPrinceton)  
3
3
DMA controller (DMAC)  
(8 ch.)  
DACK0 to  
DACK2  
EOP0 to  
EOP2  
Bus converter (32 bits16 bits)  
16  
25  
D16 to D31  
A00 to A24  
RD  
WR0, WR1  
RDY  
CLK  
CS0 to CS5  
BRQ  
X0  
X1  
RST  
HST  
Clock control unit  
(Watchdog timer)  
2
6
Bus controller  
4
INT0 to INT3  
NMI  
BGRNT  
Interrupt control unit  
4
AN0 to AN3  
AVCC  
RAS0  
RAS1  
CS0L  
CS0H  
CS1L  
CS1H  
DW0  
AVSS /AVRL  
AVRH  
10-bit A/D converter  
(4 ch.)  
DRAM controller  
ATG  
DW1  
Reload timer (3 ch.)  
Port 0 to port B  
Port  
3
3
SI0 to SI2  
SO0 to SO2  
SC0 to SC2  
UART (3 ch.)  
(Baud rate timer)  
Other pins  
MD0 to MD2, P20 to P27, P60 to P67,  
P80 to P82, P85, PA1 to PA6,  
PB0 to PB7, PE0 to PE7, PF0 to PF7,  
V
CC3, VCC5, VSS  
4
4
OCPA0 to OCPA3  
TRG0 to TRG3  
PWM timer (4 ch.)  
Note: Pins are display for functions (Actually some pins are multiplexer).  
When using REALOS, time control should be done by using external interrupt or inner timer.  
20  
MB91101/MB91101A  
CPU CORE  
1. Memory Space  
The FR family has a logical address space of 4 Gbytes (232 bytes) and the CPU linearly accesses the memory  
space.  
• Memory space  
Address  
External ROM/external bus mode  
I/O area  
0000 0000H  
Direct addressing area  
0000 0400H  
See “I/O MAP”  
I/O area  
0000 0800H  
0000 1000H  
0000 1800H  
Access inhibited  
Embedded RAM  
Access inhibited  
0001 0000H  
External area  
FFFF FFFFH  
• Direct addressing area  
The following areas on the memory space are assigned to direct addressing area for I/O. In these areas, an  
address can be specified in a direct operand of a code.  
Direct areas consists of the following areas dependent on accessible data sizes.  
Byte data access: 000H to 0FFH  
Half word data access: 000H to 1FFH  
Word data access: 000H to 3FFH  
21  
MB91101/MB91101A  
2. Registers  
The FR family has two types of registers; dedicated registers embedded on the CPU and general-purpose  
registers on memory.  
• Dedicated registers  
Program counter (PC):  
Program status (PS):  
32-bit length, indicates the location of the instruction to be executed.  
32-bit length, register for storing register pointer or condition codes  
Table base register (TBR): Holds top address of vector table used in EIT (Exceptional/Interrupt/Trap)  
processing.  
Return pointer (RP):  
Holds address to resume operation after returning from a subroutine.  
System stack pointer (SSP): Indicates system stack space.  
User's stack pointer (USP): Indicates user’s stack space.  
Multiplication/division result register (MDH/MDL): 32-bit length, register for multiplication/division  
32 bits  
Initial value  
Program counter  
Program status  
XXXX XXXXH  
Indeterminate  
PC  
PS  
Table base register  
Return pointer  
000F FC00H  
XXXX XXXXH  
0000 0000H  
XXXX XXXXH  
TBR  
RP  
Indeterminate  
Indeterminate  
System stack pointer  
User’s stack pointer  
SSP  
USP  
MDH  
MDL  
XXXX XXXXH  
XXXX XXXXH  
Indeterminate  
Indeterminate  
Multiplication/division result register  
• Program status (PS)  
The PS register is for holding program status and consists of a condition code register (CCR), a system condition  
code register (SCR) and a interrupt level mask register (ILM).  
31 to 21 20  
19  
18  
17  
16 11 to 15 10  
D1  
9
8
T
7
6
5
4
I
3
2
Z
1
0
PS  
ILM4 ILM3 ILM2 ILM1 ILM0  
ILM  
D0  
S
N
V
C
SCR  
CCR  
22  
MB91101/MB91101A  
• Condition code register (CCR)  
S-flag:  
I-flag:  
Specifies a stack pointer used as R15.  
Controls user interrupt request enable/disable.  
N-flag:  
Z-flag:  
V-flag:  
Indicates sign bit when division result is assumed to be in the 2’s complement format.  
Indicates whether or not the result of division was “0”.  
Assumes the operand used in calculation in the 2’s complement format and indicates whether  
or not overflow has occurred.  
C-flag:  
Indicates if a carry or borrow from the MSB has occurred.  
• System condition code register (SCR)  
T-flag:  
Specifies whether or not to enable step trace trap.  
• Interrupt level mask register (ILM)  
ILM4 to ILM0: Register for holding interrupt level mask value. The value held by this register is used as a  
level mask. When an interrupt request issued to the CPU is higher than the level held by ILM,  
the interrupt request is accepted.  
ILM4  
ILM3  
ILM2  
ILM1  
ILM0  
Interrupt level  
High-low  
0
0
0
0
0
0
High  
:
:
:
:
0
1
1
1
0
0
1
0
1
15  
:
:
:
:
1
31  
Low  
23  
MB91101/MB91101A  
GENERAL-PURPOSE REGISTERS  
R0 to R15 are general-purpose registers embedded on the CPU. These registers functions as an accumulator  
and a memory access pointer (field for indicating address).  
• Register bank structure  
32 bits  
Initial value  
R0  
R1  
XXXX XXXXH  
:
:
:
:
:
:
:
:
:
:
:
:
:
R12  
R13  
R14  
R15  
AC (accumulator)  
FP (frame pointer)  
SP (stack pointer)  
XXXX XXXXH  
0 000 0 000H  
Of the above 16 registers, following registers have special functions. To support the special functions, part of  
the instruction set has been sophisticated to have enhanced functions.  
R13: Virtual accumulator (AC)  
R14: Frame pointer (FP)  
R15: Stack pointer (SP)  
Upon reset, values in R0 to R14 are not fixed. Value in R15 is initialized to be 0000 0000H (SSP value).  
24  
MB91101/MB91101A  
SETTING MODE  
1. Pin  
• Mode setting pins and modes  
Mode setting  
Reset vector  
access area  
External data  
bus width  
pins  
Mode name  
Bus mode  
MD2 MD1 MD0  
0
0
0
0
1
0
0
0
1
External vector mode 0  
External  
External  
8 bits  
16 bits  
External ROM/external bus  
mode  
External vector mode 1  
1
0
Inhibited  
1
1
Internal vector mode  
Internal  
(Mode register) Single-chip mode*  
Inhibited  
* : MB91101 does not support single-chip mode.  
2. Registers  
• Mode setting registers (MODR) and modes  
Address  
Initial value  
Access  
W
0000 07FFH  
M1  
M0  
XXXX XXXXB  
*
*
*
*
*
*
Bus mode setting bit  
W : Write only  
X : Indeterminate  
: Always write “0” except for M1 and M0.  
*
• Bus mode setting bits and functions  
M1  
0
M0  
0
Functions  
Note  
Single-chip mode  
Internal ROM/external bus mode  
0
1
1
0
External ROM/external bus mode  
1
1
Inhibited  
Note: Because of without internal ROM, MB91101 allows “10B” setting value only.  
25  
MB91101/MB91101A  
I/O MAP  
Register name  
Address  
Register name  
(Vacancy)  
Read/write  
Initial value  
(abbreviated)  
0000H  
0001H  
PDR2  
PDR6  
Port 2 data register  
R/W  
X X X X X X X X B  
0002H  
to  
0004H  
(Vacancy)  
(Vacancy)  
0005H  
0006H  
0007H  
0008H  
0009H  
000AH  
000BH  
Port 6 data register  
R/W  
X X X X X X X X B  
PDRB  
PDRA  
Port B data register  
Port A data register  
R/W  
R/W  
X X X X X X X X B  
– X X X X X X – B  
(Vacancy)  
(Vacancy)  
PDR8  
Port 8 data register  
R/W  
– – X – – X X X B  
000CH  
to  
0011H  
0012H  
0013H  
PDRE  
PDRF  
Port E data register  
Port F data register  
R/W  
R/W  
X X X X X X X X B  
X X X X X X X X B  
0014H  
to  
(Vacancy)  
001BH  
001CH  
001DH  
001EH  
001FH  
0020H  
0021H  
0022H  
0023H  
0024H  
0025H  
0026H  
0027H  
SSR0  
Serial status register 0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0 0 0 0 1 – 0 0 B  
X X X X X X X X B  
0 0 0 0 0 1 0 0 B  
0 0 – – 0 – 0 0 B  
0 0 0 0 1 – 0 0 B  
X X X X X X X X B  
0 0 0 0 0 1 0 0 B  
0 0 – – 0 – 0 0 B  
0 0 0 0 1 – 0 0 B  
X X X X X X X X B  
0 0 0 0 0 1 0 0 B  
0 0 – – 0 – 0 0 B  
SIDR0/SODR0  
SCR0  
Serial input register 0/serial output register 0  
Serial control register 0  
SMR0  
Serial mode register 0  
SSR1  
Serial status register 1  
SIDR1/SODR1  
SCR1  
Serial input register 1/serial output register 1  
Serial control register 1  
SMR2  
Serial mode register 1  
SSR2  
Serial status register 2  
SIDR2/SODR2  
SCR2  
Serial input register 2/serial output register 2  
Serial control register 2  
SMR2  
Serial mode register 2  
(Continued)  
26  
MB91101/MB91101A  
Register name  
(abbreviated)  
Address  
Register name  
Read/write  
Initial value  
0028H  
0029H  
002AH  
002BH  
002CH  
002DH  
002EH  
002FH  
0030H  
0031H  
0032H  
0033H  
0034H  
0035H  
0036H  
0037H  
0038H  
0039H  
003AH  
003BH  
003CH  
003DH  
003EH  
003FH  
0040H  
0041H  
0042H  
0043H  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
TMRLR0  
TMR0  
16-bit reload register ch. 0  
W
16-bit timer register ch. 0  
R
(Vacancy)  
– – – – 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
16-bit reload timer control status register  
ch. 0  
TMCSR0  
TMRLR1  
TMR1  
R/W  
W
16-bit reload register ch. 1  
16-bit timer register ch. 1  
(Vacancy)  
R
– – – – 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
– – – – – – X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
16-bit reload timer control status register  
ch. 1  
TMCSR1  
ADCR  
R/W  
R
A/D converter data register  
A/D converter control status register  
16-bit reload register ch. 2  
16-bit timer register ch. 2  
(Vacancy)  
ADCS  
R/W  
W
TMRLR2  
TMR2  
R
– – – – 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
16-bit reload timer control status register  
ch. 2  
TMCSR2  
R/W  
0044H  
to  
(Vacancy)  
0077H  
(Continued)  
27  
MB91101/MB91101A  
Register name  
Address  
Register name  
Read/write  
Initial value  
(abbreviated)  
0078H  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
UTIM0/UTIMR0 U-TIMER register ch. 0/reload register ch. 0  
R/W  
0079H  
007AH  
007BH  
007CH  
007DH  
007EH  
007FH  
0080H  
0081H  
0082H  
0083H  
(Vacancy)  
UTIMC0  
U-TIMER control register ch. 0  
R/W  
R/W  
0 – – 0 0 0 0 1 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
UTIM1/UTIMR1 U-TIMER register ch. 1/reload register ch. 1  
(Vacancy)  
UTIMC1  
U-TIMER control register ch. 1  
R/W  
R/W  
0 – – 0 0 0 0 1 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
UTIM2/UTIMR2 U-TIMER register ch. 2/reload register ch. 0  
(Vacancy)  
UTIMC2  
U-TIMER control register ch. 2  
(Vacancy)  
R/W  
0 – – 0 0 0 0 1 B  
0084H  
to  
0093H  
0094H  
0095H  
EIRR  
ENIR  
External interrupt cause register  
Interrupt enable register  
R/W  
R/W  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0096H  
to  
(Vacancy)  
0098H  
External interrupt request level setting  
register  
0099H  
ELVR  
R/W  
0 0 0 0 0 0 0 0 B  
009AH  
to  
(Vacancy)  
00D1H  
00D2H  
00D3H  
DDRE  
DDRF  
Port E data direction register  
Port F data direction register  
W
W
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
00D4H  
to  
(Vacancy)  
00DBH  
00DCH  
00DDH  
00DEH  
00DFH  
0 0 1 1 0 0 1 0 B  
0 0 0 1 0 0 0 0 B  
GCN1  
GCN2  
General control register 1  
R/W  
R/W  
(Vacancy)  
General control register 2  
0 0 0 0 0 0 0 0 B  
(Continued)  
28  
MB91101/MB91101A  
Register name  
(abbreviated)  
Address  
Register name  
Read/write  
Initial value  
00E0H  
00E1H  
00E2H  
00E3H  
00E4H  
00E5H  
00E6H  
00E7H  
00E8H  
00E9H  
00EAH  
00EBH  
00ECH  
00EDH  
00EEH  
00EFH  
00F0H  
00F1H  
00F2H  
00F3H  
00F4H  
00F5H  
00F6H  
00F7H  
00F8H  
00F9H  
00FAH  
00FBH  
00FCH  
00FDH  
00FEH  
00FFH  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 – B  
0 0 0 0 0 0 0 0 B  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 – B  
0 0 0 0 0 0 0 0 B  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 – B  
0 0 0 0 0 0 0 0 B  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 – B  
0 0 0 0 0 0 0 0 B  
(Continued)  
PTMR0  
PCSR0  
PDUT0  
Ch. 0 timer register  
R
Ch. 0 cycle setting register  
Ch. 0 duty setting register  
W
W
PCNH0  
PCNL0  
Ch. 0 control status register H  
Ch. 0 control status register L  
R/W  
R/W  
PTMR1  
PCSR1  
PDUT1  
Ch. 1 timer register  
R
W
W
Ch. 1 cycle setting register  
Ch. 1 duty setting register  
PCNH1  
PCNL1  
Ch. 1 control status register H  
Ch. 1 control status register L  
R/W  
R/W  
PTMR2  
PCSR2  
PDUT2  
Ch. 2 timer register  
R
W
W
Ch. 2 cycle setting register  
Ch. 2 duty setting register  
PCNH2  
PCNL2  
Ch. 2 control status register H  
Ch. 2 control status register L  
R/W  
R/W  
PTMR3  
PCSR3  
PDUT3  
Ch. 3 timer register  
R
W
W
Ch. 3 cycle setting register  
Ch. 3 duty setting register  
PCNH3  
PCNL3  
Ch. 3 control status register H  
Ch. 3 control status register L  
R/W  
R/W  
29  
MB91101/MB91101A  
Register name  
Address  
Register name  
Read/write  
Initial value  
(abbreviated)  
0100H  
to  
(Vacancy)  
01FFH  
0200H  
0201H  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
X X X X 0 0 0 0 B  
X X X X 0 0 0 0 B  
X X X X 0 0 0 0 B  
DPDP  
DMAC parameter descriptor pointer  
DMAC control status register  
R/W  
R/W  
R/W  
0202H  
0203H  
0204H  
0205H  
0206H  
0207H  
0208H  
0209H  
020AH  
020BH  
DACSR  
DATCR  
DMAC pin control register  
020CH  
to  
(Vacancy)  
03E3H  
03E4H  
03E5H  
03E6H  
03E7H  
– – – – – – – – B  
– – – – – – – – B  
– – – – – – – – B  
– – 0 0 0 0 0 0 B  
ICHCR  
Instruction cache control register  
R/W  
03E8H  
to  
(Vacancy)  
03EFH  
03F0H  
03F1H  
03F2H  
03F3H  
03F4H  
03F5H  
03F6H  
03F7H  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
(Continued)  
BSD0  
BSD1  
Bit search module 0-detection data register  
W
Bit search module 1-detection data register  
R/W  
30  
MB91101/MB91101A  
Register name  
(abbreviated)  
Address  
Register name  
Read/write  
Initial value  
03F8H  
03F9H  
03FAH  
03FBH  
03FCH  
03FDH  
03FEH  
03FFH  
0400H  
0401H  
0402H  
0403H  
0404H  
0405H  
0406H  
0407H  
0408H  
0409H  
040AH  
040BH  
040CH  
040DH  
040EH  
040FH  
0410H  
0411H  
0412H  
0413H  
0414H  
0415H  
0416H  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
(Continued)  
Bit search module transition-detection data  
register  
BSDC  
BSRR  
W
Bit search module detection result register  
R
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
ICR16  
ICR17  
ICR18  
ICR19  
ICR20  
ICR21  
ICR22  
Interrupt control register 0  
Interrupt control register 1  
Interrupt control register 2  
Interrupt control register 3  
Interrupt control register 4  
Interrupt control register 5  
Interrupt control register 6  
Interrupt control register 7  
Interrupt control register 8  
Interrupt control register 9  
Interrupt control register 10  
Interrupt control register 11  
Interrupt control register 12  
Interrupt control register 13  
Interrupt control register 14  
Interrupt control register 15  
Interrupt control register 16  
Interrupt control register 17  
Interrupt control register 18  
Interrupt control register 19  
Interrupt control register 20  
Interrupt control register 21  
Interrupt control register 22  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
31  
MB91101/MB91101A  
Register name  
Address  
Register name  
Read/write  
Initial value  
(abbreviated)  
0417H  
0418H  
0419H  
041AH  
041BH  
041CH  
041DH  
041EH  
041FH  
042FH  
0430H  
ICR23  
ICR24  
ICR25  
ICR26  
ICR27  
ICR28  
ICR29  
ICR30  
ICR31  
ICR47  
DICR  
Interrupt control register 23  
Interrupt control register 24  
Interrupt control register 25  
Interrupt control register 26  
Interrupt control register 27  
Interrupt control register 28  
Interrupt control register 29  
Interrupt control register 30  
Interrupt control register 31  
Interrupt control register 47  
Delayed interrupt control register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – 1 1 1 1 1 B  
– – – – – – – 0 B  
Hold request cancel request level setting  
register  
0431H  
HRCL  
R/W  
– – – 1 1 1 1 1 B  
0432H  
to  
(Vacancy)  
047FH  
Reset cause register/  
watchdog peripheral control register  
0480H  
RSRR/WTCR  
R/W  
1XX X X – 0 0 B  
0481H  
0482H  
0483H  
0484H  
STCR  
PDRR  
CTBR  
GCR  
Standby control register  
R/W  
R/W  
W
0 0 0 1 1 1 – – B  
– – – – 0 0 0 0 B  
X X X X X X X X B  
1 1 0 0 1 1 – 1 B  
DMA controller request squelch register  
Timebase timer clear register  
Gear control register  
R/W  
Watchdog reset occurrence postpone  
register  
0485H  
WPR  
W
R/W  
W
X X X X X X X X B  
0 0 – – 0 – – – B  
0 0 0 0 0 0 0 0 B  
0486H  
0487H  
0488H  
(Vacancy)  
PCTR  
DDR2  
DDR6  
PLL control register  
0489H  
to  
0600H  
(Vacancy)  
Port 2 data direction register  
(Vacancy)  
0601H  
0602H  
to  
0604H  
0605H  
0606H  
0607H  
Port 6 data direction register  
(Vacancy)  
W
0 0 0 0 0 0 0 0 B  
(Continued)  
32  
MB91101/MB91101A  
Register name  
(abbreviated)  
Address  
Register name  
Read/write  
Initial value  
0608H  
0609H  
060AH  
060BH  
060CH  
060DH  
060EH  
060FH  
0610H  
0611H  
0612H  
0613H  
0614H  
0615H  
0616H  
0617H  
0618H  
0619H  
061AH  
061BH  
061CH  
061DH  
061EH  
061FH  
0620H  
0621H  
0622H  
0623H  
0624H  
0625H  
0626H  
0627H  
DDRB  
DDRA  
Port B data direction register  
Port A data direction register  
W
W
0 0 0 0 0 0 0 0 B  
– 0 0 0 0 0 0 – B  
(Vacancy)  
DDR8  
ASR1  
Port 8 data direction register  
W
W
– – 0 – – 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 1 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 1 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 1 1 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 1 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 1 0 1 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
– – – 0 0 1 1 1 B  
0 – – 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 – – 0 0 0 0 0 B  
0 – – 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
– – X X X X X X B  
0 0 – – – 0 0 0 B  
(Continued)  
Area select register 1  
AMR1  
ASR2  
AMR2  
ASR3  
AMR3  
ASR4  
AMR4  
ASR5  
AMR5  
Area mask register 1  
Area select register 2  
Area mask register 2  
Area select register 3  
Area mask register 3  
Area select register 4  
Area mask register 4  
Area select register 5  
Area mask register 5  
W
W
W
W
W
W
W
W
W
AMD0  
AMD1  
AMD32  
AMD4  
AMD5  
DSCR  
Area mode register 0  
Area mode register 1  
Area mode register 32  
Area mode register 4  
Area mode register 5  
DRAM signal control register  
R/W  
R/W  
R/W  
R/W  
R/W  
W
RFCR  
Refresh control register  
R/W  
33  
MB91101/MB91101A  
(Continued)  
Register name  
Address  
Register name  
Read/write  
Initial value  
(abbreviated)  
0628H  
– – – – 1 1 0 0 B  
– 1 1 1 1 1 1 1 B  
EPCR0  
External pin control register 0  
(Vacancy)  
W
0629H  
062AH  
062BH  
062CH  
062DH  
062EH  
062FH  
EPCR1  
DMCR4  
External pin control register 1  
W
1 1 1 1 1 1 1 1 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 – B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 – B  
DRAM control register 4  
R/W  
DMCR5  
DRAM control register 5  
R/W  
0630H  
to  
(Vacancy)  
07FDH  
07FEH  
07FFH  
LER  
Little endian register  
Mode register  
W
W
– – – – – 0 0 0 B  
X X X X X X X X B  
MODR  
Note: Do not use (vacancy).  
34  
MB91101/MB91101A  
INTERRUPT CAUSES, INTERRUPT VECTORS  
AND INTERRUPT CONTROL REGISTER ALLOCATIONS  
Interrupt number  
Interrupt causes  
Interrupt level  
Register  
TBR default  
address  
Decimal  
0
Hexadecimal  
Offset  
3FCH  
3F8H  
3F4H  
3F0H  
3ECH  
3E8H  
3E4H  
3E0H  
3DCH  
3D8H  
3D4H  
3D0H  
3CCH  
3C8H  
3C4H  
3C0H  
3BCH  
3B8H  
3B4H  
3B0H  
3ACH  
3A8H  
3A4H  
3A0H  
39CH  
398H  
394H  
390H  
38CH  
388H  
384H  
380H  
Reset  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
000FFFFCH  
000FFFF8H  
000FFFF4H  
000FFFF0H  
000FFFECH  
000FFFE8H  
000FFFE4H  
000FFFE0H  
000FFFDCH  
000FFFD8H  
000FFFD4H  
000FFFD0H  
000FFFCCH  
000FFFC8H  
000FFFC4H  
000FFFC0H  
000FFFBCH  
000FFFB8H  
000FFFB4H  
000FFFB0H  
000FFFACH  
000FFFA8H  
000FFFA4H  
000FFFA0H  
000FFF9CH  
000FFF98H  
000FFF94H  
000FFF90H  
000FFF8CH  
000FFF88H  
000FFF84H  
000FFF80H  
(Continued)  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Exception for undefined instruction  
NMI request  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
FH fixed  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
External interrupt 0  
External interrupt 1  
External interrupt 2  
External interrupt 3  
UART0 receive complete  
UART1 receive complete  
UART2 receive complete  
UART0 transmit complete  
UART1 transmit complete  
UART2 transmit complete  
DMAC0 (complete, error)  
DMAC1 (complete, error)  
DMAC2 (complete, error)  
DMAC3 (complete, error)  
DMAC4 (complete, error)  
DMAC5 (complete, error)  
35  
MB91101/MB91101A  
Interrupt number  
Interrupt level  
TBR default  
address  
Interrupt causes  
Decimal  
32  
Hexadecimal  
Register  
Offset  
37CH  
378H  
DMAC6 (complete, error)  
DMAC7 (complete, error)  
20  
21  
ICR16  
ICR17  
000FFF7CH  
000FFF78H  
33  
A/D converter (successive  
approximation conversion type)  
34  
22  
ICR18  
374H  
000FFF74H  
16-bit reload timer 0  
16-bit reload timer 1  
16-bit reload timer 2  
PWM 0  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
ICR19  
ICR20  
ICR21  
ICR22  
ICR23  
ICR24  
ICR25  
ICR26  
ICR27  
ICR28  
ICR29  
ICR30  
ICR31  
ICR32  
ICR33  
ICR34  
ICR35  
ICR36  
ICR37  
ICR38  
ICR39  
ICR40  
ICR41  
ICR42  
ICR43  
ICR44  
ICR45  
ICR46  
ICR47  
370H  
36CH  
368H  
364H  
360H  
35CH  
358H  
354H  
350H  
34CH  
348H  
344H  
340H  
33CH  
338H  
334H  
330H  
32CH  
328H  
324H  
320H  
31CH  
318H  
314H  
310H  
30CH  
308H  
304H  
300H  
000FFF70H  
000FFF6CH  
000FFF68H  
000FFF64H  
000FFF60H  
000FFF5CH  
000FFF58H  
000FFF54H  
000FFF50H  
000FFF4CH  
000FFF48H  
000FFF44H  
000FFF40H  
000FFF3CH  
000FFF38H  
000FFF34H  
000FFF30H  
000FFF2CH  
000FFF28H  
000FFF24H  
000FFF20H  
000FFF1CH  
000FFF18H  
000FFF14H  
000FFF10H  
000FFF0CH  
000FFF08H  
000FFF04H  
000FFF00H  
(Continued)  
PWM 1  
PWM 2  
PWM 3  
U-TIMER 0  
U-TIMER 1  
U-TIMER 2  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Delayed interrupt cause bit  
36  
MB91101/MB91101A  
(Continued)  
Interrupt causes  
Interrupt number  
Decimal Hexadecimal  
Interrupt level  
TBR default  
address  
Register  
Offset  
Reserved for system (used in  
REALOS*)  
64  
40  
2FCH  
000FFEFCH  
000FFEF8H  
Reserved for system (used in  
REALOS*)  
65  
41  
2F8H  
66  
to  
255  
42  
to  
FF  
2F4H  
to  
000H  
000FFEF4H  
to  
000FFC00H  
Used in INT instructions  
* : When using in REALOS/FR, interrupt 0x40, 0x41 for system code.  
37  
MB91101/MB91101A  
PERIPHERAL RESOURCES  
1. I/O Ports  
There are 2 types of I/O port register structure; port data register (PDR0 to PDRF) and data direction register  
(DDR0 to DDRF), where bits PDR0 to PDRF and bits DDR0 to DDRF corresponds respectively. Each bit on  
the register corresponds to an external pin. In port registers input/output register of the port configures input/  
output function of the port, while corresponding bit (pin) configures input/output function in data direction  
registers. Bit “0” specifies input and “1” specifies output.  
• For input (DDR = “0”) setting;  
PDR reading operation: reads level of corresponding external pin.  
PDR writing operation: writes set value to PDR.  
• For output (DDR = “1”) setting;  
PDR reading operation: reads PDR value.  
PDR writing operation: outputs PDR value to corresponding external pin.  
• Block diagram  
Resource input  
0
1
PDR read  
Pin  
0
1
PDR  
(Port data register)  
Resource output  
Resource output enable  
DDR  
(Data direction register)  
38  
MB91101/MB91101A  
• Port data register  
Address  
000001H  
Initial value  
bit 0  
bit 7  
X X X X X X X X B  
X X X X X X X X B  
- - X - - X X X B  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
PDR2  
PDR6  
PDR8  
PDRA  
PDRB  
PDRE  
PDRF  
000005H  
00000BH  
000009H  
000008H  
000012H  
000013H  
- X X X X X X -  
B
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
( ) : Access  
R/W : Readable and writable  
: Indeterminate  
X
• Data direction register  
Address  
bit 7  
Initial value  
bit 0  
000601H  
000605H  
00060BH  
000609H  
000608H  
0000D2H  
0000D3H  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 - - 0 0 0  
- 0 0 0 0 0 0 -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
B
B
B
B
B
(W)  
(W)  
(W)  
(W)  
(W)  
(W)  
(W)  
DDR2  
DDR6  
DDR8  
DDRA  
DDRB  
DDRE  
DDRF  
( ) : Access  
W : Write only  
– : Unused  
39  
MB91101/MB91101A  
2. DMA Controller (DMAC)  
The DMA controller is a module embedded in FR family devices, and performs DMA (direct memory access)  
transfer.  
DMA transfer performed by the DMA controller transfers data without intervention of CPU, contributing to  
enhanced performance of the system.  
• 8 channels  
• Mode: single/block transfer, burst transfer and continuous transfer: 3 kinds of transfer  
Transfer all through the area  
• Max. 65536 of transfer cycles  
• Interrupt function right after the transfer  
• Selectable for address transfer increase/decrease by the software  
• External transfer request input pin, external transfer request accept output pin, external transfer complete  
output pin three pins for each  
• Block diagram  
3
5
3
3
Edge/level  
detection circuit  
DREQ0 to DREQ2  
DACK0 to DACK2  
EOP0 to EOP2  
Interrupt request  
3
8
Sequencer  
Inner resource  
Transfer request  
Data buffer  
Switcher  
DPDP  
DACSR  
DATCR  
Mode  
BLK DEC  
BLK  
DMACT  
SADR  
DADR  
INC / DEC  
40  
MB91101/MB91101A  
• Registers (DMAC internal registers)  
Address  
Initial value  
00000200H  
00000201H  
00000202H  
00000203H  
X X X X X X X X B  
bit 0  
bit 31  
bit 16  
X X X X X X X X B  
DPDP  
(R/W)  
X X X X X X X X B  
X 0 0 0 0 0 0 0  
B
00000204H  
00000205H  
00000206H  
00000207H  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
B
B
DACSR  
DATCR  
(R/W)  
(R/W)  
00000208H  
00000209H  
0000020AH  
0000020BH  
X X X X X X X X B  
X X X X 0 0 0 0  
X X X X 0 0 0 0  
X X X X 0 0 0 0  
B
B
B
( ) : Access  
R/W : Readable and writable  
: Indeterminate  
X
• Registers (DMA descriptor)  
Address  
bit 31  
bit 0  
DMA  
DPDP + 0H  
ch.0  
Descriptor  
DMA  
DPDP + 0CH  
DPDP + 54H  
ch.1  
Descriptor  
DMA  
ch.7  
Descriptor  
41  
MB91101/MB91101A  
3. UART  
The UART is a serial I/O port for supporting asynchronous (start-stop system) communication or CLK  
synchronous communication, and it has the following features.  
The MB91101 consists of 3 channels of UART.  
• Full double double buffer  
• Both a synchronous (start-stop system) communication and CLK synchronous communication are available.  
• Supporting multi-processor mode  
• Perfect programmable baud rate  
Any baud rate can be set by internal timer (refer to section “4. U-TIMER”).  
• Any baud rate can be set by external clock.  
• Error checking function (parity, framing and overrun)  
Transfer signal: NRZ code  
• Enable DMA transfer/start by interrupt.  
42  
MB91101/MB91101A  
• Block diagram  
Control signals  
Receive interrupt  
(to CPU)  
SC (clock)  
Transmit interrupt  
(to CPU)  
Transmit clock  
From U-TIMER  
Clock select  
circuit  
Receive clock  
From external clock  
SC  
Receive control circuit  
Transmit control circuit  
Start bit detect  
circuit  
Transmit start  
circuit  
SI  
(receive data)  
Receive bit counter  
Transmit bit counter  
Receive parity  
counter  
Transmit parity  
counter  
SO (transmit data)  
Transmit shifter  
Receive status  
judge circuit  
Receive shifter  
Receive  
complete  
Transmit  
start  
Receive error  
generate signal  
for DMA  
SODR  
SIDR  
(to DMAC)  
R-bus  
MD1  
MD0  
PEN  
P
PE  
ORE  
SMR  
register  
SCR  
register  
SBL  
CL  
SSR  
register  
FRE  
RDRF  
TDRE  
CS0  
A/D  
REC  
RXE  
TXE  
SCKE  
SOE  
RIE  
TIE  
Control signals  
43  
MB91101/MB91101A  
• Register configuration  
Address  
bit 15  
Initial value  
bit 8  
bit 0  
0000001EH  
00000022H  
00000026H  
0000001FH  
00000023H  
00000027H  
0000001CH  
00000020H  
00000024H  
0000001DH  
00000021H  
00000002H  
SCR0  
SCR1  
SCR2  
0 0 0 0 0 1 0 0  
0 0 0 0 0 1 0 0  
0 0 0 0 0 1 0 0  
0 0 - - 0 - 0 0  
0 0 - - 0 - 0 0  
0 0 - - 0 - 0 0  
0 0 0 0 1 - 0 0  
0 0 0 0 1 - 0 0  
0 0 0 0 1 - 0 0  
B
B
B
B
B
B
B
B
B
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
SMR0  
SMR1  
SMR2  
SSR0  
SSR1  
SSR2  
X X X X X X X X B (R/W)  
X X X X X X X X B (R/W)  
X X X X X X X X B (R/W)  
SIDR0/SODR0  
SIDR1/SIDR1  
SIDR2/SIDR2  
( ) : Access  
R/W : Readable and writable  
: Unused  
X
: Indeterminate  
44  
MB91101/MB91101A  
4. U-TIMER (16-bit Timer for UART Baud Rate Generation)  
The U-TIMER is a 16-bit timer for generating UART baud rate. Combination of chip operating frequency and  
reload value of U-TIMER allows flexible setting of baud rate.  
The U-TIMER operates as an interval timer by using interrupt issued on counter underflow.  
The MB91101 has 3 channel U-TIMER embedded on the chip. An interval of up to 216 × φ can be counted.  
• Block diagram  
bit 15  
bit 0  
UTIMR (reload register)  
Load  
bit 15  
bit 0  
UTIM ( U-TIMER register)  
Underflow  
Clock  
φ
Control  
(Peripheral clock)  
f.f.  
To UART  
• Register configuration  
Address  
Initial value  
bit 15  
bit 0  
(R/W)  
(R/W)  
(R/W)  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
00000078H  
00000079H  
UTIM0/UTIMR0  
UTIM1/UTIMR1  
UTIM2/UTIMR2  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
0000007CH  
0000007DH  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
00000080H  
00000081H  
(R/W)  
(R/W)  
(R/W)  
0 - - 0 0 0 0 1  
0 - - 0 0 0 0 1  
0 - - 0 0 0 0 1  
B
B
B
UTIMC0  
UTIMC1  
UTIMC2  
0000007BH  
0000007FH  
00000083H  
( ) : Access  
R/W : Readable and writable  
: Unused  
45  
MB91101/MB91101A  
5. PWM Timer  
The PWM timer can output high accurate PWM waves efficiently.  
MB91101 has inner 4-channel PWM timers, and has the following features.  
• Each channel consists of a 16-bit down counter, a 16-bit data resister with a buffer for scyde setting, a 16-  
bit compare resister with a buffer for duty setting, and a pin controller.  
• The count clock of a 16-bit down counter can be selected from the following four inner clocks.  
Inner clock φ, φ/4, φ/16, φ/64  
• The counter value can be initialized “FFFFH” by the resetting or the counter borrow.  
• PWM output (each channel)  
• Resister description  
• Block diagram (general construction)  
16-bit reload timer  
ch.0  
TRG input  
PWM timer ch.0  
PWM0  
PWM1  
16-bit reload timer  
ch.1  
TRG input  
PWM timer ch.1  
General control  
register 1  
(cause selection)  
4
4
General control  
register 2  
TRG input  
PWM timer ch.2  
PWM2  
PWM3  
TRG input  
PWM timer ch.3  
External TRG0 to TRG3  
46  
MB91101/MB91101A  
• Block diagram (for one channel)  
PCSR  
PDUT  
Prescaler  
1 / 1  
cmp  
1 / 4  
1 / 16  
1 / 64  
ck  
Load  
16-bit down counter  
Start  
Borrow  
PPG mask  
S
R
Q
PWM output  
Peripheral clock  
Reverse bit  
Enable  
IRQ  
Edge detect  
Soft trigger  
TRG input  
47  
MB91101/MB91101A  
• Register configuration  
Address  
bit 15  
Initial value  
bit 8  
bit 0  
000000DCH  
000000DDH  
0 0 1 1 0 0 1 0  
0 0 0 1 0 0 0 0  
B
B
(R/W)  
(R/W)  
(R)  
GCN1  
000000DFH  
0 0 0 0 0 0 0 0  
B
GCN2  
PCNL0  
PCNL1  
PCNL2  
000000E0H  
000000E1H  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
B
B
PTMR0  
PCSR0  
PDUT0  
000000E2H  
000000E3H  
X X X X X X X X B  
X X X X X X X X B  
(W)  
000000E4H  
000000E5H  
X X X X X X X X B  
X X X X X X X X B  
(W)  
000000E6H  
000000E7H  
0 0 0 0 0 0 0 -  
0 0 0 0 0 0 0 0  
B
(R/W)  
PCNH0  
PCNH1  
PCNH2  
B
(R/W)  
(R)  
000000E8H  
000000E9H  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
B
B
PTMR1  
PCSR1  
PDUT1  
000000EAH  
000000EBH  
X X X X X X X X B  
X X X X X X X X B  
(W)  
000000ECH  
000000EDH  
X X X X X X X X B  
X X X X X X X X B  
(W)  
000000EEH  
000000EFH  
0 0 0 0 0 0 0 -  
0 0 0 0 0 0 0 0  
B
(R/W)  
B
(R/W)  
(R)  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
B
B
000000F0H  
000000F1H  
PTMR2  
PCSR2  
PDUT2  
X X X X X X X X B  
X X X X X X X X B  
000000F2H  
000000F3H  
(W)  
X X X X X X X X B  
X X X X X X X X B  
000000F4H  
000000F5H  
(W)  
0 0 0 0 0 0 0 -  
0 0 0 0 0 0 0 0  
B
(R/W)  
000000F6H  
000000F7H  
B
(R/W)  
(R)  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
B
B
000000F8H  
000000F9H  
PTMR3  
PCSR3  
PDUT3  
X X X X X X X X B  
X X X X X X X X B  
000000FAH  
000000FBH  
(W)  
X X X X X X X X B  
X X X X X X X X B  
000000FCH  
000000FDH  
(W)  
0 0 0 0 0 0 0 -  
B
(R/W)  
000000FEH  
000000FFH  
PCNH3  
0 0 0 0 0 0 0 0  
B
(R/W)  
PCNL3  
( ) : Access  
R/W : Readable and writable  
R
W
: Read only  
: Write only  
: Unused  
X
: Indeterminate  
48  
MB91101/MB91101A  
6. 16-bit Reload Timer  
The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload timer, a prescaler for generating  
internal count clock and control registers.  
Internal clock can be selected from 3 types of internal clocks (divided by 2/8/32 of machine clock).  
The DMA transfer can be started by the interruption.  
The MB91101 consists of 3 channels of the 16-bit reload timer.  
• Block diagram  
16  
16-bit reload register  
8
Reload  
RELD  
16  
16-bit down counter UF  
OUTE  
OUTL  
INTE  
UF  
2
OUT  
CTL.  
GATE  
2
IRQ  
CSL1  
Clock selector  
CNTE  
TRG  
CSL0  
2
Retrigger  
IN CTL.  
EXCK  
PWM (ch.0, ch.1)  
A/D (ch.2)  
3
φ
φ
φ
Prescaler  
clear  
21 23 25  
MOD2  
MOD1  
MOD0  
Internal clock  
3
49  
MB91101/MB91101A  
• Register configuration  
Address  
bit 15  
Initial value  
bit 0  
- - - - 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
0000002EH  
0000002FH  
TMCSR0  
TMCSR1  
TMCSR2  
TMR0  
(R/W)  
(R/W)  
(R/W)  
(R)  
- - - - 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
00000036H  
00000037H  
- - - - 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
00000042H  
00000043H  
X X X X X X X X B  
X X X X X X X X B  
0000002AH  
0000002BH  
X X X X X X X X B  
X X X X X X X X B  
00000032H  
00000033H  
(R)  
TMR1  
X X X X X X X X B  
X X X X X X X X B  
0000003EH  
0000003FH  
TMR2  
(R)  
X X X X X X X X B  
X X X X X X X X B  
00000028H  
00000029H  
TMRLR0  
TMRLR1  
TMRLR2  
(W)  
(W)  
(W)  
X X X X X X X X B  
X X X X X X X X B  
00000030H  
00000031H  
X X X X X X X X B  
X X X X X X X X B  
0000003CH  
0000003DH  
( ) : Access  
R/W : Readable and writable  
R
W
: Read only  
: Write only  
: Unused  
X
: Indeterminate  
50  
MB91101/MB91101A  
7. Bit Search Module  
The bit search module detects transitions of data (0 to 1/1 to 0) on the data written on the input registers and  
returns locations of the transitions.  
• Block diagram  
Input latch  
Address  
decoder  
Detection  
mode  
Single-detection data recovery  
Bit search circuit  
Search result  
• Register configuration  
Address  
Initial value  
bit 31  
bit 16  
BSD0  
bit 0  
000003F0H  
000003F1H  
000003F2H  
000003F3H  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
(W)  
(W)  
000003F4H  
000003F5H  
000003F6H  
000003F7H  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
BSD1  
BSDC  
BSRR  
000003F8H  
000003F9H  
000003FAH  
000003FBH  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
(W)  
(W)  
000003FCH  
000003FEH  
000003FDH  
000003FFH  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
XXXXXXXXB  
( ) : Access  
R/W : Readable and writable  
R
W
X
: Read only  
: Write only  
: Indeterminate  
51  
MB91101/MB91101A  
8. 10-bit A/D Converter (Successive Approximation Conversion Type)  
The A/D converter is the module which converts an analog input voltage to a digital value, and it has following  
features.  
• Minimum converting time: 5.6 µs/ch. (system clock: 25 MHz)  
• Inner sample and hold circuit  
• Resolution: 10 bits  
• Analog input can be selected from 4 channels by program.  
Single convert mode: 1 channel is selected and converted.  
Scan convert mode: Converting continuous channels. Maximum 4 channels are programmable.  
Continuous convert mode: Converting the specified channel repeatedly.  
Stop convert mode: After converting one channel then stop and wait till next activation synchronising at  
the beginning of conversion can be peformed.  
• DMA transfer operation is available by interruption.  
• Operating factor can be selected from the software, the external trigger (falling edge), and 16-bit reroad timer  
(rising edge).  
• Block diagram  
AVCC  
AVR  
AVSS  
Internal voltage generator  
MPX  
AN0  
AN1  
AN2  
AN3  
Successive approximation  
register  
Comparator  
Sample & hold circuit  
Data register (ADCR)  
A/D control register (ADCS)  
Trigger start  
ATG  
Timer start  
TIM0  
(internal connection)  
(16-bit reload timer ch.2)  
Operating clock  
Prescaler  
φ
(Peripheral clock)  
52  
MB91101/MB91101A  
• Register configuration  
Address  
Initial value  
bit 0  
bit 15  
0000003AH  
0000003BH  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
ADCS  
ADCR  
(R/W)  
(R)  
00000038H  
00000039H  
- - - - - - X X B  
X X X X X X X X B  
( ) : Access  
R/W : Readable and writable  
R
: Read only  
: Unused  
X
: Indeterminate  
53  
MB91101/MB91101A  
9. Interrupt Controller  
The interrupt controller processes interrupt acknowledgments and arbitration between interrupts.  
• Block diagram  
INT0*2  
OR  
IM  
Priority judgment  
5
5
LEVEL4 to  
LEVEL0*4  
NMI  
NMI processing  
4
HLDREQ  
cancel  
HLDCAN*3  
request  
Level judgment  
Level  
vector  
generation  
ICR00  
RI00  
6
6
VCT5 to  
VCT0*5  
Vector judgment  
ICR47  
RI47  
DLYI*1  
(DLYIRQ)  
R-bus  
*1: DLYI stands for delayed interrupt module (delayed interrupt generation block) (refer to the section “11. Delayed Interrupt  
Module” for detail).  
*2: INT0 is a wake-up signal to clock control block in the sleep or stop status.  
*3: HLDCAN is a bus release request signal for bus masters other than CPU.  
*4: LEVEL5 to LEVEL0 are interrupt level outputs.  
*5: VCT5 to VCT0 are interrupt vector outputs.  
54  
MB91101/MB91101A  
• Register configuration  
Address  
bit 7  
Initial value  
Address  
Initial value  
bit 7  
bit 0  
bit 0  
00000400H  
00000401H  
00000402H  
00000403H  
00000404H  
00000405H  
00000406H  
00000407H  
00000408H  
00000409H  
0000040AH  
0000040BH  
0000040CH  
0000040DH  
0000040EH  
0000040FH  
00000410H  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
ICR16  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
00000411H  
00000412H  
00000413H  
00000414H  
00000415H  
00000416H  
00000417H  
00000418H  
00000419H  
0000041AH  
0000041BH  
0000041CH  
0000041DH  
0000041EH  
0000041FH  
0000042FH  
00000431H  
00000430H  
ICR17  
ICR18  
ICR19  
ICR20  
ICR21  
ICR22  
ICR23  
ICR24  
ICR25  
ICR26  
ICR27  
ICR28  
ICR29  
ICR30  
ICR31  
ICR47  
HRCL  
DICR  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - 11111 B (R/W)  
- - - - - - - 0 B (R/W)  
( ) : Access  
R/W : Redable and writable  
: Unused  
55  
MB91101/MB91101A  
10. External Interrupt/NMI Control Block  
The external interrupt/NMI control block controls external interrupt request signals input to NMI pin and INT0  
to INT3 pins.  
Detecting levels can be selected from “H”, “L”, rising edge and falling edge (not for NMI pin).  
• Block diagram  
8
Interrupt enable register  
9
8
8
5
INT0 to INT3  
NMI  
Interrupt  
request  
Gate  
Cause F/F  
Edge detection circuit  
Interrupt cause register  
Request level setting register  
• Register configuration  
Address  
Initial value  
00000000 B  
00000000 B  
00000000 B  
bit 15  
bit 8  
bit 0  
00000095H  
00000094H  
ENIR  
(R/W)  
(R/W)  
(R/W)  
EIRR  
ELVR  
00000099H  
( ) : Access  
R/W : Redable and writable  
56  
MB91101/MB91101A  
11. Delayed Interrupt Module  
Delayed interrupt module is a module which generates a interrupt for changing a task. By using this delayed  
interrupt module, an interrupt request to CPU can be generated/cancelled by the software.  
Refer to the section “9. Interrupt Controller” for delayed interrupt module block diagram.  
• Register configuration  
Address  
Initial value  
bit 7  
bit 0  
00000430H  
- - - - - - - 0  
B
(R/W)  
DICR  
( ) : Access  
R/W : Redable and writable  
: Unused  
57  
MB91101/MB91101A  
12. Clock Generation (Low-power consumption mechanism)  
The clock control block is a module which undertakes the following functions.  
• CPU clock generation (including gear function)  
• Peripheral clock generation (including gear function)  
• Reset generation and cause hold  
• Standby function (including hardware standby)  
• DMA request prohibit  
• PLL (multiplier circuit) embedded  
• Block diagram  
[Gear control block]  
Gear control register (GCR)  
CPU gear  
Peripheral  
gear  
PCTR register  
CPU clock  
X0  
X1  
PLL  
1/2  
Internal bus clock  
Oscillator  
circuit  
Internal clock  
generation  
circuit  
External bus clock  
Peripheral  
DMA clock  
Internal  
peripheral clock  
[Stop/sleep control block]  
Internal  
interrupt request  
Internal reset  
Standby control  
register (STCR)  
STOP state  
Status  
SLEEP state  
CPU hold request  
Internal reset  
CPU hold enable  
HST pin  
transition  
control circuit  
Reset  
generation  
F/F  
[DMA prohibit circuit]  
DMA  
request  
DMA request prohibit  
register (PDRR)  
[Reset cause circuit]  
Power on sel  
RST pin  
Reset cause register (RSRR)  
[Watchdog control block]  
Watchdog reset generation  
postpone register (WPR)  
Watchdog reset  
postpone register  
Timebase timer clear  
register (CTBR)  
Timebase timer  
Count clock  
58  
MB91101/MB91101A  
• Register configuration  
Address  
Initial value  
bit 0  
bit 15  
bit 8  
(R/W)  
(R/W)  
(R/W)  
(W)  
00000480H  
00000481H  
00000482H  
00000483H  
00000484H  
00000485H  
00000488H  
RSRR/WTCR  
PDRR  
1 X X X X - 0 0  
0 0 0 1 1 1 - -  
- - - - 0 0 0 0  
B
B
B
STCR  
CTBR  
WPR  
X X X X X X X X B  
1 1 0 0 1 1 - 1  
X X X X X X X X B  
0 0 - - 0 - - -  
(R/W)  
(W)  
GCR  
B
(R/W)  
PCTR  
B
( ) : Access  
R/W : Redable and writable  
W
: Write only  
: Unused  
X
: Indeterminate  
59  
MB91101/MB91101A  
13. External Bus Interface  
The external bus interface controls the interface between the device and the external memory and also the  
external I/O, and has the following features.  
• 25-bit (32 Mbytes) address output  
• 6 independent banks owing to the chip select function.  
Can be set to anywhere on the logical address space for minimum unit 64 Kbytes.  
Total 32 Mbytes × 6 area setting is available by the address pin and the chip select pin.  
• 8/16-bit bus width setting are available for every chip select area.  
• Programmable automatic memory wait (max. for 7 cycles) can be inserted.  
• DRAM interface support  
Three kinds of DRAM interface: Double CAS DRAM (normally DRAM I/F)  
Single CAS DRAM  
Hyper DRAM  
2 banks independent control (RAS, CAS, etc. control signals)  
DRAM select is available from 2CAS/1WE and 1CAS/2WE.  
Hi-speed page mode supported  
CBR/self refresh supported  
Programmable wave form  
• Unused address/data pin can be used for I/O port.  
• Little endian mode supported  
• Clock doubler: Internal bus 50 MHz, external bus 25 MHz  
60  
MB91101/MB91101A  
• Block diagram  
A-OUT  
Address bus  
32  
Data bus  
32  
External data bus  
Write buffer  
Read buffer  
Switch  
Switch  
MUX  
DATA BLOCK  
ADDRESS BLOCK  
+1 or +2  
External address bus  
Inpage  
Shifter  
Address buffer  
6
8
ASR  
AMR  
CS0 to CS5  
Comparator  
RAS0, RAS1  
CS0L, CS1L  
CS0H, CS1H  
DW0, DW1  
DRAM control  
Underflow  
DMCR  
Refresh counter  
To TBT  
3
4
RD  
WR0, WR1  
External pin control block  
All blocks control  
Registers and control  
BRQ  
BGRNT  
CLK  
RDY  
61  
MB91101/MB91101A  
• Register configuration  
Address  
bit 31  
Initial value  
bit 16  
bit 0  
0000060CH  
ASR1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1  
B
B
(W)  
(W)  
(W)  
(W)  
(W)  
(W)  
0000060DH  
0000060EH  
0000060FH  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
AMR1  
00000610H  
00000611H  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0  
B
B
ASR2  
00000612H  
00000613H  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
AMR2  
AMR3  
00000614H  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 1  
B
B
ASR3  
ASR4  
00000615H  
00000616H  
00000617H  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
00000618H  
00000619H  
0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0  
B
B
(W)  
(W)  
(W)  
0000061AH  
0000061BH  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
AMR4  
AMR5  
0000061CH  
0000061DH  
0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 1  
B
B
ASR5  
0000061EH  
0000061FH  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
(W)  
00000620H  
00000621H  
00000622H  
00000623H  
00000624H  
00000625H  
AMD0  
- - - 0 0 1 1 1  
0 - - 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 - - 0 0 0 0 0  
0 - - 0 0 0 0 0  
0 0 0 0 0 0 0 0  
B
B
(R/W)  
(R/W)  
AMD1  
B
B
(R/W)  
(R/W)  
(R/W)  
(W)  
AMD32  
AMD4  
B
B
AMD5  
DSCR  
00000626H  
00000627H  
- - X X X X X X B  
RFCR  
(R/W)  
(W)  
0 0 - - - 0 0 0  
B
00000628H  
00000629H  
- - - - 1 1 0 0  
- 1 1 1 1 1 1 1  
B
B
EPCR0  
DMCR4  
1 1 1 1 1 1 1 1  
B
0000062BH  
EPCR1  
(W)  
0000062CH  
0000062DH  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 -  
B
B
(R/W)  
(R/W)  
(W)  
0000062EH  
0000062FH  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 -  
B
B
DMCR5  
000007FEH  
- - - - - 0 0 0  
B
LER  
000007FFH  
X X X X X X X X B  
MODR  
(W)  
( ) : Access  
R/W : Redable and writable  
W
: Write only  
: Unused  
X
: Indeterminate  
62  
MB91101/MB91101A  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(VSS = AVSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
VSS – 0.3  
Max.  
VSS + 6.5  
VCC5  
VCC3  
VCC5  
VCC3  
AVCC  
AVRH  
VIA  
V
V
At 5 V power supply  
At 3 V power supply  
Power supply  
voltage  
VCC3 – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS + 6.5  
VSS + 3.6  
VSS + 3.6  
VSS + 3.6  
AVCC + 0.3  
VCC5 + 0.3  
VCC5 + 0.3  
10  
V
*1  
*1  
*2  
*2  
V
Analog supply voltage  
V
Analog reference voltage  
Analog pin input voltage  
V
V
Input voltage  
VI  
V
Output voltage  
VO  
V
“L” level maximum output current  
“L” level average output current  
“L” level maximum total output current  
“L” level average total output current  
“H” level maximum output current  
“H” level average output current  
IOL  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
°C  
°C  
*3  
*4  
IOLAV  
ΣIOL  
ΣIOLAV  
IOH  
4
100  
50  
*5  
*3  
*4  
–10  
IOHAV  
–4  
“H” level maximum total output current ΣIOH  
–50  
“H” level average total output current  
Power consumption  
ΣIOHAV  
–20  
*5  
PD  
500  
Operating temperature  
Storage temperature  
TA  
0
+70  
Tstg  
–55  
+150  
*1: VCC5 must not be less than VSS – 0.3 V.  
*2: Make sure that the voltage does not exceed VCC5 + 0.3 V, such as when turning on the device.  
*3: Maximum output current is a peak current value measured at a corresponding pin.  
*4: Average output current is an average current for a 100 ms period at a corresponding pin.  
*5: Average total output current is an average current for a 100 ms period for all corresponding pins.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
63  
MB91101/MB91101A  
2. Recommended Operating Conditions  
(1) At 5 V operation (4.5 V to 5.5 V)  
(VSS = AVSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC5  
VCC5  
4.5  
5.5  
V
V
Normal operation  
Retaining the RAM state in  
stop mode  
Power supply voltage  
*1  
*1  
VCC3  
AVCC  
AVRH  
TA  
VCC + 3.6  
AVCC  
+70  
V
V
*2  
Analog supply voltage  
Analog reference voltage  
Operating temperature  
Smoothing capacitor  
VSS + 2.7  
VSS – 0.3  
0
V
°C  
µF  
CS  
0.1  
1.0  
VCC3 pin *2  
*1: At VCC5, the RAM state holding is not warranted in stop mode.  
*2: VCC3 is used for the bypass capacitor pin.  
*3: Use the ceramic capacitor or the capacitor whose frequency characteristic is equivalent to that of the ceramic  
capacitor.  
And select the larger capacity smoothing condenser to connect to the power supply (VCC5) than CS.  
(2) At 3 V operation (2.7 V to 3.6 V)  
(VSS = AVSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC5  
VCC5  
2.7  
3.6  
V
V
Normal operation  
Retaining the RAM state in  
stop mode  
Power supply voltage  
2.7  
3.6  
VCC3  
AVCC  
AVRH  
TA  
2.7  
VSS + 2.7  
AVSS  
3.6  
VCC + 3.6  
AVCC  
V
V
*
Analog power supply voltage  
Analog reference voltage  
Operating temperature  
V
0
+70  
°C  
* : Connect to VCC5 for the power supply pin.  
• Connecting to a power supply  
Using with 3 V power supply  
Using with 5 V power supply  
3 V  
5 V  
VCC3  
VCC5  
AVCC  
AVRH  
AVSS  
VSS  
VCC3  
VCC5  
AVCC  
AVRH  
AVSS  
VSS  
3 V  
About  
0.1 µF  
GND  
GND  
64  
MB91101/MB91101A  
VCC (V)  
Normal operation warranty range (TA = 0°C to +70°C)  
Net masked area are fCPP.  
Power supply at 5 V  
Power supply at 3 V  
5.5  
4.5  
3.0 V ±0.3 V  
3.6  
3.3  
3.0  
2.7  
3.3 V ±0.3 V  
fCP/fCPP  
(MHz)  
0
0.625  
25  
Internal clock  
40  
50  
fCP/fCPP  
(MHz)  
fCP  
50  
CPU  
40  
PLL system (4 multiplication)  
fCPP  
25  
20  
Peripheral  
Divide-by-2 system  
12.5  
5
0
fC  
(MHz)  
0
10 12.5  
25  
50  
External clock  
Self-oscillation  
Source oscillating input clock  
Notes: When using PLL, the external clock must be used between 10.0 MHz to 12.5 MHz.  
PLL oscillation stabilizing period > 100 µs  
The setting of internal clock must be within above ranges.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the  
device’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside  
these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representative beforehand.  
65  
MB91101/MB91101A  
3. DC Characteristics  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
Input pin except  
for hysteresis  
input  
0.65 × VCC3  
VCC5 + 0.3  
VIH  
V
*
“H” level input  
voltage  
HST, NMI, RST,  
PA1 to PA6,  
PB0 to PB7,  
PE0 to PE7,  
PF0 to PF7  
Hysteresis  
input *  
0.8 × VCC3  
VCC5 + 0.3  
0.25 × VCC3  
0.2 × VCC3  
VIHS  
V
V
V
Input other than  
following  
symbols  
VIL  
VSS – 0.3  
*
“L” level input  
voltage  
HST, NMI, RST,  
PA1 to PA6,  
PB0 to PB7,  
PE0 to PE7,  
PF0 to PF7  
Hysteresis  
input *  
VSS – 0.3  
VILS  
D16 to D31,  
A00 to A24,  
P6 to PF  
“H” level output  
voltage  
VCC5 = 4.5 V  
IOH = –4.0 mA  
VOH  
V
CC – 0.5  
V
V
D16 to D31,  
A00 to A24,  
P6 to PF  
“L” level output  
voltage  
VCC5 = 4.5 V  
IOL = 4.0 mA  
VOL  
0.4  
Input leakage  
current  
(Hi-Z output  
leakage current)  
D00 to D31,  
A00 to A23,  
P8 to PF  
VCC5 = 5.5 V  
0.45 V < VI  
< VCC  
ILI  
–5  
+5  
µA  
Pull-up  
resistance  
VCC5 = 5.5 V  
VI = 0.45 V  
RPULL  
RST  
VCC  
25  
50  
75  
100  
100  
kΩ  
(4 multiplication)  
Operation at  
50 MHz  
FC = 12.5 MHz  
VCC5 = 5.5 V  
ICC  
mA  
Power supply  
current  
FC = 12.5 MHz  
VCC5 = 5.5 V  
ICCS  
ICCH  
VCC  
VCC  
40  
10  
60  
mA Sleep mode  
TA = +25°C  
VCC5 = 5.5 V  
100  
µA Stop mode  
Except for  
VCC5, VCC3,  
AVCC, AVSS, VSS  
Input  
capacitance  
CIN  
10  
pF  
* : VCC3 = 3.3 ±0.2 V (internal regulator output voltage) when using 5 V power supply, VCC3 = power supply voltage  
when using 3 V power supply (internal regulator unused)  
66  
MB91101/MB91101A  
4. AC Characteristics  
Measurement Conditions  
• VCC = 5.0 V ±10%  
Value  
Typ.  
2.4  
Parameter  
Symbol  
VIH  
Unit  
Remarks  
Min.  
Max.  
“H” level input voltage  
“L” level input voltage  
“H” level output voltage  
“L” level output voltage  
V
V
V
V
VIL  
0.8  
VOH  
VOL  
2.4  
0.8  
Input  
Output  
VCC  
VIH  
VIL  
VOH  
VOL  
0.0 V  
• VCC = 2.7 V to 3.6 V  
Value  
Typ.  
Parameter  
Symbol  
VIH  
Unit  
Remarks  
Min.  
Max.  
“H” level input voltage  
“L” level input voltage  
“H” level output voltage  
“L” level output voltage  
1/2 × VCC  
1/2 × VCC  
1/2 × VCC  
1/2 × VCC  
V
V
V
V
VIL  
VOH  
VOL  
Input  
Output  
VCC  
VIH  
VIL  
VOH  
VOL  
0.0 V  
Load conditions  
Output pin  
C = 50 pF  
(VCC = 5.0V ± 10%)  
67  
MB91101/MB91101A  
• Load capacitance - Delay characteristics (Output delay with reference to the internal)  
(ns)  
35  
5 V Fall  
3 V Rise  
30  
25  
20  
15  
5 V Rise  
10  
5
3 V Fall  
0
0
20  
40 50 60  
80  
100  
120 C (pF)  
68  
MB91101/MB91101A  
(1) Clock Timing Rating  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Max.  
Pin  
name  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Clock frequency  
Clock cycle time  
Min.  
fC  
fC  
X0, X1 When using PLL  
10  
12.5  
MHz  
MHz  
Self-oscillation  
X0, X1  
10  
10  
25  
(divide-by-2 input)  
External clock  
X0, X1  
fC  
25  
MHz  
(divide-by-2 input)  
tC  
tC  
X0, X1 When using PLL  
80  
40  
100  
100  
ns  
ns  
X0, X1  
Frequency shift ratio  
(when locked)  
f  
When using PLL  
5
%
*1  
Input to X0  
only, when  
using 5 V  
PWH,  
PWL  
X0, X1  
25  
ns  
Input clock pulse width  
power supply  
PWH,  
PWL  
Input to X0,  
X1  
X0, X1  
X0, X1  
10  
8
ns  
ns  
tCR,  
tCF  
Input clock rising/falling time  
(tCR + tCF)  
0.625*2  
0.625*2  
0.625*2  
20  
fCP  
CPU system  
50  
25*3  
MHz  
MHz  
MHz  
ns  
Internal operating clock  
frequency  
fCPB  
fCPP  
tCP  
Bus system  
Peripheral system  
CPU system  
25  
1600*2  
1600*2  
1600*2  
Internal operating clock  
cycle time  
tCPB  
tCPP  
Bus system  
40*3  
ns  
Peripheral system  
40  
ns  
*1: Frequency shift ratio stands for deviation ratio of the operating clock from the center frequency in the clock  
multiplication system.  
+
+α  
|α|  
f0  
Center frequency f 0  
f =  
× 100 (%)  
α  
*2: These values are for a minimum clock of 10 MHz input to X0, a divide-by-2 system of the source oscillation and  
a 1/8 gear.  
*3: Values when using the doubler and CPU operation at 50 MHz.  
69  
MB91101/MB91101A  
• Clock timing rating measurement conditions  
tC  
0.8 VCC  
0.2 VCC  
PWH  
PWL  
tCR  
tCF  
70  
MB91101/MB91101A  
(2) Clock Output Timing  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
tCYC  
CLK  
CLK  
tCP  
ns *1  
ns  
Cycle time  
tCYC  
Using the  
doubler  
tCPB  
CLK ↑ → CLK ↓  
CLK ↓ → CLK ↑  
tCHCL  
tCLCH  
CLK  
CLK  
1/2 × tCYC – 10 1/2 × tCYC + 10  
1/2 × tCYC – 10 1/2 × tCYC + 10  
ns *2  
ns *3  
tCP, tCPB (internal operating clock cycle time): Refer to “(1) Clock Timing Rating.”  
*1: tCYC is a frequency for 1 clock cycle including a gear cycle.  
Use the doubler when CPU frequency is above 25 MHz.  
*2: Rating at a gear cycle of × 1.  
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equations with 1/2, 1/4, 1/8,  
respectively.  
Min. : (1 – n/2) × tCYC – 10  
Max. : (1 – n/2) × tCYC + 10  
Select a gear cycle of × 1 when using the doubler.  
*3: Rating at a gear cycle of × 1.  
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equations with 1/2, 1/4, 1/8,  
respectively.  
Min. : n/2 × tCYC – 10  
Max. : n/2 × tCYC + 10  
Select a gear cycle of × 1 when using the doubler.  
tCYC  
tCLCH  
tCHCL  
VOH  
VOH  
CLK  
VOL  
71  
MB91101/MB91101A  
The relation between source oscillation input and CLK pin for configured by CHC/CCK1/CCK0 settings of GCR  
(gear control register) is as follows:  
However, in this chart source oscillation input means X0 input clock.  
Source oscillation input  
(when using the doublure)  
(1) PLL system  
(CHC bit of GCR set to “0”)  
tCYC  
(a) Gear × 1 CLK pin  
CCK1/0: “00”  
Source oscillation input  
(2) 2 dividing system  
(CHC bit of GCR set to “1”)  
(a) Gear × 1 CLK pin  
tCYC  
CCK1/0: “00”  
tCYC  
(b) Gear × 1/2 CLK pin  
CCK1/0: “01”  
(c) Gear × 1/4 CLK pin  
tCYC  
CCK1/0: “10”  
(d) Gear × 1/8 CLK pin  
tCYC  
CCK1/0: “11”  
72  
MB91101/MB91101A  
• Ceramic oscillator applications  
Recommended circuit (2 contacts)  
Recommended circuit (3 contacts)  
X0  
X1  
X0  
X1  
*
*
C1  
C1, C2 internally  
connected.  
C2  
C1  
C2  
* : Murata Mfg. Co., Ltd.  
• Discreet type  
Oscillation frequency  
[MHz]  
Load capacitance  
C1 = C2 [pF]  
Power supply voltage  
VCC5 [V]  
Model  
30  
(30)  
30  
CSA  
MG  
2.9 to 5.5  
CST  
CSA  
CST  
CSA  
CST  
CSA  
CST  
CSA  
CST  
CSA  
CST  
CSA  
CST  
MGW  
5.00 to 6.30  
6.31 to 10.0  
MG093  
MGW093  
MTZ  
2.7 to 5.5  
2.9 to 5.5  
2.7 to 5.5  
3.0 to 5.5  
2.9 to 5.5  
3.2 to 5.5  
(30)  
30  
(30)  
30  
MTW  
MTZ093  
MTW093  
MTZ  
(30)  
30  
(30)  
30  
MTW  
10.1 to 13.0  
MTZ093  
MTW093  
MXZ040  
MXW0C3  
(30)  
15  
13.01 to 15.00  
(15)  
( ): C1 and C2 internally connected 3 contacts type.  
73  
MB91101/MB91101A  
(3) Reset/Hardware Standby Input Ratings  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
Reset input time  
Hardware standby input time  
tRSTL  
tHSTL  
RST  
HST  
tCP × 5  
tCP × 5  
ns  
ns  
tCP (internal operating clock cycle time): Refer to “(1) Clock Timing Rating.”  
tRSTL, tHSTL  
RST  
HST  
0.2 VCC  
0.2 VCC  
74  
MB91101/MB91101A  
(4) Power on Supply Specifications (Power-on Reset)  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
50  
Max.  
tR  
tR  
tR  
tR  
VCC  
VCC  
VCC  
VCC  
µs  
ms  
µs  
*
*
*
*
VCC = 5.0 V  
30  
Power supply rising time  
50  
VCC = 3.0/  
3.3 V  
18  
ms  
Repeated  
operations  
Power supply shut off time  
Oscillation stabilizing time  
tOFF  
tOSC  
VCC  
1
ms  
ns  
2 × tC × 221  
+ 100 µs  
tC (clock cycle time): Refer to “(1) Clock Timing Rating.”  
* : VCC < 0.2 V before the power supply rising  
tR  
0.9 × VCC  
VCC  
0.2 V  
tOFF  
Note: Sudden change in supply voltage during operation may initiate a power-on sequence.  
To change supply voltage during operation, it is recommended to smoothly raise the voltage to avoid rapid  
fluctuations in the supply voltage.  
VCC  
VSS  
A voltage rising rate of 50 mV/ms or  
less is recommended.  
42 ms approx. 336 ms approx. (@12.5 MHz)  
Regulator  
(Oscillation stabilizing time)  
VCC  
tOSC  
Stabilizing time *  
RST  
tRSTL + (tC × 219)  
tRSTL: Reset input time  
*: Reset can’t be done during regulator stabilizing time.  
Note: Set RST pin to “L” level when turning on the device, at least the described above duration after the  
supply voltage reaches Vcc is necessary before turning the RST to “H” level.  
75  
MB91101/MB91101A  
(5) Normal Bus Access Read/write Operation  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol  
Pin name  
CLK,  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
tCHCSL  
tCHCSH  
tCHAV  
15  
ns  
ns  
ns  
ns  
CS0 to CS5  
CS0 to CS5 delay time  
CLK,  
CS0 to CS5  
15  
15  
15  
CLK,  
A24 to A00  
Address delay time  
Data delay time  
CLK,  
D31 to D16  
tCHDV  
tCLRL  
tCLRH  
CLK, RD  
CLK, RD  
6
6
ns  
ns  
RD delay time  
CLK,  
WR0, WR1  
tCLWL  
tCLWH  
tAVDV  
10  
0
6
6
ns  
ns  
ns  
WR0, WR1 delay time  
CLK,  
WR0, WR1  
Valid address valid data  
input time  
A24 to A00,  
D31 to D16  
3/2 × tCYC  
*1  
*2  
– 25  
RD,  
D31 to D16  
RD valid data input time tRLDV  
tCYC – 10  
ns *1  
ns  
RD,  
D31 to D16  
Data set up RD time  
RD data hold time  
tDSRH  
tRHDX  
RD,  
D31 to D16  
ns  
tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.”  
*1: When bus timing is delayed by automatic wait insertion or RDY input, add (tCYC × extended cycle number for  
delay) to this rating.  
*2: Rating at a gear cycle of × 1.  
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equation with 1/2, 1/4, 1/8,  
respectively.  
Equation: (2 – n/2) × tCYC – 25  
76  
MB91101/MB91101A  
BA2  
BA1  
tCYC  
VOH  
VOH  
VOH  
CLK  
VOL  
VOL  
tCHCSL  
tCHCSH  
VOH  
CS0 to CS5  
VOL  
tCHAV  
VOH  
VOL  
VOH  
VOL  
A24 to A00  
tCLRL  
tCLRH  
VOH  
RD  
VOL  
tRLDV  
tRHDX  
VIH  
tAVDV  
VIH  
VIL  
D31 to D16  
WR0, WR1  
Read  
VIL  
tDSRH  
tCLWL  
VOH  
VOL  
tCLWH  
tCHDV  
VOH  
VOL  
VOH  
VOL  
D31 to D16  
Write  
77  
MB91101/MB91101A  
(6) Ready Input Timing  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
15  
Max.  
RDY set up time CLK tRDYS  
RDY, CLK  
RDY, CLK  
ns  
ns  
CLK RDY hold time  
tRDYH  
0
tCYC  
CLK  
VOH  
VOH  
VOL  
VOL  
tRDYH  
tRDYH  
tRDYS  
tRDYS  
RDY  
When wait(s)  
is inserted.  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
RDY  
When no wait  
is inserted.  
VIH  
VIL  
78  
MB91101/MB91101A  
(7) Hold Timing  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
CLK,  
tCHBGL  
6
ns  
ns  
BGRNT  
BGRNT delay time  
CLK,  
tCHBGH  
6
BGRNT  
BGRNT  
BGRNT  
Pin floating BGRNT ↓  
time  
tXHAL  
tHAHV  
tCYC – 10  
tCYC – 10  
tCYC + 10  
tCYC + 10  
ns  
ns  
BGRNT pin valid time  
tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.”  
Note: There is a delay time of more than 1 cycle from BRQ input to BGRNT change.  
tCYC  
VOH  
VOH  
VOH  
VOH  
CLK  
BRQ  
tCHBGH  
tCHBGL  
VOH  
BGRNT  
VOL  
tXHAL  
tHAHV  
VOH  
VOL  
VOH  
VOL  
Each pin  
High impedance  
79  
MB91101/MB91101A  
(8) Normal DRAM Mode Read/Write Cycle  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
tCLRAH  
tCHRAL  
tCLCASL  
tCLCASH  
CLK, RAS  
CLK, RAS  
CLK, CAS  
CLK, CAS  
6
6
6
6
ns  
ns  
ns  
ns  
RAS delay time  
CAS delay time  
CLK,  
A24 to A00  
ROW address delay time  
tCHRAV  
tCHCAV  
15  
15  
ns  
ns  
COLUMN address delay  
time  
CLK,  
A24 to A00  
tCHDWL  
tCHDWH  
CLK, DW  
CLK, DW  
15  
15  
ns  
ns  
DW delay time  
CLK,  
D31 to D16  
Output data delay time  
tCHDV1  
tRLDV  
tCLDV  
tCADH  
0
15  
ns  
ns  
RAS valid data input  
time  
RAS,  
D31 to D16  
5/2 × tCYC  
*1  
*2  
– 16  
CAS valid data input  
time  
CAS,  
D31 to D16  
tCYC – 17  
ns *1  
ns  
CAS,  
D31 to D16  
CAS data hold time  
tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.”  
CAS: CS0L to CS1H pins are for CAS signal outputs.  
DW: DW0, DW1 and CS0H to CS1H are used for WE outputs.  
*1: When Q1 cycle or Q4 cycle is extended for 1 cycle, add tCYC time to this rating.  
*2: Rating at a gear cycle of × 1.  
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equation with 1/2, 1/4, 1/8,  
respectively.  
Equation: (3 – n/2) × tCYC – 16  
80  
MB91101/MB91101A  
Q1  
Q2  
Q3  
Q4  
Q5  
tCYC  
VOH  
VOH  
VOH  
VOH  
VOH  
CLK  
RAS  
CAS  
VOL  
VOL  
VOL  
VOH  
VOL  
tCLRAH  
tCHRAL  
tCLCASH  
VOH  
tCLCASH  
VOL  
tCHCAV  
tCHRAV  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
ROW address  
COLUMN address  
A24 to A00  
D31 to D16  
tRLDV  
tCADH  
tCLDV  
VIH  
VIH  
VIL  
Read  
VIL  
VOH  
DW  
VOL  
tCHDWH  
tCHDWL  
VOH  
VOL  
VOH  
VOL  
Write  
D31 to D16  
tCHDV1  
81  
MB91101/MB91101A  
(9) Normal DRAM Mode Fast Page Read/Write Cycle  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
RAS delay time  
Min.  
Max.  
tCLRAH  
CLK, RAS  
CLK, CAS  
CLK, CAS  
6
6
6
ns  
ns  
ns  
tCLCASL  
tCLCASH  
CAS delay time  
COLUMN address delay  
time  
CLK,  
A24 to A00  
tCHCAV  
tCHDWH  
tCHDV1  
15  
15  
15  
ns  
ns  
ns  
DW delay time  
CLK, DW  
CLK,  
D31 to D16  
Output data delay time  
CAS valid data input  
time  
CAS,  
D31 to D16  
tCLDV  
tCADH  
0
tCYC – 17  
ns  
ns  
*
CAS,  
D31 to D16  
CAS data hold time  
tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.”  
CAS: CS0L to CS1H pins are for CAS signal outputs.  
DW: DW0, DW1 and CS0H to CS1H are used for WE outputs.  
* : When Q4 cycle is extended for 1 cycle, add tCYC time to this rating.  
82  
MB91101/MB91101A  
Q5  
Q4  
Q5  
Q4  
Q5  
VOH  
VOH  
CLK  
VOL  
VOL  
VOL  
tCLRAH  
VOH  
RAS  
tCLCASL  
tCLCASH  
VOH  
CAS  
VOL  
tCHCAV  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
A24 to A00  
COLUMN address  
COLUMN address  
COLUMN address  
tCLDV  
VIH  
tCADH  
VIH  
VIL  
VIH  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
D31 to D16  
Read  
Read  
Read  
VIL  
VIL  
tCHDWH  
VOH  
DW  
tCHDV1  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
Write  
Write  
D31 to D16  
83  
MB91101/MB91101A  
(10) Single DRAM Timing  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
tCLRAH2  
tCHRAL2  
tCHCASL2  
tCHCASH2  
CLK, RAS  
CLK, RAS  
CLK, CAS  
CLK, CAS  
6
ns  
ns  
ns  
ns  
RAS delay time  
6
n/2 × tCYC  
6
CAS delay time  
CLK,  
A24 to A00  
ROW address delay time  
tCHRAV2  
tCHCAV2  
15  
15  
ns  
ns  
COLUMN address delay  
time  
CLK,  
A24 to A00  
tCHDWL2  
tCHDWH2  
CLK, DW  
CLK, DW  
15  
15  
ns  
ns  
DW delay time  
CLK,  
D31 to D16  
Output data delay time  
tCHDV2  
tCLDV2  
tCADH2  
0
15  
ns  
ns  
ns  
CAS Valid data input  
time  
CAS,  
D31 to D16  
(1 – n/2) ×  
tCYC – 17  
CLK,  
D31 to D16  
CAS data hold time  
tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.”  
84  
MB91101/MB91101A  
tCYC  
*1  
Q1  
Q2  
Q3  
VOH  
Q4S  
Q4S  
Q4S  
CLK  
RAS  
VOH  
VOH  
VOH  
VOH  
VOL  
VOH  
VOL  
tCHRAL2  
tCLRAH2  
tCHCASL2  
tCHCASH2  
VOH  
VOH  
CAS  
VOL  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
ROW address  
COLUMN-0  
COLUMN-1  
COLUMN-2  
A24 to A00  
tCHRAV2  
tCHCAV2  
tCADH2  
tCLDV2  
VIH  
VIL  
VIH  
VIL  
Read-0  
Read-1  
Read-2  
D31 to D16  
DW  
VOH  
VOL  
tCHDWL2  
tCHDWH2  
*2  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
D31 to D16  
Write-0  
Write-2  
Write-1  
tCHDV2  
tCHDV2  
*1: Q4S indicates Q4SR (Read) of Single DRAM cycle or Q4SW (Write) cycle.  
*2: indicates the timing when the bus cycle begins from the high spead page mode.  
85  
MB91101/MB91101A  
(11) Hyper DRAM Timing  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
tCLRAH3  
tCHRAL3  
tCHCASL3  
tCHCASH3  
CLK, RAS  
CLK, RAS  
CLK, CAS  
CLK, CAS  
6
ns  
ns  
ns  
ns  
RAS delay time  
6
n/2 × tCYC  
6
CAS delay time  
CLK,  
A24 to A00  
ROW address delay time  
tCHRAV3  
tCHCAV3  
15  
15  
ns  
ns  
COLUMN address delay  
time  
CLK,  
A24 to A00  
tCHRL3  
CLK, RD  
CLK, RD  
CLK, RD  
CLK, DW  
CLK, DW  
15  
15  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
RD delay time  
tCHRH3  
tCLRL3  
tCHDWL3  
tCHDWH3  
DW delay time  
CLK,  
D31 to D16  
Output data delay time  
tCHDV3  
tCLDV3  
tCADH3  
0
15  
tCYC – 17  
ns  
ns  
ns  
CAS valid data input  
time  
CAS,  
D31 to D16  
CLK,  
D31 to D16  
CAS data hold time  
tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.”  
86  
MB91101/MB91101A  
tCYC  
*1  
Q1  
Q2  
Q3  
VOH  
Q4H  
Q4H  
Q4H  
CLK  
VOH  
VOH  
VOH  
VOH  
VOL  
VOL  
RAS  
CAS  
VOH  
VOL  
tCHRAL3  
tCLRAH3  
tCHCASL3  
tCHCASH3  
VOH  
VOL  
VOL  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
ROW address  
COLUMN-0  
COLUMN-1  
COLUMN-2  
A24 to A00  
tCHRAV3  
tCHCAV3  
*2  
RD  
VOH  
VOL  
VOL  
tCHRL3  
tCLRL3  
tCHRH3  
tCLDV3  
tCADH3  
VIH  
VIL  
VIH  
VIL  
Read-0  
Read-1  
D31 to D16  
DW  
VOH  
VOL  
tCHDWL3  
tCHDWH3  
*2  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
D31 to D16  
Write-0  
Write-2  
Write-1  
tCHDV3  
tCHDV3  
*1: Q4H indicates Q4HR (Read) of Single DRAM cycle or Q4HW (Write) cycle.  
*2: indicates the timing when the bus cycle begins from the high spead page mode.  
87  
MB91101/MB91101A  
(12) CBR Refresh  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
tCLRAH  
tCHRAL  
tCLCASL  
tCLCASH  
CLK, RAS  
CLK, RAS  
CLK, CAS  
CLK, CAS  
6
6
6
6
ns  
ns  
ns  
ns  
RAS delay time  
CAS delay time  
CAS: CS0L to CS1H pins are for CAS signal outputs.  
tCYC  
R1  
R2  
R3  
R4  
VOH  
VOH  
VOH  
CLK  
RAS  
CAS  
VOL  
VOL  
VOL  
VOH  
VOL  
tCHRAL  
tCLRAH  
VOH  
VOL  
tCLCASL  
tCLCASH  
DW  
88  
MB91101/MB91101A  
(13) Self Refresh  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
RAS delay time  
CAS delay time  
Min.  
Max.  
tCLRAH  
tCHRAL  
tCLCASL  
tCLCASH  
CLK, RAS  
CLK, RAS  
CLK, CAS  
CLK, CAS  
6
6
6
6
ns  
ns  
ns  
ns  
CAS: CS0L to CS1H pins are for CAS signal outputs.  
tCYC  
SR1  
SR2  
SR3  
SR3  
VOH  
VOH  
VOH  
CLK  
RAS  
CAS  
VOL  
VOL  
tCLRAH  
VOH  
tCHRAL  
VOL  
VOH  
VOL  
tCLCASH  
tCLCASL  
89  
MB91101/MB91101A  
(14) UART Timing  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Serial clock cycle time  
SCLK SCLK ↑  
SCLK SCLK ↓  
tSCYC  
8 × tCYCP  
ns  
tSCLCH  
tSCHCL  
4 × tCYCP –10 4 × tCYCP +10 ns  
4 × tCYCP –10 4 × tCYCP +10 ns  
Internal  
shift clock  
mode  
SCLK SOUT delay time tSLOV  
–80  
100  
80  
ns  
ns  
Valid SIN SCLK ↑  
tIVSH  
SCLK valid SIN hold  
time  
tSHIX  
60  
ns  
Serial clock “H” pulse width tSHSL  
Serial clock “L” pulse width tSLSH  
SCLK SOUT delay time tSLOV  
4 × tCYCP  
4 × tCYCP  
ns  
ns  
ns  
ns  
External  
shift clock  
mode  
150  
Valid SIN SCLK ↑  
tIVSH  
60  
SCLK valid SIN hold  
time  
tSHIX  
60  
ns  
tCYCP: A cycle time of peripheral system clock  
Notes: This rating is for AC characteristics in CLK synchronous mode.  
• Internal shift clock mode  
tSCYC  
tSCLCH  
tSCHCL  
VOH  
SCLK  
SOUT  
VOL  
VOL  
tSLOV  
VOH  
VOL  
tIVSH  
tSHIX  
VIH  
VIL  
VIH  
VIL  
SIN  
• External shift clock mode  
tSLSH  
tSHSL  
VIH  
VIH  
SCLK  
VIL  
VIL  
tSLOV  
VOH  
VOL  
SOUT  
SIN  
tIVSH  
tSHIX  
VIH  
VIL  
VIH  
VIL  
90  
MB91101/MB91101A  
(15) Trigger System Input Timing  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol  
Pin name  
ATG  
TRG0 to TRG3  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
tTRGH,  
tTRGL  
A/D start trigger input time  
5 × tCYCP  
ns  
ns  
PWM external trigger input tTRGH,  
time tTRGL  
5 × tCYCP  
tCYCP: A cycle time of peripheral system clock  
tTRGH  
tTRGL  
VIH  
VIH  
ATG  
VIL  
VIL  
TRG0 to TRG3  
91  
MB91101/MB91101A  
(16) DMA Controller Timing  
(VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
(VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C)  
Value  
Symbol  
DREQ input pulse width tDRWH  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
DREQ0 to DREQ2  
2 × tCYC  
ns  
ns  
CLK,  
DACK0 to DACK2  
tCLDL  
tCLDH  
tCLEL  
tCLEH  
tCHDL  
tCHDH  
tCHEL  
tCHEH  
6
DACK delay time  
(Normal bus)  
(Normal DRAM)  
CLK,  
DACK0 to DACK2  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK,  
EOP0 to EOP2  
6
EOP delay time  
(Normal bus)  
(Normal DRAM)  
CLK,  
EOP0 to EOP2  
6
CLK,  
DACK0 to DACK2  
n/2 × tCYC  
DACK delay time  
(Single DRAM)  
(Hyper DRAM)  
CLK,  
DACK0 to DACK2  
6
n/2 × tCYC  
6
CLK,  
EOP0 to EOP2  
EOP delay time  
(Single DRAM)  
(Hyper DRAM)  
CLK,  
EOP0 to EOP2  
tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.”  
tCYC  
VOH  
VOH  
CLK  
VOL  
VOL  
tCLDL  
tCLEL  
tCLDH  
tCLEH  
DACK0 to DACK2  
EOP0 to EOP2  
(Normal bus)  
VOH  
VOL  
(Normal DRAM)  
DACK0 to DACK2  
EOP0 to EOP2  
(Single DRAM)  
(Hyper DRAM)  
VOH  
VOL  
tCHDL  
tCHEL  
tCHDH  
tDRWH  
VIH  
VIH  
DREQ0 to DREQ2  
92  
MB91101/MB91101A  
5. A/D Converter Block Electrical Characteristics  
(AVCC = 2.7 V to 3.6 V, AVSS = 0.0 V, AVRH = 2.7 V, TA = 0°C to +70°C)  
Value  
Symbol Pin name  
Unit  
Parameter  
Min.  
Typ.  
10  
Max.  
10  
Resolution  
Total error  
bit  
±4.0  
±3.5  
±2.0  
+2.5  
LSB  
LSB  
LSB  
LSB  
Linearity error  
Differentiation linearity error  
Zero transition voltage  
Full-scale transition voltage  
Conversion time  
VOT  
AN0 to AN3  
–1.5  
+0.5  
VFST  
AN0 to AN3 AVRH – 4.5 AVRH – 1.5 AVRH + 0.5 LSB  
5.6 *1  
AN0 to AN3  
AN0 to AN3  
AVRH  
0.1  
10  
µs  
µA  
V
Analog port input current  
Analog input voltage  
Reference voltage  
IAIN  
VAIN  
AVSS  
AVSS  
AVRH  
AVCC  
V
IA  
AVCC  
4
mA  
µA  
µA  
µA  
LSB  
Power supply current  
5 *2  
IAH  
IR  
AVCC  
AVRH  
200  
Reference voltage supply current  
AVRH  
5 *2  
4
IRH  
Conversion variance between channels  
*1: AVCC = 2.7 V – 3.6 V  
AN0 to AN3  
*2: Current value for A/D converters not in operation, CPU stop mode (VCC = AVCC = AVRH = 3.6 V)  
Notes: • As the absolute value of AVRH decreases, relative error increases.  
• Output impedance of external circuit of analog input under following conditions;  
Output impedance of external circuit < 10 k.  
If output impedance of external circuit is too high, analog voltage sampling time may be too short for  
accurate sampling (sampling time is 5.6 µs for a machine clock of 25 MHz).  
• Analog input circuit model plan  
Sample and hold circuit  
Analog input  
C0  
Comparator  
RON1  
RON2  
RON3  
RON4  
C1  
RON1 : 0.2 kΩ  
RON2 : 1.4 kΩ  
RON3 : 1.4 kΩ  
RON4 : 0.2 kΩ  
C0 : 16.6 pF  
C1 : 4.0 pF  
Note: Listed values are for reference purposes only.  
93  
MB91101/MB91101A  
6. A/D Converter Glossary  
• Resolution  
The smallest change in analog voltage detected by A/D converter.  
• Linearity error  
A deviation of actual conversion characteristic from a line connecting the zero-traction point (between “00 0000  
0000” “00 0000 0001”) to the full-scale transition point (between “11 1111 1110” “11 1111 1111”).  
• Differential linearity error  
A deviation of a step voltage for changing the LSB of output code from ideal input voltage.  
Linearity error  
Differential linearity error  
3FF  
3FE  
3FD  
Ideal characteristic  
Actual conversion  
characteristic  
N+1  
N
{1 LSB × (N – 1) + VOT}  
Actual characteristic  
VFST  
(measured  
value)  
004  
003  
002  
001  
VNT  
(measured value)  
Actual conversion  
characteristic  
N–1  
N–2  
V(N + 1)T  
(measured value)  
VNT  
(measured value)  
Ideal characteristic  
VOT (measured value)  
Actual conversion characteristic  
AVRL  
AVRH  
AVRL  
AVRH  
Analog input  
Analog input  
VNT – {1 LSB × (N – 1) + VOT}  
V(N + 1)T – VNT  
Linearity error of  
digital output N  
Differential linearity error  
of digital output N  
=
=
[LSB]  
– 1 [LSB]  
1 LSB  
1 LSB  
VFST – VOT  
1 LSB =  
[V]  
1022  
VOT: A voltage for causing transition of digital output from (000)H to (001)H  
VFST: A voltage for causing transition of digital output from (3FE)H to (3FF)H  
VNT: A voltage for causing transition of digital output from (N – 1)H to N  
(Continued)  
94  
MB91101/MB91101A  
(Continued)  
Total error  
A difference between actual value and theoretical value. The overall error includes zero-transition error, full-  
scale transition error and linearity error.  
Total error  
3FF  
1.5 LSB’  
3FE  
Actual conversion  
characteristic  
3FD  
{1 LSB’ × (N – 1)  
+ 0.5 LSB’}  
004  
VNT  
(measured value)  
003  
Actual conversion  
characteristic  
002  
Ideal characteristic  
001  
0.5 LSB’  
AVRL  
AVRH  
Analog input  
VNT – {1 LSB’ × (N – 1) + 0.5 LSB’}  
=
Total error of digital output N  
[LSB]  
1 LSB'  
AVRH – AVRL  
1024  
1 LSB’ (ideal value) =  
[V]  
VOT’ (ideal value) = AVRL + 0.5 LSB’ [V]  
VFST’ (ideal value) = AVRL – 1.5 LSB’ [V]  
VNT: A voltage for causing transition of digital output from (N – 1) to N  
95  
MB91101/MB91101A  
REFERENCE DATA  
1. Operating frequency vs. ICC characteristics  
Internal DC - DC regulator is not used (VCC = 3 V) Internal DC - DC regulator is used (VCC = 5 V)  
ICC (mA) ICC (mA)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(VCC)  
3.6 V  
(VCC)  
4.5 V to 5.5 V  
3.3 V  
3.0 V  
2.7 V  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
f (MHz)  
f (MHz)  
Operating conditions : Source oscillation 12.5 MHz (crystal), PLL is used (50 M, 25 M, 12.5 M)  
Gear : CPU = 1/1, Peripherals = 1/1  
(Doubler is used for 50MHz, Gear peripherals = 1/2)  
2. VCC vs. ICC characteristics  
Internal DC - DC regulator is not used (VCC = 3 V) Internal DC - DC regulator is used (VCC = 5 V)  
ICC (mA)  
Icc (mA)  
18  
16  
14  
18  
16  
14  
Gear : 1/1  
Gear : 1/1  
Gear : 1/2  
Gear : 1/2  
12  
14  
10  
8
12  
14  
10  
8
Gear : 1/4  
Gear : 1/8  
Gear : 1/4  
Gear : 1/8  
Gear : 1/8  
(PLL : off)  
4
4
Gear : 1/8  
(PLL : off)  
2
0
2
0
2.7  
3.0  
3.3 3.6  
4.5  
5.0  
5.5  
VCC (V)  
VCC (V)  
Operating conditions : Source oscillation 12.5 MHz (crystal), divide-by-2 input, PLL : ON  
Gear : CPU = Peripherals  
96  
MB91101/MB91101A  
INSTRUCTIONS (165 INSTRUCTIONS)  
1. How to Read Instruction Set Summary  
Mnemonic  
Type  
OP  
CYC  
NZVC  
Operation  
Remarks  
ADD Rj,  
* ADD #s5, Ri  
Ri  
A
C
,
A6  
A4  
,
1
1
,
CCCC  
CCCC  
Ri + Rj Ri  
Ri + s5 Ri  
,
,
,
,
,
,
,
,
,
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(1) Names of instructions  
Instructions marked with * are not included in CPU specifications. These are extended instruction codes  
added/extended at assembly language levels.  
(2) Addressing modes specified as operands are listed in symbols.  
Refer to “2. Addressing mode symbols” for further information.  
(3) Instruction types  
(4) Hexa-decimal expressions of instructions  
(5) The number of machine cycles needed for execution  
a: Memory access cycle and it has possibility of delay by Ready function.  
b: Memory access cycle and it has possibility of delay by Ready function.  
If an object register in a LD operation is referenced by an immediately following instruction, the interlock  
function is activated and number of cycles needed for execution increases.  
c: If an immediately following instruction operates to an object of R15, SSP or USP in read/write mode or  
if the instruction belongs to instruction format A group, the interlock function is activated and number of  
cycles needed for execution increases by 1 to make the total number of 2 cycles needed.  
d: If an immediately following instruction refers to MDH/MDL, the interlock function is activated and number  
of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.  
For a, b, c and d, minimum execution cycle is 1.  
(6) Change in flag sign  
• Flag change  
C : Change  
– : No change  
0 : Clear  
1 : Set  
• Flag meanings  
N : Negative flag  
Z : Zero flag  
V : Over flag  
C : Carry flag  
(7) Operation carried out by instruction  
97  
MB91101/MB91101A  
2. Addressing Mode Symbols  
Ri  
: Register direct (R0 to R15, AC, FP, SP)  
Rj  
: Register direct (R0 to R15, AC, FP, SP)  
R13  
Ps  
: Register direct (R13, AC)  
: Register direct (Program status register)  
Rs  
: Register direct (TBR, RP, SSP, USP, MDH, MDL)  
: Register direct (CR0 to CR15)  
: Register direct (CR0 to CR15)  
CRi  
CRj  
#i8  
: Unsigned 8-bit immediate (–128 to 255)  
Note: –128 to –1 are interpreted as 128 to 255  
: Unsigned 20-bit immediate (–0X80000 to 0XFFFFF)  
Note: –0X7FFFF to –1 are interpreted as 0X7FFFF to 0XFFFFF  
: Unsigned 32-bit immediate (–0X80000000 to 0XFFFFFFFF)  
Note: –0X80000000 to –1 are interpreted as 0X80000000 to 0XFFFFFFFF  
: Signed 5-bit immediate (–16 to 15)  
#i20  
#i32  
#s5  
#s10  
#u4  
: Signed 10-bit immediate (–512 to 508, multiple of 4 only)  
: Unsigned 4-bit immediate (0 to 15)  
#u5  
: Unsigned 5-bit immediate (0 to 31)  
#u8  
: Unsigned 8-bit immediate (0 to 255)  
#u10  
: Unsigned 10-bit immediate (0 to 1020, multiple of 4 only)  
: Unsigned 8-bit direct address (0 to 0XFF)  
@dir8  
@dir9  
@dir10  
label9  
label12  
label20  
label32  
@Ri  
: Unsigned 9-bit direct address (0 to 0X1FE, multiple of 2 only)  
: Unsigned 10-bit direct address (0 to 0X3FC, multiple of 4 only)  
: Signed 9-bit branch address (–0X100 to 0XFC, multiple of 2 only)  
: Signed 12-bit branch address (–0X800 to 0X7FC, multiple of 2 only)  
: Signed 20-bit branch address (–0X80000 to 0X7FFFF)  
: Signed 32-bit branch address (–0X80000000 to 0X7FFFFFFF)  
: Register indirect (R0 to R15, AC, FP, SP)  
@Rj  
: Register indirect (R0 to R15, AC, FP, SP)  
@(R13, Rj)  
: Register relative indirect (Rj: R0 to R15, AC, FP, SP)  
@(R14, disp10) : Register relative indirect (disp10: –0X200 to 0X1FC, multiple of 4 only)  
@(R14, disp9) : Register relative indirect (disp9: –0X100 to 0XFE, multiple of 2 only)  
@(R14, disp8) : Register relative indirect (disp8: –0X80 to 0X7F)  
@(R15, udisp6) : Register relative (udisp6: 0 to 60, multiple of 4 only)  
@Ri+  
: Register indirect with post-increment (R0 to R15, AC, FP, SP)  
@R13+  
@SP+  
@–SP  
(reglist)  
: Register indirect with post-increment (R13, AC)  
: Stack pop  
: Stack push  
: Register list  
98  
MB91101/MB91101A  
3. Instruction Types  
MSB  
LSB  
16 bits  
Type A  
OP  
8
Rj  
4
Ri  
4
Type B  
Type C  
Type *C’  
Type D  
Type E  
Type F  
OP  
4
i8/o8  
8
Ri  
4
OP  
8
u4/m4  
4
Ri  
4
ADD, ADDN, CMP, LSL, LSR and ASR instructions only  
OP  
7
s5/u5  
5
Ri  
4
OP  
u8/rel8/dir/reglist  
8
8
OP  
8
SUB-OP  
Ri  
4
4
OP  
5
rel11  
11  
99  
MB91101/MB91101A  
4. Detailed Description of Instructions  
• Add/subtract operation instructions (10 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
ADD  
* ADD  
Rj, Ri  
#s5, Ri  
A
C’  
A6  
A4  
1
1
C C C C Ri + Rj Ri  
C C C C Ri + s5 Ri  
MSB is interpreted as  
a sign in assembly  
language  
ADD  
ADD2  
#i4, Ri  
#i4, Ri  
C
C
A4  
A5  
1
1
C C C C Ri + extu (i4) Ri  
C C C C Ri + extu (i4) Ri  
Zero-extension  
Sign-extension  
ADDC  
Rj, Ri  
A
A7  
1
C C C C Ri + Rj + c Ri  
Add operation with  
sign  
ADDN  
* ADDN #s5, Ri  
Rj, Ri  
A
C’  
A2  
A0  
1
1
– – – – Ri + Rj Ri  
– – – – Ri + s5 Ri  
MSB is interpreted as  
a sign in assembly  
language  
ADDN  
ADDN2 #i4, Ri  
#i4, Ri  
C
C
A0  
A1  
1
1
– – – – Ri + extu (i4) Ri  
– – – – Ri + extu (i4) Ri  
Zero-extension  
Sign-extension  
SUB  
Rj, Ri  
Rj, Ri  
A
A
AC  
AD  
1
1
C C C C Ri – Rj Ri  
SUBC  
C C C C Ri – Rj – c Ri  
Subtract operation with  
carry  
SUBN  
Rj, Ri  
A
AE  
1
– – – – Ri – Rj Ri  
• Compare operation instructions (3 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
CMP  
* CMP  
Rj, Ri  
#s5, Ri  
A
C’  
AA  
A8  
1
1
C C C C Ri – Rj  
C C C C Ri – s5  
MSB is interpreted as  
a sign in assembly  
language  
CMP  
CMP2  
#i4, Ri  
#i4, Ri  
C
C
A8  
A9  
1
1
C C C C Ri + extu (i4)  
C C C C Ri + extu (i4)  
Zero-extension  
Sign-extension  
• Logical operation instructions (12 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
AND  
AND  
ANDH  
ANDB  
Rj, Ri  
A
A
A
A
82 C C – – Ri & = Rj  
1
Word  
Word  
Half word  
Byte  
Rj, @Ri  
Rj, @Ri  
Rj, @Ri  
84 1 + 2a C C – – (Ri) & = Rj  
85 1 + 2a C C – – (Ri) & = Rj  
86 1 + 2a C C – – (Ri) & = Rj  
OR  
OR  
ORH  
ORB  
Rj, Ri  
A
A
A
A
92  
1
C C – – Ri | = Rj  
Word  
Word  
Half word  
Byte  
Rj, @Ri  
Rj, @Ri  
Rj, @Ri  
94 1 + 2a C C – – (Ri) | = Rj  
95 1 + 2a C C – – (Ri) | = Rj  
96 1 + 2a C C – – (Ri) | = Rj  
EOR  
EOR  
EORH  
EORB  
Rj, Ri  
A
A
A
A
9A  
1
C C – – Ri ^ = Rj  
Word  
Word  
Half word  
Byte  
Rj, @Ri  
Rj, @Ri  
Rj, @Ri  
9C 1 + 2a C C – – (Ri) ^ = Rj  
9D 1 + 2a C C – – (Ri) ^ = Rj  
9E 1 + 2a C C – – (Ri) ^ = Rj  
100  
MB91101/MB91101A  
• Bit manipulation arithmetic instructions (8 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
BANDL #u4, @Ri  
C
80 1 + 2a – – – – (Ri) & = (F0H + u4)  
Manipulate lower 4 bits  
(u4: 0 to 0FH)  
BANDH #u4, @Ri  
(u4: 0 to 0FH)  
* BAND #u8, @Ri  
C
81 1 + 2a – – – – (Ri) & = ((u4<<4) + 0FH) Manipulate upper 4 bits  
– – – – (Ri) & = u8  
1
2
3
*
*
*
BORL  
BORH  
* BOR  
#u4, @Ri  
(u4: 0 to 0FH)  
#u4, @Ri  
(u4: 0 to 0FH)  
#u8, @Ri  
C
C
90 1 + 2a – – – – (Ri) | = u4  
Manipulate lower 4 bits  
Manipulate upper 4 bits  
91 1 + 2a – – – – (Ri) | = (u4<<4)  
– – – – (Ri) | = u8  
BEORL #u4, @Ri  
(u4: 0 to 0FH)  
BEORH #u4, @Ri  
(u4: 0 to 0FH)  
* BEOR #u8, @Ri  
C
C
98 1 + 2a – – – – (Ri) ^ = u4  
Manipulate lower 4 bits  
Manipulate upper 4 bits  
99 1 + 2a – – – – (Ri) ^ = (u4<<4)  
– – – – (Ri) ^ = u8  
BTSTL  
BTSTH  
#u4, @Ri  
(u4: 0 to 0FH)  
#u4, @Ri  
C
C
88  
89  
2 + a 0 C – – (Ri) & u4  
Test lower 4 bits  
Test upper 4 bits  
2 + a C C – – (Ri) & (u4<<4)  
(u4: 0 to 0FH)  
*1: Assembler generates BANDL if result of logical operation “u8&0x0F” leaves an active (set) bit and generates  
BANDH if “u8&0xF0” leaves an active bit. Depending on the value in the “u8” format, both BANDL and BANDH  
may be generated.  
*2: Assembler generates BORL if result of logical operation “u8&0x0F” leaves an active (set) bit and generates  
BORH if “u8&0xF0” leaves an active bit.  
*3: Assembler generates BEORL if result of logical operation “u8&0x0F” leaves an active (set) bit and generates  
BEORH if “u8&0xF0” leaves an active bit.  
• Add/subtract operation instructions (10 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
MUL  
MULU  
MULH  
Rj, Ri  
Rj, Ri  
Rj, Ri  
A
A
A
A
AF  
AB  
BF  
BB  
5
5
3
3
C C C – Rj × Ri MDH, MDL  
C C C – Rj × Ri MDH, MDL  
C C – – Rj × Ri MDL  
32-bit × 32-bit = 64-bit  
Unsigned  
16-bit × 16-bit = 32-bit  
Unsigned  
MULUH Rj, Ri  
C C – – Rj × Ri MDL  
DIVOS  
DIVOU  
DIV1  
DIV2  
DIV3  
DIV4S  
* DIV  
Ri  
Ri  
Ri  
Ri  
E
E
E
E
E
E
97 – 4  
97 – 5  
97 – 6  
97 – 7  
9F – 6  
9F – 7  
1
1
d
1
1
1
– – – –  
– – – –  
– C – C  
– C – C  
– – – –  
– – – –  
– C – C MDL/Ri MDL,  
MDL%Ri MDH  
– C – C MDL/Ri MDL,  
MDL%Ri MDH  
Step calculation  
32-bit/32-bit = 32-bit  
1
2
Ri  
Ri  
*
*
Unsigned  
* DIVU  
*1: DIVOS, DIV1 × 32, DIV2, DIV3 and DIV4S are generated. A total instruction code length of 72 bytes.  
*2: DIVOU and DIV1 × 32 are generated. A total instruction code length of 66 bytes.  
101  
MB91101/MB91101A  
• Shift arithmetic instructions (9 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
Logical shift  
LSL  
* LSL  
LSL  
Rj, Ri  
A
C’  
C
B6  
B4  
B4  
B5  
1
1
1
1
C C – C Ri<<Rj Ri  
#u5, Ri  
#u4, Ri  
#u4, Ri  
C C – C Ri<<u5 Ri  
C C – C Ri<<u4 Ri  
C C – C Ri<<(u4 + 16) Ri  
LSL2  
C
LSR  
* LSR  
LSR  
Rj, Ri  
A
C’  
C
B2  
B0  
B0  
B1  
1
1
1
1
C C – C Ri>>Rj Ri  
C C – C Ri>>u5 Ri  
C C – C Ri>>u4 Ri  
C C – C Ri>>(u4 + 16) Ri  
Logical shift  
Logical shift  
#u5, Ri  
#u4, Ri  
#u4, Ri  
LSR2  
C
ASR  
* ASR  
ASR  
Rj, Ri  
A
C’  
C
BA  
B8  
B8  
B9  
1
1
1
1
C C – C Ri>>Rj Ri  
C C – C Ri>>u5 Ri  
C C – C Ri>>u4 Ri  
C C – C Ri>>(u4 + 16) Ri  
#u5, Ri  
#u4, Ri  
#u4, Ri  
ASR2  
C
• Immediate value data transfer instruction (immediate value set/16-bit/32-bit immediate value transfer  
instruction) (3 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
LDI: 32  
LDI: 20  
#i32, Ri  
#i20, Ri  
E
C
9F – 8  
9B  
3
2
– – – – i32 Ri  
– – – – i20 Ri  
– – – – i8 Ri  
Upper 12 bits are zero-  
extended  
Upper 24 bits are zero-  
extended  
LDI: 8  
* LDI  
#i8, Ri  
# {i8 | i20 | i32}, Ri  
B
C0  
1
{i8 | i20 | i32} Ri  
1
*
*1: If an immediate value is given in absolute, assembler automatically makes i8, i20 or i32 selection.  
If an immediate value contains relative value or external reference, assembler selects i32.  
• Memory load instructions (13 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
LD  
LD  
LD  
LD  
LD  
LD  
@Rj, Ri  
A
A
B
C
E
E
04  
00  
20  
03  
07 – 0  
07 – 8  
b
b
b
b
b
b
– – – – (Rj) Ri  
– – – – (R13 + Rj) Ri  
– – – – (R14 + disp10) Ri  
– – – – (R15 + udisp6) Ri  
– – – – (R15) Ri, R15 + = 4  
– – – – (R15) Rs, R15 + = 4 Rs: Special-purpose  
register  
@(R13, Rj), Ri  
@(R14, disp10), Ri  
@(R15, udisp6), Ri  
@R15 +, Ri  
@R15 +, Rs  
1 + a + b  
LD  
@R15 +, PS  
E
07 – 9  
C C C C (R15) PS, R15 + = 4  
LDUH  
LDUH  
LDUH  
@Rj, Ri  
@(R13, Rj), Ri  
@(R14, disp9), Ri  
A
A
B
05  
01  
40  
b
b
b
– – – – (Rj) Ri  
– – – – (R13 + Rj) Ri  
– – – – (R14 + disp9) Ri  
Zero-extension  
Zero-extension  
Zero-extension  
LDUB  
LDUB  
LDUB  
@Rj, Ri  
@(R13, Rj), Ri  
@(R14, disp8), Ri  
A
A
B
06  
02  
60  
b
b
b
– – – – (Rj) Ri  
– – – – (R13 + Rj) Ri  
– – – – (R14 + disp8) Ri  
Zero-extension  
Zero-extension  
Zero-extension  
Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler  
description from disp8 to disp10 are as follows:  
disp8 o8 = disp8  
disp9 o8 = disp9>>1  
disp10 o8 = disp10>>2  
udisp6 u4 = udisp6>>2  
Each disp is a code extension.  
udisp4 is a 0 extension.  
102  
MB91101/MB91101A  
• Memory store instructions (13 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
ST  
ST  
ST  
ST  
ST  
ST  
Ri, @Rj  
A
A
B
C
E
E
14  
10  
30  
13  
17 – 0  
17 – 8  
a
a
a
a
a
a
– – – – Ri (Rj)  
– – – – Ri (R13 + Rj)  
– – – – Ri (R14 + disp10)  
– – – – Ri (R15 + usidp6)  
– – – – R15 – = 4, Ri (R15)  
– – – – R15 – = 4, Rs (R15) Rs: Special-purpose  
register  
Word  
Word  
Word  
Ri, @(R13, Rj)  
Ri, @(R14, disp10)  
Ri, @(R15, udisp6)  
Ri, @–R15  
Rs, @–R15  
ST  
PS, @–R15  
E
17 – 9  
a
– – – – R15 – = 4, PS (R15)  
STH  
STH  
STH  
Ri, @Rj  
Ri, @(R13, Rj)  
Ri, @(R14, disp9)  
A
A
B
15  
11  
50  
a
a
a
– – – – Ri (Rj)  
– – – – Ri (R13 + Rj)  
– – – – Ri (R14 + disp9)  
Half word  
Half word  
Half word  
STB  
STB  
STB  
Ri, @Rj  
Ri, @(R13, Rj)  
Ri, @(R14, disp8)  
A
A
B
16  
12  
70  
a
a
a
– – – – Ri (Rj)  
– – – – Ri (R13 + Rj)  
– – – – Ri (R14 + disp8)  
Byte  
Byte  
Byte  
Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler  
description from disp8 to disp10 are as follows:  
disp8 o8 = disp8  
disp9 o8 = disp9>>1  
disp10 o8 = disp10>>2  
udisp6 u4 = udisp6>>2  
Each disp is a code extension.  
udisp4 is a 0 extension.  
Transfer instructions between registers/special-purpose registers transfer instructions  
(5 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
MOV  
Rj, Ri  
A
8B  
1
– – – – Rj Ri  
Transfer between  
general-purpose  
registers  
MOV  
MOV  
Rs, Ri  
Ri, Rs  
A
A
B7  
B3  
1
1
– – – – Rs Ri  
– – – – Ri Rs  
Rs: Special-purpose  
register  
Rs: Special-purpose  
register  
MOV  
MOV  
PS, Ri  
Ri, PS  
E
E
17 – 1  
07 – 1  
1
c
– – – – PS Ri  
C C C C Ri PS  
103  
MB91101/MB91101A  
• Non-delay normal branch instructions (23 instructions)  
Type  
E
Mnemonic  
@Ri  
OP Cycle N Z V C  
Operation  
– – – – Ri PC  
– – – – PC + 2 RP,  
Remarks  
JMP  
97 – 0  
D0  
2
2
CALL  
label12  
F
PC + 2 + rel11 × 2 PC  
– – – – PC + 2 RP, Ri PC  
CALL  
RET  
INT  
@Ri  
E
E
D
97 – 1  
97 – 2  
1F  
2
2
– – – – RP PC  
Return  
#u8  
3+3a – – – – SSP – = 4, PS (SSP),  
SSP – = 4,  
PC + 2 (SSP),  
0 I flag,  
0 S flag,  
(TBR + 3FC – u8 × 4) →  
PC  
INTE  
RETI  
E
E
9F – 3 3 + 3a – – – – SSP – = 4, PS (SSP), For emulator  
SSP – = 4,  
PC + 2 (SSP),  
0 S flag,  
(TBR + 3D8 – u8 × 4) →  
PC  
97 – 3 2 + 2a C C C C (R15) PC, R15 – = 4,  
(R15) PS, R15 – = 4  
BNO  
BRA  
BEQ  
BNE  
BC  
BNC  
BN  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
E1  
E0  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
1
2
– – – – Non-branch  
– – – – PC + 2 + rel8 × 2 PC  
– – – – PCif Z = = 1  
– – – – PCif Z = = 0  
– – – – PCif C = = 1  
– – – – PCif C = = 0  
– – – – PCif N = = 1  
– – – – PCif N = = 0  
– – – – PCif V = = 1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
BP  
BV  
BNV  
BLT  
BGE  
BLE  
BGT  
BLS  
BHI  
– – – – PCif V = = 0  
– – – – PCif V xor N = = 1  
– – – – PCif V xor N = = 0  
– – – – PCif (V xor N) or Z = = 1  
– – – – PCif (V xor N) or Z = = 0  
– – – – PCif C or Z = = 1  
– – – – PCif C or Z = = 0  
Notes: • “2/1” in cycle sections indicates that 2 cycles are needed for branch and 1 cycle needed for non-branch.  
• The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and  
assembler discription label9 and label12 are as follows.  
label9 rel8 = (label9 – PC – 2)/2  
label12 rel11 = (label12 – PC – 2)/2  
• RETI must be operated while S flag = 0.  
104  
MB91101/MB91101A  
• Branch instructions with delays (20 instructions)  
Type  
E
Mnemonic  
OP Cycle N Z V C  
Operation  
– – – – Ri PC  
– – – – PC + 4 RP,  
Remarks  
JMP:D  
@Ri  
9F – 0  
D8  
1
1
CALL:D label12  
F
PC + 2 + rel11 × 2 PC  
– – – – PC + 4 RP, Ri PC  
CALL:D @Ri  
RET:D  
E
E
9F – 1  
9F – 2  
1
1
– – – – RP PC  
Return  
BNO:D  
BRA:D  
BEQ:D  
BNE:D  
BC:D  
BNC:D  
BN:D  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
F1  
F0  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
– – – – Non-branch  
– – – – PC + 2 + rel8 × 2 PC  
– – – – PCif Z = = 1  
– – – – PCif Z = = 0  
– – – – PCif C = = 1  
– – – – PCif C = = 0  
– – – – PCif N = = 1  
– – – – PCif N = = 0  
– – – – PCif V = = 1  
BP:D  
BV:D  
BNV:D  
BLT:D  
BGE:D  
BLE:D  
BGT:D  
BLS:D  
BHI:D  
– – – – PCif V = = 0  
– – – – PCif V xor N = = 1  
– – – – PCif V xor N = = 0  
– – – – PCif (V xor N) or Z = = 1  
– – – – PCif (V xor N) or Z = = 0  
– – – – PCif C or Z = = 1  
– – – – PCif C or Z = = 0  
Notes: • The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and  
assembler discription label9 and label12 are as follows.  
label9 rel8 = (label9 – PC – 2)/2  
label12 rel11 = (label12 – PC – 2)/2  
• Delayed branch operation always executes next instruction (delay slot) before making a branch.  
• Instructions allowed to be stored in the delay slot must meet one of the following conditions. If the other  
instruction is stored, this device may operate other operation than defined.  
The instruction described “1” in the other cycle column than branch instruction.  
The instruction described “a”, “b”, “c” or “d” in the cycle column.  
105  
MB91101/MB91101A  
• Direct addressing instructions  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
DMOV  
DMOV  
DMOV  
DMOV  
DMOV  
DMOV  
@dir10, R13  
D
D
D
D
D
D
08  
18  
0C  
1C  
0B  
1B  
b
a
2a  
2a  
2a  
2a  
– – – – (dir10) R13  
– – – – R13 (dir10)  
– – – – (dir10) (R13), R13 + = 4 Word  
– – – – (R13) (dir10), R13 + = 4 Word  
– – – – R15 – = 4, (dir10) (R15) Word  
– – – – (R15) (dir10), R15 + = 4 Word  
Word  
Word  
R13,  
@dir10  
@dir10, @R13+  
@R13+, @dir10  
@dir10, @–R15  
@R15+, @dir10  
DMOVH @dir9, R13  
D
D
D
D
09  
19  
0D  
1D  
b
a
2a  
2a  
– – – – (dir9) R13  
– – – – R13 (dir9)  
– – – – (dir9) (R13), R13 + = 2 Half word  
– – – – (R13) (dir9), R13 + = 2 Half word  
Half word  
Half word  
DMOVH R13,  
@dir9  
DMOVH @dir9, @R13+  
DMOVH @R13+, @dir9  
DMOVB @dir8, R13  
D
D
D
D
0A  
1A  
0E  
1E  
b
a
2a  
2a  
– – – – (dir8) R13  
– – – – R13 (dir8)  
– – – – (dir8) (R13), R13 + + Byte  
– – – – (R13) (dir8), R13 + + Byte  
Byte  
Byte  
DMOVB R13,  
@dir8  
DMOVB @dir8, @R13+  
DMOVB @R13+, @dir8  
Note: The relations between the dir field of TYPE-D in the instruction format and the assembler description from  
disp8 to disp10 are as follows:  
disp8 dir + disp8  
disp9 dir = disp9>>1  
Each disp is a code extension  
disp10 dir = disp10>>2  
• Resource instructions (2 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
LDRES @Ri+, #u4  
C
BC  
a
– – – – (Ri) u4 resource  
u4: Channel number  
Ri + = 4  
STRES #u4,  
@Ri+  
C
BD  
a
– – – – u4 resource (Ri)  
u4: Channel number  
Ri + = 4  
• Co-processor instructions (4 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
COPOP #u4, #CC, CRj, CRi  
COPLD #u4, #CC, Rj, CRi  
COPST #u4, #CC, CRj, Ri  
COPSV #u4, #CC, CRj, Ri  
E
E
E
E
9F – C 2 + a – – – – Calculation  
9F – D 1 + 2a – – – – Rj CRi  
9F – E 1 + 2a – – – – CRj Ri  
9F – F 1 + 2a – – – – CRj Ri  
No error traps  
106  
MB91101/MB91101A  
• Other instructions (16 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
NOP  
E
9F – A  
1
– – – – No changes  
ANDCCR #u8  
ORCCR #u8  
D
D
83  
93  
c
c
C C C C CCR and u8 CCR  
C C C C CCR or u8 CCR  
STILM  
#u8  
D
87  
1
– – – – i8 ILM  
Set ILM immediate  
value  
1
D
A3  
1
– – – – R15 + = s10  
ADD SP instruction  
ADDSP #s10  
EXTSB Ri  
EXTUB Ri  
EXTSH Ri  
EXTUH Ri  
*
E
E
E
E
97 – 8  
97 – 9  
97 – A  
97 – B  
1
1
1
1
– – – – Sign extension 8 32 bits  
– – – – Zero extension 8 32 bits  
– – – – Sign extension 16 32 bits  
– – – – Zero extension 16 32 bits  
4
LDM0  
LDM1  
(reglist)  
D
D
8C  
8D  
– – – – (R15) reglist,  
R15 increment  
– – – – (R15) reglist,  
R15 increment  
Load-multi R0 to R7  
Load-multi R8 to R15  
*
4
(reglist)  
*
3
– – – – (R15 + +) reglist,  
Load-multi R0 to R15  
Store-multi R0 to R7  
* LDM  
STM0  
(reglist)  
(reglist)  
*
6
D
D
8E  
8F  
– – – – R15 decrement,  
reglist (R15)  
– – – – R15 decrement,  
reglist (R15)  
*
6
STM1  
(reglist)  
Store-multi R8 to R15  
Store-multi R0 to R15  
*
5
2
– – – – reglist (R15 + +)  
* STM2 (reglist)  
ENTER #u10  
*
*
D
0F  
1+a – – – – R14 (R15 – 4),  
R15 – 4 R14,  
Entrance processing  
of function  
R15 – u10 R15  
LEAVE  
E
A
9F – 9  
8A  
b
– – – – R14 + 4 R15,  
(R15 – 4) R14  
Exit processing of  
function  
XCHB  
@Rj, Ri  
2a  
– – – – Ri TEMP,  
(Rj) Ri,  
For SEMAFO  
management  
Byte data  
TEMP (Rj)  
*1: In the ADDSP instruction, the reference between u8 of TYPE-D in the instruction format and assembler  
description s10 is as follows.  
s10 s8 = s10>>2  
*2: In the ENTER instruction, the reference between i8 of TYPE-C in the instruction format and assembler  
description u10 is as follows.  
u10 u8 = u10>>2  
*3: If either of R0 to R7 is specified in reglist, assembler generates LDM0. If either of R8 to R15 is specified,  
assembler generates LDM1. Both LDM0 and LDM1 may be generated.  
*4: The number of cycles needed for execution of LDM0 (reglist) and LDM1 (reglist) is given by the following  
calculation; a × (n – 1) + b + 1 when “n” is number of registers specified.  
*5: If either of R0 to R7 is specified in reglist, assembler generates STM0. If either of R8 to R15 is specified,  
assembler generates STM1. Both STM0 and STM1 may be generated.  
*6: The number of cycles needed for execution of STM0 (reglist) and STM1 (reglist) is given by the following  
calculation; a × n + 1 when “n” is number of registers specified.  
107  
MB91101/MB91101A  
• 20-bit normal branch macro instructions  
Mnemonic  
Operation  
Remarks  
1
* CALL20 label20, Ri  
Next instruction address RP, label20 PC  
Ri: Temporary register  
*
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
* BRA20  
* BEQ20  
* BNE20  
* BC20  
* BNC20  
* BN20  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20 PC  
if (Z = = 1) then label20 PC  
ifs/Z = = 0  
ifs/C = = 1  
ifs/C = = 0  
ifs/N = = 1  
ifs/N = = 0  
ifs/V = = 1  
ifs/V = = 0  
ifs/V xor N = = 1  
ifs/V xor N = = 0  
ifs/(V xor N) or Z = = 1  
ifs/(V xor N) or Z = = 0  
ifs/C or Z = = 1  
ifs/C or Z = = 0  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* BP20  
* BV20  
* BNV20  
* BLT20  
* BGE20  
* BLE20  
* BGT20  
* BLS20  
* BHI20  
*1: CALL20  
(1) If label20 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows;  
CALL label12  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:20 #label20, Ri  
CALL  
*2: BRA20  
(1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
BRA label9  
@Ri  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:20 #label20, Ri  
JMP  
@Ri  
*3: Bcc20 (BEQ20 to BHI20)  
(1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
Bcc  
label9  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
Bxcc  
false  
xcc is a revolt condition of cc  
LDI:20 #label20, Ri  
JMP  
@Ri  
false:  
108  
MB91101/MB91101A  
• 20-bit delayed branch macro instructions  
Mnemonic  
Operation  
Remarks  
1
* CALL20:D label20, Ri  
Next instruction address + 2 RP, label20 PC  
Ri: Temporary register  
*
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
* BRA20:D label20, Ri  
* BEQ20:D label20, Ri  
* BNE20:D label20, Ri  
label20 PC  
if (Z = = 1) then label20 PC  
ifs/Z = = 0  
ifs/C = = 1  
ifs/C = = 0  
ifs/N = = 1  
ifs/N = = 0  
ifs/V = = 1  
ifs/V = = 0  
ifs/V xor N = = 1  
ifs/V xor N = = 0  
ifs/(V xor N) or Z = = 1  
ifs/(V xor N) or Z = = 0  
ifs/C or Z = = 1  
ifs/C or Z = = 0  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* BC20:D  
label20, Ri  
* BNC20:D label20, Ri  
* BN20:D  
* BP20:D  
* BV20:D  
label20, Ri  
label20, Ri  
label20, Ri  
* BNV20:D label20, Ri  
* BLT20:D label20, Ri  
* BGE20:D label20, Ri  
* BLE20:D label20, Ri  
* BGT20:D label20, Ri  
* BLS20:D label20, Ri  
* BHI20:D label20, Ri  
*1: CALL20:D  
(1) If label20 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows;  
CALL:D label12  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:20 #label20, Ri  
CALL:D @Ri  
*2: BRA20:D  
(1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
BRA:D label9  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:20 #label20, Ri  
JMP:D @Ri  
*3: Bcc20:D (BEQ20:D to BHI20:D)  
(1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
Bcc:D  
label9  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
Bxcc  
false  
xcc is a revolt condition of cc  
LDI:20 #label20, Ri  
JMP:D @Ri  
false:  
109  
MB91101/MB91101A  
• 32-bit normal macro branch instructions  
Mnemonic  
Operation  
Remarks  
1
* CALL32 label32, Ri  
Next instruction address RP, label32 PC  
Ri: Temporary register  
*
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
* BRA32  
* BEQ32  
* BNE32  
* BC32  
* BNC32  
* BN32  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32 PC  
if (Z = = 1) then label32 PC  
ifs/Z = = 0  
ifs/C = = 1  
ifs/C = = 0  
ifs/N = = 1  
ifs/N = = 0  
ifs/V = = 1  
ifs/V = = 0  
ifs/V xor N = = 1  
ifs/V xor N = = 0  
ifs/(V xor N) or Z = = 1  
ifs/(V xor N) or Z = = 0  
ifs/C or Z = = 1  
ifs/C or Z = = 0  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* BP32  
* BV32  
* BNV32  
* BLT32  
* BGE32  
* BLE32  
* BGT32  
* BLS32  
* BHI32  
*1: CALL32  
(1) If label32 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows;  
CALL label12  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:32 #label32, Ri  
CALL  
*2: BRA32  
(1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
BRA label9  
@Ri  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:32 #label32, Ri  
JMP  
@Ri  
*3: Bcc32 (BEQ32 to BHI32)  
(1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
Bcc  
label9  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
Bxcc  
false  
xcc is a revolt condition of cc  
LDI:32 #label32, Ri  
JMP  
@Ri  
false:  
110  
MB91101/MB91101A  
• 32-bit delayed macro branch instructions  
Mnemonic  
Operation  
Remarks  
1
* CALL32:D label32, Ri  
Next instruction address + 2 RP, label32 PC  
Ri: Temporary register  
*
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
* BRA32:D label32, Ri  
* BEQ32:D label32, Ri  
* BNE32:D label32, Ri  
label32 PC  
if (Z = = 1) then label32 PC  
ifs/Z = = 0  
ifs/C = = 1  
ifs/C = = 0  
ifs/N = = 1  
ifs/N = = 0  
ifs/V = = 1  
ifs/V = = 0  
ifs/V xor N = = 1  
ifs/V xor N = = 0  
ifs/(V xor N) or Z = = 1  
ifs/(V xor N) or Z = = 0  
ifs/C or Z = = 1  
ifs/C or Z = = 0  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* BC32:D  
label32, Ri  
* BNC32:D label32, Ri  
* BN32:D  
* BP32:D  
* BV32:D  
label32, Ri  
label32, Ri  
label32, Ri  
* BNV32:D label32, Ri  
* BLT32:D label32, Ri  
* BGE32:D label32, Ri  
* BLE32:D label32, Ri  
* BGT32:D label32, Ri  
* BLS32:D label32, Ri  
* BHI32:D label32, Ri  
*1: CALL32:D  
(1) If label32 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows;  
CALL:D label12  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:32 #label32, Ri  
CALL:D @Ri  
*2: BRA32:D  
(1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
BRA:D label9  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:32 #label32, Ri  
JMP:D @Ri  
*3: Bcc32:D (BEQ32:D to BHI32:D)  
(1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
Bcc:D  
label9  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
Bxcc  
false  
xcc is a revolt condition of cc  
LDI:32 #label32, Ri  
JMP:D @Ri  
false:  
111  
MB91101/MB91101A  
ORDERING INFORMATION  
Part number  
MB91101APFV  
MB91101APF  
Package  
Remarks  
100-pin Plastic LQFP  
(FPT-100P-M05)  
100-pin Plastic QFP  
(FPT-100P-M06)  
112  
MB91101/MB91101A  
PACKAGE DIMENSIONS  
100-pin Plastic LQFP  
(FPT-100P-M05)  
16.00±0.20(.630±.008)SQ  
1.50 +00..1200  
(Mouting height)  
.059 +..000048  
75  
51  
14.00±0.10(.551±.004)SQ  
76  
50  
12.00  
(.472)  
REF  
15.00  
(.591)  
NOM  
Details of "A" part  
0.15(.006)  
INDEX  
0.15(.006)  
100  
26  
0.15(.006)MAX  
0.40(.016)MAX  
"B"  
1
25  
LEAD No.  
"A"  
0.50(.0197)TYP  
0.18 +00..0038  
0.127 +00..0025  
.005 +..000012  
M
Details of "B" part  
0.08(.003)  
.007 +..000013  
0.10±0.10  
(.004±.004)  
(STAND OFF)  
0.50±0.20(.020±.008)  
0.10(.004)  
0~10°  
C
Dimensions in mm (inches)  
1995 FUJITSU LIMITED F100007S-2C-3  
(Continued)  
113  
MB91101/MB91101A  
(Continued)  
100-pin Plastic QFP  
(FPT-100P-M06)  
23.90±0.40(.941±.016)  
3.35(.132)MAX  
(Mounting height)  
20.00±0.20(.787±.008)  
0.05(.002)MIN  
(STAND OFF)  
80  
51  
81  
50  
12.35(.486)  
REF  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
16.30±0.40  
(.642±.016)  
INDEX  
31  
100  
"A"  
1
30  
LEAD No.  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.13(.005)  
Details of "A" part  
0.25(.010)  
0.30(.012)  
"B"  
0.10(.004)  
0
10°  
0.18(.007)MAX  
0.53(.021)MAX  
18.85(.742)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED F100008-3C-2  
Note: The design may be modified changed without notice, contact to Fujitsu sales division when using the device.  
114  
MB91101/MB91101A  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: 81(44) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: 81(44) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and  
Fax: (408) 922-9179  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
measurement equipment, personal or household devices, etc.).  
CAUTION:  
Fax: (408) 922-9179  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded  
(such as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have an inherent chance of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
Fax: (65) 281-0220  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for  
export of those products from Japan.  
http://www.fmap.com.sg/  
F9907  
FUJITSU LIMITED Printed in Japan  
115  

相关型号:

MB91101A

32-bit RISC Microcontroller
FUJITSU

MB91101APF

32-bit RISC Microcontroller
FUJITSU

MB91101APF-G-JNE1

RISC Microcontroller, 32-Bit, FR30 CPU, 50MHz, CMOS, PQFP100, 14 X 20 MM, 3.35 MM HEIGHT, 0.65 MM PITCH, PLASTIC, QFP-100
FUJITSU

MB91101APFV

32-bit RISC Microcontroller
FUJITSU

MB91101APMC

RISC Microcontroller, 32-Bit, FR30 CPU, 50MHz, CMOS, PQFP100, 14 X 14 MM, 1.70 MM HEIGHT, 0.50 MM PITCH, PLASTIC, QFP-100
FUJITSU

MB91101PF-G-BND-R

RISC Microcontroller, 32-Bit, 50MHz, CMOS, PQFP100, PLASTIC, QFP-100
CYPRESS

MB91101PFV-G-BND-R

RISC Microcontroller, 32-Bit, 50MHz, CMOS, PQFP100, PLASTIC, LQFP-100
CYPRESS

MB91106

32-bit RISC Microcontroller
FUJITSU

MB91106PF

32-bit RISC Microcontroller
FUJITSU

MB91106PF-XXX

RISC Microcontroller, 32-Bit, MROM, FR CPU, 50MHz, CMOS, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, QFP-100
FUJITSU

MB91106PFV

32-bit RISC Microcontroller
FUJITSU

MB91107

32-bit RISC Microcontroller
FUJITSU