MB91133PMT2 [FUJITSU]

32-Bit RISC Microcontroller; 32位RISC微控制器
MB91133PMT2
型号: MB91133PMT2
厂家: FUJITSU    FUJITSU
描述:

32-Bit RISC Microcontroller
32位RISC微控制器

微控制器
文件: 总123页 (文件大小:1268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-16308-1E  
32-Bit RISC Microcontroller  
CMOS  
FR30 Series  
MB91133/MB91F133  
DESCRIPTION  
The MB91133/MB91F133, a standard single-chip microcontroller featuring various I/O resources and bus control  
mechanisms to incorporate the control required for high-performance high-speed CPU processes, is the core unit  
in the 32-bit RISC CPU (FR family) .  
This unit has the optimal specifications for incorporating applications that require high-performance CPU pro-  
cessing power by featuring peripheral I/O resources suitable for single-lens reflex cameras, digital video cameras,  
etc.  
FEATURES  
1. CPU  
• 32-bit RISC (FR30) , load/store architecture, 5-level pipeline  
• Multi-purpose register : 32 bits × 16  
• 16-bit fixed length instructions (basic instructions) , 1 instruction per cycle  
• Instructions for barrel shift, bit processing and inter-memory transfers : Instructions suited to loading purposes  
• Function entry / exit instruction, multi load / store instruction of register details : High-level language handling  
instruction  
• Register interlock function : Simplification of assembler description  
• Branch instruction with delay slot : Reduction in overheads in case of branching  
• Multiplier is built-in / supported at instruction level.  
• Signed 32-bit multiplication : 5 cycles  
• Signed 16-bit multiplication : 3 cycles  
• Interruption (saving PC and PS) : 6 cycles, 16 priority levels  
(Continued)  
PACKAGES  
144-pin plastic FBGA  
144-pin plastic LQFP  
(BGA-144P-M01)  
(FPT-144P-M08)  
MB91133/MB91F133  
(Continued)  
2. Bus Interface  
• 24-bit address output, 8/16-bit data input/output  
• Basic bus cycle : 2 clock cycles  
• Interface support for various memories  
• Unused data and address pins can be used as input/output ports.  
• Supports “little endian” mode  
3. Built-in ROM  
Mask device : 254 KB; FLASH device : 254 KB; EVA-FLASH device : 254 KB  
4. Built-in RAM  
Mask device : 8 KB; FLASH device : 8 KB; EVA-FLASH device : 8 KB  
5. DMA Controller  
This is a descriptor-type MA controller whose transfer parameters are arranged in the main memory.  
A maximum of 8 factors in total (internal and external) can be transferred.  
External factors are 3 channels.  
6. Bit Search Module  
Searches the first “1” / “0” change bit positions within 1 cycle from MSB in 1 word  
7. Timer  
• 16-bit reload timer × 5 channels  
• 16-bit OCU × 8 channels, ICU × 4 channels, free-run timer × 1 channel  
Output waveform adjusting function for AC motor waveforms is included in the above timer.  
• 8/16-bit up/down timer/counter (8-bit × 2 channels or 16-bit × 1 channel)  
External interruption and pin are shared for AIN and BIN.  
• 16-bit down count timer × 5 channels; can also be used as the UART baud rate timer  
• 16-bit PPG timer × 6 channels; out-pulse cycle / duty can be changed at random  
8. D/A Converter  
• 8-bit × 3 channels  
9. A/D Converter (Sequential comparison type)  
• 10-bit × 8 channels  
• Sequential conversion method (conversion time 5.0 µs at 33 MHz)  
• Setting for single conversion, scan conversion and repeat conversion is possible.  
• Conversion starting function using hardware or software  
10. Serial I/O  
• UART × 5 channels; clock synchronous serial transfer with LSB / MSB switching function is possible for both.  
• Serial data output or serial lock output can be selected using push-pull / open-drain software.  
11. Level Comparator Input  
• 1 channel; shared input and pins of A/D converter.  
12. Clock Switching Function  
• Base clock : Software can be used to select from two types of clock sources, namely 32 kHz and high-speed.  
• Gear function : Four types of settings (1 : 1, 1 : 2, 1 : 4, 1 : 8) can be set individually as the operating clock  
ratio to the basic clock per CPU and peripheral equipment.  
2
MB91133/MB91F133  
13. Interruption Controller  
External interruption input (total 24 channels)  
• With pull up pin control / standby return function : 4 channels  
(rising / falling / H level / L level settings are possible)  
• With pull up pin control / standby return function; AIN / BIN pins of the up/down counter are shared : 4 channels  
(rising / falling / H level / L level settings are possible)  
• With pull up pin controln : 16 channels  
(rising / falling / H level / L level settings are possible)  
Internal interruption factor  
• Interruption / delay interruption by resource  
14. Others  
Reset factors  
Power on reset, watchdog timer, software reset, external reset  
Low power consumption mode  
Sleep/stop mode  
Packages  
FBGA-144, LQFP-144  
CMOS technology (0.35 µm)  
Power  
Two power sources (5 V / 3 V)  
1) 5 V system : 5 V ± 10% (A/D, D/A and level comparator included)  
2) 3 V system : A) 3.0 V to 3.6 V : All functions guaranteed  
B) 2.7 V to 3.0 V : All functions guaranteed for single-chip mode of mask devices only  
PRODUCT LINEUP  
MB91133  
MB91F133  
MB91FV130  
Piggy/EVA device  
(for evaluation /  
development)  
MASK ROM device  
(mass production item)  
FLASH ROM device  
(for evaluation)  
CLASSIFICATION  
RAM capacity  
CROM capacity  
FLASH capacity  
CRAM capacity  
Others  
6 KB  
6 KB  
6 KB  
254 KB  
254 KB  
2 KB  
254 KB  
2 KB  
2 KB  
Mass production  
Trial production  
Provided  
3
MB91133/MB91F133  
PIN ASSIGNMENTS  
MB91FV130  
(BOTTOM VIEW)  
3
299 296 293 277 274 270 268 278 275 262 254 247 257 252 250 245 233 230 224  
298 292 289 286 283 280 276 269 264 263 258 251 248 243 240 237 234 225 221  
2
5
10  
13  
4
6
297 291 287 284 279 271 265 261 256 249 242 239 235 229 228 219 218  
300 295 290 285 281 272 267 259 255 246 241 236 231 226 223 215 207  
8
16 11  
7
1
9
294 288 282 273 266 260 253 244 238 232 227 222 217 212 202  
220 216 213 209 199  
25  
27 19 15 12  
23 18 17 14  
34 26 24 21 20  
33 31 30 28  
29 39 38 35 36  
40 41 43 42  
214 211 210 205 195  
32  
208 206 204 201 203  
198 197 196 194 200  
22  
192 193 191 190 187  
186 185 188 189 179  
37  
50 44 46 47 48  
53 51 54 56 58  
45 55 60 61 64  
178 180 181 183 172  
170 171 174 176 184  
164 167 168 173 182  
59 63 66 70  
159 162 165 169 177  
49  
52  
57  
68  
71  
74  
62 67 72 77 82 88 94 103 110 116 123 133 139 145 153 157 161 166 175  
65 73 76 81 86 91 96 105 109 117 122 131 136 141 147 151 156 163 158  
69 78 79 85 89 92 99 106 111 115 121 129 135 138 142 148 154 160 155  
75 84 87 90 93 98 101 108 113 114 119 126 130 134 137 140 144 150 152  
80 83 95 100 102 107 97 104 112 125 128 118 120 124 127 132 143 146 149  
(PGA-299C-A01)  
4
MB91133/MB91F133  
MB91F133/MB91133  
(TOP VIEW)  
108  
14  
107 106 102  
99  
96  
92  
93  
91  
94  
89  
88  
90  
87  
85  
84  
86  
82  
81  
83  
79  
78  
80  
75  
76  
77  
68  
65  
62  
55  
54  
50  
47  
44  
41  
33  
34  
74  
73  
69  
67  
64  
61  
57  
52  
48  
45  
42  
40  
37  
35  
72  
71  
70  
66  
63  
60  
56  
53  
49  
46  
43  
39  
38  
36  
110 109 105 103 100 97  
111 112 113 104 101 98  
13  
12  
11  
10  
9
115 114 116  
95  
118 117 119  
121 120 122  
59  
58  
51  
125 124 126 123  
128 129 127 130  
132 133 134 131  
135 136 137  
8
7
6
5
15  
18  
16  
17  
22  
19  
21  
20  
23  
26  
25  
24  
4
138 139 140  
3
142 141  
5
4
3
8
6
7
11  
9
14  
12  
13  
29  
28  
27  
32  
31  
30  
2
143  
144  
1
2
1
10  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
INDEX  
(BGA-144P-M01)  
5
MB91133/MB91F133  
MB91F133/MB91133  
(TOP VIEW)  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
P20/D16  
P21/D17  
P22/D18  
P23/D19  
P24/D20  
P25/D21  
P26/D22  
P27/D23  
VSS  
VCC5  
2
PH0/SIN0  
PH1/SOT0  
PH2/SCK0  
PI0/SIN1  
PI1/SOT1  
PI2/SCK1  
PI3/SIN2  
PI4/SOT2  
PI5/SCK2  
PJ0/SIN3  
PJ1/SOT3  
PJ2/SCK3  
PJ3/SIN4  
PJ4/SOT4  
PJ5/SCK4  
VCC3  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
P30/D24  
P31/D25  
P32/D26  
P33/D27  
P34/D28  
P35/D29  
P36/D30  
P37/D31  
P40/A00  
P41/A01  
P42/A02  
P43/A03  
P44/A04  
P45/A05  
P46/A06  
P47/A07  
VSS  
98  
97  
96  
95  
94  
93  
92  
91  
VSS  
90  
PG5/PPG5  
PG4/PPG4  
PG3/PPG3  
PG2/PPG2  
PG1/PPG1  
PG0/PPG0  
PF7/RTO7  
PF6/RTO6  
PF5/RTO5  
PF4/RTO4  
PF3/RTO3  
PF2/RTO2  
PF1/RTO1  
PF0/RTO0  
PE7/DTTI  
PE6/FRCK  
PE5/IN3  
89  
88  
87  
86  
85  
84  
83  
82  
VCC5  
81  
P50/A08  
P51/A09  
P52/A10  
P53/A11  
P54/A12  
P55/A13  
P56/A14  
P57/A15  
P60/A16/INT16  
80  
79  
78  
77  
76  
75  
74  
73  
PE4/IN2  
(FPT-144P-M08)  
6
MB91133/MB91F133  
PIN NUMBERS LIST  
Device : MB91FV130 Package : PGA-299C-A01  
No.  
1
Pin Name  
P20/D16  
VSS  
No.  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
Pin Name  
P54/A12  
No.  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
Pin Name  
N.C.  
No.  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
Pin Name  
PK3/AN3  
VCC5  
2
P55/A13  
N.C.  
3
OPEN  
VCC5  
VSS  
PK4/AN4  
PK5/AN5  
PK6/AN6  
PK7/AN7/CMP  
DAVC  
4
P21/D17  
VCC5  
P56/A14  
N.C.  
5
P57/A15  
N.C.  
6
P22/D18  
P23/D19  
VSS  
P60/A16/INT16  
P61/A17/INT17  
P62/A18/INT18  
P63/A19/INT19  
P64/A20/INT20  
P65/A21/INT21  
P66/A22/INT22  
P67/A23/INT23  
P80/RDY  
VCC5  
7
N.C.  
8
MD0  
DAVS  
9
P24/D20  
P25/D21  
P26/D22  
P27/D23  
P30/D24  
P31/D25  
P32/D26  
P33/D27  
P34/D28  
P35/D29  
P36/D30  
P37/D31  
P40/A00  
VCC5  
MD1  
DA0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
MD2  
VSS  
VCC3  
DA1  
VSS  
DA2  
X0  
PH0/SIN0  
PH1/SOT0  
PH2/SCK0  
PI0/SIN1  
PI1/SOT1  
PI2/SCK1  
PI3/SIN2  
PI4/SOT2  
PI5/SCK2  
PJ0/SIN3  
VCC5  
X1  
VCC3  
VCC5  
VSS  
RST  
P81/BGRNT  
P82/BRQ  
N.C.  
ICLK  
ICS0  
ICS1  
ICS2  
ICD0  
ICD1  
ICD2  
ICD3  
BREAK  
AVCC  
AVRH  
VSS  
VCC5  
P83/RD  
P84/WR0  
P85/WR1  
P86/CLK  
P41/A01  
P42/A02  
P43/A03  
P44/A04  
P45/A05  
P46/A06  
VSS  
PL0/DREQ0  
PL1/DACK0  
PL2/DEOP0  
PL3/DREQ1  
PL4/DACK1  
PL5/DEOP1  
PL6/DREQ2  
PL7/DACK2  
N.C.  
PJ1/SOT3  
PJ2/SCK3  
VSS  
VCC3  
X0A  
X1A  
P47/A07  
P50/A08  
P51/A09  
P52/A10  
P53/A11  
AVRL  
AVSS  
PK0/AN0  
PK1/AN1  
PK2/AN2  
VSS  
PJ3/SIN4  
PJ4/SOT4  
PJ5/SCK4  
PC0/INT0  
N.C.  
VCC5  
(Continued)  
7
MB91133/MB91F133  
(Continued)  
No.  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
Pin Name  
PC1/INT1  
No.  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
Pin Name  
PF5/RTO5  
PF6/RTO6  
PF7/RTO7  
PG0/PPG0  
PG1/PPG1  
PG2/PPG2  
VSS  
No.  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
Pin Name  
TAD14  
TAD15  
VCC3  
No.  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
Pin Name  
TDT23  
TDT24  
VSS  
No.  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
Pin Name  
TDT53  
TDT54  
TDT55  
TDT56  
TDT57  
VCC3  
PC2/INT2  
PC3/INT3  
PC4/INT4/AIN0  
PC5/INT5/BIN0  
PC6/INT6/AIN1  
VCC5  
TOE  
TDT25  
TDT26  
TDT27  
TDT28  
TDT29  
TDT30  
VCC5  
TCE1  
TADSC  
TWR  
TDT58  
TDT59  
TDT60  
TDT61  
TDT62  
TDT63  
VCC5  
PC7/INT7/BIN1  
PD0/INT8/TRG0  
VSS  
PG3/PPG3  
PG4/PPG4  
PG5/PPG5  
N.C.  
TDT00  
TDT01  
VSS  
PD1/INT9/TRG1  
TDT02  
TDT03  
VCC5  
TDT31  
TDT32  
TDT33  
TDT34  
TDT35  
TDT36  
TDT37  
VSS  
148 PD2/INT10/TRG2 184  
149 VCC5 185  
N.C.  
N.C.  
150 PD3/INT11/TRG3 186  
151 PD4/INT12/TRG4 187  
N.C.  
TDT04  
TDT05  
VSS  
TDT64  
TDT65  
VSS  
VCC5  
152  
VSS  
188  
EXRAM  
TAD00  
TAD01  
TAD02  
TAD03  
VCC3  
153 PD5/INT13/TRG5 189  
154 PD6/INT14/DEOP2 190  
TDT06  
TDT07  
TDT08  
TDT09  
TDT10  
VCC5  
TDT66  
TDT67  
VCC5  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
VCC5  
PD7/INT15/ATG  
PE0/ZIN0  
VSS  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
TDT38  
TDT39  
TDT40  
TDT41  
TDT42  
TDT43  
VCC3  
TDT68  
TAD04  
TAD05  
TAD06  
TAD07  
TAD08  
TAD09  
VSS  
PE1/ZIN1  
PE2/IN0  
TDT11  
TDT12  
VSS  
PE3/IN1  
PE4/IN2  
TDT13  
TDT14  
TDT15  
TDT16  
TDT17  
TDT18  
VCC3  
TDT44  
TDT45  
TDT46  
TDT47  
TDT48  
VCC5  
PE5/IN3  
PE6/FRCK  
PE7/DTTI  
VCC3  
TAD10  
TAD11  
VCC5  
PF0/RTO0  
PF1/RTO1  
PF2/RTO2  
PF3/RTO3  
PF4/RTO4  
VCC5  
TAD12  
TAD13  
TAD14  
TAD15  
TCLK  
TDT49  
TDT50  
VSS  
TDT19  
TDT20  
TDT21  
TDT22  
TDT51  
TDT52  
8
MB91133/MB91F133  
Device : MB91F133/MB91133 Package : BGA-144P-M01/FPT-144P-M08  
LQFP FBGA  
Pin Name  
P20/D16  
P21/D17  
P22/D18  
P23/D19  
P24/D20  
P25/D21  
P26/D22  
P27/D23  
VSS  
LQFP FBGA  
Pin Name  
P60/A16/INT16  
P61/A17/INT17  
P62/A18/INT18  
P63/A19/INT19  
P64/A20/INT20  
P65/A21/INT21  
P66/A22/INT22  
P67/A23/INT23  
VCC3  
LQFP FBGA  
Pin Name  
PE2/IN0  
1
B2  
B1  
C1  
C2  
C3  
D2  
D1  
D3  
E2  
E1  
E3  
F2  
F1  
F3  
G4  
G2  
G1  
G3  
H3  
H1  
H2  
H4  
J4  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
P1  
N2  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
P13  
P14  
N13  
N14  
M14  
M13  
M12  
L13  
L14  
L12  
K13  
K14  
K12  
J13  
2
PE3/IN1  
3
P2  
PE4/IN2  
4
P3  
PE5/IN3  
5
N3  
PE6/FRCK  
PE7/DTTI  
PF0/RTO0  
PF1/RTO1  
PF2/RTO2  
PF3/RTO3  
PF4/RTO4  
PF5/RTO5  
PF6/RTO6  
PF7/RTO7  
PG0/PPG0  
PG1/PPG1  
PG2/PPG2  
PG3/PPG3  
PG4/PPG4  
PG5/PPG5  
VSS  
6
M3  
N4  
7
8
P4  
9
M4  
N5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
P30/D24  
P31/D25  
P32/D26  
P33/D27  
P34/D28  
P35/D29  
P36/D30  
P37/D31  
P40/A00  
P41/A01  
P42/A02  
P43/A03  
P44/A04  
P45/A05  
P46/A06  
P47/A07  
VSS  
P80/RDY  
P5  
P81/BGRNT  
P82/BRQ  
M5  
N6  
P83/RD  
P6  
P84/WR0  
M6  
L7  
P85/WR1  
J14  
P86/CLK  
J12  
N7  
VSS  
H11  
H13  
H14  
H12  
G12  
G14  
G13  
G11  
F11  
F14  
F13  
F12  
E14  
E13  
E12  
D14  
D13  
D12  
C13  
P7  
PC0/INT0  
M7  
M8  
P8  
PC1/INT1  
PC2/INT2  
PC3/INT3  
N8  
PC4/AIN0/INT4  
PC5/BIN0/INT5  
PC6/AIN1/INT6  
PC7/BIN1/INT7  
PD0/INT8/TRG0  
PD1/INT9/TRG1  
PD2/INT10/TRG2  
PD3/INT11/TRG3  
PD4/INT12/TRG4  
PD5/INT13/TRG5  
PD6/DEOP2/INT14  
PD7/ATG/INT15  
PE0/ZIN0  
VCC3  
L8  
PJ5/SCK4  
PJ4/SOT4  
PJ3/SIN4  
PJ2/SCK3  
PJ1/SOT3  
PJ0/SIN3  
PI5/SCK2  
PI4/SOT2  
PI3/SIN2  
PI2/SCK1  
PI1/SOT1  
PI0/SIN1  
PH2/SCK0  
J1  
L9  
J2  
P9  
J3  
N9  
K1  
K2  
K3  
L1  
VCC5  
M9  
P10  
N10  
M10  
P11  
N11  
M11  
N12  
P12  
P50/A08  
P51/A09  
P52/A10  
P53/A11  
P54/A12  
P55/A13  
P56/A14  
P57/A15  
L2  
L3  
M2  
M1  
N1  
PE1/ZIN1  
(Continued)  
9
MB91133/MB91F133  
(Continued)  
LQFP FBGA  
Pin Name  
PH1/SOT0  
PH0/SIN0  
VCC5  
LQFP FBGA  
Pin Name  
PL0/DREQ0  
PL1/DACK0  
PL2/DEOP0  
PL3/DREQ1  
PL4/DACK1  
PL5/DEOP1  
PL6/DREQ2  
PL7/DACK2  
RST  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
C14  
B14  
A14  
B13  
A13  
B12  
A12  
C12  
B11  
A11  
C11  
B10  
A10  
C10  
B9  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
C8  
C7  
A7  
B7  
D7  
D6  
A6  
B6  
C6  
A5  
B5  
C5  
A4  
B4  
C4  
B3  
A3  
A2  
A1  
DA2  
DA1  
DA0  
DAVS  
DAVC  
AVCC  
AVRH  
VSS  
AVRL  
X0A  
AVSS  
X1A  
PK0/AN0  
PK1/AN1  
PK2/AN2  
PK3/AN3  
PK4/AN4  
PK5/AN5  
PK6/AN6  
PK7/AN7/CMP  
VCC3  
X0  
X1  
A9  
VSS  
C9  
MD0  
D8  
MD1  
B8  
MD2  
A8  
10  
MB91133/MB91F133  
PIN DESCRIPTIONS  
Circuit  
type  
Pin No.  
Pin name  
Function  
1
2
3
4
5
6
7
8
D16/P20  
D17/P21  
D18/P22  
D19/P23  
D20/P24  
D21/P25  
D22/P26  
D23/P27  
External data bus bits 16 to 23  
Only valid for external bus 16-bit mode. Can be used as ports in  
single-chip and external bus 8-bit modes.  
C
10  
11  
12  
13  
14  
15  
16  
17  
D24/P30  
D25/P31  
D26/P32  
D27/P33  
D28P34  
D29/P35  
D30/P36  
D31/P37  
External data bus bits 24 to 31  
Can be used as ports in single-chip mode.  
C
18  
19  
20  
21  
22  
23  
24  
25  
28  
29  
30  
31  
32  
33  
34  
35  
A00/P40  
A01/P41  
A02/P42  
A03/P43  
A04/P44  
A05/P45  
A06/P46  
A07/P47  
A08/P50  
A09/P51  
A10/P52  
A11/P53  
A12/P54  
A13/P55  
A14/P56  
A15/P57  
External address bus bits 0 to 15  
Valid for external bus mode. Can be used as ports in single-chip  
mode.  
F
36  
37  
38  
39  
40  
41  
42  
43  
A16/INT16/P60  
A17/INT17/P61  
A18/INT18/P62  
A19/INT19/P63  
A20/INT20/P64  
A21/INT21/P65  
A22/INT22/P66  
A23/INT23/P67  
External address bus bits 16 to 23  
[ INT16 to 23 ] are external interruption request inputs 16 to 23.  
These inputs are always used when dealing with external interrup-  
tions is permitted, so output by ports should be stopped except  
when carried out intentionally.  
Can be used as ports when address bus and external interruption  
request input are not used.  
O
C
External RDY input  
This function is valid when external RDY input is permitted. “0” is  
input if the bus cycle being executed is not completed.  
Can be used as a port when the external RDY input is not used.  
45  
RDY/P80  
(Continued)  
11  
MB91133/MB91F133  
Circuit  
type  
Pin No.  
Pin name  
Function  
External bus open reception output  
This function is valid when external bus open reception output is  
permitted. “L” is output if the external bus is opened. Can be used  
as a port when the external bus open reception output is prohibit-  
ed.  
46  
BGRNT/P81  
F
External bus open request input  
This function is valid when external bus open request input is per-  
mitted. “1” is input if the external bus requests to be opened.  
Can be used as a port when the external bus open request input is  
not used.  
47  
BRQ/P82  
C
External bus read strobe output  
This function is valid when external bus read strobe output is per-  
mitted. Can be used as a port when the external bus read strobe  
output is prohibited.  
48  
49  
50  
51  
RD/P83  
WR0/P84  
WR1/P85  
CLK/P86  
F
F
F
F
External bus write strobe output  
This function is valid in external bus mode. Can be used as a port  
in single-chip mode.  
External bus write strobe output  
This function is valid in external bus mode and with 16-bit buses.  
Can be used as a port in single-chip mode or with external 8-bit  
bus.  
System clock output  
Outputs the same clock frequency as the external bus operation.  
Can be used as a port when it is not otherwise used.  
External interruption request inputs 0 to 3  
These inputs are always used when dealing with external interrup-  
tions is permitted, so output by ports should be stopped except  
when carried out intentionally.  
Can be used to reset standby as input is permitted in this port un-  
der standby status.Can be used as ports when external interrup-  
tion request input is not used.  
53  
54  
55  
56  
INT0/PC0  
INT1/PC1  
INT2/PC2  
INT3/PC3  
H
External interruption request inputs 4 to 7  
These inputs are always used when dealing with external interrup-  
tions is permitted, so output by ports should be stopped except  
when carried out intentionally. Can be used to reset standby as in-  
put is permitted in these ports under standby status.  
57  
58  
59  
60  
AIN0/INT4/PC4  
BIN0/INT5/PC5  
AIN1/INT6/PC6  
BIN1/INT7/PC7  
H
[ AIN, BIN ] Up/down timer input  
This input is always used when input is permitted, so output by  
ports should be stopped except when carried out intentionally.  
Can be used as a port when external interruption request input and  
up/down timer input are not used.  
(Continued)  
12  
MB91133/MB91F133  
Circuit  
type  
Pin No.  
Pin name  
Function  
External interruption request inputs 8 to 15  
These inputs are always used when dealing with external interrup-  
tions is permitted, so output by ports should be stopped except  
when carried out intentionally.  
61  
62  
63  
64  
65  
66  
67  
68  
TRG0/INT8/PD0  
TRG1/INT9/PD1  
TRG2/INT10/PD2  
TRG3/INT11/PD3  
TRG4/INT12/PD4  
TRG5/INT13/PD5  
DEOP2/INT14/PD6  
ATG/INT15/PD7  
[ TRG0 to 5 ] These are external trigger inputs for PPG timers.  
[ DEOP2 ] DMA external transfer termination output  
This function is valid when external transfer termination output  
specification of the DMA controller is permitted.  
O
[ ATG ] A/D converter external trigger input  
These inputs are always used when they are selected as A/D initi-  
ation factors, so output by ports should be stopped except when  
carried out intentionally. Can be used as ports when not otherwise  
used.  
Up/down timer input  
69  
70  
ZIN0/PE0  
ZIN1/PE1  
These inputs are always used when input is permitted, so output  
by ports should be stopped except when carried out intentionally.  
Can be used as ports when up/down timer input is not used.  
O
F
71  
72  
73  
74  
IN0/PE2  
IN1/PE3  
IN2/PE4  
IN3/PE5  
Input capture input  
This function is valid when input capture activates input. Can be  
used as ports when input capture input is not used.  
External clock input pin of free-run timer  
Can be used as a port when external clock input of free-run timer  
is not used.  
75  
76  
FRCK/PE6  
DTTI/PE7  
F
F
RTOn pin level fixed input  
Invalid when input is permitted in the waveform generation area.  
Can be used as a port when RTOn pin level fixed input is not used.  
77  
78  
79  
80  
81  
82  
83  
84  
RTO0/PF0  
RTO1/PF1  
RTO2/PF2  
RTO3/PF3  
RTO4/PF4  
RTO5/PF5  
RTO6/PF6  
RTO7/PF7  
Output compare event pins/waveform output pins in the  
waveform generation area  
Can be used as ports when specification of the output compare  
event pin/waveform output pin of the waveform generation area is  
prohibited.  
F
F
85  
86  
87  
88  
89  
90  
PPG0/PG0  
PPG1/PG1  
PPG2/PG2  
PPG3/PG3  
PPG4/PG4  
PPG5/PG5  
PPG timer output  
This function is valid when output specification of the PPG timer is  
permitted. Can be used as ports when output specification of the  
PPG timer is prohibited.  
111  
110  
109  
DA0  
DA1  
DA2  
D/A converter output  
This function is valid when output specification of the D/A converter  
is permitted.  
(Continued)  
13  
MB91133/MB91F133  
Circuit  
type  
Pin No.  
Pin name  
Function  
UART0 data input  
This input is always used when UART0 activates input, so output  
by ports should be stopped except when carried out intentionally.  
Can be used as a port when UART0 data input is not used.  
107  
SIN0/PH0  
P
UART0 data output  
This function is valid when UART0 data output specification is per-  
mitted. Can be used as a port when UART0 data output specifica-  
tion is prohibited.  
106  
105  
104  
103  
102  
101  
100  
99  
SOT0/PH1  
SCK0/PH2  
SIN1/PI0  
P
P
P
P
P
P
P
P
P
P
UART0 clock input/output  
This function is valid when UART0 clock output specification is per-  
mitted. Can be used as a port when UART0 clock output specifi-  
cation is prohibited.  
UART1 data input  
This input is always used when UART1 activates input, so output  
by ports should be stopped except when carried out intentionally.  
Can be used as a port when UART1 data input is not used.  
UART1 data output  
This function is valid when UART1 data output specification is per-  
mitted. Can be used as a port when UART1 data output specifica-  
tion is prohibited.  
SOT1/PI1  
SCK1/PI2  
SIN2/PI3  
UART1 clock input/output  
This function is valid when UART1 clock output specification is per-  
mitted. Can be used as a port when UART1 clock output specifi-  
cation is prohibited.  
UART2 data input  
This input is always used when UART2 activates input, so output  
by ports should be stopped except when carried out intentionally.  
Can be used as a port when UART2 data input is not used.  
UART2 data output  
This function is valid when UART2 data output specification is per-  
mitted. Can be used as a port when UART2 data output specifica-  
tion is prohibited.  
SOT2/PI4  
SCK2/PI5  
SIN3/PJ0  
SOT3/PJ1  
UART2 clock input/output  
This function is valid when UART2 clock output specification is per-  
mitted. Can be used as a port when UART2 clock output specifi-  
cation is prohibited.  
UART3 data input  
This input is always used when UART3 activates input, so output  
by ports should be stopped except when carried out intentionally.  
Can be used as a port when UART3 data input is not used.  
98  
UART3 data output  
This function is valid when UART3 data output specification is per-  
mitted. Can be used as a port when UART3 data output specifica-  
tion is prohibited.  
97  
(Continued)  
14  
MB91133/MB91F133  
Circuit  
type  
Pin No.  
Pin name  
Function  
UART3 clock input/output  
This function is valid when UART3 clock output specification is per-  
mitted. Can be used as a port when UART3 clock output specifi-  
cation is prohibited.  
96  
SCK3/PJ2  
P
P
P
P
UART4 data input  
This input is always used when UART4 activates input, so output  
by ports should be stopped except when carried out intentionally.  
Can be used as a port when UART4 data input is not used.  
95  
94  
93  
SIN4/PJ3  
SOT4/PJ4  
SCK4/PJ5  
UART4 data output  
This function is valid when UART4 data output specification is per-  
mitted. Can be used as a port when UART4 data output specifica-  
tion is prohibited.  
UART4 clock input/output  
This function is valid when UART4 clock output specification is per-  
mitted. Can be used as a port when UART4 clock output specifi-  
cation is prohibited.  
118  
119  
120  
121  
122  
123  
124  
125  
AN0/PK0  
AN1/PK1  
AN2/PK2  
AN3/PK3  
AN4/PK4  
A/D converter analog input  
This is valid when the AICK register specification is analog input.  
N
F
[ CMP ] level comparator input  
Can be used as ports when A/D converter analog input is not used.  
AN5/PK5  
AN6/PK6  
CMP/AN7/PK7  
DMA external transfer request input  
This input is always used if selected as the transfer factor for the  
DMA controller, so output by ports should be stopped except when  
carried out intentionally. Can be used as a port when DMA exter-  
nal transfer request input is not used.  
126  
DREQ0/PL0  
DMA external transfer request reception output  
This function is valid when external transfer request reception out-  
put specification of the DMA controller is permitted. Can be used  
as a port when transfer request reception output specification of  
the DMA controller is prohibited.  
127  
128  
129  
DACK0/PL1  
DEOP0/PL2  
DREQ1/PL3  
F
F
F
DMA external transfer termination output  
This function is valid when external transfer termination output  
specification of the DMA controller is permitted.  
DMA external transfer request input  
This input is always used if selected as the transfer factor for the  
DMA controller, so output by ports should be stopped except when  
carried out intentionally. Can be used as a port when DMA exter-  
nal transfer request input is not used.  
(Continued)  
15  
MB91133/MB91F133  
(Continued)  
Circuit  
type  
Pin No.  
Pin name  
Function  
DMA external transfer request reception output  
This function is valid when external transfer request reception out-  
put specification of the DMA controller is permitted. Can be used  
as a port when transfer request reception output specification of  
the DMA controller is prohibited.  
130  
DACK1/PL4  
F
DMA external transfer termination output  
131  
132  
DEOP1/PL5  
DREQ2/PL6  
F
F
This function is valid when external transfer termination output  
specification of the DMA controller is permitted.  
DMA external transfer request input  
This input is always used if selected as the transfer factor for the  
DMA controller, so output by ports should be stopped except when  
carried out intentionally. Can be used as a port when DMA exter-  
nal transfer request input is not used.  
DMA external transfer request reception output  
This function is valid when external transfer request reception out-  
put specification of the DMA controller is permitted. Can be used  
as a port when transfer request reception output specification of  
the DMA controller is prohibited.  
133  
134  
DACK2/PL7  
RST  
F
B
K
External reset input  
136  
137  
X0A  
X1A  
Oscillation pin for low-speed clock (32 kHz)  
139  
140  
X0  
X1  
A
Oscillation pin for high-speed clock (16.5 MHz)  
142  
143  
144  
MD0  
MD1  
MD2  
Mode pins  
G
Basic MCU operation mode is set by these pins. They should be  
directly connected to VCC or VSS for use.  
112  
113  
114  
DAVS  
DAVC  
AVCC  
Ground pin of D/A converter (connected to analog ground)  
Power pin of D/A converter  
Power pin for A/D converter  
Reference voltage pin for A/D converter (high electric poten-  
tial side)  
When this pin is turned on/off, AVRH or more electric potential  
must be supplied to VCC.  
115  
AVRH  
Reference voltage pin for A/D converter (low electric potential  
side)  
116  
117  
AVRL  
AVSS  
VCC5  
Ground pin for A/D converter (connected to analog ground)  
5 V power of digital circuit  
Power must be connected to all VCC5 pins for use.  
27, 108  
44, 92  
138  
3 V power of digital circuit  
Power must be connected to all VCC3 pins for use.  
VCC3  
9, 26, 52,  
91, 135,  
141  
VSS  
Ground level of digital circuit  
Note : In most of the above pins, the input/output of the I/O ports and resources are multiplexed, such as xxxx/Pxx.  
If the output from ports and resources of those pins compete with each other, the resource is given priority.  
16  
MB91133/MB91F133  
INPUT/OUTPUT CIRCUIT TYPES  
Type  
Circuit  
Remarks  
• High-speed oscillation circuit  
(16.5 MHz)  
X1  
X0  
Xout  
Oscillation feedback resistance  
= approximately 1 MΩ  
A
3 V CMOS level input  
Standby control signal  
• With pull up resistance  
CMOS level input  
Pull-up resistance value  
= approximately 25 k(Typ.)  
B
C
F
Digital input  
• CMOS level input/output pin  
Pout  
Nout  
CMOS level output  
CMOS level input  
(with standby control)  
IOL = 4 mA  
R
CMOS input  
Standby control  
• CMOS hysteresis input/output pin  
CMOS level output  
CMOS hysteresis input  
(with standby control)  
Pout  
Nout  
IOL = 4 mA  
R
Hysteresis input  
Standby control  
(Continued)  
17  
MB91133/MB91F133  
Type  
Circuit  
Remarks  
• CMOS level input pin  
CMOS level input  
(without standby control)  
G
IOL = 4 mA  
R
Digital input  
• CMOS hysteresis input/output pin  
with pull- up control  
Pull-up control  
Pout  
R
CMOS level output  
CMOS hysteresis input  
(without standby control)  
Pull-up resistance value  
= approximately 50 k(Typ.)  
H
Nout  
R
Hysteresis input  
IOL = 4 mA  
• Clock oscillation circuit (32 kHz)  
X1A  
X0A  
Oscillation feedback resistance  
= approximately 4.5 M/3 V  
3 V CMOS level input  
Xout  
K
Standby control signal  
• Analog/CMOS level input/output pin  
CMOS level output  
CMOS level input  
(with standby control)  
Analog input  
Pout  
Nout  
N
(Analog input is valid when bit dealt  
by AIC is “1”.)  
R
CMOS input  
IOL = 4 mA  
Standby control  
Analog input  
(Continued)  
18  
MB91133/MB91F133  
(Continued)  
Type  
Circuit  
Remarks  
• CMOS hysteresis input/output pin  
with pull-up control  
Pull-up control  
Pout  
R
CMOS level output  
CMOS hysteresis input  
(with standby control)  
Pull-up resistance value  
= approximately 50 k(Typ.)  
O
Nout  
R
Hysteresis input  
Standby control  
IOL = 4 mA  
• CMOS hysteresis input/output pin  
with pull-up control  
Pull-up control  
Open-drain control  
CMOS level output  
R
(with open-drain control)  
CMOS hysteresis input  
(with standby control)  
Pull-up resistance value  
= approximately 50 k(Typ)  
P
Nout  
R
Hysteresis input  
Standby control  
IOL = 4 mA  
19  
MB91133/MB91F133  
HANDLING DEVICES  
1. Points to Note on Handling Devices  
(1) Latch-up prevention  
Latch-up may occur by CMOS IC if a voltage in excess of VCC5 or lower than VSS is applied to the input/output  
pins, or if the voltage exceeds the rating between VCC5 and VSS. If latch-up occurs, the electrical current increases  
significantly and may destroy certain components due to excessive heat, so great care must be taken to ensure  
that the maximum rating is not exceeded during use.  
(2) Handling Pins  
Handling unused pins  
Input pins that are not used should be pulled up or down as they may cause erroneous operations if left open.  
Handling N.C. pins  
N.C. pins must be opened for use.  
Handling output pins  
Excessive electric current may flow if the output pin is shorted by the power source or other output pins, or  
connected to large loads. If such status is prolonged, the device is liable to be damaged, so great care must  
be taken to ensure that the usage volume does not exceed the maximum rating.  
Mode pins (MD0 to MD2)  
Those pins must be directly connected to VCC5 or VSS for use.  
Pattern lengths between VCC5 or VSS and each mode pin on the printed-circuit board should be arranged to  
be as short as possible to prevent the test mode from being erroneously turned on due to noise, and they  
should be connected with low impedance.  
Power pins  
When there are a number of VCC5/VCC3/VSS, those whose electrical potential must be the same within the  
device are connected to prevent erroneous operation such as latch-up for device design purposes, but those  
must be externally connected to a power source and earthed to follow the general output current standard and  
prevent erroneous operation of strobe signals due to increased ground level and reduction in unnecessary  
radiation.  
Care must also be taken to ensure that they are connected to the VCC5/VSS or VCC3/VSS of this device at the  
lowest possible impedance from the source of the electrical current supply.  
Furthermore, it is recommended that a ceramic capacitor of around 0.1 µF be used to connect the VCC5 and  
VSS, or VCC3 and VSS near the device as a bypass capacitor.  
Crystal oscillation circuits  
Noise near the X0, X1, X0A or X1A pins can cause erroneous operation. The printed-circuit board must be  
designed so that the X0, X1, X0A and X1A pins, crystal oscillator (or ceramic oscillator) and bypass capacitor  
to the ground can be arranged as close as possible.  
Also, a printed-circuit board with grounded artwork enclosing the X0, X1, X0A and X1A pins is strongly  
recommended to ensure stable operation.  
20  
MB91133/MB91F133  
(3) Points to note on usage  
External reset input  
“L” level should be input to the RST pin, which is required for at least five machine cycles to ensure that the  
internal status is reset.  
Oscillation pin  
Oscillation pin is 3 V CMOS input level.  
External clock  
Use with an external clock is prohibited. A crystal (or ceramic) oscillator should be used.  
Analog Power  
The AVCC should always be used at the same electric potential as VCC5. If the VCC5 is larger than the AVCC,  
electricity may flow through pins AN 0 to AN 7.  
Points to note for using level comparator  
When the level comparator is used, a reference current (IR) flows even though it is stopped. The stop mode  
must be turned on after prohibiting action of the level comparator.  
2. Points to Note on Turning On Power  
RST pin handling  
The RST pin must be started from “L” level when the power is turned on, and when the power is adjusted to  
the VDD level, it should be changed to the “H” level after being left on for at least 5 cycles of the internal operation  
clock.  
Original oscillation input  
The clock must be input until the waiting status for oscillation stability is reset in the event that power is turned on.  
Power on reset  
“Power on reset” must be executed if power is turned on, but the power voltage falls below the guaranteed  
operating temperature and power is turned on again.  
Order for turning on power  
Power should be turned on in the following order.  
VCC3 VCC5 AVCC AVRH  
The opposite order should be used when turning off.  
21  
MB91133/MB91F133  
BLOCK DIAGRAM  
SIN0 to SIN4  
SOT0 to SOT4  
SCK0 to SCK4  
FR30 CPU  
15  
UART × 5 ch  
RAM 6 Kbyte  
DREQ0 toDREQ 2  
DACK0 toDACK 2  
DEOP0 to DEOP2  
DMAC 8 ch  
Reload timer × 5 ch  
9
Resource Bus  
Controller  
DA0 toDA2  
DAVC, DAVS  
8 bit 3 output D/A converter  
5
PPG0 to PPG5  
TRG0 to TRG5  
Bus Converter  
6
6
A23 to A00  
RAM 2 Kbyte  
D31 to D16  
16 bit PPG × 6 ch  
Multi-Function  
Timer  
RD  
WR1, WR0  
RDY  
BRQ  
ROM 254 Kbyte  
IN0 to IN3  
FRCK  
BGRNT  
CLK  
4
16 bit ICU × 4 ch  
47  
Interrupt Controller  
16 bit FRT  
X0, X1, X0A, X1A  
RST  
Clock Generator  
RTO0 (U)  
RTO1 (X)  
RTO2 (V)  
RTO3 (Y)  
RTO4 (W)  
RTO5 (Z)  
RTO6  
MD0 to MD2  
8
6
AIN0, 1  
BIN0, 1  
ZIN0, 1  
Up/Down counter × 2 ch  
24 ch external interrupt  
16 bit OCU × 8 ch  
RTO7  
DTTI  
INT0 to INT23 ( )  
24  
AN0 to AN7  
AVRH, AVRL  
AVCC, AVSS  
Waveform Generator  
10 bit 8 input A/D converter  
12  
CMP (AN7)  
level comparator  
* : INT23 to INT16 share pins with A23 to A16  
* : INT15 shares pins with ATG  
* : INT14 shares pins with DEOP2  
* : INT13 to INT8 share pins with TRG5 to TRG0  
* : INT7 to INT4 share pins with AIN0, BIN0, AIN1 and BIN1  
The total number of above pins is 133. The remainder (144 133 = 11 pins) are VCC5 , VCC3 and VSS.  
22  
MB91133/MB91F133  
CPU  
1. Memory Space  
The FR series has 4 Gbytes (232 addresses) of logic address space which the CPU accesses linearly.  
Memory Map  
External ROM  
external bus mode  
Internal ROM  
external bus mode  
Single-chip mode  
I/O  
0000 0000H  
0000 0400H  
Direct  
Madressing  
area  
I/O  
I/O  
I/O  
I/O  
Refer to "I/O MAP"  
I/O  
0000 0800H  
Access is  
prohibited  
Access is  
prohibited  
Access is  
prohibited  
0000 1000H  
0000 2800H  
Built-in RAM 6 KB  
Built-in RAM 6 KB  
Built-in RAM 6 KB  
Access is  
prohibited  
Access is  
prohibited  
Access is  
prohibited  
0001 0000H  
0001 0000H  
000C 0000H  
Access is  
prohibited  
External area  
External area  
Built-in RAM 2KB  
Built-in RAM 2KB  
000C 0800H  
010 0000H  
Built-in ROM  
254KB  
Built-in ROM  
254KB  
Access is  
prohibited  
External area  
FFFF FFFFH  
FFFF FFFFH  
* : It is impossible to access the external area on single-chip mode. When accessing the external area, select the  
internal ROM external bus mode.  
23  
MB91133/MB91F133  
2. Registers  
There are two types of multi-purpose registers in the FR family. One is a dedicated purpose register that exists  
within the CPU and the other is a multi-purpose register that exists in the memory.  
Dedicated Registers  
Program Counter (PC)  
: 32-bit length; indicates instruction storage position.  
Program Status (PS)  
: 32-bit length; stores register pointers and condition codes.  
Table Base Register (TBR)  
: Holds the starting address of the vector table to be used for Exception,  
Interruption and Trapping (EIT) .  
Return Pointer (RP)  
: Holds the address to return to from the sub-routine.  
System Stuck Pointer (SSP) : Indicates the system stuck position.  
User Stuck Pointer (USP)  
Multiplication and Division  
: Indicates the user’s stuck position.  
Results Resister (MDH/MDL) : 32-bit length; act as registers for multiplication and division.  
32 bit  
Initial values  
Program Counter  
XXXX XXXXH (Undecided)  
PC  
PS  
Program Status  
TBR  
RP  
Table Base Register  
Return Pointer  
000F FC00H  
XXXX XXXXH (Undecided)  
0000 0000H  
SSP  
USP  
System Stuck Pointer  
User Stuck Pointer  
XXXX XXXXH (Undecided)  
MDH  
MDL  
XXXX XXXXH (Undecided)  
XXXX XXXXH (Undecided)  
Multiplication and  
Division Results Resister  
Program Status (PS)  
PS is the register that holds the program status and is classified into three categories, namely, Condition Code  
Register (CCR) , System Condition Code Register (SCR) and Interruption Level Master Register (ILM) .  
31 20 19 18 17 16  
ILM4 ILM3 ILM2 ILM1 ILM0  
10  
9
8
T
7
6
5
4
I
3
2
Z
1
0
PS  
D1 D0  
S
N
V
C
ILM  
SCR  
CCR  
24  
MB91133/MB91F133  
Condition Code Register (CCR)  
S flag : Specifies the stuck pointer to be used as R15.  
I flag : Controls permission and prohibition of user interruption requests.  
N flag : Indicates codes when computation results are defined as integers that are expressed in comple-  
ments of 2.  
Z flag : Indicates whether or not a result of the computation is “0” .  
V flag : Operands used for computation are defined as integers expressed in complements of 2, and indi-  
cate whether or not an overflow is generated as a result of the computation.  
C flag : Indicates whether carrying or borrowing is generated from the highest bit as a result of the compu-  
tation.  
System Condition Code Register (SCR)  
T flag : Specifies whether or not the step trace trap will be valid.  
Interruption Level Mask Register (ILM)  
ILM4 to ILM0 : Holds the interruption level mask values, and those values that are held by the ILM are used  
for the level mask. Interruption requests can be accepted only when the interruption levels  
handled within the interruption requests to be input into the CPU are stronger than the levels  
shown by the ILM.  
ILM4  
ILM3  
ILM2  
ILM1  
ILM0  
Interruption level Strength  
0
0
0
0
0
0
Strong  
0
1
1
1
0
1
0
1
0
1
15  
31  
Weak  
25  
MB91133/MB91F133  
MULTI-PURPOSE REGISTERS  
The multi-purpose registers are CPU registers R0 to R15 which are used as accumulators for various compu-  
tations and memory access pointers (fields that indicate the address) .  
Register bank configuration  
32-bit  
Initial value  
R0  
R1  
XXXX XXXXH  
R12  
R13  
R14  
R15  
AC (Accumulator)  
FP (Frame Pointer)  
SP (Stack Pointer)  
XXXX XXXXH  
0000 0000H  
Special purposes are assumed for the following 3 of the 16 registers. Thus, some instructions are emphasized.  
R13 : Virtual accumulator (AC)  
R14 : Frame Pointer (FP)  
R15 : Stack Pointer (SP)  
Initial values for R0 to R14 on resetting are unspecified. The initial value of R15 will be 0000 0000H (SSP value) .  
26  
MB91133/MB91F133  
MODE SETTING  
1. Pins  
Mode pins and set mode  
Mode pins  
Reset vector  
access areas  
External data  
Bus modes  
bus width  
Mode name  
MD2 MD1 MD0  
0
0
0
0
1
0
0
1
1
0
1
0
1
External vector mode 0  
External vector mode 1  
External  
External  
8-bit  
External ROM external  
bus mode  
16-bit  
Setting is prohibited  
Internal vector mode  
Internal  
(Mode register) Single chip mode  
Usage is prohibited  
2. Register  
Mode register (MODR) and set mode  
Address  
Initial value Access  
0000 07FFH  
XXXX XXXXB  
W
M1  
M0  
*
*
*
*
*
*
Bus mode set bit  
W : Write only  
X : Undecided  
*
: “0” should always be written for bits other than M1 and M0.  
Bus mode set bit and its functions  
M1  
0
M0  
0
Functions  
Remarks  
Single chip mode  
0
1
Internal ROM external bus mode  
External ROM external bus mode  
1
0
1
1
Setting is prohibited  
27  
MB91133/MB91F133  
I/O MAP  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
PDR3  
(R/W)  
PDR2  
XXXXXXXX  
PDR6 (R/W)  
XXXXXXXX  
(R/W)  
000000H  
000004H  
000008H  
00000CH  
000010H  
000014H  
000018H  
00001CH  
000020H  
000024H  
000028H  
00002CH  
000030H  
000034H  
000038H  
00003CH  
000040H  
XXXXXXXX  
PDR5  
(R/W)  
PDR4  
XXXXXXXX  
PDR8 (R/W)  
-XXXXXXX  
(R/W)  
XXXXXXXX  
Port Data  
Register  
PDRF  
XXXXXXXX  
PDRJ (R/W)  
-- XXXXXX  
LVLC (R/W)  
XXXX0 0 0 0  
SSR0 (R/W)  
0 0 0 0 1 - 0 0  
SSR1  
0 0 0 0 1 - 0 0  
(R/W)  
PDRE  
XXXXXXXX  
PDRI (R/W)  
(R/W)  
PDRD  
XXXXXXXX  
PDRH (R/W)  
- -- -- XXX  
PDRL (R/W)  
XXXXXXXX  
SCR0 (R/W)  
0 0 0 0 0 1 0 0  
(R/W)  
PDRC  
XXXXXXXX  
PDRG (R/W)  
-- XXXXXX  
PDRK (R/W)  
XXXXXXXX  
SMR0 (R/W)  
0 0 0 0 0- 0 0  
(R/W)  
- -XXXXXX  
Level Comparator  
UART0  
SIDR0/SODR0 (R/W)  
XXXXXXXX  
(R/W) SIDR1/SODR1 (R/W) SCR1  
(R/W)  
SMR1  
(R/W)  
UART1  
XXXXXXXX  
SIDR2/SODR2 (R/W)  
XXXXXXXX  
(W)  
0 0 0 0 0 1 0 0  
0 0 0 0 0- 0 0  
SSR2  
(R/W)  
SCR2  
(R/W)  
SMR2  
(R/W)  
UART2  
0 0 0 0 1 - 0 0  
TMRLR  
0 0 0 0 0 1 0 0  
TMR  
0 0 0 0 0- 0 0  
(R)  
XXXXXXXX XXXXXXXX  
XXXXXXXX XXXXXXXX  
Reload Timer 0  
Reload Timer 1  
TMCSR  
(R/W)  
-- -- 00 0 0 0 0 0 0 0 0 0 0  
TMR (R)  
XXXXXXXX XXXXXXXX  
TMCSR (R/W)  
-- -- 00 0 0 0 0 0 0 0 0 0 0  
ADCS1 (R/W) ADCS0 (R/W)  
TMRLR  
(W)  
XXXXXXXX XXXXXXXX  
ADCR  
0 0 1 0 1 -XX XXXXXXXX  
TMRLR (W)  
XXXXXXXX XXXXXXXX  
(R/W)  
A/D Converter  
(Sequential type)  
0 0 0 0 0 0 0 0  
TMR  
0 0 0 0 0 0 0 0  
(R)  
XXXXXXXX XXXXXXXX  
Reload Timer 2  
(Continued)  
TMCSR  
(R/W)  
-- -- 00 0 0 0 0 0 0 0 0 0 0  
28  
MB91133/MB91F133  
Register  
Address  
000044H  
000048H  
00004CH  
000050H  
000054H  
000058H  
00005CH  
000060H  
000064H  
000068H  
00006CH  
000070H  
000074H  
000078H  
00007CH  
000080H  
Block  
+0  
+1  
+2  
+3  
IPCP1  
(R)  
IPCP0  
(R)  
XXXXXXXX XXXXXXXX  
IPCP3 (R)  
XXXXXXXX XXXXXXXX  
IPCP2 (R)  
XXXXXXXX XXXXXXXX  
16-bit ICU  
Reserved  
XXXXXXXX XXXXXXXX  
ICS23  
(R/W)  
ICS01  
(R/W)  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
OCCP1  
XXXXXXXX XXXXXXXX  
OCCP3 (R/W)  
XXXXXXXX XXXXXXXX  
OCCP5 (R/W)  
XXXXXXXX XXXXXXXX  
OCCP7 (R/W)  
XXXXXXXX XXXXXXXX  
OCS32 (R/W)  
XXX 0 0 0 0 0 0 0 0 0 XX 0 0  
OCS76 (R/W)  
XXX 0 0 0 0 0 0 0 0 0 XX 0 0  
TCDT (R/W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
SIDR3/SODR3 (R/W)  
(R/W)  
OCCP0  
(R/W)  
XXXXXXXX XXXXXXXX  
OCCP2 (R/W)  
XXXXXXXX XXXXXXXX  
OCCP4 (R/W)  
XXXXXXXX XXXXXXXX  
OCCP6 (R/W)  
XXXXXXXX XXXXXXXX  
OCS10 (R/W)  
XXX 0 0 0 0 0 0 0 0 0 XX 0 0  
OCS54 (R/W)  
XXX 0 0 0 0 0 0 0 0 0 XX 0 0  
TCCS (R/W)  
0- -- -- -- 0 0 0 0 0 0 0 0  
(R/W) SMR3 (R/W)  
0 0 0 0 0 1 0 0 0 0 0 0 0- 0 0  
SCR4 (R/W)  
0 0 0 0 0 1 0 0  
16-bit OCU  
16-bit  
Free-run Timer  
SSR3  
0 0 0 0 1 0 00  
SSR4 (R/W)  
0 0 0 0 1 0 00  
(R/W)  
SCR3  
UART3  
UART4  
XXXXXXXX  
SIDR4/SODR4 (R/W)  
XXXXXXXX  
SMR4  
(R/W)  
0 0 0 0 0- 0 0  
CDCR1  
(R/W)  
CDCR0  
(R/W)  
0 -- -0 0 0 0  
0 - -- 0 0 0 0  
CDCR3  
(R/W)  
CDCR2  
CDCR4  
(R/W)  
Communication  
Pre-scalar  
0 -- -0 0 0 0  
0 - -- 0 0 0 0  
(R/W)  
0 - -- 0 0 0 0  
(Continued)  
29  
MB91133/MB91F133  
Register  
Address  
Block  
+0  
+1  
+2  
UDCR1  
0 0 0 0 0 0 0 0  
+3  
UDCR0  
0 0 0 0 0 0 0 0  
CSR0 (R/W)  
0 0 0 0 0 0 0 0  
CSR1 (R/W)  
0 0 0 0 0 0 0 0  
RCR1  
(W)  
RCR0  
(W)  
(R)  
(R)  
000084H  
000088H  
00008CH  
000090H  
000094H  
000098H  
00009CH  
0000A0H  
0000A4H  
0000A8H  
0000ACH  
0000B0H  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
(R/W) CCRL0 (R/W)  
CCRH0  
8-/16-bit  
U/D Counter  
0 0 0 0 0 0 0 0  
CCRH1  
-0 0 0 1 0 0 0  
(R/W) CCRL1  
(R/W)  
- 0 0 0 0 0 0 0  
-0 0 0 1 0 0 0  
Reserved  
EIRR0  
(R/W) ENIR0  
(R/W) EIRR1  
(R/W) ENIR1  
(R/W)  
0 0 0 0 0 0 0 0  
(R/W)  
0 0 0 0 0 0 0 0  
ELVR0  
0 0 0 0 0 0 0 0  
(R/W)  
0 0 0 0 0 0 0 0  
ELVR1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
EIRR2 (R/W) ENIR2 (R/W)  
0 0 0 0 0 0 0 0  
ELVR2  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Ext Int  
0 0 0 0 0 0 0 0  
(R/W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
DACR2  
(R/W) DACR1  
(R/W) DACR0  
- -- -- -- 0 - -- -- -- 0  
(R/W) DADR0  
XXXXXXXX  
(R/W)  
-- -- -- -0  
D/A Converter  
DADR2  
XXXXXXXX  
(R/W) TMRR1 (R/W) DTCR0  
0 0 0 0 0 0 0 0 XXXXXXXX  
SIGCR (R/W) DTCR2  
0 0 0 0 0 0 0 0  
(R/W) DADR1  
(R/W)  
(R/W)  
XXXXXXXX  
DTCR1  
(R/W) TMRR0  
0 0 0 0 0 0 0 0  
XXXXXXXX  
Waveform  
Generator  
(R/W) TMRR2  
(R/W)  
0 0 0 0 0 0 0 0  
XXXXXXXX  
0000B4H  
to  
Reserved  
0000BCH  
PCRE  
(R/W)  
(R/W)  
PCRD  
(R/W)  
PCRC  
(R/W)  
0000C0H  
0000C4H  
0000C8H  
0000CCH  
- -- -- -0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
Pull-up Control  
PCRJ  
- -0 0 0 0 0 0  
OCRJ (R/W)  
- -0 0 0 0 0 0  
(R/W)  
PCRI  
PCRH  
(R/W)  
(R/W)  
- -0 0 0 0 0 0  
OCRI (R/W) OCRH  
- -0 0 0 0 0 0  
-- -- -0 0 0  
Open-drain Control  
-- -- -0 0 0  
AICK  
(R/W)  
Analog  
Input Control  
0 0 0 0 0 0 0 0  
(Continued)  
30  
MB91133/MB91F133  
Register  
Address  
0000D0H  
0000D4H  
0000D8H  
0000DCH  
0000E0H  
0000E4H  
0000E8H  
0000ECH  
0000F0H  
0000F4H  
0000F8H  
0000FCH  
000100H  
000104H  
000108H  
00010CH  
Block  
+0  
+1  
+2  
+3  
DDRF  
0 0 0 0 0 0 0 0  
DDRJ (R/W)  
- -0 0 0 0 0 0  
(R/W)  
DDRE  
0 0 0 0 0 0 0 0  
DDRI (R/W)  
(R/W)  
DDRD  
0 0 0 0 0 0 0 0  
DDRH  
-- -- -0 0 0  
DDRL (R/W)  
(R/W)  
DDRC  
(R/W)  
0 0 0 0 0 0 0 0  
(R/W)  
(R/W) DDRG  
Data Direction  
Register  
- -0 0 0 0 0 0  
-- 0 0 0 0 0 0  
DDRK  
0 0 0 0 0 0 0 0  
GCN2 (R/W)  
(R/W)  
0 0 0 0 0 0 0 0  
PCSR0  
GCN1  
(R/W)  
PPG ctl  
PPG0  
0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0  
PTMR0 (R)  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
PDUT0 (W)  
XXXXXXXX XXXXXXXX  
PTMR1 (R)  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
PDUT1 (W)  
XXXXXXXX XXXXXXXX  
PTMR2 (R)  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
PDUT2 (W)  
XXXXXXXX XXXXXXXX  
PTMR3 (R)  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
PDUT3 (W)  
XXXXXXXX XXXXXXXX  
PTMR4 (R)  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
PDUT4 (W)  
XXXXXXXX XXXXXXXX  
PTMR5 (R)  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
PDUT5 (W)  
XXXXXXXX XXXXXXXX  
0 0 0 0 0 0 0 0  
(W)  
XXXXXXXX XXXXXXXX  
PCNH0  
(R/W) PCNL0  
(R/W)  
0 0 0 0 0 0 0 0  
(W)  
0 0 0 0 0 0 0 -  
PCSR1  
XXXXXXXX XXXXXXXX  
PPG1  
PPG2  
PPG3  
PPG4  
PPG5  
PCNH1  
(R/W) PCNL1  
(R/W)  
0 0 0 0 0 0 0 0  
(W)  
0 0 0 0 0 0 0 -  
PCSR2  
XXXXXXXX XXXXXXXX  
PCNH2  
(R/W) PCNL2  
(R/W)  
0 0 0 0 0 0 0 0  
(W)  
0 0 0 0 0 0 0 -  
PCSR3  
XXXXXXXX XXXXXXXX  
PCNH3  
(R/W) PCNL3  
(R/W)  
0 0 0 0 0 0 0 0  
(W)  
0 0 0 0 0 0 0 -  
PCSR4  
XXXXXXXX XXXXXXXX  
PCNH4  
(R/W) PCNL4  
(R/W)  
0 0 0 0 0 0 0 0  
(W)  
0 0 0 0 0 0 0 -  
PCSR5  
XXXXXXXX XXXXXXXX  
PCNH5  
(R/W) PCNL5  
(R/W)  
0 0 0 0 0 0 0 -  
0 0 0 0 0 0 0 0  
(Continued)  
31  
MB91133/MB91F133  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
TMRLR  
(W)  
TMR  
(R)  
000110H  
000114H  
000118H  
00011CH  
XXXXXXXX XXXXXXXX  
XXXXXXXX XXXXXXXX  
TMCSR (R/W)  
- -- -0 0 0 0 0 0 0 0 0 0 0 0  
TMR (R)  
XXXXXXXX XXXXXXXX  
TMCSR (R/W)  
- -- -0 0 0 0 0 0 0 0 0 0 0 0  
Reload Timer 3  
TMRLR  
(W)  
XXXXXXXX XXXXXXXX  
Reload Timer 4  
Reserved  
000120H  
to  
0001FCH  
DPDP  
(R/W)  
000200H  
000204H  
000208H  
00020CH  
-- -- -- -- - - -- -- -- - -- -- -- - -0 0 0 0 0 0 0  
DACSR (R/W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
DMAC  
DATCR  
(R/W)  
XXXXXXXX XXXX0 0 0 0 XXXX0 0 0 0 XXXX0 0 0 0  
000210H  
to  
Reserved  
0003ECH  
BSD0  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSD1 (R/W)  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSDC (W)  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSRR (R)  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
(W)  
0003F0H  
0003E4H  
0003F8H  
0003FCH  
000400H  
000404H  
000408H  
Bit Search Module  
ICR00  
(R/W)  
ICR01  
(R/W)  
ICR02  
(R/W)  
ICR03  
(R/W)  
(R/W)  
- - -- 1 1 1 1  
-- -- 1 1 1 1  
-- - -1 1 1 1  
- -- -1 1 1 1  
ICR04  
(R/W)  
ICR05  
(R/W)  
ICR06  
(R/W)  
ICR07  
Interrupt Control  
Unit  
- - -- 1 1 1 1  
-- -- 1 1 1 1  
-- - -1 1 1 1  
- -- -1 1 1 1  
ICR08  
(R/W)  
ICR09  
(R/W)  
ICR10  
(R/W)  
ICR11  
(R/W)  
- - -- 1 1 1 1  
-- -- 1 1 1 1  
-- - -1 1 1 1  
- -- -1 1 1 1  
(Continued)  
32  
MB91133/MB91F133  
Register  
Address  
00040CH  
000410H  
000414H  
000418H  
00041CH  
000420H  
000424H  
000428H  
00042CH  
000430H  
Block  
+0  
+1  
+2  
+3  
ICR12  
- - -- 1 1 1 1  
ICR16 (R/W)  
- - -- 1 1 1 1  
ICR20 (R/W)  
- - -- 1 1 1 1  
ICR24 (R/W)  
- - -- 1 1 1 1  
ICR28 (R/W)  
- - -- 1 1 1 1  
ICR32 (R/W)  
- - -- 1 1 1 1  
ICR36 (R/W)  
- - -- 1 1 1 1  
ICR40 (R/W)  
- - -- 1 1 1 1  
ICR44 (R/W)  
- - -- 1 1 1 1  
DICR (R/W)  
(R/W)  
ICR13  
-- -- 1 1 1 1  
ICR17 (R/W)  
-- -- 1 1 1 1  
ICR21 (R/W)  
-- -- 1 1 1 1  
ICR25 (R/W)  
-- -- 1 1 1 1  
ICR29 (R/W)  
-- -- 1 1 1 1  
ICR33 (R/W)  
-- -- 1 1 1 1  
ICR37 (R/W)  
-- -- 1 1 1 1  
ICR41 (R/W)  
-- -- 1 1 1 1  
ICR45 (R/W)  
-- -- 1 1 1 1  
HRCL (R/W)  
- -- 1 1 1 1 1  
(R/W)  
ICR14  
-- - -1 1 1 1  
ICR18 (R/W)  
-- - -1 1 1 1  
ICR22 (R/W)  
-- - -1 1 1 1  
ICR26 (R/W)  
-- - -1 1 1 1  
ICR30 (R/W)  
-- - -1 1 1 1  
ICR34 (R/W)  
-- - -1 1 1 1  
ICR38 (R/W)  
-- - -1 1 1 1  
ICR42 (R/W)  
-- - -1 1 1 1  
ICR46 (R/W)  
-- - -1 1 1 1  
(R/W)  
ICR15  
(R/W)  
(R/W)  
- -- -1 1 1 1  
ICR19  
- -- -1 1 1 1  
ICR23  
(R/W)  
(R/W)  
- -- -1 1 1 1  
ICR27  
- -- -1 1 1 1  
ICR31  
(R/W)  
Interrupt Control  
Unit  
- -- -1 1 1 1  
ICR35  
(R/W)  
- -- -1 1 1 1  
ICR39  
(R/W)  
- -- -1 1 1 1  
ICR43  
(R/W)  
- -- -1 1 1 1  
ICR47  
(R/W)  
- -- -1 1 1 1  
Delay Int  
Reserved  
- - -- -- -0  
000434H  
to  
00047CH  
RSRR/WTCR(R/W)  
1 XXXX- 0 0  
STCR  
0 0 0 1 1 1 - -  
WPR (W)  
XXXXXXXX  
(R/W)  
PDRR  
(R/W)  
CTBR  
(W)  
000480H  
000484H  
000488H  
-- - -0 0 0 0  
XXXXXXXX  
Clock Control Unit  
PLL Control  
GCR  
(R/W)  
1 1 0 0 1 1 - 1  
CT  
(R/W)  
0 0 -- 0- 0 0  
00048CH  
to  
Reserved  
0005FCH  
(Continued)  
33  
MB91133/MB91F133  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
DDR3  
(W)  
DDR2  
0 0 0 0 0 0 0 0  
DDR6 (W)  
0 0 0 0 0 0 0 0  
(W)  
000600H  
000604H  
000608H  
00060CH  
000610H  
000614H  
000618H  
00061CH  
000620H  
000624H  
000628H  
00062CH  
000630H  
0 0 0 0 0 0 0 0  
DDR5  
(W)  
DDR4  
0 0 0 0 0 0 0 0  
DDR8 (W)  
(W)  
Data Direction  
Register  
0 0 0 0 0 0 0 0  
- 0 0 0 0 0 0 0  
(W)  
ASR1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
ASR2 (W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
ASR3 (W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1  
ASR4 (W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
ASR5 (W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1  
(W)  
AMR1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
AMR2 (W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
AMR3 (W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
AMR4 (W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
AMR5 (W)  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
(R/W) AMD32 (R/W) AMD4 (R/W)  
0 - -0 0 0 0 0  
T-unit  
AMD0  
(R/W)  
AMD1  
0 -- 0 0 0 0 0  
-- -0 0 1 1 1  
0 0 0 0 0 0 0 0  
AMD5  
(R/W)  
0- -0 0 0 0 0  
EPCR0  
-- -- 1 1 0 0 -1 -- -- --  
(W)  
EPCR1  
(W)  
- - -- -- -- 1 1 1 1 1 1 1 1  
PCR6  
(R/W)  
Pull-up Control  
Reserved  
0 0 0 0 0 0 0 0  
000634H  
to  
0007BCH  
FLCR  
0 0 0 X 0 0 0 0  
FWTC (R/W)  
- -- -- 0 0 0  
(R/W)  
0007C0H  
0007C4H  
FLASH Control  
Reserved  
0007C8H  
to  
0007F8H  
(Continued)  
34  
MB91133/MB91F133  
(Continued)  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
LER  
(W)  
MODR  
(W)  
Little Endian  
Register  
Mode Register  
0007FCH  
-- -- -0 0 0  
XXXXXXXX  
*1 : Do not execute RMW instructions to registers with write-only bits.  
*2 : Do not execute write access to read-only or reserved registers except for particular requests.  
*3 : Data in areas with “-” or reserved ones are unspecified.  
*4 : RMW instructions (RMW : Read / Modify / Write)  
AND  
Rj, @Ri  
OR  
Rj, @Ri  
EOR  
Rj, @Ri  
ANDH Rj, @Ri  
ANDB Rj, @Ri  
BANDL #u4, @Ri  
BANDH #u4, @Ri  
ORH Rj, @Ri  
ORB Rj, @Ri  
BORL #u4, @Ri  
BORH #u4, @Ri  
EORH Rj, @Ri  
EORB Rj, @Ri  
BEORL #u4, @Ri  
BEORH #u4, @Ri  
35  
MB91133/MB91F133  
INTERRUPTION VECTOR  
Causes of MB91130 interruptions and allocation of interruption vectors and interruption control registers are  
described in the interruption vector table.  
Interruption number  
Address *2  
of TBR default  
Interruption  
Interruption sauce  
Offset  
*1  
level  
Decimal Hexadecimal  
Reset  
0
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
3FCH  
3F8H  
3F4H  
3F0H  
3ECH  
3E8H  
3E4H  
3E0H  
3DCH  
3D8H  
3D4H  
3D0H  
3CCH  
3C8H  
3C4H  
3C0H  
3BCH  
3B8H  
3B4H  
3B0H  
3ACH  
3A8H  
3A4H  
3A0H  
39CH  
398H  
394H  
390H  
38CH  
388H  
384H  
000FFFFCH  
000FFFF8H  
000FFFF4H  
000FFFF0H  
000FFFECH  
000FFFE8H  
000FFFE4H  
000FFFE0H  
000FFFDCH  
000FFFD8H  
000FFFD4H  
000FFFD0H  
000FFFCCH  
000FFFC8H  
000FFFC4H  
000FFFC0H  
000FFFBCH  
000FFFB8H  
000FFFB4H  
000FFFB0H  
000FFFACH  
000FFFA8H  
000FFFA4H  
000FFFA0H  
000FFF9CH  
000FFF98H  
000FFF94H  
000FFF90H  
000FFF8CH  
000FFF88H  
System reservation  
1
System reservation  
2
System reservation  
3
System reservation  
4
System reservation  
5
System reservation  
6
System reservation  
7
System reservation  
8
System reservation  
9
System reservation  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
System reservation  
System reservation  
System reservation  
Exceptions to undefined instructions  
System reservation  
External interruption 0  
External interruption 1  
External interruption 2  
External interruption 3  
External interruption 4  
External interruption 5  
External interruption 6  
External interruption 7  
External interruption 8 to 15  
External interruption 16 to 23  
UART0 (Reception completion)  
UART1 (Reception completion)  
UART2 (Reception completion)  
UART3 (Reception completion)  
UART4 (Reception completion)  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
000FFF84H  
(Continued)  
36  
MB91133/MB91F133  
Interruption number  
Address *2  
of TBR default  
Interruption  
Interruption sauce  
Offset  
*1  
level  
Decimal Hexadecimal  
UART0 (Transmission completion)  
UART1 (Transmission completion)  
UART2 (Transmission completion)  
UART3 (Transmission completion)  
UART4 (Transmission completion)  
DMAC (end, error)  
Reload timer 0  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
ICR15  
ICR16  
ICR17  
ICR18  
ICR19  
ICR20  
ICR21  
ICR22  
ICR23  
ICR24  
ICR25  
ICR26  
ICR27  
ICR28  
ICR29  
ICR30  
ICR31  
ICR32  
380H  
37CH  
378H  
374H  
370H  
36CH  
368H  
364H  
360H  
35CH  
358H  
354H  
350H  
34CH  
348H  
344H  
340H  
33CH  
000FFF80H  
000FFF7CH  
000FFF78H  
000FFF74H  
000FFF70H  
000FFF6CH  
000FFF68H  
000FFF64H  
000FFF60H  
000FFF5CH  
000FFF58H  
000FFF54H  
000FFF50H  
000FFF4CH  
000FFF48H  
000FFF44H  
000FFF40H  
000FFF3CH  
Reload timer 1  
Reload timer 2  
Reload timer 3  
Reload timer 4  
A/D (sequential type)  
PPG0  
PPG1  
PPG2  
PPG3  
PPG4/5  
Waveform generator  
U/D counter 0 (compare/  
underflow-overflow, up/down invert)  
49  
50  
31  
32  
ICR33  
ICR34  
338H  
334H  
000FFF38H  
000FFF34H  
U/D counter 1 (compare/  
underflow-overflow, up/down invert)  
ICU0 (load)  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
ICR35  
ICR36  
ICR37  
ICR38  
ICR39  
ICR40  
ICR41  
ICR42  
ICR43  
ICR44  
ICR45  
ICR46  
ICR47  
330H  
32CH  
328H  
324H  
320H  
31CH  
318H  
314H  
310H  
30CH  
308H  
304H  
300H  
000FFF30H  
000FFF2CH  
000FFF28H  
000FFF24H  
000FFF20H  
000FFF1CH  
000FFF18H  
000FFF14  
000FFF10H  
000FFF0CH  
000FFF08H  
000FFF04H  
ICU1 (load)  
ICU2 (load)  
ICU3 (load)  
OCU0 (matched)  
OCU1 (matched)  
OCU2 (matched)  
OCU3 (matched)  
OCU4/5 (matched)  
OCU6/7 (matched)  
Level comparator  
16-bit freerun timer  
Delay interruption factor bit  
000FFF00H  
(Continued)  
37  
MB91133/MB91F133  
(Continued)  
Interruption number  
Decimal Hexadecimal  
Address *2  
of TBR default  
Interruption  
Interruption sauce  
Offset  
*1  
level  
System reservation  
64  
65  
40  
41  
2FCH  
2F8H  
000FFEFCH  
000FFEF8H  
(used under REALOS *3)  
System reservation  
(used under REALOS *3)  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
Used under INT instruction  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
2F4H  
2F0H  
2ECH  
2E8H  
2E4H  
2E0H  
2DCH  
2D8H  
2D4H  
2D0H  
2CCH  
2C8H  
2C4H  
2C0H  
000FFEF4H  
000FFEF0H  
000FFEECH  
000FFEE8H  
000FFEE4H  
000FFEE0H  
000FFEDCH  
000FFED8H  
000FFED4H  
000FFED0H  
000FFECCH  
000FFEC8H  
000FFEC4H  
000FFEC0H  
80  
to  
50  
to  
2BCH  
to  
000FFEBCH  
to  
Used under INT instruction  
255  
FF  
000H  
000FFC00H  
*1 :ICRsetstheinterruptionlevelforeachinterruptionrequestusingtheregisterbuiltintotheinterruptioncontroller.  
ICR is prepared in accordance with each interruption request.  
*2 : TBR is the register that indicates the starting address of the vector table for EIT.  
Addresses with added offset values that are specified per TBR and EIT factor will be the vector addresses.  
*3 : 0X40, 0X41 interruptions for system codes are used in the event that REALOS/FR is used.  
38  
MB91133/MB91F133  
PERIPHERAL RESOURCES  
1. Bus Interface  
The bus interface controls the interface with external memory and external I/O.  
Bus Interface Characteristics  
• 24-bit (16 MB) address output  
• 16/8-bit bus width can be set.  
• Insertion of programmable “automatic memory wait” (maximum of 7 cycles)  
• Supports “little endian” mode  
• Unused addresses / data pins can be used as I/O ports.  
• Clock doubled should be used if the external bus exceeds 25 MHz. Bus speed is 1/2 of the CPU speed.  
Areas  
A total of six types of chip selection areas are prepared for the bus interface. The position of each area can be  
randomly arranged per 64 KB at least using area selection registers (ASR1 to ASR 5) and area mask registers  
(AMR1 to AMR 5) in an area of 4 GB. The area 0 is allocated to space outside the area specified by ASR1 to  
ASR5. External areas other than 00010000H to 0005FFFFH are deemed area 0 on resetting.  
There is no chip selection output pin so no setting is required. Setting it has no effect on usage.  
Figure 4.1-1 shows an example in which areas 1 to 5 are arranged from 00100000H to 0014FFFFH in 64 KB  
units. Also, Figure 4.1-2 shows an example in which area 1 is arranged as 00000000H to 0007FFFFH in 512 KB  
and areas 2 to 5 are arranged as 00100000H to 004FFFFFH in 1-MB units.  
00000000H  
00080000H  
00000000H  
CS1 (512 K)  
CS0 (512 K)  
00080000H  
000FFFFFH  
CS0 (1 Mbyte)  
CS2 (1 Mbyte)  
CS3 (1 Mbyte)  
CS4 (1 Mbyte)  
000FFFFFH  
0010FFFFH  
0011FFFFH  
0012FFFFH  
001FFFFFH  
CS1 (64 Kbyte)  
CS2 (64 Kbyte)  
CS3 (64 Kbyte)  
CS4 (64 Kbyte)  
CS5 (64 Kbyte)  
002FFFFFH  
003FFFFFH  
004FFFFFH  
0013FFFFH  
0014FFFFH  
CS5 (1 Mbyte)  
CS0  
CS0  
Figure 4.1-1  
Area Arrangement Example 1  
Figure 4.1-2  
Area Arrangement Example 2  
39  
MB91133/MB91F133  
Block Diagram  
A - Out  
M
U
X
External  
DATA Bus  
write  
buffer  
switch  
switch  
read  
buffer  
DATA BLOCK  
ADDRESS BLOCK  
+1 or +2  
address  
buffer  
External  
Address Bus  
shifter  
inpage  
CS0 - CS5  
compa-  
rator  
ASR  
AMR  
RD  
WR0. WR1  
External pin control area  
Controls all blocks  
registers  
&
Control  
BRQ  
BGRNT  
RDY  
40  
MB91133/MB91F133  
Register List  
15  
8
7
0
Address  
0000060CH  
0000060EH  
00000610H  
00000612H  
00000614H  
00000616H  
00000618H  
0000061AH  
0000061CH  
0000061EH  
00000620H  
00000622H  
00000624H  
00000626H  
ASR1  
AMR1  
ASR2  
AMR2  
ASR3  
Area Select Register 1  
Area Mask Register 1  
Area Select Register 2  
Area Mask Register 2  
Area Select Register 3  
AMR3  
ASR4  
AMR4  
ASR5  
AMR5  
Area Mask Register 3  
Area Select Register 4  
Area Mask Register 4  
Area Select Register 5  
Area Mask Register 5  
AMD0  
AMD32  
AMD5  
AMD1  
AMD4  
Area Mode Register 0 / Area Mode Register 1  
Area Mode Register 32 / Area Mode Register 4  
Area Mode Register 5  
ReFresh Control Register  
RFCR  
DMCR4  
DMCR5  
DRAM Control Register 4  
DRAM Control Register 4  
0000062CH  
0000062EH  
00000688H  
000007FEH  
EPCR0  
LER  
EPCR1  
MODR  
External Pin Control Register  
Little Endian Register / MODe Register  
Note : Functional pins have not been prepared in the shaded area for MB91133/MB91F133, so these  
registers should not be accessed.  
41  
MB91133/MB91F133  
2. I/O Port  
MB91133/MB91F133 can be used as an I/O port when the setting for resources dealing with each pin does not  
use the pin for input/output.  
As regards the read value of the port (PDR) , the pin level is read out when input is set for the port. If output is  
set, the data register value is read out. This is the same for reading under Read Modify Write.  
If the input setting is changed to output setting, output data should be set first. If Read Modify Write instructions  
(i.e. bit set) are used in this case, the data that is read out is the input data from the pin and is not the latch value  
of the data register, so care must be taken.  
Basic I/O Port Block Diagram  
Data bus  
Resource input  
0
1
PDR read  
pin  
0
PDR  
Resource output  
1
Resource output  
permission  
DDR  
PDR : Port Data Register  
DDR : Data Direction Register  
I/O Port Register  
The I/O port consists of the Port Data Register (PDR) and Port Direction Register (DDR) .  
• In case of input mode (DDR = “0”)  
When PDR reads : Level of external pins handled is read out.  
When PDR writes : Set value is written in PDR.  
• In case of output mode (DDR = “1”)  
When PDR reads : PDR values are read out.  
When PDR writes : PDR values are output to the external pin handled.  
Switching control for resources and ports of the analog pin (A/D)  
• Resources and ports of the analog pin (A/D) are switched using the Analog Input Control register on Port K  
(AICK) .  
This controls whether Port K is used as an analog or general-purpose port.  
0 : General-purpose port  
1 : Analog input (A/D)  
42  
MB91133/MB91F133  
Block Diagram of Input/Output Port (with Pull-up Resistance)  
Data bus  
Resource input  
0
Pull up resistance  
(approximately  
50 k)  
1
PDR read  
pin  
0
PDR  
Resource output  
1
Resource output  
permission  
DDR  
PCR  
PDR : Port Data Register  
DDR : Data Direction Register  
PCR : Pull-up Control Register  
Pull-up resistance control register (PCR) R/W  
Turns pull-up resistance ON/OFF.  
0 : Pull-up resistance turned off  
1 : Pull-up resistance turned on  
Notes : The pull-up resistance control register setting is handled as a priority in stop mode (HIZ = 1) as well.  
Use of the pull-up resistance control function is prohibited when the pin concerned is used as the external  
bus pin. “1” should not be written in this register.  
43  
MB91133/MB91F133  
Block Diagram of Input / Output Port (Open-drain Output Function with Pull-up Resistance)  
Data bus  
Resource input  
0
1
PDR read  
pin  
0
1
PDR  
Resource output  
Resource output  
permission  
DDR  
ODCR  
PCR  
PDR : Port Data Register  
DDR : Data Direction Register  
ODCR : OpenDrain Control Register  
PCR : Pull-up Control Register  
Pull-up resistance control register (PCR) R/W  
Controls pull up resistance ON/OFF.  
0 : Without pull-up resistance  
1 : With pull-up resistance  
Open-drain control register (ODCR) R/W  
Controls open-drain in output mode.  
0 : Standard output port in output mode  
1 : Open-drain output port in output mode  
Notes : This has no meaning in input mode (output Hi-Z) . Input/output mode is decided by the Direction Register  
(DDR) .  
Pull-up resistance control register setting is handled as the priority in stop mode (HIZ = 1) as well.  
Use of both the pull-up resistance control function and open-drain control function are prohibited when the  
pin concerned is used as an external bus pin. “1” should not be written in both registers.  
44  
MB91133/MB91F133  
Port Data Register (PDR)  
PDR2  
Initial value Access  
7
6
5
4
3
2
1
0
Address : 000001H  
XXXXXXXXB R/W  
P27  
P26  
P25  
P24  
P23  
P22  
P21  
P20  
PDR3  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 000000H  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
PDR4  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 000007H  
P47  
P46  
P45  
P44  
P43  
P42  
P41  
P40  
PDR5  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 000006H  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
PDR6  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 000005H  
P67  
P66  
P65  
P64  
P63  
P62  
P61  
P60  
PDR8  
Initial value Access  
- XXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 00000BH  
P86  
P85  
P84  
P83  
P82  
P81  
P80  
PDRC  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 000013H  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
PDRD  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 000012H  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
PDRE  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 000011H  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
PE1  
PE0  
PDRF  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 000010H  
PF7  
PF6  
PF5  
PF4  
PF3  
PF2  
PF1  
PF0  
PDRG  
Initial value Access  
- - XXXXXXB R/W  
7
7
7
7
6
6
6
6
5
4
3
2
1
0
Address : 000017H  
PG5  
PG4  
PG3  
PG2  
PG1  
PG0  
PDRH  
Initial value Access  
- - - - - XXXB R/W  
5
4
3
2
1
0
Address : 000016H  
PH2  
PH1  
PH0  
PDRI  
Initial value Access  
- - XXXXXXB R/W  
5
4
3
2
1
0
Address : 000015H  
PI5  
PI4  
PI3  
PI2  
PI1  
PI0  
PDRJ  
Initial value Access  
- - XXXXXXB R/W  
5
4
3
2
1
0
Address : 000014H  
PJ5  
PJ4  
PJ3  
PJ2  
PJ1  
PJ0  
PDRK  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 00001BH  
PK7  
PK6  
PK5  
PK4  
PK3  
PK2  
PK1  
PK0  
PDRL  
Initial value Access  
XXXXXXXXB R/W  
7
6
5
4
3
2
1
0
Address : 00001AH  
PL7  
PL6  
PL5  
PL4  
PL3  
PL2  
PL1  
PL0  
PDR2 to L are input/output data registers of the I/O port.  
Input/output control is carried out by DDR2 to L that are handled.  
45  
MB91133/MB91F133  
Data Direction Register (DDR)  
DDR2  
Initial value Access  
00000000B  
Initial value Access  
00000000B  
Initial value Access  
00000000B  
Initial value Access  
00000000B  
Initial value Access  
00000000B  
Initial value Access  
- 0000000B  
7
6
5
4
3
2
1
0
Address : 000601H  
W
P27  
P26  
P25  
P24  
P23  
P22  
P21  
P20  
DDR3  
7
6
5
4
3
2
1
0
Address : 000600H  
W
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
DDR4  
7
6
5
4
3
2
1
0
Address : 000607H  
W
P47  
P46  
P45  
P44  
P43  
P42  
P41  
P40  
DDR5  
7
6
5
4
3
2
1
0
Address : 000606H  
W
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
DDR6  
7
6
5
4
3
2
1
0
Address : 000605H  
W
P67  
P66  
P65  
P64  
P63  
P62  
P61  
P60  
DDR8  
7
6
5
4
3
2
1
0
Address : 00060BH  
W
P86  
P85  
P84  
P83  
P82  
P81  
P80  
DDRC  
Initial value Access  
00000000B R/W  
7
6
5
4
3
2
1
0
Address : 0000D3H  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
DDRD  
Initial value Access  
00000000B R/W  
7
6
5
4
3
2
1
0
Address : 0000D2H  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
DDRE  
Initial value Access  
00000000B R/W  
7
6
5
4
3
2
1
0
Address : 0000D1H  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
PE1  
PE0  
DDRF  
Initial value Access  
00000000B R/W  
7
6
5
4
3
2
1
0
Address : 0000D0H  
PF7  
PF6  
PF5  
PF4  
PF3  
PF2  
PF1  
PF0  
DDRG  
Initial value Access  
- - 000000B R/W  
7
7
7
7
6
6
6
6
5
4
3
2
1
0
Address : 0000D7H  
PG5  
PG4  
PG3  
PG2  
PG1  
PG0  
DDRH  
Initial value Access  
- - - - - 000B R/W  
5
4
3
2
1
0
Address : 0000D6H  
PH2  
PH1  
PH0  
DDRI  
Initial value Access  
- - 000000B R/W  
5
4
3
2
1
0
Address : 0000D5H  
PI5  
PI4  
PI3  
PI2  
PI1  
PI0  
DDRJ  
Initial value Access  
- - 000000B R/W  
5
4
3
2
1
0
Address : 0000D4H  
PJ5  
PJ4  
PJ3  
PJ2  
PJ1  
PJ0  
DDRK  
Initial value Access  
00000000B R/W  
7
6
5
4
3
2
1
0
Address : 0000DBH  
PK7  
PK6  
PK5  
PK4  
PK3  
PK2  
PK1  
PK0  
DDRL  
Initial value Access  
00000000B R/W  
7
6
5
4
3
2
1
0
Address : 0000DAH  
PL7  
PL6  
PL5  
PL4  
PL3  
PL2  
PL1  
PL0  
DDR0 to L control input/output direction of the I/O ports handled per bit.  
DDR = 0 : Port input DDR = 1 : Port output “0” must be written into the empty bit.  
46  
MB91133/MB91F133  
Pull up Control Register (PCR)  
PCR6  
Initial value Access  
7
6
5
4
3
2
1
0
Address : 000631H  
00000000B R/W  
P67  
P66  
P65  
P64  
P63  
P62  
P61  
P60  
PCRC  
Initial value Access  
00000000B R/W  
7
6
5
4
3
2
1
0
Address : 0000C3H  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
PCRD  
Initial value Access  
00000000B R/W  
7
6
5
4
3
2
1
0
Address : 0000C2H  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
PCRE  
Initial value Access  
- - - - - - 00B R/W  
7
7
7
7
6
6
6
6
5
5
4
4
3
3
2
1
0
Address : 0000C1H  
PE1  
PE0  
PCRH  
Initial value Access  
- - - - - 000B R/W  
2
1
0
Address : 0000C6H  
PH2  
PH1  
PH0  
PCRI  
Initial value Access  
- - 000000B R/W  
5
4
3
2
1
0
Address : 0000C5H  
PI5  
PI4  
PI3  
PI2  
PI1  
PI0  
PCRJ  
Initial value Access  
- - 000000B R/W  
5
4
3
2
1
0
Address : 0000C4H  
PJ5  
PJ4  
PJ3  
PJ2  
PJ1  
PJ0  
PCR6 to J carry out pull-up resistance control of the I/O ports handled.  
PCR = 0 : Pull-up resistance turned off  
PCR = 1 : Pull-up resistance turned on  
Open-drain Control Register (ODCR)  
OCRH  
Initial value Access  
- - - - - 000B R/W  
7
7
7
6
6
6
5
4
3
2
1
0
Address : 0000CAH  
PH2  
PH1  
PH0  
OCRI  
Initial value Access  
- - 000000B R/W  
5
4
3
2
1
0
Address : 0000C9H  
PI5  
PI4  
PI3  
PI2  
PI1  
PI0  
OCRJ  
Initial value Access  
- - 000000B R/W  
5
4
3
2
1
0
Address : 0000C8H  
PJ5  
PJ4  
PJ3  
PJ2  
PJ1  
PJ0  
OCRH to J carry out open-drain control in output mode of the I/O ports handled.  
OCR = 0 : Standard output port in output mode  
OCR = 1 : Open-drain output port in output mode  
This has no meaning in input mode (output Hi-z) .  
47  
MB91133/MB91F133  
Analog Input Control Register (AICR)  
AICK  
Initial value Access  
00000000B R/W  
7
6
5
4
3
2
1
0
Address : 0000CFH  
PK7  
PK6  
PK5  
PK4  
PK3  
PK2  
PK1  
PK0  
AICK controls each pin of the I/O ports handled as follows.  
AIC = 0 : Analog input mode  
AIC = 1 : Port input mode  
Set to “0” when reset.  
48  
MB91133/MB91F133  
3. 8/16-bit Up/Down Counter / Timer  
8/16-bit up/down counter / timer is configured of event input pins × 6, 8-bit up/down counters × 2, 8-bit reload /  
compare registers × 2 and their control circuits.  
Characteristics of 8/16-bit Up/Down Counter / Timer  
• Counting from (0) d to (256) d is possible using an 8-bit counting register.  
(Counting from (0) d to (65535) d is possible in 16-bit × 1 operation mode.)  
• 4 types of counting mode can be selected by the count clock  
• Selection can be made from two types of internal clock as the count clock in timer mode.  
• Detection edge of the external pin input signals can be selected in up/down count mode.  
• Phase difference count mode is suited to count encoders such as motors. Turning angle and turning number,  
etc., can easily and accurately be counted by separately inputting phase A, B and Z outputs of the encoder.  
• Selection can be made from two function types for the ZIN pin (valid for all modes) .  
• Compare and reload functions are featured, and each function can be used alone or in combination.  
Up/down counting with random width can be carried out using both functions in combination.  
• The count direction directly before can be identified by the count direction flag.  
• Generation of interruptions in case of compared match, reload (underflow) or overflow and in cases where the  
count direction is changed can be controlled separately.  
49  
MB91133/MB91F133  
Block Diagram  
8/16-bit Up/Down Counter / Timer (ch0)  
Data bus  
8 bit  
Reload / Compare Register 0 (RCR0)  
CGE1 CGE0 C/GS  
RCUT  
Reload control  
ZIN0  
Edge/level detection  
UCRE  
RLDE  
Counter clear  
8 bit  
UDCC  
Up/Down Count Register 0 (UDCR0)  
Carry  
CMPF  
CES1 CES0  
CMS1 CMS0  
UDFF OVFF  
CITE UDIE  
Count clock  
UDF1 UDF0 CDCF CFIE  
AIN0  
BIN0  
Up/down count  
clock selection  
Interruption output  
CSTR  
Pre-scalar  
CLKS  
50  
MB91133/MB91F133  
8/16-bit Up/Down Counter / Timer (ch1)  
Data bus  
8 bit  
Reload / Compare Register 1 (RCR1)  
CGE1 CGE0 C/GS  
RCUT  
Reload control  
RLDE  
ZIN1  
Edge/level detection  
UCRE  
UDCC  
Counter clear  
8 bit  
Up/Down Count Register 1 (UDCR1)  
CMPF  
UDFF OVFF  
CMS1 CMS0 CES1 CES0 M16E  
Carry  
CITE UDIE  
Count clock  
UDF1 UDF0 CDCF CFIE  
Interruption output  
AIN1  
BIN1  
Up/down count  
clock selection  
Pre-scalar  
CSTR  
CLKS  
51  
MB91133/MB91F133  
Register List  
31  
24 23  
16 15  
8
7
0
RCR1  
CCRH0  
CCRH1  
RCR0  
CCRL0  
CCRL1  
UDCR1  
UDCR0  
CSR0  
CSR1  
Up/down count register ch0 (UDCR0)  
bit  
7
6
5
4
3
D03  
2
1
0
Address : 000087H  
D07  
D06  
D05  
D04  
D02  
D01  
D00  
Up/down count register ch1 (UDCR1)  
bit  
15  
14  
D16  
13  
12  
11  
10  
9
8
Address : 000086H  
D17  
D15  
D14  
D13  
D12  
D11  
D10  
Reload compare register ch0 (RCR0)  
bit  
7
6
5
4
3
2
1
0
Address : 000085H  
D07  
D06  
D05  
D04  
D03  
D02  
D01  
D00  
Reload compare register ch1 (RCR1)  
bit  
15  
14  
D16  
13  
12  
11  
10  
9
8
Address : 000084H  
D17  
D15  
D14  
D13  
D12  
D11  
D10  
Counter Status register ch0, 1 (CSR0, 1)  
bit  
7
6
5
4
3
2
1
0
00008BH  
Address :  
CSTR  
CITE  
UDIE  
CMPF OVFF  
UDFF  
UDF1  
UDF0  
00008FH  
Counter control register ch0, 1 (CCRL0, 1)  
bit  
7
6
5
4
3
2
1
0
000089H  
Address :  
CTUT UCRE  
RLDE UDCC CGSC CGE1  
CGE0  
00008DH  
Counter control register ch0 (CCRH0)  
bit  
15  
14  
CDCF  
13  
12  
11  
10  
9
8
Address : 000088H  
M16E  
CFIE  
CLKS  
CMS1 CMS0  
CES1  
CES0  
Counter control register ch1 (CCRH1)  
bit  
15  
14  
CDCF  
13  
12  
11  
10  
9
8
Address :00008CH  
CFIE  
CLKS  
CMS1 CMS0  
CES1  
CES0  
52  
MB91133/MB91F133  
4. 16-bit Reload Timer  
The 16-bit timer is configured with a 16-bit down counter, 16-bit reload register, pre-scalar to prepare the internal  
count clock and control register. Selection can be made from three types of internal clocks (machine clock 2 /  
8 / 32 cycles) as the input clock. DMA transfer can be initiated by interruption. The MB91133/MB91F133 features  
a 5-channel timer.  
Block Diagram  
16  
16-bit reload register  
8
Reload  
RELD  
16  
OUTE  
OUTL  
INTE  
UF  
16-bit down counter  
2
UF  
OUT  
CTL.  
GATE  
2
IRQ  
CSL1  
CNTE  
TRG  
Clock selector  
CSL0  
Re-trigger  
2
IN CTL.  
EXCK  
PWM (ch0, ch1)  
A/D (ch2)  
3
φ
φ
φ
Pre-scalar  
clear  
21 23 25  
MOD2  
MOD1  
MOD0  
3
Channel 2TO output of the reload timer is connected to the A/D converter inside the LSI. Thus, A/D conversion  
can be started up at the cycle set in the reload register.  
53  
MB91133/MB91F133  
5. PPG Timer  
The PPG timer can efficiently output accurate PWM waveforms. The MB91130 series features a 6-channel  
PPG timer.  
PPG Timer Characteristics  
• Each channel is configured with a 16-bit down counter, 16-bit data register with cycle setting buffer, 16-bit  
compare register with duty setting buffer and pin control area.  
• Selection can be made from four types of count clocks for 16-bit down counters.  
Internal clock φ, φ4, φ16, φ64  
• Counter values can be initialized to “FFFFH” by resetting and counter borrowing.  
• PWM output is available per channel.  
• Register outline  
Cycle setting register : Reloading register with buffer  
Duty setting register : Compare register with buffer  
Transfer from buffer is carried out by counter borrowing.  
• Pin control outline  
Set to “1” by duty match. (Priority)  
Resets to “0” by counter borrowing.  
All “L” (or “H”) can simply be output by using the output values fixing mode.  
Polarization can also be specified.  
• Interruption request can be generated by selecting from the following combinations.  
Initiation of this timer  
Counter borrow generation (cycle match)  
Duty match generation  
Counter borrow generation (cycle match) or duty match generation  
DMA transfer can be initiated by the above interruption requests.  
• Simultaneous initiation of a number of channels can be set by software or other interval timers. Re-start during  
operation can also be set.  
54  
MB91133/MB91F133  
Block Diagram  
Overall Block Diagram of PPG Time  
TRG input  
PWM timer ch0  
16-bit reload timer  
ch0  
PWM0  
16-bit reload timer  
ch1  
TRG input  
PWM1  
PWM timer ch1  
General control  
register 1  
(factor selection)  
TRG input  
PWM2  
4
PWM timer ch2  
General control  
register 2  
TRG input  
PWM3  
4
PWM timer ch3  
External TRG0 to 3  
External TRG4  
External TRG5  
PWM timer ch4  
PWM timer ch5  
PWM4  
PWM5  
55  
MB91133/MB91F133  
Block Diagram of PPG Timer for 1 Channel  
PCSR  
PDUT  
Pre-scalar  
1 / 1  
CMP  
1 / 4  
CK  
Load  
1 / 16  
1 / 64  
16-bit down counter  
Start  
Borrow  
PPG mask  
S
R
Q
PWM OUTPUT  
Peripheral system clock  
Reverse bit  
Enable  
IRQ  
Interruption  
selection  
Edge  
TRG input  
detection  
Soft trigger  
56  
MB91133/MB91F133  
Register list  
Address  
15  
0
GCN1  
R/W General control register 1  
R/W General control register 2  
000000DCH  
000000DFH  
GCN2  
PCNL  
PCNL  
PCNL  
PCNL  
PTMR  
PCSR  
PDUT  
R
ch0 Timer register  
000000E0H  
000000E2H  
W
W
ch0 Peripheral setting register  
ch0 Duty setting register  
000000E4H  
000000E6H  
PCNH  
PCNH  
PCNH  
PCNH  
R/W ch0 Control status register  
000000E8H  
000000EAH  
PTMR  
PCSR  
PDUT  
R
ch1 Timer register  
W
W
ch1 Peripheral setting register  
ch1 Duty setting register  
000000ECH  
000000EEH  
R/W ch1 Control status register  
000000F0H  
000000F2H  
PTMR  
PCSR  
PDUT  
R
ch2 Timer register  
W
W
ch2 Peripheral setting register  
ch2 Duty setting register  
000000F4H  
000000F6H  
R/W ch2 Control status register  
000000F8H  
000000FAH  
PTMR  
PCSR  
PDUT  
R
ch3 Timer register  
W
W
ch3 Peripheral setting register  
ch3 Duty setting register  
000000FCH  
000000FEH  
R/W ch3 Control status register  
(Continued)  
57  
MB91133/MB91F133  
(Continued)  
Address  
15  
0
00000100H  
PTMR  
PCSR  
PDUT  
R
ch4 Timer register  
W
W
ch4 Peripheral setting register  
ch4 Duty setting register  
00000102H  
00000104H  
00000106H  
PCNL  
PCNH  
R/W ch4 Control status register  
00000108H  
0000010AH  
PTMR  
PCSR  
PDUT  
R
ch5 Timer register  
W
W
ch5 Peripheral setting register  
ch5 Duty setting register  
0000010CH  
0000010EH  
PCNH  
PCNL  
R/W ch5 Control status register  
58  
MB91133/MB91F133  
6. Multifunction Timer  
The multifunction timer unit is configured of a 16-bit freerun timer × 1, 16-bit output compare × 8, 16-bit input  
capture × 4, 16-bit PPG timer × 6 ch and waveform generation area modules. 12 independent waveform outputs  
based on a 16-bit free-run timer are possible using this function and measurement of input pulse width and  
external clock cycle is also possible.  
Multifunction Timer Configuration  
• 16-bit free-run timer ( × 1)  
The 16-bit free-run timer consists of a 16-bit up counter, control register, 16-bit compare clear register and  
pre-scalar. Output values of this counter are used as the base timer for output compare and input capture.  
Counter operation clocks can be selected from six types.  
Six types of internal clocks (φ2, φ4, φ8, φ16, φ32, φ64)  
φ : Machine clock  
Interruption can be generated by overflow of the counter value and a compared match with compare  
clear register. (Mode setting is required for a compared match.)  
Counter value can be initialized to “0000H” by a compared match with the reset, software clear or the  
compare clear register.  
• Output compare ( × 8)  
Output compare is configured of 16-bit compare register × 8, latch for compare output and control register.  
Interruptioncanbegeneratedaswellasreversingoutputlevelwhenthe16-bitfree-runtimervalueandcompare  
register value match.  
8 compare registers can be operated independently. Output pins and interruption flags support each  
compare register.  
Output pins can be controlled by pairing two compare registers. Output pins are reversed using two  
compare registers.  
Initial value of each output pin can be set.  
Interruption can be generated by matching compare.  
• Input capture ( × 4)  
Input capture is configured with four independent external input pins , supported capture and control register.  
16-bit free-run timer value is held in the capture register by detecting the random edge of signals that are input  
by the external input pin, and interruption can simultaneously be generated.  
Valid edges (rising edge, falling edge, both edges) of external input signals can be selected.  
Four input captures can be operated independently.  
Interruption can be generated by the valid edges of external input signals.  
• 16-bit PPG timer ( × 6)  
Refer to PPG timer  
59  
MB91133/MB91F133  
• Waveform Generation Area  
The waveform generation area is configured with 8-bit timer × 3, 8-bit reload register × 3, timer control register  
× 3 and 8-bit waveform control register. This control circuit controls the waveform of the 16-bit PPG timer and  
real-time output, and DC chopper output and non-overlapping 3-phase waveform output to be used for inverter  
control are possible.  
Non-overlapping pulse output of the PPG timer is possible by setting dead time of the 8-bit timer (dead  
time timer function) .  
Real timer output is operated by the 2-channel mode and non-overlapping output of the waveform is  
possible by setting the dead time of the 8-bit timer (dead time timer function) .  
Operation of PPG timer can easily be started/stopped by generating a GATE signal for the PPG timer  
operation through match detection of real-time output compare (GATE function).  
The 8-bit timer is operated by match detection of real-time output compare, and operation of the PPG timer  
can easily be started/stopped by generating a GATE signal for the PPG timer until the 8-bit timer is stopped  
(GATE function) .  
Pin output can be forcibly controlled by input to the DTTI pin. Pins can be controlled externally even if  
oscillations stop due to lack of clocks for inputs to this pin. (Each pin level can be set by the program .)  
If this function is used, the port should be set to output (DDR = 1) and the output value should be  
described in the PDR beforehand.  
60  
MB91133/MB91F133  
Block Diagram  
Block Diagram of PPG Timer for 1 Channel  
φ
Interruption  
IVFE STOP MODE SCLR CLK2  
IVF  
CLK1 CLK0  
Cycle device  
Clock  
16-bit free-run timer  
16-bit compare clear register  
(Ch. 6 compare register)  
Interruption  
Compare circuit  
Compare register 0/2/4  
MS13  
0
ICLR  
Q
ICRE  
T
T
RT0/2/4  
Compare circuit  
To waveform  
generation area  
Compare register 1/3/5  
CMOD  
Q
RT1/3/5  
To waveform  
generation area  
Compare circuit  
IOP1  
IOP0  
IOE1  
IOE0  
Interruption  
Interruption  
IN 0/2  
Capture data register 0/2  
Edge detection  
EG11 EG10  
EG01 EG00  
Capture data register 1/3  
IN 1/3  
Edge detection  
ICP0  
ICP1  
ICE0  
ICE1  
Interruption  
Interruption  
61  
MB91133/MB91F133  
Block Diagram of Waveform Generation Area  
DCK2 DCK1  
DCK0  
TMD1 TMD0 NRSL  
DTIL  
DTIE  
φ
DTTI control circuit  
DTTI  
Cycle device  
Clock  
GATE 0/1  
Selector  
TO0  
RT0  
Waveform  
generation area  
TO1  
RT1  
RTO0/U  
Compare  
circuit  
RTO1/X  
Selector  
8-bit timer  
U
X
Dead time  
generation  
8-bit timer register 0  
GATE 2/3  
Selector  
TO2  
TO3  
Waveform  
RT2  
generation area  
RT3  
RTO2/V  
RTO3/Y  
Compare  
circuit  
8-bit timer  
Selector  
V
Y
Dead time  
generation  
8-bit timer register 1  
GATE 4/5  
Selector  
TO4  
TO5  
Waveform  
RT4  
generation area  
RT5  
RTO4/W  
RTO5/Z  
Compare  
circuit  
8-bit timer  
Selector  
W
Z
Dead time  
generation  
8-bit timer register 2  
62  
MB91133/MB91F133  
Registers List  
Address  
15  
8
7
0
000044H to 4BH  
IPCP  
(R)  
00004DH, 4FH  
000054H to 63H  
000064H to 6BH  
00006CH, 6DH  
00006EH, 6FH  
ICS  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
OCCP  
OCS  
TCDT  
TCCS  
0000ACH, AEH  
B2H  
DTCR  
0000ADH, AFH  
B3H  
TMRR  
0000B1H  
STGCR  
63  
MB91133/MB91F133  
7. External Interruption  
The external interruption control area is the block that controls the external interruption requests input in INT0  
to INT23. The level of request to be detected can be selected from “H”, “L”, “Rising edge” or “ Falling edge”.  
Block diagram  
R-BUS  
24  
Interruption permission register  
24  
24  
48  
24  
Interruption  
requests  
Gate  
Factor F/F  
Edge detection circuit  
INT0 to INT23  
Interruption factor register  
Request level setting register  
Register List  
External interruption permission register (ENIR)  
15  
14  
13  
12  
11  
10  
9
8
bit  
ER7  
ER6  
ER5  
ER4  
ER3  
ER2  
ER1  
ER0  
External interruption factor register (EIRR)  
15  
14  
13  
12  
11  
10  
9
8
bit  
ER7  
ER6  
ER5  
ER4  
ER3  
ER2  
ER1  
ER0  
Request level setting register (ELVR)  
7
6
5
4
3
2
1
0
bit  
LB3  
LA3  
LB2  
LA2  
LB1  
LA1  
LB0  
LA0  
15  
14  
13  
12  
11  
10  
9
8
bit  
LB7  
LA7  
LB6  
LA6  
LB5  
LA5  
LB4  
LA4  
There are three sets of the above registers (for 8 channels) for a total of 24 channels.  
64  
MB91133/MB91F133  
8. Delay Interruption Module  
The delay interruption module generates interruptions for task switching. Interruption requests to the CPU can  
be generated / cancelled using software with this module.  
• Block Diagram  
Refer to “9.(2) Block Diagram of Interruption Controller” for the block diagram of the delay interruption generation  
area.  
Register List  
bit 7  
6
5
4
3
2
1
0
Address : 00000430H  
DICR  
DLYI  
R/W  
65  
MB91133/MB91F133  
9. Interruption Controller  
The interruption controller carries out interruption reception and arbitration.  
Hardware configuration of the interruption controller  
This module consists of the following items.  
• ICR register  
• Interruption priority judgement circuit  
• Interruption level, interruption number (vector) generation area  
• Cancellation request generation area for HOLD request  
Major interruption controller functions  
This module has the following functions.  
• Detection of interruption requests  
• Priority grade judgement (depending on the level and number)  
Transferring interruption level of factors for the judgement results (to CPU)  
Transferring interruption number of factors for the judgement results (to CPU)  
• Recovery instruction from stop mode by generating interruption  
• Cancellation of HOLD request to the bus master  
Resetting Interruption Factors  
There are restrictions between RETI instructions and those for resetting interruption factors in the interruption  
routine.  
66  
MB91133/MB91F133  
Block Diagram  
INT0  
OR  
IM  
Priority grade judgement  
5
LEVEL4 to 0  
NMI  
NMI processing  
4
HLDREQ  
HLDCAN  
VCT5 to 0  
(Holding  
request)  
LEVEL  
Generation  
of  
LEVEL /  
VECTOR  
judgement  
ICR00  
RI00  
6
VECTOR  
judgement  
ICR47  
RI47  
(DLYIRQ)  
DLYI  
R-BUS  
Note : DLYIshowninthefigureindicatesdelayinterruptionarea.(Refertothechapteronthedelayinterruption  
module for details.)  
INTO is the wake-up signal to the clock control area in case of sleep or stop.  
HLDCAN is the bus vacation request signal to bus masters other than the CPU.  
There is no NMI function in this model.  
67  
MB91133/MB91F133  
Register List  
bit 7  
6
5
4
3
2
1
0
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
ICR3  
ICR2  
ICR1  
ICR0  
00000400H  
00000401H  
00000402H  
00000403H  
00000404H  
00000405H  
00000406H  
00000407H  
00000408H  
00000409H  
0000040AH  
0000040BH  
0000040CH  
0000040DH  
0000040EH  
0000040FH  
00000410H  
00000411H  
00000412H  
00000413H  
00000414H  
00000415H  
00000416H  
00000417H  
00000418H  
00000419H  
0000041AH  
0000041BH  
0000041CH  
0000041DH  
0000041EH  
0000041FH  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
ICR16  
ICR17  
ICR18  
ICR19  
ICR20  
ICR21  
ICR22  
ICR23  
ICR24  
ICR25  
ICR26  
ICR27  
ICR28  
ICR29  
ICR30  
ICR31  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
R/W  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
R/W  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
R/W  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
R/W  
(Continued)  
68  
MB91133/MB91F133  
(Continued)  
bit 7  
6
5
4
3
2
1
0
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
ICR3  
ICR2  
ICR1  
ICR0  
00000420H  
00000421H  
00000422H  
00000423H  
00000424H  
00000425H  
00000426H  
00000427H  
00000428H  
00000429H  
0000042AH  
0000042BH  
0000042CH  
0000042DH  
0000042EH  
0000042FH  
ICR32  
ICR33  
ICR34  
ICR35  
ICR36  
ICR37  
ICR38  
ICR39  
ICR40  
ICR41  
ICR42  
ICR43  
ICR44  
ICR45  
ICR46  
ICR47  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
R/W  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
R/W  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
R/W  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
R/W  
Address:  
LVL3  
R/W  
LVL2  
R/W  
LVL1  
R/W  
LVL0  
R/W  
00000431H  
HRCL  
69  
MB91133/MB91F133  
10. Clock Generation Area (low power consumption mechanism)  
Clock generation area is a module with the following functions.  
• CPU clock generation (including gear function)  
• Peripheral clock generation (including gear function)  
• Reset generation and holding factors  
• Standby function (including hardware standby)  
• PLL (Phase Locked Loop) is built in  
Register list  
Address  
7
0
RSRR/WTCR  
STCR  
Reset factor / watchdog cycle control register  
Standby control register  
000480H  
000481H  
000482H  
000483H  
000484H  
000485H  
000488H  
PDRR  
CTBR  
DMA request blocking register  
Time base timer clear register  
GCR  
Gear control register  
WPR  
Watchdog reset generation postponement register  
PLL / 32-K clock control register  
PCTR  
70  
MB91133/MB91F133  
Block diagram  
[ Gear control area ]  
GCR register  
CPU gear  
Peripheral  
gear  
X0A  
X1A  
Oscillation  
circuit  
CPU clock  
1/2  
Internal clock  
Internal  
M
P
X
generation  
bus clock  
circuit  
X0  
X1  
Oscillation  
circuit  
Internal  
PLL  
peripheral clock  
32-kHz selection circuit  
[ Stop/sleep control area ]  
Internal interruption  
Internal reset  
STCR register  
PDRR register  
STOP status  
SLEEP status  
CPU hold request  
DMA request  
Status  
transfer  
control circuit  
Reset  
generation  
F/F  
Internal reset  
Power on  
detection circuit  
[ Reset factor circuit ]  
VCC3  
R
RSRR register  
[ Watchdog control area ]  
WPP register  
GND  
RST pin  
Watchdog F/F  
Count clock  
CTBR register  
Time base timer  
71  
MB91133/MB91F133  
11. 8-/10-bit A/D Converter  
The 8-/10-bit A/D converter features functions that convert analog input voltages to 10- or 8-bit digital values  
using the RC sequential comparison conversion method. The input signal is selected from 8-channel analog  
input pins and three types of conversion initiation can be selected from software, internal clock, or external pin  
trigger.  
• characteristics of 8-/10-bit A/D converter  
The A/D conversion function for converting analog voltages (input voltages) input into the analog input pins to  
digital values has the following characteristics.  
• Conversion time is minimum 5.0 µs (including sampling time when machine clock is 33 MHz) .  
• Conversion method is RC sequential comparison conversion method with sample holding circuit.  
• 10- or 8-bit resolution can be selected.  
• Analog input pin can be selected from 8 channels using the program.  
• interruption request can be generated when A/D conversion ends.  
• Data is not lost even during continuous conversion as conversion data protection function works while inter-  
ruptions are permitted.  
• Initiation factors for conversion can be selected from software, 16-bit reload timer 2 (rising edge) , or external  
pin trigger (L level detection) .  
There are three types of conversion modes.  
Table 13.1-1 Conversion Modes of 8-/10-bit A/D Converter  
Conversion Modes  
Single Conversion Operation  
Scan Conversion Operation  
Converts the specified channel (1 channel Converts a series of channels (up to 8  
Single conversion mode  
only) once and ends.  
channels can be specified) once and ends.  
Consecutive  
Repeatedly converts the specified channel Repeatedly converts a series of channels  
conversion mode  
(1 channel only) .  
(up to 8 channels can be specified) .  
Converts a series of channels (up to 8  
channels can be specified) but is suspend-  
ed between each channel conversion and  
waits until the next one is initiated.  
Suspends after converting the specified  
Stop conversion mode channel (1 channel only) once and waits  
until the next one is initiated.  
72  
MB91133/MB91F133  
• Block Diagram of 8-/10-bit A/D Converter  
The 8-/10-bit A/D converter is configured with the following 9 blocks.  
• A/D control status register (ADCS1, 2)  
• A/D data register (ADCR)  
• Clock selector (input clock selector to initiate A/D conversion)  
• Decoder  
• Analog channel selector  
• Sample holding circuit  
• D/A converter  
• Comparator  
• Control circuit  
Block Diagram  
AVSS AVR± AVSS  
MP  
D/A converter  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
Input  
circuit  
Sequential  
comparison register  
Comparator  
Sample and  
holding circuit  
Data register  
ADCR  
Decoder  
A/D control register 1  
A/D control register 2  
16-bit reload timer 2  
External pin trigger  
ADCS1, 2  
Operation clock  
Pre-scalar  
φ
Register List  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0000CFH  
00003AH  
000038H  
AICK  
ADCS1  
ADCS0  
ADCR  
73  
MB91133/MB91F133  
12. 8-bit D/A Converter  
The 8-bit D/A converter is an R-2R type D/A converter with 8-bit resolution.  
Characteristics of the 8-bit D/A converter  
The MB81130 series features a 3-channel D/A converter and output control can be carried out individually by  
the D/A control register.  
• Block Diagram of 8-bit D/A Converter  
The 8-bit D/A converter is configured with the following three blocks.  
• 8-bit resistance ladder  
• Data register  
• Control register  
Block Diagram  
R BUS  
DA27 to DA20  
DA17 to DA10  
DA07 to DA00  
DAVC  
DAVC  
DAVC  
DA27  
DA17  
DA07  
DA20  
DA10  
DA00  
DAE  
Standby control  
DAE  
Standby control  
DAE  
Standby control  
DA output  
DA output  
DA output  
74  
MB91133/MB91F133  
8-bit D/A Converter Pins  
D/A converter pins are dedicated pins.  
Registers of 8-bit D/A Converter  
The 8-bit D/A converter has the following two registers.  
D/A control register (DACR0, 1, 2)  
D/A data register (DADR2, 1, 0)  
Register list  
D/A converter data register 0  
bit  
7
6
5
4
3
2
1
0
DADR0  
00000ABH  
DA07  
DA06  
DA05  
DA04  
DA03  
DA02  
DA01  
DA00  
D/A converter data register 1  
bit  
15  
14  
13  
12  
11  
10  
9
8
DADR1  
00000AAH  
DA17  
DA16  
DA15  
DA14  
DA13  
DA12  
DA11  
DA10  
D/A converter data register 2  
bit  
bit  
bit  
bit  
23  
22  
21  
20  
19  
18  
17  
16  
DADR2  
00000A9H  
DA27  
DA26  
DA25  
DA24  
DA23  
DA22  
DA21  
DA20  
D/A control register 0  
7
6
5
4
3
2
1
9
0
DACR0  
00000A7H  
DAE0  
D/A control register 1  
15  
23  
14  
22  
13  
21  
12  
20  
11  
19  
10  
18  
8
DACR1  
00000A6H  
DAE1  
D/A control register 2  
17  
16  
DACR2  
DAE2  
00000A5H  
75  
MB91133/MB91F133  
13. 4-bit Level Comparator  
The 4-bit level comparator is the module that compares input levels (large/small) and compares the size of the  
analog input voltage with 4-bit digital values.  
Functions of the 4-bit level comparator  
Compares analog voltage that has been input to the analog input pins (input voltage) with 4-bit digital value and  
has the following characteristics.  
• Conversion time is minimum 1 µs (including sampling time) .  
• Sampling time is minimum 0.5 µs.  
• Interruption requests can be generated when analog comparison ends.  
Interruption of 4-bit level comparator  
Table 15.1-1 Interruption and DMAC of 4-bit level comparator  
Interruption control register  
Interruption  
number  
TBR default  
address  
Offset  
DMAC  
Register name  
Address  
#61 (3DH)  
ICR45  
00042DH  
308H  
000FFF08H  
×
× : Initiation is impossible  
76  
MB91133/MB91F133  
• Block Diagram of 4-bit Level Comparator  
The 4-bit level comparator is configured with the following three blocks.  
• Comparator  
• 4-bit resistance ladder  
• Control register  
Block diagram  
AVCC  
AVR±  
AVSS  
4-bit D/A (resistance ladder)  
RD3 - 0  
Comparator  
CPLV  
AN7  
Sample &  
INT  
INTE  
CPEN  
holding circuit  
Interruption  
Reload timer  
φ
Operation clock  
77  
MB91133/MB91F133  
• Registers of 4-bit Lev el Comparator  
Register list  
bit 31  
bit 24bit 23  
bit 16  
0000-0018H  
LVLC  
Control register (LVLC)  
bit  
31  
30  
29  
28  
27  
26  
25  
24  
RD3  
RD2  
RD1  
RD0  
CPLV  
INT  
INTE  
CPEN  
0000018H  
Attribute  
Initial value  
R/W  
( X )  
R/W  
( X )  
R/W  
( X )  
R/W  
( X )  
R/W  
( 0 )  
R/W  
( 0 )  
R/W  
( 0 )  
R/W  
( 0 )  
78  
MB91133/MB91F133  
14. UART  
UART is the general-purpose serial data communications interface to carry out synchronous or asynchronous  
communication (start-stop synchronization) with external systems. It has a master/slave-type communications  
function (multiprocessor mode: supporting only master side) as well as normal bi-directional communications  
function (normal mode).  
UART Functions  
UART is the general-purpose serial data communications interface that sends and receives serial data to/from  
other CPUs and peripheral equipment, and has functions shown in Table 16.1-1.  
Table 16.1-1 UART Functions  
Functions  
Data buffer  
Full-duplex double buffer  
• Clock synchronous (without start-stop bit)  
• Clock asynchronous (start-stop cycle)  
Transfer mode  
• Dedicated baud rate generator is available. Can be selected from 8 types.  
• External clock input is possible.  
• Internal clock (Internal clocks that are provided from 16-bit reload timer support-  
ing each channel can be used.)  
Baud rate  
• 7-bit (in case of asynchronous normal mode only)  
• 8-bit  
Data length  
Signal method  
Non Return to Zero (NRZ) method  
• Framing error  
Reception error detection  
• Overrun error  
• Parity error (impossible in case of multiprocessor mode)  
• Reception interruption (reception completion, reception error detection)  
Transmission interruption (transmission completion)  
Interruption request  
Master/slave-type  
communications function  
(Multiprocessor mode)  
Communication between 1 (master) and n (slaves) is possible  
(Only supports master side)  
Note : Start / stop bits are not added by UART and only data is transferred.  
Table 16.1-2 UART Operations Mode  
Data length  
Synchronization  
Operations mode  
Stop bit length  
method  
Without parity  
With parity  
0
1
2
Normal mode  
7-bit or 8-bit  
Asynchronous  
Asynchronous  
Synchronous  
1-bit or 2-bit *2  
N/A  
Multiprocessor mode  
8 + 1*1  
Normal mode  
8
: Setting is impossible  
*1 : + 1” is address / data selection bit (A/D) to be used to control communications.  
*2 : 1-bit only can be detected for stop bit in case of reception.  
79  
MB91133/MB91F133  
UART Block Diagram  
UART is configured with the following 11 blocks.  
• Clock selector  
• Mode register (SMR0 to 4)  
• Reception control circuit  
Transmission control circuit  
• Reception status judgement circuit  
• Shift register for reception  
• Sift register for transmission  
• Control register (SCR0 to 4)  
• Status register (SSR0 to 4)  
• Input data register (SIDR0 to 4)  
• Output data register (SODR0 to 4)  
Block Diagram  
Control bus  
Reception  
interruption  
signals  
Dedicated baud rate  
generator  
#26 to 30 *  
Reception  
interruption  
signals  
Transmission  
clock  
Clock  
16-bit reload timer  
selector  
#31 to 35 *  
Reception clock  
Reception  
control circuit  
Transmission  
control circuit  
Pin  
Start bit  
detection circuit  
Transmission  
start circuit  
<SCK0 to SCK4>  
Reception bit  
counter  
Transmission bit  
counter  
<SOT0 to SOT4 >  
Pin  
Reception parity  
counter  
Transmission parity  
counter  
<SIN0 to SIN4 >  
Pin  
Shift register  
for reception  
Shift register  
for transmission  
Reception  
ends  
Reception status  
judgement circuit  
Transmission starts  
SIDR0  
4
SODR0  
4
Reception error  
Generation signal  
(to CPU)  
Internal data bus  
MD1  
MD0  
CS2  
CS1  
CS0  
PEN  
P
SBL  
PE  
ORE  
FRE  
RDRF  
TDRE  
BDS  
RIE  
SMR0 to 4  
registers  
SCR0 to 4  
registers  
SSR0 to 4  
registers  
CL  
A/D  
REC  
RXE  
TXE  
SCKE  
SOE  
TIE  
* : Interruption number  
80  
MB91133/MB91F133  
Block Diagram of UART Pins  
Data bus  
Resource input  
0
1
PDR read  
PDR  
pin  
0
1
Resource output  
Resource output  
permission  
DDR  
ODCR  
PCR  
PDR : Port Data Register  
DDR : Data Direction Register  
ODCR : Open-drain Control Register  
PCR : Pull-up Control Register  
Register List  
Address  
bit 15  
bit 8  
bit 7  
bit 0  
ch0 : 0000_001EH, 1FH  
ch1 : 0000_0022H, 23H  
ch2 : 0000_0026H, 27H  
ch3 : 0000_0072H, 73H  
ch4 : 0000_0076H, 77H  
Control register  
(SCR)  
Mode register  
(SMR)  
ch0 : 0000_001CH, 1DH  
ch1 : 0000_0020H, 21H  
ch2 : 0000_0024H, 25H  
ch3 : 0000_0070H, 71H  
ch4 : 0000_0074H, 75H  
Status register  
(SSR)  
Input/output data register  
(SIDR/SODR)  
ch0 : 0000_007AH  
ch1 : 0000_0078H  
ch2 : 0000_007EH  
ch3 : 0000_007CH  
ch4 : 0000_0082H  
Communications pre-scalar control register  
(CDCR)  
Vacant  
81  
MB91133/MB91F133  
15. DMA Controller  
The DMA controller is the built-in module of the MB91130 series that carrie out direct memory access (DMA)  
transfers.  
Characteristics of the DMA Controller  
• 8 channels  
• 3 transfer mode types : single/block transfer, burst transfer, continuous transfer  
Transfer between overall address areas  
• Maximum 65,536 transfers  
• Interruption function when transfer ends  
• Increase/decrease in transfer addresses can be selected using software  
• 3 external transfer request input/output pins and 3 external transfer end output pins  
Block Diagram  
3
5
3
3
Edge / level  
detection circuit  
DREQ0 to DREQ2  
DACK0 to DACK2  
EOP0 to EOP2  
3
8
Sequencer  
Interruption request  
Built-in resource  
transfer request  
Data buffer  
Switcher  
DPDP  
DACSR  
DATCR  
Mode  
BLK DEC  
BLK  
DMACT  
INC / DEC  
SADR  
DADR  
82  
MB91133/MB91F133  
Register List  
(In DMAC : DMAC internal registers)  
31  
0
00000200H  
DPDP  
00000204H  
00000208H  
DACSR  
DATCR  
(On RAM : DMA descriptors)  
bit 31  
bit 0  
DMA  
ch0  
DPDP + 0H  
Descriptor  
DMA  
DPDP + 0CH  
ch1  
Descriptor  
DPDP + 54H  
DMA  
ch7  
Descriptor  
83  
MB91133/MB91F133  
16. Bit Search Module  
The bit search module searches for 0, 1 or change points on data that has been written in the input register, and  
returns the detected bit position.  
Block Diagram  
D-BUS  
Input latch  
Address  
decoder  
Detection  
mode  
Changing to 1 detection data  
Bit search circuit  
Detection results  
Register List  
31  
0
Address:  
Data register for 0 detection  
BSD0  
BSD1  
BSDC  
BSRR  
000003F0H  
Address:  
Address:  
Address:  
Data register for 1 detection  
000003F4H  
000003F8H  
000003FCH  
Data register for change point detection  
Detection results register  
84  
MB91133/MB91F133  
17. FLASH Memory  
The MB91FV130 / MB91F133 have a 254-KB (2 Mbit) capacity and feature a FLASH memory that can write  
each half-word (16 bits) using the FR-CPU, delete individual sectors sector and delete groups of sectors together  
using a single 3-V power source.  
Outline of FLASH Memory  
This is a built-in 3-V 254-KB FLASH memory. This FLASH memory is the same as our 2-Mbit (256 K × 8 / 128  
K × 16) FLASH memory MBM29LV400C and writing is possible from outside the device using a ROM writer. If  
used as a built-in ROM of the FR-CPU, as well as having an equivalent function to the MBM29LV400C, instruc-  
tions / data can be read per word (32 bits) and high-speed operation of the device can be realized.  
Refer to the MBM29LV400C data sheet as well as this manual.  
The following functions can be realised in MB91FV130 / MB91F133 by combining the FLASH memory macro  
and FR-CPU interface circuits.  
• Functioning as memory for CPU program / data storage  
Access is possible with 32-bit bus width when used as ROM  
Reading / writing and erasing (automatic program algorithm*) are possible using CPU  
• MBM29LV400C-equivalent function of single FLASH memory products  
Reading / writing and erasing (automatic program algorithm*) are possible using ROM writer  
A case where this FLASH memory is used from FR-CPU is described in this section.  
Refer to the ROM writer manual separately for details if this FLASH memory is used from ROM writer.  
* : Automatic program algorithm = Embedded Algorithm TM  
Embedded Algorithm TM is the trademark of Advanced Micro Device.  
Block Diagram  
Rising edge detection  
RDY/BUSY  
RESET  
Control signal  
generation  
BYTE  
OE  
FLASH memory  
2 Mbit (254 K × 8/127 K × 16)  
WE  
CE  
FA18 - 0  
DI15 - 0 DO31 - 0  
INTE  
RDYINT  
RDY  
WE  
Address buffer  
CA18 - 0  
Data buffer  
CD31 - 0  
FR-C bus (instruction / data)  
85  
MB91133/MB91F133  
• Memory Map  
FLASH memory mode and CPU mode for address mapping of FLASH memory are different. Mapping under  
each mode is shown as follows.  
Memory map in FLASH memory mode  
0FFFFFH  
SA9  
SA8  
SA7  
2 M-FLASH  
Memory image  
SA6  
SA5  
SA4  
SA3  
0C0000H  
SA2  
SA1  
SA0  
( SAn : sector address n )  
010000H  
000000H  
Memory map in CPU memory mode  
0FFFFFH  
0FFFFFH  
0F8000H  
SA4  
SA9  
SA3  
SA2  
SA1  
SA8  
SA7  
SA6  
0F4000H  
0F0000H  
FLASH memory area  
0E0000H  
0C0800H  
0C0000H  
SA0  
SA5  
RAM area  
2 KByte  
( SAn : sector address n )  
Status register  
0007C0H  
000000H  
0C0800H  
0C0000H  
CPU mode  
86  
MB91133/MB91F133  
Sector address table  
Position of bit  
Sector Capacity  
handled  
Sector Address  
Address Area  
SA5  
SA6  
SA7  
SA8  
SA9  
SA0  
SA1  
SA2  
SA3  
SA4  
000C0802, 3h to 000DFFFE, Fh (LSB side 16 bit)  
000E0002, 3h to 000EFFFE, Fh (LSB side 16 bit)  
000F0002, 3h to 000F3FFE, Fh (LSB side 16 bit)  
000F4002, 3h to 000F7FFE, Fh (LSB side 16 bit)  
000F8002, 3h to 000FFFFE, Fh (LSB side 16 bit)  
000C0800, 1h to 000DFFFC, Dh (MSB side 16 bit)  
000E0000, 1h to 000EFFFC, Dh (MSB side 16 bit)  
000F0000, 1h to 000F3FFC, Dh (MSB side 16 bit)  
000F4000, 1h to 000F7FFC, Dh (MSB side 16 bit)  
000F8000, 1h to 000FFFFC, Dh (MSB side 16 bit)  
bit 15 to 0  
bit 15 to 0  
bit 15 to 0  
bit 15 to 0  
bit 15 to 0  
bit 31 to 16  
bit 31 to 16  
bit 31 to 16  
bit 31 to 16  
bit 31 to 16  
63 Kbyte  
32 Kbyte  
8 Kbyte  
8 Kbyte  
16 Kbyte  
63 Kbyte  
32 Kbyte  
8 Kbyte  
8 Kbyte  
16 Kbyte  
• Registers of FLASH Memory  
There are two types of FLASH memory registers, namely status register (FLCL) and wait register (FWTC).  
Status Register (FLCR) (CPU mode)  
This register indicates the operation status of the FLASH memory. It controls interruption to the CPU and  
writing to the FLASH memory.  
Access is possible only in CPU mode. This register must not be accessed under Read / Modify / Write  
instructions.  
bit 7  
bit 6  
bit 5  
WE  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
LPM  
INTE RDYINT  
RDY  
0007C0H  
R/W  
( 0 )  
R/W  
( 0 )  
R/W  
( 0 )  
R
( X )  
R/W  
( 0 )  
( X )  
( X )  
( X )  
Wait Register ( FWTC)  
Carries out wait control of the FLASH memory in CPU mode. Also, controls access to high-speed reading  
(33MHz) of FLASH memory. Configuration of Wait Register (FWTC) is as follows :  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FACH WTC1 WTC0  
0007C4H  
W
( 0 )  
R/W  
( 0 )  
R/W  
( 0 )  
(
)
(
)
(
)
(
)
(
)
Note : FACH bit should be set to 1 or WTC1/0 should be set to 01b to operate machine clocks of CPUs exceeding  
25 MHz.  
87  
MB91133/MB91F133  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(VSS = AVSS = 0.0 V)  
Rating  
Parameter  
Power voltage  
Symbol  
Unit  
Remarks  
Min.  
Max.  
VSS + 6.5  
VSS + 3.8  
VSS + 6.5  
VSS + 6.5  
VCC5 + 0.3  
VCC3 + 0.3  
AVCC + 0.3  
VCC5 + 0.3  
10  
VCC5  
VCC3  
AVCC  
AVRH  
VI5  
VSS 0.3  
VSS 0.3  
VSS 0.3  
VSS 0.3  
VSS 0.3  
VSS 0.3  
VSS 0.3  
VSS 0.3  
V
V
V
V
V
V
V
V
Power voltage  
Analog power voltage  
*1  
*1  
Standard analog voltage  
Input voltage  
Input voltage  
VI3  
X0, X1, X0A, X01A  
Analog pin input voltage  
Output voltage  
VIA  
VO  
Maximum “L” level output current  
Average “L” level output current  
Maximum total “L” level output current  
Average “L” level total output current  
Maximum “H” level output current  
Average “H” level output current  
Maximum total “H” level output current  
Average “H” level total output current  
Electricity consumption  
IOL  
mA *2  
mA *3  
mA  
IOLAV  
ΣIOL  
ΣIOLAV  
IOH  
4
100  
50  
mA *4  
mA *2  
mA *3  
mA  
10  
IOHAV  
ΣIOH  
ΣIOHAV  
PD  
4  
50  
20  
mA *4  
mW  
500  
Storage temperature  
Tstg  
55  
+150  
°C  
*1 : Care must be taken that this does not exceed VCC5 + 0.3 V when the power is turned on. Also, care must be  
taken that AVCC does not exceed VCC5 when the power is turned on. AVCC should be set at the same electrical  
potential as VCC5.  
*2 : Peak value of the pin concerned is regulated as the maximum output current.  
*3 : Average current within 100 ms flowing in the pin concerned is regulated as the average output current.  
*4 : Average current within 100 ms flowing in all pins concerned is regulated as the average total output current.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
88  
MB91133/MB91F133  
2. Recommended Operating Conditions  
(VSS = AVSS = 0.0 V)  
Value  
Parameter  
Common  
Symbol  
VCC5  
Unit  
V
Remarks  
Min.  
4.5  
3.0  
3.0  
2.7  
2.7  
Max.  
5.5  
Under normal operation  
3.6  
Under normal operation  
EVA  
VCC3  
V
FLASH  
Power voltage  
3.6  
RAM status kept in the case of stop  
Under normal operation  
3.6  
V
V
V
V
MASK  
ROM  
VCC3  
3.6  
RAM status kept in the case of stop  
Analog power voltage  
AVCC  
VSS + 4.5  
VSS + 5.5  
AVCC  
Standard analog voltage  
AVRH  
AVSS 0.3  
In external ROM external bus /  
internal ROM external bus modes  
TA  
0
+70  
+70  
°C  
°C  
Operating temperature  
TA  
40  
In single-chip mode  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
89  
MB91133/MB91F133  
3. DC Characteristics  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Sym-  
bol  
Re-  
marks  
Parameter  
Pin name  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Input excluding  
following (*1)  
VIH  
VIHS  
VIL  
0.7 VCC5  
VCC5 + 0.3  
V
V
“H” level input  
voltage  
*1 Hysteresis  
input pin  
VCC5 0.4  
VSS 0.3  
VSS 0.3  
2.6  
VCC5 + 0.3  
0.2 VCC5  
VSS + 0.4  
Input excluding  
following (*1)  
V
“L” level input  
voltage  
*1 Hysteresis  
input pin  
VILS  
VOH  
VOL  
ILI  
V
“H” level output  
voltage  
VCC5 = 5.0 V,  
IOH = −4.0 mA  
V
“L” level output  
voltage  
VCC5 = 5.0 V,  
IOL = 4.0 mA  
0.6  
5
V
Input leak  
current  
VCC5 = 5.0 V,  
VSS < VI < VDD  
5  
µA  
kΩ  
Pull up  
resistance value  
RPULL  
RST  
50  
ICC5  
ICC3  
VCC5  
VCC3  
VCC5  
VCC3  
VCC5 = 5.0 V  
VCC3 = 3.0 V  
VCC5 = 5.0 V  
VCC3 = 3.0 V  
15  
50  
15  
24  
20  
100  
20  
mA *2  
mA  
ICCS5  
ICCS3  
mA *2  
mA  
85  
Power current  
VCC5 = 5.0 V,  
TA = 25 °C  
ICCH5  
VCC5  
VCC3  
10  
10  
100  
100  
µA *3  
µA  
VCC3 = 3.0 V,  
TA = 25 °C  
ICCH3  
Power current  
(FLASH  
models)  
ICC3  
VCC3  
VCC3  
VCC3 = 3.3 V  
VCC3 = 3.3 V  
80  
50  
120  
90  
mA  
mA  
ICCS3  
Other than VCC,  
AVCC, AVSS,  
Input capacity  
CIN  
10  
pF  
AVRH and VSS  
*1 : Refer to “PIN FUNCTION DESCRIPTIONS”  
*2 : In case of CLK pin output only (CL = 80 pF)  
*3 : Output pin OPEN  
90  
MB91133/MB91F133  
4. AC Characteristics  
(1) Clock Timing Standard  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Sym-  
bol  
Condi-  
tions  
Parameter  
Pin name  
Unit  
Remarks  
Min.  
Max.  
Clock frequency  
(high-speed, self-oscillation)  
Self oscillation  
available area  
fC  
X0, X1  
9
16.5  
MHz  
Clock frequency  
(high-speed, PLL usage)  
PLL usable area by  
self-oscillation input  
Clock frequency (low-speed)  
Clock cycle time  
fCA  
tC  
X0A, X1A  
32  
kHz Self oscillation  
ns  
30.3  
31250  
10  
Frequency fluctuation rate *1  
(when PLL locked)  
f  
fCP  
%
CPU  
system  
0.032  
0.032  
33  
25  
Bus  
fCPB  
Internal operation  
system  
MHz  
clock frequency  
Excluding analog  
area*2  
0.032  
1
25  
25  
Peripheral  
system  
fCPP  
Analog area*2  
CPU  
system  
tCP  
30.3  
31250  
Bus  
tCPB  
40  
31250  
Internal operation  
system  
ns  
clock cycle time  
Excluding analog  
area*2  
40  
40  
31250  
1000  
Peripheral  
system  
tCPP  
Analog area *2  
*1 : Frequency fluctuation rate indicates the maximum fluctuation ratio from the setting central frequency during  
locking in case of doubling.  
*2 : The targeted analog areas are the A/D and level comparator.  
91  
MB91133/MB91F133  
−α  
Central frequency fO  
−α  
| α |  
fO  
f =  
×100 (%)  
tC  
VCC3  
0.8 VCC3  
0.2 VCC3  
VSS  
Peripheral system clock setting permitted area (A/D, D/A level comparator : 5 V ± 10%)  
< FLASH model >  
< MASK ROM model >  
VCC3  
VCC3  
3.6  
Guaranteed operating range  
Guaranteed operating range  
3.6  
3.0  
fCP  
fCP  
2.7  
fCPP  
fCPP  
32 K1 M  
25 M 33 M  
32 K1 M  
25 M 33 M  
Frequency (Hz)  
Frequency (Hz)  
92  
MB91133/MB91F133  
The relationship between the internal clock set by the CHC/CCK1/CCK0 bit of the Gear Control Register (GCR)  
and X0 input is as follows.  
X0 input  
Original oscillation × 1  
(CHC bit of GCR : 0 setting)  
tCYC  
(a) Gear × 1 Internal clock  
CCK1/0 : 00  
tCYC  
(b) Gear × 1/2 Internal clock  
CCK1/0 : 01  
tCYC  
(c) Gear × 1/4 Internal clock  
CCK1/0 : 10  
tCYC  
(d) Gear × 1/8 Internal clock  
CCK1/0 : 11  
Original oscillation × 1/2  
(CHC bit of GCR : 1 setting)  
tCYC  
(a) Gear × 1 Internal clock  
CCK1/0 : 00  
tCYC  
(b) Gear × 1/2 Internal clock  
CCK1/0 : 01  
tCYC  
(c) Gear × 1/4 Internal clock  
CCK1/0 : 10  
tCYC  
(d) Gear × 1/8 Internal clock  
CCK1/0 : 11  
93  
MB91133/MB91F133  
(2) Reset Input Standards  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Pin  
name  
Condi-  
tions  
Parameter  
Reset input time  
Symbol  
Unit  
Remarks  
Min.  
Max.  
tRSTL  
RST  
tCP × 5  
ns  
tRSTL  
RST  
0.2 VCC  
(3) Power On Reset  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Sym-  
bol  
Pin  
name  
Parameter  
Conditions  
Unit  
Remarks  
Min.  
Max.  
Power startup time  
Power cut time  
fR  
20  
ms  
ms  
VCC  
tOFF  
2
Waiting time for oscillation  
stabilization  
tOSC  
213 tC  
ns  
tR  
tOFF  
0.9 × VCC3  
VhhR  
0.2 V  
If the power voltage is changed rapidly, “Power On Reset” may be initiated. To start up smoothly,  
controlling any voltage fluctuations that may occur during operation is recommended.  
VCC  
Controling inclination at initiation to 50  
Holding RAM data  
mV/ms or less is recommended.  
VSS  
VCC  
tOSC (waiting for oscillation stabilization)  
RST  
When power is turned on, start while the RST pin  
is set to “L” level, after which wait for tRSTL minutes  
and change the level to “H” once the VCC power  
level is reached.  
tRSTL  
94  
MB91133/MB91F133  
(4) Serial I/O (CH0 to 4)  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Pin  
Parameter  
Symbol  
Conditions  
Unit Remarks  
name  
Min.  
Max.  
Serial clock cycle time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
tBUSY  
tCLZO  
tCLSL  
tCHOZ  
8 tCPP  
ns  
ns  
ns  
ns  
SCK ↓ → SO delay time  
Valid SI SCK ↑  
10  
50  
Internal  
clock  
50  
SCK ↑ → Valid SI holding time  
Serial clock H pulse width  
Serial clock L pulse width  
SCK ↓ → SO delay time  
Valid SI SCK ↑  
50  
4 tCPP 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
*
4 tCPP 10  
0
50  
50  
50  
External  
clock  
SCK ↑ → Valid SI holding time  
Serial busy period  
6 tCPP  
50  
SCS ↓ → SCK, SO delay time  
SCS ↓ → SCK input MASK time  
SCS ↑ → SCK, SO Hi-Z time  
3 tCPP  
50  
*: Will be Min. 1 tCPP 10 if pre-scalar setting is CS2, 1, 0 = 000.  
Internal shift clock mode  
tSCYC  
SCK  
tSLOV  
SO  
SI  
tSHIX  
tIVSH  
External shift clock mode  
tCLZO  
tSLSH  
tSHSL  
tBUSY  
tCHOZ  
SCK  
tSLOV  
SO  
SI  
tIVSH  
tSHIX  
SCS  
tCLSL  
95  
MB91133/MB91F133  
(5) External Bus Measurement Conditions  
The following conditions apply to items without specific regulations.  
Alternating current standard measurement condition  
VCC : 5.0 V ± 10%  
Input  
Output  
VOH  
VCC  
VIH  
VIL  
VIH  
VIL  
2.4 V VOH 2.4V  
0.8 V VOL 0.8V  
VOL  
0 V  
(Rise/fall time of input is 10 ns or less)  
Load condition  
Output pin  
C = 50 pF  
( VCC : 5.0 V ± 10% )  
Load capacity Delay time characteristic (Internally-based output delay)  
[nS]  
35  
30  
25  
20  
15  
10  
5
5 V Fall  
5 V Rise  
0
0
20  
40  
50  
60  
80  
100  
120  
C[pF]  
96  
MB91133/MB91F133  
(6) Normal Bus Access Read/Write Operation  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name Conditions  
Unit Remarks  
Min.  
Max.  
CLK  
A23 to A00  
Address delay time  
tCHAV  
15  
ns  
ns  
CLK  
D31 to D16  
Data delay time  
tCHDV  
15  
RD delay time  
tCLRL  
tCLRH  
tCLWL  
tCLWH  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
CLK  
RD  
RD delay time  
WR0 to 1 delay time  
WR0 to 1 delay time  
CLK  
WR0 to 1  
A23 to A00  
D31 to D16  
3 / 2 ×  
tCYC 25  
Valid address / valid data input time tAVDV  
ns *1, *2  
RD ↓ → valid data input time  
Data setup RD time  
RD ↑ → Data holding time  
tRLDV  
tDSRH  
tRHDX  
tCYC 15  
ns *1  
ns  
RD  
D31 to D16  
15  
0
ns  
*1 : Time (tCYC × number of cycles extended) needs to be added to this standard if the bus is extended by automatic  
waiting insertion and RDY input.  
*2 : Values of this standard are in case of gear cycle × 1.  
If the gear cycle is set to 1/2, 1/4 or 1/8, calculation should be made using the following formula and replacing  
n with 1/2, 1/4 or 1/8.  
Calculation formula : (2 n / 2) × tCYC 25  
97  
MB91133/MB91F133  
tCYC  
BA1  
BA2  
VOH  
VOH  
VOL  
CLK  
VOL  
tCHAV  
VOH  
VOL  
VOH  
VOL  
A24 - A00  
tCLRL  
VOL  
tCLRH  
VOH  
RD  
tRLDV  
tRHDX  
tAVDV  
tDSRH  
VIH  
VIH  
VIL  
D31 - D16  
WR0 - WR1  
D31 - D16  
Read  
VIL  
tCLWL  
VOL  
tCLWH  
VOH  
tCHDV  
VOH  
VOL  
VOH  
VOL  
Write  
98  
MB91133/MB91F133  
(7) Ready Input Timing  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Pin  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
name  
Min.  
Max.  
RDY  
CLK  
RDY setup time CLK ↓  
CLK ↓ → RDY holding time  
tRDYS  
15  
ns  
ns  
RDY  
CLK  
tRDYH  
0
tCYC  
VOH  
VOH  
CLK  
VOL  
VOL  
tRDYH  
tRDYS tRDYH  
tRDYS  
RDY  
If "wait" is  
executed  
VIH  
VIL  
RDY  
If "wait" is  
not executed  
VIH  
VIL  
99  
MB91133/MB91F133  
(8) Holding timing  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Pin  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
name  
Min.  
Max.  
BGRNT delay time  
tCHBGL  
tCHBGH  
tXHAL  
6
6
ns  
ns  
ns  
ns  
CLK  
BGRNT  
BGRNT delay time  
Pin floating BGRNT time  
BGRNT ↑ → Pin valid time  
tCYC 10 tCYC + 10  
tCYC 10 tCYC + 10  
BGRNT  
tHAHV  
Note : It takes at least one cycle from loading the BRQ to when BGRNT is changed.  
tcyc  
VOH  
VOH  
VOH  
VOH  
CLK  
BRQ  
tCHBGL  
tCHBGH  
VOH  
BGRNT  
VOL  
tHAHV  
tXHAL  
Each pin  
High impedance  
100  
MB91133/MB91F133  
(9) DMA Controller Timing  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Parameter  
Symbol  
Pin name  
Conditions  
Unit Remarks  
Min.  
Max.  
DREQ input pulse width  
tDRWH  
tCLDL  
tCLDH  
tCLEL  
tCLEH  
tCHDL  
tCHDH  
tCHEL  
tCHEH  
DREQ0 to DREQ2  
2 tCYC  
ns  
ns  
ns  
ns  
ns  
6
6
6
6
DACK delay time  
(Normal bus)  
CLK  
DACK0 to DACK2  
EOP delay time  
(Normal bus)  
CLK  
EOP0 to EOP2  
n / 2 × tCYC ns  
ns  
n / 2 × tCYC ns  
ns  
CLK  
DACK delay time  
EOP delay time  
DACK0 to DACK2  
6
CLK  
EOP0 to EOP2  
6
tcyc  
VOH  
VOH  
CLK  
VOL  
VOL  
tCLDH  
tCLDL  
tCLEL  
tCLEH  
DACK0 - 2  
EOP0 - 2  
(Normal bus)  
VOH  
VOL  
tCHDH  
VOH  
DACK0 - 2  
EOP0 - 2  
tCHDL  
tCHEL  
VOL  
tDRWH  
VIH  
VIH  
DREQ0 - 2  
101  
MB91133/MB91F133  
5. A/D Transition  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Sym-  
bol  
Pin  
name  
Re-  
marks  
Parameter  
Resolution  
Conditions  
Unit  
Min.  
Typ.  
Max.  
10  
Bit  
µs  
Conversion time  
Total tolerance  
5.0  
4.0  
3.5  
4.0  
3.5  
LSB  
LSB  
Straight-line tolerance  
AVCC = 5.0 V,  
AVRH = 5.0 V  
Differential straight-line  
tolerance  
2.0  
2.0  
LSB  
AN0 to  
AN7  
Zero transition tolerance  
VOT  
VFST  
IAIN  
AVSS1.5 AVSS+0.5 AVSS+2.5 LSB  
AVRH 5.5 AVRH 1.5 AVRH + 0.5 LSB  
AVCC = 5.0 V,  
AVRH = 5.0 V  
Full-scale transition  
tolerance  
AN0 to  
AN7  
AN0 to  
AN7  
Analog input current  
Analog input voltage  
0.1  
10  
µA  
AN0 to  
AN7  
VAIN  
AVRH  
IA  
AVSS  
AVRH  
AVCC  
5.0  
V
V
Standard voltage  
When conversion  
AVRH  
3.0  
2.0  
mA  
is activated  
Power  
current  
AVCC  
AVCC = 5.0 V  
When conversion  
is stopped  
IAH  
IR  
5.0  
3.0  
10  
4
µA  
mA  
µA  
When conversion  
is activated  
Standard  
voltage  
current  
AVCC = 5.0 V,  
AVRH = 5.0V  
AVRH  
When conversion  
is stopped  
IRH  
supplied  
Tolerance between  
channels  
AN0 to  
AN7  
LSB  
Notes : As the |AVRH| becomes smaller, the tolerance becomes larger.  
Output impedance of external circuits other than analog input must be used if output impedance of external  
circuits < approx. 7 kΩ  
If the output impedance of the external circuits is too high, the sampling time for the analog voltage may  
be insufficient.  
(Sampling time = 1.6 µs at 33 MHz)  
102  
MB91133/MB91F133  
Definition of A/D Converter Terms  
• Resolution :  
Analog changes that can be identified by A/D converter  
• Straight-line tolerance :  
Difference between the straight line linking the zero transition point (00 0000 0000 ←→ 00 0000 0001) to the  
full-scale transition point (11 1111 1110 ←→ 11 1111 1111) and actual conversion characteristics.  
• Differential straight-line tolerance :  
Difference compared to the ideal input voltage value required to change the output code 1 LSB  
Total tolerance :  
Indicates the difference between the actual and theoretical values and includes zero transition tolerance, full-  
scale transition tolerance, and straight-line tolerance.  
Total tolerance  
3FF  
1.5 LSB  
3FE  
3FD  
Actual conversion  
characteristics  
{1 LSB ( N 1 ) + 0.5 LSB}  
004  
003  
002  
001  
VNT  
(Actual  
measured value)  
Actual conversion  
characteristics  
Ideal characteristics  
0.5 LSB  
AVRH  
AVSS  
Analog input  
VNT {1 LSB × (N 1) + 0.5 LSB’}  
Total tolerance of digital output N =  
1 LSB  
AVRH AVSS  
1 LSB (Ideal value) =  
[V]  
[V]  
VFST (Ideal value) = AVRH 1.5 LSB’ [V]  
1024  
VOT (Ideal value) = AVSS + 0.5 LSB’  
VNT : Voltage of digital output transferred from (N + 1) to N  
(Continued)  
103  
MB91133/MB91F133  
(Continued)  
Straight-line tolerance  
Differential straight-line tolerance  
3FF  
Actual conversion  
characteristics  
Actual conversion  
characteristics  
3FE  
N + 1  
{1 LSB ( N 1 ) + VOT}  
VFST  
3FD  
(Actual  
measured  
value)  
Ideal characteristics  
N
004  
003  
002  
001  
VNT  
(Actual  
measured value)  
N 1  
VFST  
(Actual  
measured  
value)  
Actual conversion  
characteristics  
Ideal characteristics  
VNT  
(Actual  
measured value)  
N 2  
Actual conversion  
characteristics  
VOT  
(Actual measured value)  
AVSS  
AVSS  
AVRH  
AVRH  
Analog input  
Analog input  
VNT {1 LSB × (N 1) + VOT}  
Straight-linetolerance  
of digital output N  
=
=
[LSB]  
[LSB]  
1 LSB  
Differentialstraight-linetolerance  
of digital output N  
V (N + 1) T VNT  
1  
1 LSB  
VFST VOT  
[V]  
1LSB (Ideal value) =  
1022  
VOT : Voltage with digital output transferred from (000) H to (001) H  
VFST : Voltage with digital output transferred from (3FE) H to (3FF) H  
6. D/A Transition  
(MASK Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
(FLASH Model VCC5 = AVCC = DAVC = 5.0 V ± 10%, VCC3 = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = −40 °C to +70 °C)  
Value  
Pin  
name  
Condi-  
tions  
Re-  
marks  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
8
Resolution  
Bit  
LSB  
µs  
Differential straight-line tolerance  
Conversion time  
±0.9  
20  
10  
28  
*
Analog output impedance  
kΩ  
*: CL = 20 PF  
104  
MB91133/MB91F133  
INSTRUCTIONS (165 INSTRUCTIONS)  
1. How to Read Instruction Set Summary  
Mnemonic  
Type  
OP  
CYC  
NZVC  
Operation  
Remarks  
ADD Rj,  
* ADD #s5, Ri  
Ri  
A
C
,
A6  
A4  
,
1
1
,
CCCC  
CCCC  
Ri + Rj Ri  
Ri + s5 Ri  
,
,
,
,
,
,
,
,
,
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(1) Names of instructions  
Instructions marked with * are not included in CPU specifications. These are extended instruction codes  
added/extended at assembly language levels.  
(2) Addressing modes specified as operands are listed in symbols.  
Refer to “2. Addressing mode symbols” for further information.  
(3) Instruction types  
(4) Hexa-decimal expressions of instructions  
(5) The number of machine cycles needed for execution  
a: Memory access cycle and it has possibility of delay by Ready function.  
b: Memory access cycle and it has possibility of delay by Ready function.  
If an object register in a LD operation is referenced by an immediately following instruction, the interlock  
function is activated and number of cycles needed for execution increases.  
c: If an immediately following instruction operates to an object of R15, SSP or USP in read/write mode or  
if the instruction belongs to instruction format A group, the interlock function is activated and number of  
cycles needed for execution increases by 1 to make the total number of 2 cycles needed.  
d: If an immediately following instruction refers to MDH/MDL, the interlock function is activated and number  
of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.  
For a, b, c and d, minimum execution cycle is 1.  
(6) Change in flag sign  
• Flag change  
C : Change  
– : No change  
0 : Clear  
1 : Set  
• Flag meanings  
N : Negative flag  
Z : Zero flag  
V : Over flag  
C : Carry flag  
(7) Operation carried out by instruction  
105  
MB91133/MB91F133  
2. Addressing Mode Symbols  
Ri  
: Register direct (R0 to R15, AC, FP, SP)  
Rj  
: Register direct (R0 to R15, AC, FP, SP)  
R13  
Ps  
: Register direct (R13, AC)  
: Register direct (Program status register)  
Rs  
: Register direct (TBR, RP, SSP, USP, MDH, MDL)  
: Register direct (CR0 to CR15)  
: Register direct (CR0 to CR15)  
CRi  
CRj  
#i8  
: Unsigned 8-bit immediate (–128 to 255)  
Note: –128 to –1 are interpreted as 128 to 255  
: Unsigned 20-bit immediate (–0X80000 to 0XFFFFF)  
Note: –0X7FFFF to –1 are interpreted as 0X7FFFF to 0XFFFFF  
: Unsigned 32-bit immediate (–0X80000000 to 0XFFFFFFFF)  
Note: –0X80000000 to –1 are interpreted as 0X80000000 to 0XFFFFFFFF  
: Signed 5-bit immediate (–16 to 15)  
#i20  
#i32  
#s5  
#s10  
#u4  
: Signed 10-bit immediate (–512 to 508, multiple of 4 only)  
: Unsigned 4-bit immediate (0 to 15)  
#u5  
: Unsigned 5-bit immediate (0 to 31)  
#u8  
: Unsigned 8-bit immediate (0 to 255)  
#u10  
: Unsigned 10-bit immediate (0 to 1020, multiple of 4 only)  
: Unsigned 8-bit direct address (0 to 0XFF)  
@dir8  
@dir9  
@dir10  
label9  
label12  
label20  
label32  
@Ri  
: Unsigned 9-bit direct address (0 to 0X1FE, multiple of 2 only)  
: Unsigned 10-bit direct address (0 to 0X3FC, multiple of 4 only)  
: Signed 9-bit branch address (–0X100 to 0XFC, multiple of 2 only)  
: Signed 12-bit branch address (–0X800 to 0X7FC, multiple of 2 only)  
: Signed 20-bit branch address (–0X80000 to 0X7FFFF)  
: Signed 32-bit branch address (–0X80000000 to 0X7FFFFFFF)  
: Register indirect (R0 to R15, AC, FP, SP)  
@Rj  
: Register indirect (R0 to R15, AC, FP, SP)  
@(R13, Rj)  
: Register relative indirect (Rj: R0 to R15, AC, FP, SP)  
@(R14, disp10) : Register relative indirect (disp10: –0X200 to 0X1FC, multiple of 4 only)  
@(R14, disp9) : Register relative indirect (disp9: –0X100 to 0XFE, multiple of 2 only)  
@(R14, disp8) : Register relative indirect (disp8: –0X80 to 0X7F)  
@(R15, udisp6) : Register relative (udisp6: 0 to 60, multiple of 4 only)  
@Ri+  
: Register indirect with post-increment (R0 to R15, AC, FP, SP)  
@R13+  
@SP+  
@–SP  
(reglist)  
: Register indirect with post-increment (R13, AC)  
: Stack pop  
: Stack push  
: Register list  
106  
MB91133/MB91F133  
3. Instruction Types  
MSB  
LSB  
16 bits  
Type A  
OP  
8
Rj  
4
Ri  
4
Type B  
Type C  
Type *C’  
Type D  
Type E  
Type F  
OP  
4
i8/o8  
8
Ri  
4
OP  
8
u4/m4  
4
Ri  
4
ADD, ADDN, CMP, LSL, LSR and ASR instructions only  
OP  
7
s5/u5  
5
Ri  
4
OP  
u8/rel8/dir/reglist  
8
8
OP  
8
SUB-OP  
Ri  
4
4
OP  
5
rel11  
11  
107  
MB91133/MB91F133  
4. Detailed Description of Instructions  
• Add/subtract operation instructions (10 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
ADD  
* ADD  
Rj, Ri  
#s5, Ri  
A
C’  
A6  
A4  
1
1
C C C C Ri + Rj Ri  
C C C C Ri + s5 Ri  
MSB is interpreted as  
a sign in assembly  
language  
ADD  
ADD2  
#i4, Ri  
#i4, Ri  
C
C
A4  
A5  
1
1
C C C C Ri + extu (i4) Ri  
C C C C Ri + extu (i4) Ri  
Zero-extension  
Sign-extension  
ADDC  
Rj, Ri  
A
A7  
1
C C C C Ri + Rj + c Ri  
Add operation with  
sign  
ADDN  
* ADDN #s5, Ri  
Rj, Ri  
A
C’  
A2  
A0  
1
1
– – – – Ri + Rj Ri  
– – – – Ri + s5 Ri  
MSB is interpreted as  
a sign in assembly  
language  
ADDN  
ADDN2 #i4, Ri  
#i4, Ri  
C
C
A0  
A1  
1
1
– – – – Ri + extu (i4) Ri  
– – – – Ri + extu (i4) Ri  
Zero-extension  
Sign-extension  
SUB  
Rj, Ri  
Rj, Ri  
A
A
AC  
AD  
1
1
C C C C Ri – Rj Ri  
SUBC  
C C C C Ri – Rj – c Ri  
Subtract operation with  
carry  
SUBN  
Rj, Ri  
A
AE  
1
– – – – Ri – Rj Ri  
• Compare operation instructions (3 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
CMP  
* CMP  
Rj, Ri  
#s5, Ri  
A
C’  
AA  
A8  
1
1
C C C C Ri – Rj  
C C C C Ri – s5  
MSB is interpreted as  
a sign in assembly  
language  
CMP  
CMP2  
#i4, Ri  
#i4, Ri  
C
C
A8  
A9  
1
1
C C C C Ri + extu (i4)  
C C C C Ri + extu (i4)  
Zero-extension  
Sign-extension  
• Logical operation instructions (12 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
AND  
AND  
ANDH  
ANDB  
Rj, Ri  
A
A
A
A
82 C C – – Ri & = Rj  
1
Word  
Word  
Half word  
Byte  
Rj, @Ri  
Rj, @Ri  
Rj, @Ri  
84 1 + 2a C C – – (Ri) & = Rj  
85 1 + 2a C C – – (Ri) & = Rj  
86 1 + 2a C C – – (Ri) & = Rj  
OR  
OR  
ORH  
ORB  
Rj, Ri  
A
A
A
A
92  
1
C C – – Ri | = Rj  
Word  
Word  
Half word  
Byte  
Rj, @Ri  
Rj, @Ri  
Rj, @Ri  
94 1 + 2a C C – – (Ri) | = Rj  
95 1 + 2a C C – – (Ri) | = Rj  
96 1 + 2a C C – – (Ri) | = Rj  
EOR  
EOR  
EORH  
EORB  
Rj, Ri  
A
A
A
A
9A  
1
C C – – Ri ^ = Rj  
Word  
Word  
Half word  
Byte  
Rj, @Ri  
Rj, @Ri  
Rj, @Ri  
9C 1 + 2a C C – – (Ri) ^ = Rj  
9D 1 + 2a C C – – (Ri) ^ = Rj  
9E 1 + 2a C C – – (Ri) ^ = Rj  
108  
MB91133/MB91F133  
• Bit manipulation arithmetic instructions (8 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
BANDL #u4, @Ri  
C
80 1 + 2a – – – – (Ri) & = (F0H + u4)  
Manipulate lower 4 bits  
(u4: 0 to 0FH)  
BANDH #u4, @Ri  
(u4: 0 to 0FH)  
* BAND #u8, @Ri  
C
81 1 + 2a – – – – (Ri) & = ((u4<<4) + 0FH) Manipulate upper 4 bits  
– – – – (Ri) & = u8  
1
2
3
*
*
*
BORL  
BORH  
* BOR  
#u4, @Ri  
(u4: 0 to 0FH)  
#u4, @Ri  
(u4: 0 to 0FH)  
#u8, @Ri  
C
C
90 1 + 2a – – – – (Ri) | = u4  
Manipulate lower 4 bits  
Manipulate upper 4 bits  
91 1 + 2a – – – – (Ri) | = (u4<<4)  
– – – – (Ri) | = u8  
BEORL #u4, @Ri  
(u4: 0 to 0FH)  
BEORH #u4, @Ri  
(u4: 0 to 0FH)  
* BEOR #u8, @Ri  
C
C
98 1 + 2a – – – – (Ri) ^ = u4  
Manipulate lower 4 bits  
Manipulate upper 4 bits  
99 1 + 2a – – – – (Ri) ^ = (u4<<4)  
– – – – (Ri) ^ = u8  
BTSTL  
BTSTH  
#u4, @Ri  
(u4: 0 to 0FH)  
#u4, @Ri  
C
C
88  
89  
2 + a 0 C – – (Ri) & u4  
Test lower 4 bits  
Test upper 4 bits  
2 + a C C – – (Ri) & (u4<<4)  
(u4: 0 to 0FH)  
*1: Assembler generates BANDL if result of logical operation “u8&0x0F” leaves an active (set) bit and generates  
BANDH if “u8&0xF0” leaves an active bit. Depending on the value in the “u8” format, both BANDL and BANDH  
may be generated.  
*2: Assembler generates BORL if result of logical operation “u8&0x0F” leaves an active (set) bit and generates  
BORH if “u8&0xF0” leaves an active bit.  
*3: Assembler generates BEORL if result of logical operation “u8&0x0F” leaves an active (set) bit and generates  
BEORH if “u8&0xF0” leaves an active bit.  
• Add/subtract operation instructions (10 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
MUL  
MULU  
MULH  
Rj, Ri  
Rj, Ri  
Rj, Ri  
A
A
A
A
AF  
AB  
BF  
BB  
5
5
3
3
C C C – Rj × Ri MDH, MDL  
C C C – Rj × Ri MDH, MDL  
C C – – Rj × Ri MDL  
32-bit × 32-bit = 64-bit  
Unsigned  
16-bit × 16-bit = 32-bit  
Unsigned  
MULUH Rj, Ri  
C C – – Rj × Ri MDL  
DIVOS  
DIVOU  
DIV1  
DIV2  
DIV3  
DIV4S  
* DIV  
Ri  
Ri  
Ri  
Ri  
E
E
E
E
E
E
97 – 4  
97 – 5  
97 – 6  
97 – 7  
9F – 6  
9F – 7  
1
1
d
1
1
1
– – – –  
– – – –  
– C – C  
– C – C  
– – – –  
– – – –  
– C – C MDL/Ri MDL,  
MDL%Ri MDH  
– C – C MDL/Ri MDL,  
MDL%Ri MDH  
Step calculation  
32-bit/32-bit = 32-bit  
1
2
Ri  
Ri  
*
*
Unsigned  
* DIVU  
*1: DIVOS, DIV1 × 32, DIV2, DIV3 and DIV4S are generated. A total instruction code length of 72 bytes.  
*2: DIVOU and DIV1 × 32 are generated. A total instruction code length of 66 bytes.  
109  
MB91133/MB91F133  
• Shift arithmetic instructions (9 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
Logical shift  
LSL  
* LSL  
LSL  
Rj, Ri  
A
C’  
C
B6  
B4  
B4  
B5  
1
1
1
1
C C – C Ri<<Rj Ri  
#u5, Ri  
#u4, Ri  
#u4, Ri  
C C – C Ri<<u5 Ri  
C C – C Ri<<u4 Ri  
C C – C Ri<<(u4 + 16) Ri  
LSL2  
C
LSR  
* LSR  
LSR  
Rj, Ri  
A
C’  
C
B2  
B0  
B0  
B1  
1
1
1
1
C C – C Ri>>Rj Ri  
C C – C Ri>>u5 Ri  
C C – C Ri>>u4 Ri  
C C – C Ri>>(u4 + 16) Ri  
Logical shift  
Logical shift  
#u5, Ri  
#u4, Ri  
#u4, Ri  
LSR2  
C
ASR  
* ASR  
ASR  
Rj, Ri  
A
C’  
C
BA  
B8  
B8  
B9  
1
1
1
1
C C – C Ri>>Rj Ri  
C C – C Ri>>u5 Ri  
C C – C Ri>>u4 Ri  
C C – C Ri>>(u4 + 16) Ri  
#u5, Ri  
#u4, Ri  
#u4, Ri  
ASR2  
C
• Immediate value data transfer instruction (immediate value set/16-bit/32-bit immediate value transfer  
instruction) (3 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
LDI: 32  
LDI: 20  
#i32, Ri  
#i20, Ri  
E
C
9F – 8  
9B  
3
2
– – – – i32 Ri  
– – – – i20 Ri  
– – – – i8 Ri  
Upper 12 bits are zero-  
extended  
Upper 24 bits are zero-  
extended  
LDI: 8  
* LDI  
#i8, Ri  
# {i8 | i20 | i32}, Ri  
B
C0  
1
{i8 | i20 | i32} Ri  
1
*
*1: If an immediate value is given in absolute, assembler automatically makes i8, i20 or i32 selection.  
If an immediate value contains relative value or external reference, assembler selects i32.  
• Memory load instructions (13 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
LD  
LD  
LD  
LD  
LD  
LD  
@Rj, Ri  
A
A
B
C
E
E
04  
00  
20  
03  
07 – 0  
07 – 8  
b
b
b
b
b
b
– – – – (Rj) Ri  
– – – – (R13 + Rj) Ri  
– – – – (R14 + disp10) Ri  
– – – – (R15 + udisp6) Ri  
– – – – (R15) Ri, R15 + = 4  
– – – – (R15) Rs, R15 + = 4 Rs: Special-purpose  
register  
@(R13, Rj), Ri  
@(R14, disp10), Ri  
@(R15, udisp6), Ri  
@R15 +, Ri  
@R15 +, Rs  
1 + a + b  
LD  
@R15 +, PS  
E
07 – 9  
C C C C (R15) PS, R15 + = 4  
LDUH  
LDUH  
LDUH  
@Rj, Ri  
@(R13, Rj), Ri  
@(R14, disp9), Ri  
A
A
B
05  
01  
40  
b
b
b
– – – – (Rj) Ri  
– – – – (R13 + Rj) Ri  
– – – – (R14 + disp9) Ri  
Zero-extension  
Zero-extension  
Zero-extension  
LDUB  
LDUB  
LDUB  
@Rj, Ri  
@(R13, Rj), Ri  
@(R14, disp8), Ri  
A
A
B
06  
02  
60  
b
b
b
– – – – (Rj) Ri  
– – – – (R13 + Rj) Ri  
– – – – (R14 + disp8) Ri  
Zero-extension  
Zero-extension  
Zero-extension  
Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler  
description from disp8 to disp10 are as follows:  
disp8 o8 = disp8:Each disp is a code extension.  
disp9 o8 = disp9>>1:Each disp is a code extension.  
disp10 o8 = disp10>>2:Each disp is a code extension.  
udisp6 u4 = udisp6>>2:udisp4 is a 0 extension.  
110  
MB91133/MB91F133  
• Memory store instructions (13 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
ST  
ST  
ST  
ST  
ST  
ST  
Ri, @Rj  
A
A
B
C
E
E
14  
10  
30  
13  
17 – 0  
17 – 8  
a
a
a
a
a
a
– – – – Ri (Rj)  
– – – – Ri (R13 + Rj)  
– – – – Ri (R14 + disp10)  
– – – – Ri (R15 + usidp6)  
– – – – R15 – = 4, Ri (R15)  
– – – – R15 – = 4, Rs (R15) Rs: Special-purpose  
register  
Word  
Word  
Word  
Ri, @(R13, Rj)  
Ri, @(R14, disp10)  
Ri, @(R15, udisp6)  
Ri, @–R15  
Rs, @–R15  
ST  
PS, @–R15  
E
17 – 9  
a
– – – – R15 – = 4, PS (R15)  
STH  
STH  
STH  
Ri, @Rj  
Ri, @(R13, Rj)  
Ri, @(R14, disp9)  
A
A
B
15  
11  
50  
a
a
a
– – – – Ri (Rj)  
– – – – Ri (R13 + Rj)  
– – – – Ri (R14 + disp9)  
Half word  
Half word  
Half word  
STB  
STB  
STB  
Ri, @Rj  
Ri, @(R13, Rj)  
Ri, @(R14, disp8)  
A
A
B
16  
12  
70  
a
a
a
– – – – Ri (Rj)  
– – – – Ri (R13 + Rj)  
– – – – Ri (R14 + disp8)  
Byte  
Byte  
Byte  
Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler  
description from disp8 to disp10 are as follows:  
disp8 o8 = disp8:Each disp is a code extension.  
disp9 o8 = disp9>>1:Each disp is a code extension.  
disp10 o8 = disp10>>2:Each disp is a code extension.  
udisp6 u4 = udisp6>>2:udisp4 is a 0 extension.  
Transfer instructions between registers/special-purpose registers transfer instructions  
(5 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
MOV  
Rj, Ri  
A
8B  
1
– – – – Rj Ri  
Transfer between  
general-purpose  
registers  
MOV  
MOV  
Rs, Ri  
Ri, Rs  
A
A
B7  
B3  
1
1
– – – – Rs Ri  
– – – – Ri Rs  
Rs: Special-purpose  
register  
Rs: Special-purpose  
register  
MOV  
MOV  
PS, Ri  
Ri, PS  
E
E
17 – 1  
07 – 1  
1
c
– – – – PS Ri  
C C C C Ri PS  
111  
MB91133/MB91F133  
• Non-delay normal branch instructions (23 instructions)  
Type  
E
Mnemonic  
@Ri  
OP Cycle N Z V C  
Operation  
Remarks  
JMP  
97 – 0  
D0  
2
2
– – – – Ri PC  
– – – – PC + 2 RP,  
CALL  
label12  
F
PC + 2 + rel11 × 2 PC  
– – – – PC + 2 RP, Ri PC  
CALL  
RET  
INT  
@Ri  
E
E
D
97 – 1  
97 – 2  
1F  
2
2
– – – – RP PC  
Return  
#u8  
3+3a – – – – SSP – = 4, PS (SSP),  
SSP – = 4,  
PC + 2 (SSP),  
0 I flag,  
0 S flag,  
(TBR + 3FC – u8 × 4) PC  
INTE  
RETI  
E
E
9F – 3 3 + 3a – – – – SSP – = 4, PS (SSP),  
SSP – = 4,  
For emulator  
PC + 2 (SSP),  
0 S flag,  
(TBR + 3D8 – u8 × 4) PC  
97 – 3 2 + 2a C C C C (R15) PC, R15 – = 4,  
(R15) PS, R15 – = 4  
BNO  
BRA  
BEQ  
BNE  
BC  
BNC  
BN  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
E1  
E0  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
1
2
– – – – Non-branch  
– – – – PC + 2 + rel8 × 2 PC  
– – – – PCif Z = = 1  
– – – – PCif Z = = 0  
– – – – PCif C = = 1  
– – – – PCif C = = 0  
– – – – PCif N = = 1  
– – – – PCif N = = 0  
– – – – PCif V = = 1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
BP  
BV  
BNV  
BLT  
BGE  
BLE  
BGT  
BLS  
BHI  
– – – – PCif V = = 0  
– – – – PCif V xor N = = 1  
– – – – PCif V xor N = = 0  
– – – – PCif (V xor N) or Z = = 1  
– – – – PCif (V xor N) or Z = = 0  
– – – – PCif C or Z = = 1  
– – – – PCif C or Z = = 0  
Notes: • “2/1” in cycle sections indicates that 2 cycles are needed for branch and 1 cycle needed for non-branch.  
• The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and  
assembler discription label9 and label12 are as follows.  
label9 rel8 = (label9 – PC – 2)/2  
label12 rel11 = (label12 – PC – 2)/2  
• RETI must be operated while S flag = 0.  
112  
MB91133/MB91F133  
• Branch instructions with delays (20 instructions)  
Type  
E
Mnemonic  
OP Cycle N Z V C  
Operation  
– – – – Ri PC  
– – – – PC + 4 RP,  
Remarks  
JMP:D  
@Ri  
9F – 0  
D8  
1
1
CALL:D label12  
F
PC + 2 + rel11 × 2 PC  
– – – – PC + 4 RP, Ri PC  
CALL:D @Ri  
RET:D  
E
E
9F – 1  
9F – 2  
1
1
– – – – RP PC  
Return  
BNO:D  
BRA:D  
BEQ:D  
BNE:D  
BC:D  
BNC:D  
BN:D  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
label9  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
F1  
F0  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
– – – – Non-branch  
– – – – PC + 2 + rel8 × 2 PC  
– – – – PCif Z = = 1  
– – – – PCif Z = = 0  
– – – – PCif C = = 1  
– – – – PCif C = = 0  
– – – – PCif N = = 1  
– – – – PCif N = = 0  
– – – – PCif V = = 1  
BP:D  
BV:D  
BNV:D  
BLT:D  
BGE:D  
BLE:D  
BGT:D  
BLS:D  
BHI:D  
– – – – PCif V = = 0  
– – – – PCif V xor N = = 1  
– – – – PCif V xor N = = 0  
– – – – PCif (V xor N) or Z = = 1  
– – – – PCif (V xor N) or Z = = 0  
– – – – PCif C or Z = = 1  
– – – – PCif C or Z = = 0  
Notes: • The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and  
assembler discription label9 and label12 are as follows.  
label9 rel8 = (label9 – PC – 2)/2  
label12 rel11 = (label12 – PC – 2)/2  
• Delayed branch operation always executes next instruction (delay slot) before making a branch.  
• Instructions allowed to be stored in the delay slot must meet one of the following conditions. If the other  
instruction is stored, this device may operate other operation than defined.  
The instruction described “1” in the other cycle column than branch instruction.  
The instruction described “a”, “b”, “c” or “d” in the cycle column.  
113  
MB91133/MB91F133  
• Direct addressing instructions  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
DMOV  
DMOV  
DMOV  
DMOV  
DMOV  
DMOV  
@dir10, R13  
D
D
D
D
D
D
08  
18  
0C  
1C  
0B  
1B  
b
a
2a  
2a  
2a  
2a  
– – – – (dir10) R13  
– – – – R13 (dir10)  
– – – – (dir10) (R13), R13 + = 4 Word  
– – – – (R13) (dir10), R13 + = 4 Word  
– – – – R15 – = 4, (dir10) (R15) Word  
– – – – (R15) (dir10), R15 + = 4 Word  
Word  
Word  
R13,  
@dir10  
@dir10, @R13+  
@R13+, @dir10  
@dir10, @–R15  
@R15+, @dir10  
DMOVH @dir9, R13  
D
D
D
D
09  
19  
0D  
1D  
b
a
2a  
2a  
– – – – (dir9) R13  
– – – – R13 (dir9)  
– – – – (dir9) (R13), R13 + = 2 Half word  
– – – – (R13) (dir9), R13 + = 2 Half word  
Half word  
Half word  
DMOVH R13,  
@dir9  
DMOVH @dir9, @R13+  
DMOVH @R13+, @dir9  
DMOVB @dir8, R13  
D
D
D
D
0A  
1A  
0E  
1E  
b
a
2a  
2a  
– – – – (dir8) R13  
– – – – R13 (dir8)  
– – – – (dir8) (R13), R13 + + Byte  
– – – – (R13) (dir8), R13 + + Byte  
Byte  
Byte  
DMOVB R13,  
@dir8  
DMOVB @dir8, @R13+  
DMOVB @R13+, @dir8  
Note: The relations between the dir field of TYPE-D in the instruction format and the assembler description from  
disp8 to disp10 are as follows:  
disp8 dir + disp8:Each disp is a code extension  
disp9 dir = disp9>>1:Each disp is a code extension  
disp10 dir = disp10>>2:Each disp is a code extension  
• Resource instructions (2 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
LDRES @Ri+, #u4  
C
BC  
a
– – – – (Ri) u4 resource  
u4: Channel number  
Ri + = 4  
STRES #u4,  
@Ri+  
C
BD  
a
– – – – u4 resource (Ri)  
u4: Channel number  
Ri + = 4  
• Co-processor instructions (4 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
COPOP #u4, #CC, CRj, CRi  
COPLD #u4, #CC, Rj, CRi  
COPST #u4, #CC, CRj, Ri  
COPSV #u4, #CC, CRj, Ri  
E
E
E
E
9F – C 2 + a – – – – Calculation  
9F – D 1 + 2a – – – – Rj CRi  
9F – E 1 + 2a – – – – CRj Ri  
9F – F 1 + 2a – – – – CRj Ri  
No error traps  
114  
MB91133/MB91F133  
• Other instructions (16 instructions)  
Type  
Mnemonic  
OP Cycle N Z V C  
Operation  
Remarks  
NOP  
E
9F – A  
1
– – – – No changes  
ANDCCR #u8  
ORCCR #u8  
D
D
83  
93  
c
c
C C C C CCR and u8 CCR  
C C C C CCR or u8 CCR  
STILM  
#u8  
D
87  
1
– – – – i8 ILM  
Set ILM immediate  
value  
1
D
A3  
1
– – – – R15 + = s10  
ADD SP instruction  
ADDSP #s10  
EXTSB Ri  
EXTUB Ri  
EXTSH Ri  
EXTUH Ri  
*
E
E
E
E
97 – 8  
97 – 9  
97 – A  
97 – B  
1
1
1
1
– – – – Sign extension 8 32 bits  
– – – – Zero extension 8 32 bits  
– – – – Sign extension 16 32 bits  
– – – – Zero extension 16 32 bits  
4
LDM0  
LDM1  
(reglist)  
D
D
8C  
8D  
– – – – (R15) reglist,  
R15 increment  
– – – – (R15) reglist,  
R15 increment  
Load-multi R0 to R7  
Load-multi R8 to R15  
*
4
(reglist)  
*
3
– – – – (R15 + +) reglist,  
Load-multi R0 to R15  
Store-multi R0 to R7  
* LDM  
STM0  
(reglist)  
(reglist)  
*
6
D
D
8E  
8F  
– – – – R15 decrement,  
reglist (R15)  
– – – – R15 decrement,  
reglist (R15)  
*
6
STM1  
(reglist)  
Store-multi R8 to R15  
Store-multi R0 to R15  
*
5
2
– – – – reglist (R15 + +)  
* STM2 (reglist)  
ENTER #u10  
*
*
D
0F  
1+a – – – – R14 (R15 – 4),  
R15 – 4 R14,  
Entrance processing  
of function  
R15 – u10 R15  
LEAVE  
E
A
9F – 9  
8A  
b
– – – – R14 + 4 R15,  
(R15 – 4) R14  
Exit processing of  
function  
XCHB  
@Rj, Ri  
2a  
– – – – Ri TEMP,  
(Rj) Ri,  
For SEMAFO  
management  
Byte data  
TEMP (Rj)  
*1: In the ADDSP instruction, the reference between u8 of TYPE-D in the instruction format and assembler  
description s10 is as follows.  
s10 s8 = s10>>2  
*2: In the ENTER instruction, the reference between i8 of TYPE-C in the instruction format and assembler  
description u10 is as follows.  
u10 u8 = u10>>2  
*3: If either of R0 to R7 is specified in reglist, assembler generates LDM0. If either of R8 to R15 is specified,  
assembler generates LDM1. Both LDM0 and LDM1 may be generated.  
*4: The number of cycles needed for execution of LDM0 (reglist) and LDM1 (reglist) is given by the following  
calculation; a × (n – 1) + b + 1 when “n” is number of registers specified.  
*5: If either of R0 to R7 is specified in reglist, assembler generates STM0. If either of R8 to R15 is specified,  
assembler generates STM1. Both STM0 and STM1 may be generated.  
*6: The number of cycles needed for execution of STM0 (reglist) and STM1 (reglist) is given by the following  
calculation; a × n + 1 when “n” is number of registers specified.  
115  
MB91133/MB91F133  
• 20-bit normal branch macro instructions  
Mnemonic  
Operation  
Remarks  
1
* CALL20 label20, Ri  
Next instruction address RP, label20 PC  
Ri: Temporary register  
*
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
* BRA20  
* BEQ20  
* BNE20  
* BC20  
* BNC20  
* BN20  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20, Ri  
label20 PC  
if (Z = = 1) then label20 PC  
ifs/Z = = 0  
ifs/C = = 1  
ifs/C = = 0  
ifs/N = = 1  
ifs/N = = 0  
ifs/V = = 1  
ifs/V = = 0  
ifs/V xor N = = 1  
ifs/V xor N = = 0  
ifs/(V xor N) or Z = = 1  
ifs/(V xor N) or Z = = 0  
ifs/C or Z = = 1  
ifs/C or Z = = 0  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* BP20  
* BV20  
* BNV20  
* BLT20  
* BGE20  
* BLE20  
* BGT20  
* BLS20  
* BHI20  
*1: CALL20  
(1) If label20 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows;  
CALL label12  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:20 #label20, Ri  
CALL  
*2: BRA20  
(1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
BRA label9  
@Ri  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:20 #label20, Ri  
JMP  
@Ri  
*3: Bcc20 (BEQ20 to BHI20)  
(1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
Bcc  
label9  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
Bxcc  
false  
xcc is a revolt condition of cc  
LDI:20 #label20, Ri  
JMP  
@Ri  
false:  
116  
MB91133/MB91F133  
• 20-bit delayed branch macro instructions  
Mnemonic  
Operation  
Remarks  
1
* CALL20:D label20, Ri  
Next instruction address + 2 RP, label20 PC  
Ri: Temporary register  
*
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
* BRA20:D label20, Ri  
* BEQ20:D label20, Ri  
* BNE20:D label20, Ri  
label20 PC  
if (Z = = 1) then label20 PC  
ifs/Z = = 0  
ifs/C = = 1  
ifs/C = = 0  
ifs/N = = 1  
ifs/N = = 0  
ifs/V = = 1  
ifs/V = = 0  
ifs/V xor N = = 1  
ifs/V xor N = = 0  
ifs/(V xor N) or Z = = 1  
ifs/(V xor N) or Z = = 0  
ifs/C or Z = = 1  
ifs/C or Z = = 0  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* BC20:D  
label20, Ri  
* BNC20:D label20, Ri  
* BN20:D  
* BP20:D  
* BV20:D  
label20, Ri  
label20, Ri  
label20, Ri  
* BNV20:D label20, Ri  
* BLT20:D label20, Ri  
* BGE20:D label20, Ri  
* BLE20:D label20, Ri  
* BGT20:D label20, Ri  
* BLS20:D label20, Ri  
* BHI20:D label20, Ri  
*1: CALL20:D  
(1) If label20 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows;  
CALL:D label12  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:20 #label20, Ri  
CALL:D @Ri  
*2: BRA20:D  
(1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
BRA:D label9  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:20 #label20, Ri  
JMP:D @Ri  
*3: Bcc20:D (BEQ20:D to BHI20:D)  
(1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
Bcc:D  
label9  
(2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
Bxcc  
false  
xcc is a revolt condition of cc  
LDI:20 #label20, Ri  
JMP:D @Ri  
false:  
117  
MB91133/MB91F133  
• 32-bit normal macro branch instructions  
Mnemonic  
Operation  
Remarks  
1
* CALL32 label32, Ri  
Next instruction address RP, label32 PC  
Ri: Temporary register  
*
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
* BRA32  
* BEQ32  
* BNE32  
* BC32  
* BNC32  
* BN32  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32, Ri  
label32 PC  
if (Z = = 1) then label32 PC  
ifs/Z = = 0  
ifs/C = = 1  
ifs/C = = 0  
ifs/N = = 1  
ifs/N = = 0  
ifs/V = = 1  
ifs/V = = 0  
ifs/V xor N = = 1  
ifs/V xor N = = 0  
ifs/(V xor N) or Z = = 1  
ifs/(V xor N) or Z = = 0  
ifs/C or Z = = 1  
ifs/C or Z = = 0  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* BP32  
* BV32  
* BNV32  
* BLT32  
* BGE32  
* BLE32  
* BGT32  
* BLS32  
* BHI32  
*1: CALL32  
(1) If label32 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows;  
CALL label12  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:32 #label32, Ri  
CALL  
*2: BRA32  
(1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
BRA label9  
@Ri  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:32 #label32, Ri  
JMP  
@Ri  
*3: Bcc32 (BEQ32 to BHI32)  
(1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
Bcc  
label9  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
Bxcc  
false  
xcc is a revolt condition of cc  
LDI:32 #label32, Ri  
JMP  
@Ri  
false:  
118  
MB91133/MB91F133  
• 32-bit delayed macro branch instructions  
Mnemonic  
Operation  
Remarks  
1
* CALL32:D label32, Ri  
Next instruction address + 2 RP, label32 PC  
Ri: Temporary register  
*
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
* BRA32:D label32, Ri  
* BEQ32:D label32, Ri  
* BNE32:D label32, Ri  
label32 PC  
if (Z = = 1) then label32 PC  
ifs/Z = = 0  
ifs/C = = 1  
ifs/C = = 0  
ifs/N = = 1  
ifs/N = = 0  
ifs/V = = 1  
ifs/V = = 0  
ifs/V xor N = = 1  
ifs/V xor N = = 0  
ifs/(V xor N) or Z = = 1  
ifs/(V xor N) or Z = = 0  
ifs/C or Z = = 1  
ifs/C or Z = = 0  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
Ri: Temporary register  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* BC32:D  
label32, Ri  
* BNC32:D label32, Ri  
* BN32:D  
* BP32:D  
* BV32:D  
label32, Ri  
label32, Ri  
label32, Ri  
* BNV32:D label32, Ri  
* BLT32:D label32, Ri  
* BGE32:D label32, Ri  
* BLE32:D label32, Ri  
* BGT32:D label32, Ri  
* BLS32:D label32, Ri  
* BHI32:D label32, Ri  
*1: CALL32:D  
(1) If label32 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows;  
CALL:D label12  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:32 #label32, Ri  
CALL:D @Ri  
*2: BRA32:D  
(1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
BRA:D label9  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
LDI:32 #label32, Ri  
JMP:D @Ri  
*3: Bcc32:D (BEQ32:D to BHI32:D)  
(1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows;  
Bcc:D  
label9  
(2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is  
generated as follows;  
Bxcc  
false  
xcc is a revolt condition of cc  
LDI:32 #label32, Ri  
JMP:D @Ri  
false:  
119  
MB91133/MB91F133  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
144-pin plastic LQFP  
(FPT-144P-M08)  
MB91133PMT2-XXX  
MB91133PBT-XXX  
MB91F133PMT2  
MB91F133PBT  
144-pin plastic FBGA  
(BGA-144P-M01)  
144-pin plastic LQFP  
(FPT-144P-M08)  
144-pin plastic FBGA  
(BGA-144P-M01)  
299-pin ceramic PGA  
(PGA-299)  
MB91FV130CR-ES  
120  
MB91133/MB91F133  
PACKAGE DIMENSIONS  
144-pin plastic FBGA  
(BGA-144P-M01)  
Note) Corner shape may differ from the diagram.  
10.40(.409)REF  
0.80(.031)TYP  
12.00±0.10(.472±.004)SQ  
1.25 +00..1200 .049 +..000048  
(Mounting height)  
0.38±0.10(.015±.004)  
(Stand off)  
14  
13  
12  
11  
10  
9
8
7
6
0.10(.004)  
5
4
INDEX  
3
2
1
P
N M L K J H G F E D C B A  
C0.80(.031)  
144-Ø0.45±0.10  
(144-Ø.018±.004)  
M
0.08(.003)  
C
1998 FUJITSU LIMITED B144001S-2C-2  
Dimensions in mm (inches)  
121  
MB91133/MB91F133  
144-pin plastic LQFP  
(FPT-144P-M08)  
22.00±0.30(.866±.012)SQ  
1.70(.67)MAX  
20.00±0.10(.787±.004)SQ  
0(0)MIN  
(STAND OFF)  
108  
73  
72  
109  
21.00  
(.827)  
Details of "A" part  
0.15(.006)  
17.50  
NOM  
(.686)  
REF  
0.15(.006)  
INDEX  
0.15(.006)MAX  
0.40(.016)MAX  
144  
37  
"A"  
1
36  
LEAD No.  
Details of "B" part  
0.50(.0197)TYP  
0.20±0.10  
(.008±.004)  
0.15±0.05  
(.006±.002)  
M
0.08(.003)  
0
10˚  
0.50±0.20(.020±.008)  
0.10(.004)  
"B"  
C
1995 FUJITSU LIMITED F144019S-1C-2  
Dimensions in mm (inches)  
122  
MB91133/MB91F133  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Shinjuku Dai-Ichi Seimei Bldg. 7-1,  
Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0721, Japan  
Tel: +81-3-5322-3347  
Fax: +81-3-5322-3386  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
http://edevice.fujitsu.com/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
FUJITSU semiconductor devices are intended for use in standard  
applications (computers, office automation and other office  
equipments, industrial, communications, and measurement  
equipments, personal or household devices, etc.).  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
CAUTION:  
Europe  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or  
where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters,  
vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with FUJITSU sales representatives before  
such use. The company will not be responsible for damages arising  
from such use without prior approval.  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Any semiconductor devices have inherently a certain rate of failure.  
You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required for  
export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F0101  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB91133PMT2-XXX

RISC Microcontroller, 32-Bit, FLASH, FR30 CPU, 33MHz, CMOS, PQFP144, PLASTIC, LQFP-144
FUJITSU

MB91150

32-bit Proprietary Microcontrollers
FUJITSU

MB91151A

32-bit Proprietary Microcontrollers
FUJITSU

MB91151APMC-G

RISC Microcontroller, 32-Bit, FLASH, FR30 CPU, 36MHz, CMOS, PQFP144, 20 X 20 MM, 1.70 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144
FUJITSU

MB91151APMT2-G

32-bit Proprietary Microcontrollers
FUJITSU

MB91154

32-bit Proprietary Microcontrollers
FUJITSU

MB91154PFV-G

32-bit Proprietary Microcontrollers
FUJITSU

MB91154PFV-G-XXX

32-bit Proprietary Microcontrollers
FUJITSU

MB91155

32-bit Proprietary Microcontrollers
FUJITSU

MB91155PFV-G

32-bit Proprietary Microcontrollers
FUJITSU

MB91155PFV-G-XXX

32-bit Proprietary Microcontrollers
FUJITSU

MB91191

32-bit Proprietary Microcontroller
FUJITSU