MB91306RPFV [FUJITSU]

32-Bit Microcontroller; 32位微控制器
MB91306RPFV
型号: MB91306RPFV
厂家: FUJITSU    FUJITSU
描述:

32-Bit Microcontroller
32位微控制器

微控制器
文件: 总96页 (文件大小:898K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-16314-2E  
32-Bit Microcontroller  
CMOS  
FR60 MB91307 Series  
MB91306R/MB91307R  
DESCRIPTION  
The FUJITSU FR family of single-chip microcontrollers using a 32-bit high-performance RISC CPU, with a variety  
of built-in I/O resources and bus control mechanisms for built-in control applications requiring high-capability,  
high-speed CPU processing. External bus access is assumed in order to support the expanded address space  
accessible by the 32-bit CPU, and a 1K bytes cache memory plus large RAM are provided for high-speed execution  
of CPU instructions.  
This microcontroller is ideal for built-in applications such as DVD players, navigation systems, high-capability FAX  
and printer control that demand high-capability CPU processing power.  
The MB91307 series is a FR60 family product based on the FR30/40 family CPU with enhanced bus access for  
higher speed operation.  
FEATURES  
FR CPU  
• 32-bit RISC, load/store architecture, 5-stage pipeline  
• Operating frequency 66MHz [with PLL: base frequency 16.5 MHz]  
• 16-bit fixed length instructions (basic instructions), 1 instruction per cycle  
• Instructions for built-in applications: memory-to-memory transfer, bit processing, barrel shift etc.  
• Instructions adapted for high-level languages: function input/output instructions, register contents multi-load/  
store instructions  
(Continued)  
PACKAGE  
120-pin, plastic LQFP  
(FPT-120P-M21)  
MB91307 Series  
• Easier assembler notation: register interlock function  
• Built-in multiplier/instruction level support  
Signed 32-bit multiplication: 5 cycles  
Signed 16-bit multiplication: 3 cycles  
• Interrupt (PC, PS removal): 6 cycles, 16 priority levels  
• Harvard architecture for simultaneous execution of program access and data access  
• CPU hold 4-word queue allows advanced instruction fetch function  
• 4G bytes expanded memory space enables linear access  
• Instruction compatible with FR30/40 family  
Bus Interface  
• Operating frequency: Max 33 MHz  
• 8- or 16-bit data output  
• Built-in pre-fetch buffer  
• Unused data/address pins can be used as general-0purpose input/output ports  
• Fully independent 8-area chip select outputs, can be set in minimum 64K bytes units  
• Interface support for many memory types  
SRAM, ROM/Flash  
Page mode flash ROM, page mode ROM interface  
Burst mode flash ROM (select burst length 1, 2, 4, 8)  
• Basic bus cycle: 2 cycles  
• Programmable by area with automatic wait cycle generation to enable wait insert  
• RDY input for external wait cycles  
• DMA supports fly-by transfer with independent I/O wait control  
Built-in RAM  
• 128K bytes (MB91307R), 64K bytes (MB91306R)  
• Accepts writing of data and instruction codes, enabling use as instruction RAM  
Instruction cache  
• 1K bytes capacity  
• 2-way set associative  
• 4-words (16 bytes) per set  
• Lock function enables permanent program storage  
• Areas not used for instruction cache can be used for RAM  
DMAC (DMA controller)  
• 5-channel (3-channel external-to-external)  
• 3 transfer sources (external pin, internal peripheral, software)  
• Addressing mode with 32-bit full address indication (increment, decrement, fixed)  
Transfer mode (demand transfer / burst transfer / step transfer / block transfer)  
• Fly-by transfer support (3 channels between external I/O and external memory)  
Transfer data size selection 8/16/32-bit  
Bit search module (using REALOS)  
• Searches words from MSB for first bit position of a 1/0 change  
Reload timer (includes 1 channel for REALOS)  
• 16-bit timer: 3 channels  
• Internal clock multiplier choice of x2, x8, x32  
(Continued)  
2
MB91307 Series  
(Continued)  
UART  
• Full duplex double buffer  
• 3-channel  
• Parity/no parity selection  
• Asynchronous (start-stop synchronized), CLK-synchronized communications selection  
• Built-in exclusive baud rate timer  
• External clock can be used as transfer clock  
• Variety of error detection functions (parity, frame, overrun)  
I2C* interface  
• Master/slave sending and receiving  
• Clock synchronization function  
Transfer direction detection function  
• Bus error detection function  
• Arbitration function  
• Slave address/general call address detection function  
• Start condition repeat generator and detection function  
• 10-bit/7-bit slave address  
• Operates in standard mode (Max 100 Kbps) or high speed mode (Max 400 Kbps)  
Interrupt controller  
Total of 9 external interrupts: 1 non-maskable interrupt pin (NMI) and 8 normal interrupt pins INT7-INT0  
• Interrupt from internal peripheral devices  
• Programmable priority settings (16 levels) enabled, except for non-maskable interrupt  
• Can be used for wake-up from stop mode  
A/D converter  
• 10-bit resolution, 4-channel  
• Sequential comparator type, conversion time approx. 5.4 µs  
• Conversion modes: single conversion mode, continuous conversion mode  
• Startup source: software / external trigger / timer output signal  
Other interval timers  
• 16-bit timer with 3 channels (U-timer)  
• Watchdog timer  
I/O port  
• Maximum 69 ports  
Other features  
• Built-in oscillator circuit for clock source, PLL multiplier selection enabled  
• INIT reset pin  
• Also included: watchdog timer reset, software reset  
• Power-saving modes: stop mode, sleep mode supported  
• Gear functions  
• Built-in time base timer  
• Packages: LQFP-120 (FPT-120P-M21) : MB91306R, MB91307R  
: MB91V307R (Evaluation products)  
• CMOS technology  
: 0.25 µm : MB91V307R, 0.18 µm : MB91306R, MB91307R  
• Supply voltage : MB91V307R : 3.3 V 0.3 V (built-in regulator 3.3 V 2.5 V)  
: MB91306R, MB91307R : 3.3 V 0.3 V, 1.8V 0.15 V dual power supplies  
*:PurchaseofFujitsuI2CcomponentsconveysalicenseunderthePhilipsI2CPatentrightstouse,thesecomponents  
in an I2C system provided that the system conforms to the I2C Standard Specification as defined by Philips.  
3
MB91307 Series  
PIN ASSIGNMENT  
PA3/CS3  
PA4/CS4  
PA5/CS5  
VCCI  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
PI5/SC1  
PI4/SO1  
PI3/SI1  
PI2/SC0  
PI1/SO0  
PI0/SI0  
PA6/CS6  
PA7/CS7  
P80/RDY  
P81/BGRNT  
P82/BRQ  
RD  
UUB/WR0  
P85/ULB/WR1  
NMI  
VCC  
PJ7/INT7/ATG  
PJ6/INT6/TIN2  
PJ5/INT5/TIN1  
PJ4/INT4/TIN0  
PJ3/INT3  
PJ2/INT2  
PJ1/INT1  
PJ0/INT0  
AN3  
AN2  
AN1  
AN0  
AVSS/AVRL  
AVRH  
VCCI  
VSS  
INIT  
P90/SYSCLK  
P91  
P92/MCLK  
P93  
P94/LBA/AS  
P95/BAA  
P96  
AVCC  
8
7
6
5
4
3
2
1
A24/P70  
A23/P67  
A22/P66  
A21/P65  
A20/P64  
A19/P63  
A18/P62  
A17/P61  
P97/WE  
P20/D16  
P21/D17  
P22/D18  
P23/D19  
P24/D20  
P25/D21  
FPT-120P-M21  
* : “L” level output after initialization and reset  
4
MB91307 Series  
PIN DESCRIPTIONS  
I/O  
circuit type  
Pin no.  
Pin name  
Description  
External data bus bit 16 to bit 23  
Valid only in external bus 16-bit mode.  
D16 to D23  
P20 to P27  
85 to 92  
C
These pins can be used as ports in external bus 8-bit mode  
External data bus bit 24 to bit 31  
93 to 100 D24 to D31  
102 to 109 A00 to A07  
111 to 118 A08 to A15  
C
F
F
External address output bit0 to bit7  
External address output bit8 to bit15  
A16 to A23  
120, 1 to 7  
External address output bit16 to bit23  
F
F
P60 to P67  
These pins can be used as ports according to setting  
External data bus output bit24  
A24  
8
P70  
This pin can be used as a port according to setting  
Power supply pin. Analog power supply for A/D converter  
A/D converter reference voltage supply  
9
AVCC  
AVRH  
D
10  
11  
AVSS/AVRL  
Power supply pin. Analog power supply for A/D converter  
A/D converter reference voltage supply. Analog input pin.  
12 to 15 AN0 to AN3  
External interrupt input. When the corresponding external interrupt is en-  
abled, this input is in use at all times, so that output from other functions  
must be stopped unless used intentionally  
INT0 to INT3  
16 to 19  
I
PJ0 to PJ3  
General purpose input/output port  
Reload timer input. When the corresponding timer input is enabled, this  
input is in use at all times, so that output from other functions must be  
stopped unless used intentionally.  
TIN0 to TIN2  
20 to 22  
I
External interrupt input. When the corresponding external interrupt is en-  
abled, this input is in use at all times, so that output from other functions  
must be stopped unless used intentionally.  
INT4 to INT6  
PJ4 to PJ6  
ATG  
General purpose input/output port  
A/D converter external trigger input. When selected as an A/D start  
source, this input is in use at all times, so that output from other functions  
must be stopped unless used intentionally.  
23  
I
External interrupt input. When the corresponding external interrupt is en-  
abled, this input is in use at all times, so that output from other functions  
must be stopped unless used intentionally.  
INT7  
PJ7  
General purpose input/output port  
UART0 data input. When the UART0 channel is in input operation, this  
input is in use at all times, so that output from other functions must be  
stopped unless used intentionally.  
SI0  
25  
F
F
PI0  
General purpose input/output port.  
UART0 data output. This function is valid when the UART0 data output  
function setting is disabled.  
SO0  
26  
General purpose input/output port. This function is valid when the  
UART0 data output function setting is disabled.  
PI1  
(Continued)  
5
MB91307 Series  
I/O  
circuit type  
Pin no.  
Pin name  
SC0  
Description  
UART0 clock output. The clock output is valid when the UART0 clock  
output function setting is enabled.  
27  
F
General purpose input/output port. This function is valid when the  
UART0 clock output function is disabled.  
PI2  
UART1 data input. When UART1 is set for input operation, this input is  
in use at all times, so that output from other functions must be stopped  
unless used intentionally.  
SI1  
28  
29  
30  
31  
32  
33  
35  
F
F
F
F
F
F
C
PI3  
General purpose input/output port.  
UART1 data output. This function is enabled when the UART1 data out-  
put function setting is enabled.  
SO1  
General purpose input/output port. This function is valid when the  
UART1 data output function setting is disabled.  
PI4  
SC1  
PI5  
UART1 clock input/output. The clock output is enabled when the UART1  
clock output function setting is enabled.  
General purpose input/output port. This function is valid when the  
UART1 clock output function setting is disabled.  
UART2 data input. When UART2 is set for input operation, this input is  
in use at all times, so that output from other functions must be stopped  
unless used intentionally.  
SI2  
PH0  
SO2  
General purpose input/output port.  
UART2 data output. This function is enabled when the UART2 data out-  
put function setting is enabled.  
General purpose input/output port This function is enabled when the  
UART2 data output function setting is disabled.  
PH1  
SC2  
UART2 clock input/output. The clock output is enabled when the UART2  
clock output function setting is enabled.  
General purpose input/output port This function is enabled when the  
UART2 clock output function is disabled.  
PH2  
Timer output port. This function is valid when the timer output setting is  
enabled.  
TOT0  
PH3  
General purpose input/output port.This pin outputs an “L” level signal at  
reset.  
Timer output port. This function is valid when the timer output setting is  
enabled.  
TOT1  
PH4  
36  
37  
C
C
General purpose input/output port.This pin outputs an “L” level signal at  
reset.  
TOT2  
PH5  
Timer output port. This function is valid when the timer output is enabled.  
General purpose input/output port.  
(Continued)  
6
MB91307 Series  
I/O  
circuit type  
Pin no.  
Pin name  
Description  
I2C bus input/output port. This function is valid when I2C operation is en-  
abled. When the I2C bus is in use, the port output must be set to Hi-Z  
level. When the I2C bus is in use, this is an open drain pin.  
SDA  
PH6  
38  
Q
Q
F
General purpose input/output port.  
I2C bus input/output port. This function is valid when I2C operation is en-  
abled. When the I2C bus is in use, the port output must be set to Hi-Z  
level. When the I2C bus is in use, this is an open drain pin.  
SCL  
39  
40  
41  
PH7  
General purpose input/output port.  
DMA external transfer request input. When selected as a DMA startup  
source, this input is in use at all times, so that output from other functions  
must be stopped unless used intentionally.  
DREQ2  
PG0  
General purpose input/output port.  
DMA external transfer request acknowledge output. This function is valid  
when the DMA transfer request acknowledge output setting is enabled.  
DACK2  
F
General purpose input/output port. This function is valid when the DMA  
transfer request acknowledge output setting is enabled.  
PG1  
DMA external transfer end output. This function is valid when the DMA  
external transfer end output setting is enabled.  
DEOP2  
DSTP2  
DMA external transfer stop input. This function is valid when the DMA ex-  
ternal transfer stop input setting is enabled.  
42  
F
General purpose input/output port. This function is valid when the DMA  
external transfer end output selection and the DMA external transfer stop  
input selection are disabled.  
PG2  
Mode pins 2 to 0. The setting of these two pins determines the basic  
operating mode. They should be connected to Vcc or Vss.  
43 to 45 MD2 to MD0  
G
F
DMA external transfer request input. When selected as a DMA startup  
source, this input is in use at all times, so that output from other functions  
must be stopped unless used intentionally.  
DREQ0  
46  
PB0  
General purpose input/output port.  
DMA external transfer request acknowledge output. This function is valid  
when the DMA transfer request acknowledge output setting is enabled.  
DACK0  
47  
F
F
General purpose input/output port. This function is enabled when the  
DMA transfer request acknowledge output setting is disabled.  
PB1  
DMA external transfer end output. This function is valid when the DMA  
external transfer end output setting is enabled.  
DEOP0  
DMA external transfer stop input. This function is valid when the DMA ex-  
ternal transfer stop input setting is enabled.  
DSTP0  
48  
General purpose input/output port. This function is valid when the DMA  
external transfer end output selection and the DMA external transfer stop  
input selection are disabled.  
PB2  
(Continued)  
7
MB91307 Series  
I/O  
circuit type  
Pin no.  
Pin name  
Description  
DMA external transfer request input. When selected as a DMA startup  
source, this input is in use at all times, so that output from other functions  
must be stopped unless used intentionally.  
DREQ1  
49  
F
PB3  
General purpose input/output port.  
DMA external transfer request acknowledge output. This function is valid  
when the DMA transfer request acknowledge output setting is enabled.  
DACK1  
50  
51  
F
F
General purpose input/output port. This function is enabled when the  
DNA transfer request acknowledge output setting is disabled.  
PB4  
DMA external transfer end output. This function is valid when the DMA  
external transfer end output setting is enabled.  
DEOP1  
DSTP1  
DMA external transfer stop input. This function is valid when the DMA ex-  
ternal transfer stop input setting is enabled.  
General purpose input/output port. This function is valid when the DMA  
external transfer end output selection and the DMA external transfer stop  
input selection are disabled.  
PB5  
53  
54  
X1  
X0  
Clock (oscillator) output  
Clock (oscillator) input  
A
F
Write strobe output for DMA fly-by transfer. This function is valid when  
the DMA fly-by transfer write strobe output setting is enabled.  
IOWR  
PB6  
IORD  
PB7  
CS0  
PA1  
CS1  
PA1  
CS2  
PA2  
CS3  
PA3  
56  
57  
58  
59  
60  
61  
General purpose input/output port. This function is valid when the DMA  
fly-by transfer write strobe output setting is disabled.  
Read strobe output for DMA fly-by transfer. This function is valid when  
the DMA fly-by transfer read strobe output setting is enabled.  
F
F
F
F
F
General purpose input/output port. This function is valid when the DMA  
fly-by transfer read strobe output setting is disabled.  
Chip select output. This function is valid when the chip select 0 output  
setting is enabled.  
General purpose input/output port. This function is valid when the chip  
select 0 output setting is disabled.  
Chip select output. This function is valid when the chip select 1 output  
setting is enabled.  
General purpose input/output port. This function is valid when the chip  
select 1 output setting is disabled.  
Chip select output. This function is valid when the chip select 2 output  
setting is enabled.  
General purpose input/output port. This function is valid when the chip  
select 2 output setting is disabled.  
Chip select output. This function is valid when the chip select 3 output  
setting is enabled.  
General purpose input/output port. This function is valid when the chip  
select 3 output setting is disabled.  
(Continued)  
8
MB91307 Series  
I/O  
circuit type  
Pin no.  
Pin name  
CS4  
Description  
Chip select output. This function is valid when the chip select 4 output set-  
ting is enabled.  
62  
F
General purpose input/output port. This function is valid when the chip se-  
lect 4 output setting is disabled.  
PA4  
Chip select output. This function is valid when the chip select 5 output set-  
ting is enabled.  
CS5  
63  
64  
65  
F
F
General purpose input/output port. This function is valid when the chip se-  
lect 5 output setting is disabled.  
PA5  
VCCI  
CS6  
Internal Power supply pin (1.8 V power supply) .  
Chip select output. This function is valid when the chip select 6 output set-  
ting is enabled.  
General purpose input/output port. This function is valid when the chip  
select 6 output setting is disabled.  
PA6  
CS7  
PA7  
RDY  
P80  
Chip select output. This function is valid when the chip select 7 output set-  
ting is enabled.  
66  
67  
F
General purpose input/output port. This function is valid when the chip  
select 7 output setting is disabled.  
External ready signal input. This function is valid when the external ready  
input setting is enabled.  
C
General purpose input/output port. This function is valid when the exter-  
nal ready input setting is disabled.  
External bus open acknowledge output. This pin outputs an L level signal  
when the external bus is open. This function is valid when the output set-  
ting is enabled.  
BGRNT  
68  
69  
F
P
General purpose input/output port. This function is valid when the output  
setting is disabled.  
P81  
External bus open request input. The input value is “1” when the external  
bus is open. This function is valid when the input setting is enabled.  
BRQ  
General purpose input/output port. This function is valid when the input  
setting is disabled.  
P82  
RD  
70  
71  
M
F
External bus read strobe output.  
External bus write strobe output.  
WR0  
UUB  
Upper side of the 16-bit SRAM input/output mask enable signal.  
It is valid when the external bus is set to SRAM use. (WE/P97 function as  
the write strobe.)  
External bus write strobe output.  
WR1  
ULB  
Lower side of the 16-bit SRAM input/output mask enable signal.  
It is valid when the external bus is set to SRAM use. (WE/P97 function as  
the write strobe.)  
72  
F
General purpose input/output port. This function is valid when the enable  
output setting is disabled.  
P85  
(Continued)  
9
MB91307 Series  
(Continued)  
I/O  
circuit type  
Pin no.  
Pin name  
Description  
73  
74  
76  
NMI  
VCCI  
INIT  
H
H
B
NMI request input  
Internal Power supply pin(1.8 V power supply)  
External reset input  
System clock output. This function is valid when the system clock output  
setting is enabled. The clock signal output is at the same frequency as the  
external bus operating frequency. Clock output halts in the stop mode or  
the hardware standby mode.  
SYSCLK  
77  
F
General purpose input/output port. This function is enabled when the sys-  
tem clock output setting is disabled.  
P90  
P91  
MCLK  
P92  
P93  
AS  
General purpose input/output port. This function is enabled when the  
SDRAM clock enable output setting is disabled.  
78  
79  
80  
F
F
F
Memory clock output. Clock output halts in the sleep mode, the stop mode  
or the hardware standby mode.  
General purpose input/output port. This function is enabled when the  
clock output setting is disabled.  
General purpose input/output port. This function is enabled when the  
SDRAM clock re-input setting is disabled.  
Address strobe output. This function is valid when the address strobe out-  
put setting is disabled.  
Burst flash ROM address load output. This function is valid when the ad-  
dress load output setting is enabled.  
81  
LBA  
P94  
BAA  
P95  
P96  
WE  
F
General purpose input/output port. This function is valid when the address  
load output and address strobe output settings are disabled.  
Burst flash ROM address advance output. This function is valid when the  
address advance output setting is enabled.  
82  
83  
84  
General purpose input/output port. This function is valid when the address  
advance output and column address strobe output settings are disabled.  
General purpose input/output port. This function is enabled when the col-  
umn address strobe output setting is disabled.  
F
Write strobe output for 16-bit SRAM. This function is enabled when the  
write strobe output setting is enabled.  
General purpose input/output port. This function is enabled when the write  
strobe output setting is prohibited.  
P97  
9
AVCC  
AVRH  
A/D converter power supply  
A/D converter power supply  
A/D converter power supply (GND)  
10  
11  
AVSS/AVRL  
24, 55,  
110  
VCC  
VSS  
Power supply pins  
34, 52,  
75, 101  
Power supply pins (GND)  
10  
MB91307 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
• Oscillator feedback resistance  
approx. 1 MΩ  
X1  
clock input  
X0  
A
STANDBY  
CONTROL  
• CMOS hysteresis input  
with pull-up resistance (25 k)  
B
digital input  
• CMOS level input/output  
with standby control  
digital output  
digital output  
C
digital input  
STANDBY CONTROL  
• Analog input with switch  
D
analog input  
CONTROL  
(Continued)  
11  
MB91307 Series  
Type  
Circuit  
Remarks  
• CMOS level output  
• CMOS level hysteresis input  
with standby control  
digital output  
digital output  
F
digital input  
STANDBY CONTROL  
• CMOS level input  
without standby control  
G
digital input  
• CMOS level hysteresis input  
without standby control  
H
digital input  
• CMOS level input  
• CMOS level hysteresis input  
without standby control  
digital output  
digital output  
I
digital input  
• CMOS level input  
digital output  
digital output  
M
(Continued)  
12  
MB91307 Series  
(Continued)  
Type  
Circuit  
Remarks  
• CMOS level input/output  
with standby control  
withpull-downresistance (25k)  
digital output  
digital output  
CONTROL  
P
digital input  
STANDBY CONTROL  
• Open drain output  
CMOS level hysteresis input  
with standby control  
Open drain control  
digital output  
Q
digital input  
STANDBY CONTROL  
13  
MB91307 Series  
HANDLING DEVICES  
MB91307 Series  
Preventing Latchup  
When CMOS integrated circuit devices are subjected to applied voltages higher than VCC at input and output  
pins (other than medium- and high-withstand voltage pins), or to voltages lower than VSS, as well as when voltages  
in excess of rated levels are applied between VCC and VSS, a phenomenon known as latchup can occur. When  
a latchup condition occurs, supply current can increase dramatically and may destroy semiconductor elements.  
In using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.  
Treatment of unused pins  
Do not leave an unused input pin open, since it may cause a malfunction. Handle by, using a pull-up or  
pull-down resistor.  
About power supply pins  
In products with multiple VCC or VSS pins, the pins of the same potential are internally connected in the device  
to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply  
and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals  
caused by the rise in the ground level, and to conform to the total output current rating.  
Moreover, connect the current supply source with the VCC and VSS pins of this device at the low impedance.  
It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 mF between VCC and VSS near  
this device.  
Notes on Power-ON/shut-down  
Cautions to take when turning on/off VCCI (1.8-V internal power supply) and VSS (3.3-V external-pin power  
supply)  
Do not apply VSS (external) alone continuously (for over an indication of one minute) with VCCI (internal) discon-  
nected not to cause a reliability problem with the LSI.  
When VSS (external) returns from the OFF state to the ON state, the circuit may fail to hold its internal state, for  
example, due to power supply noise.  
When the power is turned on  
When the power is turned off  
VCCI (internal) VSS (external) Signal  
Signal VSS (external) VCCI (internal)  
Precautions for use of stop mode  
The built-in regulator in this device stops operating when the device is in stop mode. In such cases as when  
increased leak current (ICCH) in stop mode, or abnormal operation or power fluctuation due to noise while in  
operating mode cause the regulator to stop, the internal 2.5 V power supply can ball below the voltage at which  
operation is assured. Therefore it is necessary when using the internal regulator and stop mode to assure that  
the external power supply does not fall below 3.3 V. And even if this should occur, the internal regulator can be  
set to restart when a reset is applied. (In this case the oscillator stabilization wait period should also be set to  
“L” level.)  
14  
MB91307 Series  
• Sample use of Stop Mode with 3.3 V power supply  
3.3 V  
VCC  
C
2.4 k  
7.6 k  
0.1  
F
VSS  
GND  
About crystal oscillator circuit  
Noise near the X0 and X1 pins may cause the device to malfunction. Design the printed circuit board so that  
X0, X1, the crystal oscillator (or ceramic oscillator) , and the bypass capacitor to ground are located as close to  
the device as possible.  
It is strongly recommended to design the PC board artwork with the X0 and X1 pins surrounded by ground plane  
because stable operation can be expected with such a layout.  
Treatment of NC pins  
Any pins marked “NC” (not connected) must be left open.  
About mode pins (MD0 to MD2)  
Mode pins (MD0 to MD2) should be connected directly to VCC or VSS .  
To prevent the device erroneously switching to test mode due to noise, design the printed circuit board such that  
the distance between the mode pins and VCC or VSS is as short as possible and the connection impedance is low.  
Operation at startup  
Immediately after a power-on startup, always apply a reset initialization (INIT) at the INIT pin. Also, in order to  
assure a wait period for the oscillator circuits to stabilize immediately after startup, be sure that the “L” level input  
to the INIT pin continues for the required stabilization wait interval. (The INIT cycle for the INIT pin includes only  
the minimum setting for the stabilization wait period.)  
Base oscillator input at startup  
At power-on startup, always input a clock signal until the oscillator stabilization wait period is ended.  
Caution on Operations during PLL Clock Mode  
If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even  
when there is no external oscillator or external clock input is stopped. Performance of this operation, however,  
cannot be guaranteed.  
Precaution on using ports 6 and 7  
If one of P60/A15 to P70/A24, which are shared for output of external bus interface addresses, is used as a port,  
a grid voltage is applied to the port instantaneously when the status of another address output pin is changed.  
Therefore, add resistors or capacitors to those ports to prevent application of the grid voltage.  
15  
MB91307 Series  
Clock control block  
For L-level input to the INIT pin, allow for the regulator settling time or oscillation settling time.  
Bit search module  
The 0-detection, 1-detection, and transition-detection data registers (BSD0, BSD1, and BSDC) are only word-  
accessible.  
Prefetch  
When accessing a prefetch-enabled little endian area, use word access only (access in 32 bits).  
Byte or halfword access results in wrong data read.  
Setting of external bus  
The MB91307 series is guaranteed at an external bus frequency of 33 MHz. As the external bus is capable of  
supporting 66 MHz for future enhancements, the initial value is the same rate as the base clock (determined by  
the PLL setting) . The external bus is set to 66 MHz if you set the base clock to 66 MHz with the external-bus  
base clock division setting register (DIVR1) containing the initial value. To change the base clock frequency, set  
the external bus frequency not exceeding 33 MHz and set the new base clock frequency.  
MCLK and SYSCLK  
MCLK causes a stop in SLEEP/STOP mode while SYSCLK causes a stop only in STOP mode. Use either  
depending on each application.  
I2C input/output pin  
The SDA and SCL pins of the MB91307 series are pseudo open-drain pins with the P-ch transistor turned off  
to prevent the “H” level from being output. As the circuit configuration has a diode added to the VCC side, therefore,  
the communication voltage must be adjusted to the 3.3-V power supply of this model (pulled up to a voltage of  
3.3 V) .  
Shared port function switching  
To switch a pin that also serves as a port, use the port function register (PFR). Note, however, that bus pins are  
switched depending on external bus settings.  
Pull-up control  
Connecting a pull-up resistor to the pin serving as an external bus pin cannot a guarantee the AC standard.  
Even the port for which a pull-up resistor has been set is invalid in stop mode with HIZ = 1 or in hardware standby  
mode.  
I/O port access  
Byte access only for access to port  
Remarks for the external clock operation  
When selecting the external clock, active X0 pin generally. Also simultaneously the opposite phase clock to X0  
must be supplied to X1 pin. When using the clock along with STOP (oscillation stopped) mode, the X1 pin stops  
when “H” is input in STOP mode. To prevent one output from competing against another, in this case, the stop  
mode must not be used.  
16  
MB91307 Series  
X0  
X1  
MB91307 series  
Using external clock (normal)  
Note : Stop mode (oscillation stop mode) cannot be used.  
Low-power consumption modes  
To enter the standby mode, use the synchronous standby mode (set with the SYNCS bit as bit 8 in the  
TBCR, or time-base counter control register) and be sure to use the following sequence:  
(LDI  
(LDI  
STB  
#value_of_standby, R0)  
#_STCR, R12)  
R0, @R12  
; Write to standby control register (STCR)  
; Read STCR for synchronous standby  
; Read STCR again for dummy read  
; NOP x 5 for timing adjustment  
LDUB @R12, R0  
LDUB @R12, R0  
NOP  
NOP  
NOP  
NOP  
NOP  
Set the I-flag and the ILM and ICR registers to branch to an interrupt handler when the interrupt handler  
triggers the microcontroller to return from the standby mode.  
If you use the monitor debugger, follow the precautions below:  
Do not set a breakpoint within the above array of instructions.  
Do not single-step the above array of instructions.  
Current at power-on (only for MB91V307R)  
About 300 mA of power supply current flows when the power is turned on with INIT set to 0.  
Set INIT to 1 to stop the overcurrent flowing. After that, the overcurrent will not flow even if INIT is set to 0.  
Watchdog timer  
The watchdog timer function of this model monitors that a program delays a reset within a certain period of time  
and resets the CPU if the program fails to delay it, for example, because the program runs out of control. Once  
the watchdog timer function is enabled, therefore, the watchdog timer countinues to operate until a reset takes  
place.  
An exception, for example during stop, sleep and DMA transfer modes, is the automatic delaying of a reset under  
a condition in which the CPU stops program execution.  
Note, however, that a watchdog reset may not occur in the above state caused when the system runs out of  
control. If this is the case, use the external INIT pin to cause a reset (INIT).  
17  
MB91307 Series  
Terminal and timing control register (TCR) (0x00000683)  
The terminal and timing control register (TCR) is a write-only register. Therefore, do not access TCR with a bit  
manipulation instruction.  
If you intend to disable sharing of the bus by writing “0” to Bit 7 (BREN bit) of TCR when the bit is “1”, be sure  
to follow the procedure below. If the procedure is not followed, the device may hang up.  
1. Write “0” to Bit 2 (BRQE bit) of the port 8 function register (PFR8).  
2. Write “0” to Bit 7 (BREN bit) of TCR.  
RD/WR CS hold extension cycle  
Assume that use of the RD/WR CS hold extension cycle is specified (Bit 0 of AWR is 1) for an  
area for which the normal memory/IO access type is set (the TYPE3 to TYPE0 bits of ACR are  
0xxx). Even in this case, the hold extension cycle might not be inserted when the operation and  
settings are specified in a specific combination.  
The hold extension cycle will not be inserted when the following conditions are met:  
• Use of the RD/WR CS hold extension cycle is specified.  
(Bit 0 [W00 bit] of AWR is 1.)  
• A normal memory/IO access type is set for the area.  
(Bits 3 to 0 [TYPE3 to TYPE0 bits] of ACR are 0xxx.)  
Note: The MB91307 series allows only this type to be set.  
• Disuse of the address CS delay cycle is specified.  
(Bit 2 [W02 bit] of AWR is 0.)  
• A setting (recovery enabled) other than 0 cycle is made for the write recovery cycle.  
(Bits 5 and 4 [W05 and W04 bits] of AWR are other than 00.)  
(Example: First word writing to an external bus 16-bit area)  
• If an access is made to write data larger than the bus width to the relevant area under the above conditions,  
the RD/WR-CS hold extension cycle is not inserted in any cycle other than the last cycle to write divisions of  
the data. Therefore, the hold time becomes insufficient.  
Note : This problem does not occur in the read cycle.  
To use this function, make either of the following settings:  
• Specify the use of the address CS delay cycle.  
(Set 1 for Bit 2 [W02 bit] of AWR.)  
• Specify 0 cycle for the write recovery cycle.  
(Set 00 for Bits 5 and 4 [W05 and W04 bits] of AWR.)  
Signed DIVIDE statement (DIVOS)  
When the instruction immediately before the instruction of DIVOS is an instruction by which the memory access  
is done, a correct calculation result might not be obtained.  
This is generated under the following conditions.  
• When the instruction performs memory accesses just before a DIVOS instruction.  
Note : Instructions that performs relevant memory accesses (a total of 58 instructions)  
ST Ri, @- R15  
ST Rs, @- R15  
ST PS, @- R15  
STB Ri, @Rj  
STB Ri, @ (R13, Rj)  
LDUB @Rj, Ri  
LDUB @ (R13, Rj), Ri  
DMOVB @dir8, R13  
DMOVB R13, @dir8  
LD @ (R13, Rj), Ri  
DMOV @dir10, R13  
LD @ (R14, disp10), Ri  
STB Ri, @ (R14, disp8)  
LDUH @ (R13, Rj), Ri  
DMOVH @dir9, R13  
18  
MB91307 Series  
LDUH @ (R14, disp9), Ri  
ANDH Rj, @Ri  
LDUB @ (R14, disp8), Ri  
ANDB Rj, @Ri  
AND Rj, @Ri  
ORB Rj, @Ri  
EORB Rj, @Ri  
DMOVB @R13+, @dir8  
DMOVB @dir8, @R13+  
DMOV @R13+, @dir10  
DMOV @dir10, @R13+  
DMOV @R15+, @dir10  
DMOVH @R13+, @dir9  
DMOVH @dir9, @R13+  
DMOV @dir10, @- R15  
• When full trace mode is specified as trace mode and the DIVOS and DIV1 instructions are not 4-byte aligned.  
• Even if the DIVOS and DIV1 instructions are 4-byte aligned, perform a D-bus DMA transfer or specify the full  
trace mode as trace mode if a breakpoint is set in the DIV1 instruction.  
Avoid this notes as follows:  
(1) Do not place an instruction that performs memory access before a DIVOS instruction.  
(2) Do not perform a DMA transfer to the D-bus or set full trace mode as trace made when a DIVOS instruction  
is specified.  
To output the code for avoiding above (1) condition, specify "-@div0s 1" as the compiler option.  
SOFTUNE compiler:  
• In case of using the SOFTUNE V3: after the SOFTUNE compiler V30L07R07  
• In case of using the SOFTUNE V5: after the SOFTUNE compiler V50L04  
• In case of using the SOFTUNE V6: after the SOFTUNE compiler V60L01  
DMA demand transfer  
In sleep mode, demand transfer is executed only once and processing does not go further. During normal  
operation, the efficiency of demand transfers may seem to be lowered.  
This action occurs only in demand transfers (it does not occur in DREQ edge detection mode or the like).  
This is occurred in the following cases:  
• A demand transfer by DMAC is performed in sleep mode.  
- After a demand transfer is performed once, processing does not go further although DREQ is input  
successively.  
- A subsequent transfer is started if the device is released from sleep mode and an external bus operation  
other than a DMA transfer occurs.  
• A demand transfer by DMAC is performed during normal operation.  
- After a demand transfer is performed once, a subsequent transfer is not performed until an external bus  
access other than a DMA transfer occurs.  
- A demand transfer does not progress while there is no external bus access because cache hitting is  
performed continuously or internal ROM operation continues.  
• A subsequent demand transfer is not started even if an external bus access for prefetching occurs.  
Avoid this notes as follows:  
• Do not perform a demand transfer by DMAC in sleep mode.  
• Do not use sleep mode during a demand transfer by DMAC.  
19  
MB91307 Series  
RMW instructions using R15  
If one of the instructions listed below is executed, the value of SSP or USP* is not used as the value of R15 and,  
as a result, an incorrect value is written to memory. Therefore, the compiler does not generate the following  
instructions:  
AND  
OR  
EOR  
R15,@Rj  
R15,@Rj  
R15,@Rj  
ANDH R15,@Rj  
ORH R15,@Rj  
EORH R15,@Rj  
ANDB  
ORB  
EORB R15,@Rj  
R15,@Rj  
R15,@Rj  
XCHB @Rj,R15  
* : R15 is an insubstantial register. If R15 is accessed by a program, SSP or USP is accessed according to the  
state of the S flag of the PS register.  
Avoid this notes as follows:  
• When programming any of the above 10 instructions by an assembler, specify a general-purpose register in  
place of R15.  
Executing instructions on RAM  
• If instruction codes are placed in RAM, they should not be placed in the last 8 address bytes 0005 FFF8H to  
0005 FFFFH. (Instruction code prohibited area)  
Notes on the PS register  
Since some instructions manipulate the PS register earlier, the following exceptions may cause the interrupt  
handler to break or the PS flag to update its display setting when the debugger is being used. As the microcon-  
troller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs oper-  
ations before and after the EIT as specified in either case.  
The following operations may be performed when the instruction immediately followed by a DIVOU/DIVOS  
instruction is (a) halted by a user interrupt or NMI, (b) single-stepped, or (c) breaks in response to a data  
event or emulator menu:  
(1) D0 and D1 flags are updated earlier.  
(2) The EIT handler (user interrupt/NMI or emulator) is executed.  
(3) Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are  
updated to the same values as those in (1) above.  
The following operations are performed when the ORCCR/STILM/MOV Ri and PS instructions are executed  
to enable interruptions when a user interrupt or NMI trigger event has occurred.  
(1) The PS register is updated earlier.  
(2) The EIT handler (user interrupt/NMI or emulator) is executed.  
(3) Upon returning from the EIT, the above instructions are executed and the PS register is updated to the  
same value as that in (1) above.  
Notes on I-bus Memory  
Do not access data in the instruction cache control register or the instruction cache RAM immediately before  
the RETI instruction.  
20  
MB91307 Series  
Unique to the evaluation chip MB91V307R  
Simultaneous occurrences of a software break and a user interrupt/NMI  
When a software break and a user interrupt /NMI take place at the same time, the emulator debugger can cause  
the following phenomena:  
The debugger stops pointing to a location other than the programmed breakpoints.  
The halted program is not re-executed correctly.  
If these phenomena occur, use a hardware break instead of the software break. If the monitor debugger has  
been used, avoid setting any break at the relevant location.  
Single-stepping the RETI instruction  
If an interrupt occurs frequently during single stepping, execute only the relevant processing routine repeatedly  
after single-stepping RETI. This will prevent the main routine and low-interrupt-level programs from being  
executed. Do not single-step the RETI instruction for avoidance purposes. When the debugging of the relevant  
interrupt routine becomes unnecessary, perform debugging with that interrupt disabled.  
Break function  
• If the address of a current system stack pointer or an area that includes a stack pointer is specified as an  
object address of a hardware break (including an event break), a break occurs after one instruction is executed.  
The break occurs although the relevant user program does not include an actual data access instruction. To  
avoid this problem, do not set the (word) access to an area that includes the address of a system stack pointer  
as a target of a hardware break (including an event break).  
• If an instruction that causes a wait is executed between an instruction to read a branch destination address  
from memory and a branch instruction, an instruction alignment error occurs at a point where an instruction  
alignment error cannot occur originally. Then, an ICE break (CPU error break) occurs, and execution of  
instructions stops. Furthermore, even if an instruction break is set for the branch destination address at the  
point where the above error occurs, a break might not occur.  
Example: LD  
LD  
@R1,R0 ; read F-bus RAM  
@R2,R3 ; read F-bus RAM  
CALL @R0  
; An incorrect alignment error may occur or a break might not occur.  
To avoid the incorrect alignment error as described above, turn off the alignment error function in debugger  
function setup.  
To perform the instruction break correctly, do not specify use of a hardware break, but specify use of a software  
break in debugger function setup.  
Trace mode  
If the trace mode for debugging is set to full trace mode, which uses internal FIFO memory as the output buffer,  
the current may increase or DMA access to the D-bus may be lost.  
This is occurred if:  
• A DMA transfer to the D-bus or standby mode occurs in full trace mode.  
Use internal trace mode to avoid this notes.  
21  
MB91307 Series  
Alignment error (emulator debugger)  
Assume that instruction alignment error break is enabled and an instruction that causes a wait is executed  
between an instruction to read a branch destination address from memory and a branch instruction. Under these  
conditions, an instruction alignment error occurs at a point where an instruction alignment error cannot occur  
originally, an ICE break occurs, and execution of instructions stops. Then, a message indicating an unknown  
break factor or a CPU error break is output.  
Furthermore, even if an instruction break is set for the branch destination address at the point where the above  
error occurs, a break might not occur.  
This problem occurs if the following three types of instructions are executed successively:  
(1) LD or DMOV instructions causing a wait (reading a branch destination address)  
LD  
LD  
LD  
LD  
@Rj,Ri  
@(R13,Rj)Ri  
LDUH @Rj,RI  
LDUH @(R13,Rj),Ri  
LDUB @(R13,Rj),Ri  
@(R14,disp10),Ri LDUH @(R14,disp9),Ri LDUB @(R14,disp8),Ri  
@R15+,Ri  
LD @R15+,Rs  
LD @R15+,PS  
DMOV @dir10,R13  
DMOVH @dir9,R13  
DMOVB @dir8,R13  
(2) Instructions causing a wait (reading F-bus RAM or external memory)  
(3) Branch instructions such as JMP @Ri, JMP: D @Ri, CALL @Ri, CALL: D @Ri, RET, and RET: D  
Example:  
LD@R1,R0 ;read F-bus RAM  
LD@R2,R3 ;read F-bus RAM  
CALL @R0  
Avoid this notes as follows:  
Assume that instruction alignment error break is enabled and an instruction that causes a wait is executed  
between an instruction to read a branch destination address from memory and a branch instruction. Under these  
conditions, an instruction alignment error occurs at a point where an instruction alignment error cannot occur  
originally, an ICE break occurs, and execution of instructions stops. Then, a message indicating an unknown  
break factor or a CPU error break is output.  
Furthermore, even if an instruction break is set for the branch destination address at the point where the above  
error occurs, a break might not occur.  
Avoid this problem as follows:  
To avoid the incorrect alignment error as described above, turn off the alignment error function in debugger  
function setup.  
To perform the instruction break correctly, set the break point in an address other than the branch destination  
address.  
Operand break  
A stack pointer placed in an area set for a DSU operand break can cause a malfunction. Do not apply a data  
event break to access to the area containing the address of a system stack pointer.  
22  
MB91307 Series  
BLOCK DIAGRAM  
CPU Core  
32  
Instruction  
32  
cache  
1K bytes  
Bit search  
RAM*  
DMAC  
5 channels  
Bus Converter  
32  
External  
memory  
interface  
32 16  
Adapter  
16  
Clock control  
UART  
U-TIMER  
I2C  
3 channels  
3 channels  
1 channel  
Interrupt  
controller  
External  
interrupt  
Reload  
timer  
A/D  
4 channels  
Port  
3 channels  
* : Internal RAM 128K bytes for MB91307R  
64K bytes for MB91306R  
23  
MB91307 Series  
CPU AND CONTROL BLOCK  
Internal Architecture  
The FR series CPU is a high-performance core using RISC architecture with a high-capability instruction set  
intended for built-in applications.  
1. Features  
• Uses of RISC Architecture  
Basic instruction set: 1 instruction to 1 cycle.  
• 32-bit architecture  
General-purpose registers: 32-bits × 16 registers  
• 4G bytes linear memory space  
• Built-in multipliers  
32-bit × 32-bit multiplication: 5 cycles  
16-bit × 16-bit multiplication: 3 cycles  
• Enhanced interrupt processing  
High-speed response (6 cycles)  
Multiple interrupt support  
Level masking functions (16 levels)  
• Enhanced I/O operating instructions  
Memory-to-memory transfer instructions  
Bit processing instructions  
• High code efficiency  
Basic instruction length: 16 bits  
• Low power consumption  
Sleep mode, stop mode  
• Gear function  
24  
MB91307 Series  
2. Internal Architecture  
The FR series CPU uses a Harvard architecture with independent instruction bus and data bus. The instruction  
bus (I-bus) is connected to an on-chip instruction cache. a 32-bit ←→16-bit bus converter is connected to the  
bus (F-bus) to provide an interface between the CPU and peripheral resources. The Harvard ←→ Princeton bus  
converter is connected to the both the I-bus and D-bus as an interface between the CPU and bus controller.  
FRex CPU  
D-bus  
I-bus  
32  
I address  
I data  
Instruction  
cache  
32  
32  
Harvard  
D address  
D data  
Princeton  
bus  
converter  
32  
32  
32  
F address  
F data  
RAM  
32 bit  
16 bit  
Bus converter  
16  
R-bus  
X-bus  
Bus controller  
Peripherals resource  
25  
MB91307 Series  
3. Programming Model  
Basic Programming Model  
32 bits  
[Default values]  
XXXX XXXX  
H
R0  
R1  
General-purpose register  
R12  
R13  
AC  
FP  
SP  
R14  
R15  
XXXX XXXX  
H
0000 0000  
H
PC  
Program counter  
Program status  
PS  
ILM  
SCR  
CCR  
TBR  
RP  
Table base register  
Return pointer  
SSP  
USP  
System stack pointer  
User stack pointer  
MDH  
MDL  
Multiplier result registers  
26  
MB91307 Series  
4. Registers  
General Purpose Register  
32 bits  
[Default values]  
XXXX XXXXH  
R0  
R1  
R12  
R13  
AC  
XXXX XXXXH  
0000 0000H  
FP  
SP  
R14  
R15  
Registers R 0 to R 15 are general-purpose registers. These registers can be used as accumulators for compu-  
tation operations, or as pointers for memory access.  
Of the 16 registers, enhanced commands are provided for the following registers to enable their use for particular  
applications.  
R13: Virtual accumulator  
R14: Frame pointer  
R15: Stack pointer  
Default values at reset are undefined for R0 to R14. The value for R15 is 00000000H (SSP value).  
PS (Program Status Register)  
This register holds the program status, and is divided into three parts, ILM, SCR, and CCR.  
All bits not defined in the diagram are reserved bits with read value “0” at all times. Write access to these bits  
is not enabled.  
31  
20  
16  
10  
0
Bit position→  
8 7  
ILM  
SCR  
CCR  
PS Register  
CCR (Condition Code Register)  
7
6
5
4
I
3
2
1
0
[Default value]  
- - 00XXXXB  
S
N
Z
V
C
CCR Register  
S : Stack flag, cleared to “0” at reset.  
: Interrupt flag, cleared to “0” at reset.  
I
N : Negative flag, default value at reset undefined.  
Z : Zero flag, default value at reset undefined.  
V : Overflow flag, default value at reset undefined.  
C : Carry flag, default value at reset undefined.  
27  
MB91307 Series  
SCR (System Condition code Register)  
10  
9
8
T
[Default value]  
XX0B  
D1 D0  
SCR Register  
Stepwise division flags  
These flags store interim data during execution of stepwise division.  
Step trace trap flag  
Indicates whether the step trace trap is enabled or disabled.  
The step trace trap function is used by emulators. When an emulator is in use, it cannot be used in execution  
of user programs.  
ILM(Interrupt Level Mask Register)  
20  
19  
18  
17  
16  
[Defaultvalue]  
01111B  
ILM4 ILM3 ILM2 ILM1 ILM0  
ILM Register  
This register stores interrupt level mask values, for use in level masking.  
The register is initialized to value 15 (01111B) at reset.  
PC (Program Counte Registerr)  
31  
0
[Default value]  
XXXXXXXXH  
PC  
PC Register  
The program counter indicates the address of the instruction that is executing.  
The default value at reset is undefined.  
TBR (Table Base Register)  
31  
0
[Defaultvalue]  
000FFC00H  
TBR  
TBR Register  
The table base register stores the starting address of the vector table used in EIT processing.  
The default value at reset is 000FFC00H.  
28  
MB91307 Series  
RP (Return Pointer)  
31  
0
[Default value]  
XXXXXXXXH  
RP  
RP Register  
The return register stores the address for return from subroutines.  
During execution of a CALL instruction, the PC value is transferred to this RP register.  
During execution of a RET instruction, the contents of the RP register are transferred to this PC register.  
The default value at reset is undefined.  
SSP (System Stack Pointer)  
31  
0
[Defaultvalue]  
00000000H  
SSP  
SSP Register  
The SSP register is the system stack pointer.  
When the S flag is “0,” this register functions as the R15 register.  
The SSP register can also be explicitly specified.  
This register is also used as a stack pointer to indicate the stack to which the PS and PC are removed when an  
EIT occurs.  
The default value at reset is 00000000H.  
USP (User Stack Pointer)  
31  
0
[Defaultvalue]  
XXXXXXXXH  
USP  
USP Register  
The USP register is the user stack pointer.  
When the S flag is “1,” this register functions as the R15 register.  
The USP register can also be explicitly specified.  
The default value at reset is undefined.  
This register cannot be used with RETI instructions.  
Multiply & Divide registers  
31  
0
MDH  
MDL  
Multiply & Divide Registers  
The multiply and divide registers are each 32 bits in length.  
The default value at reset is undefined.  
29  
MB91307 Series  
SETTING MODE  
In the FR family, the mode pins (MD2, MD1, MD0) and the mode register (MODR) are used to set the operating  
mode.  
1. Mode Pins  
ThethreepinsMD2, MD1, MD0areusedinmodevectorfetchinstructions, andalsotomakesettingsintestmode.  
Mode pin  
Mode name  
Reset vector access area  
Remarks  
MD2 MD1 MD0  
0
0
1
External ROM mode vector  
Outside  
Bus width is set by mode register.  
2. Mode Register (MODR)  
The mode data fetch instruction writes data to the address “0000 07FDH” called the mode data.  
The area “0000 07FDH” is the mode register (MODR). When a setting is made to this register, the device will  
operate the mode corresponding to that setting.  
The mode register can only be set by a reset source at the INIT level. It is not possible to write to this register  
from a user program.  
Note : No data exists at the FR family mode register address (0000 07FFH).  
< Detailed register description >  
MODR  
Default  
7
6
0
5
0
4
0
3
0
2
1
0
Address  
XXXXXXXXB  
0
ROMA WTH1 WTH0  
Operating mode setting bits  
0000 07FDH  
[bit7 to bit3] Reserved bits  
These bits should always be set to “00000.” If set to any other value, stable operation is not assured.  
[bit2] ROMA (Internal RAM enable bit)  
This bit indicates whether internal RAM is enabled.  
ROMA  
Function  
External ROM mode  
Remarks  
0
The built-in RAM area functions as external area.  
The built-in RAM area is enabled.  
The 128K bytes built-in RAM can be used.  
1
Internal RAM mode  
[bit1, 0] WTH1, WTH0 (Bus width indicator bits)  
In external bus mode, these bits determine the bus width setting.  
In external bus mode, the value of these bits sets the BW1, 0 bits in the AMD0 register (CS0 area).  
WTH1  
WTH0  
Bus width  
0
0
1
1
0
1
0
1
8-bit  
16-bit  
Setting prohibited  
Setting prohibited  
30  
MB91307 Series  
MEMORY SPACE  
1. Memory Space  
The FR family has 4G bytes (232 addresses) of logical address space with linear access from the CPU.  
Direct Addressing Areas  
The following areas of address space are used for I/O operations.  
These areas are called direct addressing areas, in which the address of an operand can be specified directly  
during an instruction.  
The direct areas differ according to the size of the data accessed, as follows.  
byte data access  
: 000H to 0FFH  
half word data access : 000H to 1FFH  
word data access  
: 000H to 3FFH  
2. Memory Map  
The following diagram illustrates memory space in the FR family.  
MB91307R  
MB91306R/MB91307R  
External bus mode  
MB91306R  
Internal ROM  
external bus mode  
Internal ROM  
external bus mode  
0000 0000H  
0000 0400H  
0000 0000H  
Direct addressing  
area  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
0000 0400H  
0001 0000H  
Refer to I/O map  
0001 0000H  
Access  
prohibited  
Access  
prohibited  
Access  
prohibited  
0004 0000H  
0005 0000H  
0006 0000H  
0004 0000H  
0006 0000H  
Internal RAM  
128K bytes  
Internal RAM  
128K bytes  
External area  
Access  
Access  
prohibited  
prohibited  
0010 0000H  
0010 0000H  
External area  
External area  
External area  
FFFF FFFFH  
31  
MB91307 Series  
Use of Built-in RAM  
The MB91307R contains 128K bytes of internal RAM, and MB91306R contains 64K bytes of internal RAM. To  
enable use of this RAM, the mode register must be set to internal ROM external bus mode (ROMA=1).  
Precautions for use of this model  
• The reset vector is fixed at 000F FFFCH.  
• For the MB91307R, the 128K bytes RAM area is from 0004 0000H to 0005 FFFFH and for the MB91306R, the  
64K bytes RAM area is from 0004 0000H to 0004 FFFFH. The area from 0006 0000H to 000F FFFFH is access  
prohibited.  
• In order to use RAM the mode register must be set to internal ROM external bus mode.  
• In internal ROM external bus mode the built-in RAM area can be used, but the vector area 000F FFXXH is an  
internal area and cannot be accessed externally. Please refer to the following explanation.  
• When placing instruction code in RAM, nothing should be placed in the last 8 bytes of the area 0005 FFF8H  
to 0005 FFFFH. (This is an instruction code prohibited area.)  
After mode setting  
Internal ROM external bus mode  
After reset release  
0000 0000  
0000 0400  
H
H
Direct addressing  
area  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Refer to I/O map  
0001 0000  
H
H
Access  
prohibited  
Access  
prohibited  
Access  
prohibited  
0004 0000  
Internal RAM  
64K bytes  
Internal RAM  
128K bytes  
External area  
External area  
0005 0000  
H
0006 0000  
H
H
Access  
prohibited  
Access  
prohibited  
0010 0000  
External area  
External area  
External area  
FFFF FFFF  
H
: The shaded portion is an internal area.  
After mode register setting the vector area is an internal area. Therefore before writing to the mode register  
it is necessary to rewrite the TBR register so that the vector area is changed to an external area.  
32  
MB91307 Series  
USER PROGRAM INITIALIZATION  
The following sequence describes an example using built-in RAM.  
For the MB91306R, only the internal RAM area is different but the setting is same.  
1. Hardware Setting Conditions  
MB91307 series  
External  
ROM  
CS0  
A19 to A1  
1) Assume that 1M bytes of external ROM is placed beginning at 0010 0000H. Place the program at this location  
in the linker. (The following description can apply to other addresses than this one as well.)  
2) Connect addresses A19 to A1 (1M bytes) to ROM, other addresses will use CS0.  
3) Set the mode pins (MD2, MD1, MD0) to external vectors.  
4) Write the reset vector to 001F FFFCH. Likewise write the mode vector to 001F FFF8H.  
2. Immediately After Reset Release  
0000 0000H  
MB91307 series  
0004 0000H  
External  
CS0  
ROM  
External  
ROM  
FFFF FFFFH  
1M bytes of ROM can  
be viewed again on the  
address map.  
After reset release, the CPU will attempt to load a mode vector from 000F FFF8H, a reset vector from 000F  
FFFCH, however because this will be an external vector, the CPU will have to go externally. However the  
1)  
CS0 default value causes 1M bytes of external ROM to be repeated in external space, so that the mode  
vector and the reset vector itself will load the contents written at 001F FFF8H and 001F FFFCH in external  
ROM.  
2) The branch destination is set in the linker to an address in the area 001X XXXXH, so that subsequent pro-  
gram execution will be in this area.  
33  
MB91307 Series  
3. User Program Initialization Steps  
0000 0000H  
MB91307 series  
CS0  
0004 0000H  
0010 0000H  
External  
ROM  
External  
ROM  
001F FFFFH  
FFFF FFFFH  
1M bytes of ROM space  
matches 1M bytes of the  
address map.  
1) Set the TBR register so that the interrupt table is 001F FFXXH, then perform initialization. This process also  
includes a chip select setting, and at the same time the CS0 address is set to be valid at 001X XXXXH. The  
CS0 decoding result is the same before and after the setting, so that the CPU can continue to run programs  
on external ROM.  
2) If necessary, initialize the contents of RAM.  
3) Now initialization is complete, and the application program can be executed.  
34  
MB91307 Series  
I/O MAP  
This map shows the correlation between areas of memory space and individual registers in peripheral resources.  
[How to read the map]  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
PDR0 [R/W] PDR1 [R/W] PDR2 [R/W] PDR3 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
T-unit  
Port Data Register  
000000H  
Read/write attributes  
Register default value after reset  
Register name  
(1-column registers at address 4n, 2-column registers at address 4n + 2)  
Left most register address  
(for word access, the first column of the register contains the MSB end of the data)  
Note: Default register bit values are indicated as follows:  
“1” : Default value “1”  
“0” : Default value “0”  
“X” : Default value “X”  
“-“ : No physical register at this location  
35  
MB91307 Series  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
PDR2 [R/W]  
XXXXXXXX  
000000H  
000004H  
000008H  
00000CH  
000010H  
PDR6 [R/W] PDR7 [R/W]  
XXXXXXXX -------X  
T-unit  
Port Data Register  
PDR8 [R/W] PDR9 [R/W] PDRA [R/W] PDRB [R/W]  
--X--XXX XXXXXXX- XXXXXXXX XXXXXXXX  
PDRG [R/W] PDRH [R/W] PDRI [R/W]  
PDRJ [R/W]  
XXXXXXXX  
-----XXX  
XXX00XXX  
---XXXXX  
R-bus  
Port Data Register  
000018H  
to  
00001CH  
000020H  
to  
00003CH  
Reserved  
EIRR [R/W]  
00000000  
ENIR [R/W]  
00000000  
ELVR [R/W]  
000040H  
000044H  
000048H  
00004CH  
000050H  
000054H  
000058H  
00005CH  
000060H  
000064H  
000068H  
Ext int  
00000000  
DICR [R/W] HRCL [R/W]  
-------0 0--11111  
TMRLR [W]  
DLYI/I-unit  
TMR [R]  
XXXXXXXX XXXXXXXX  
TMCSR [R/W]  
XXXXXXXX XXXXXXXX  
Reload Timer 0  
Reload Timer 1  
Reload Timer 2  
----0000 00000000  
TMR [R]  
TMRLR [W]  
XXXXXXXX XXXXXXXX  
XXXXXXXX XXXXXXXX  
TMCSR [R/W]  
----0000 00000000  
TMR [R]  
TMRLR [W]  
XXXXXXXX XXXXXXXX  
XXXXXXXX XXXXXXXX  
TMCSR [R/W]  
----0000 00000000  
SSR [R/W]  
00001-00  
SIDR [R/W]  
XXXXXXXX  
SCR [R/W]  
00000100  
DRCL [W]  
--------  
SMR [R/W]  
00--0-0-  
UART0  
U-TIMER 0  
UART1  
UTIM [R] (UTIMR [W] )  
00000000 00000000  
UTIMC [R/W]  
0--00001  
SSR [R/W]  
00001-00  
SIDR [R/W]  
XXXXXXXX  
SCR [R/W]  
00000100  
SMR [R/W]  
00--0-0-  
(Continued)  
36  
MB91307 Series  
Register  
Address  
00006CH  
000070H  
000074H  
000078H  
00007CH  
000080H  
000084H  
000088H  
00008CH  
000090H  
000094H  
000098H  
00009CH  
0000A0H  
0000A4H  
0000A8H  
0000ACH  
0000B0H  
Block  
+0  
+1  
+2  
+3  
UTIM [R] (UTIMR [W] )  
00000000 00000000  
DRCL [W]  
--------  
UTIMC [R/W]  
0--00001  
SMR [R/W]  
00--0-0-  
U-TIMER 1  
UART2  
SSR [R/W]  
00001-00  
SIDR [R/W]  
XXXXXXXX  
SCR [R/W]  
00000100  
DRCL [W]  
--------  
UTIM [R] (UTIMR [W] )  
00000000 00000000  
UTIMC [R/W]  
0--00001  
[R/W]  
U-TIMER 2  
ADCR  
[R]  
ADCS  
A/D Converter  
sequential comparator  
------XX XXXXXXXX  
00000000 00000000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
IBCR [R/W]  
00000000  
IBSR [R/W]  
00000000  
ITBA [R/W]  
------00 00000000  
ITMK [R/W]  
ISMK [R/W]  
01111111  
ICCR [R/W]  
0-011111  
ISBA [R/W]  
00000000  
IDBL [R/W]  
-------0  
I2C interface  
00----11 11111111  
IDAR [R/W]  
00000000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(Continued)  
37  
MB91307 Series  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
DMACA0 [R/W]  
000200H  
000204H  
000208H  
00020CH  
000210H  
000214H  
000218H  
00021CH  
000220H  
000224H  
000228H  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
DMACB4 [R/W]  
00000000 00000000 00000000 00000000  
DMACA1 [R/W]  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
DMACB4 [R/W]  
00000000 00000000 00000000 00000000  
DMACA2 [R/W]  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
DMACB4 [R/W]  
DMAC  
00000000 00000000 00000000 00000000  
DMACA3 [R/W]  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
DMACB4 [R/W]  
00000000 00000000 00000000 00000000  
DMACA4 [R/W]  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
DMACB4 [R/W]  
00000000 00000000 00000000 00000000  
00022CH  
to  
00023CH  
Reserved  
DMAC  
DMACR [R/W]  
000240H  
0XX00000 XXXXXXXX XXXXXXXX XXXXXXXX  
000244H  
to  
000274H  
Reserved  
000278H  
00027CH  
Reserved  
Reserved  
000280H  
to  
0002FCH  
Reserved  
(Continued)  
38  
MB91307 Series  
Register  
Address  
000300H  
000304H  
Block  
+0  
+1  
+2  
+3  
Reserved  
ISIZE [R/W]  
------00  
Instruction Cache  
000308H  
to  
0003E0H  
Reserved  
Instruction Cache  
Reserved  
ICHRC [R/W]  
0 - 000000  
0003E4H  
0003E8H  
to  
0003ECH  
BSD0 [W]  
0003F0H  
0003F4H  
0003F8H  
0003FCH  
000400H  
000404H  
000408H  
00040CH  
000410H  
000414H  
000418H  
00041CH  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSD1 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSDC [W]  
Bit Search Module  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSRR [R]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DDRG [R/W] DDRH [R/W] DDRI [R/W] DDRJ [R/W]  
----000  
00011000  
--000000  
00000000  
R-bus  
Port Direction Register  
PFRG [R/W] PFRH [R/W]  
----0000 0000000-  
PFRI [R/W]  
--00-00-  
R-bus  
Port Function Register  
000420H  
to  
00043CH  
Reserved  
(Continued)  
39  
MB91307 Series  
Register  
Address  
Block  
+0  
ICR00 [R/W] ICR01 [R/W] ICR02 [R/W] ICR03 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR04 [R/W] ICR05 [R/W] ICR06 [R/W] ICR07 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR08 [R/W] ICR09 [R/W] ICR10 [R/W] ICR11 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR12 [R/W] ICR13 [R/W] ICR14 [R/W] ICR15 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR16 [R/W] ICR17 [R/W] ICR18 [R/W] ICR19 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR20 [R/W] ICR21 [R/W] ICR22 [R/W] ICR23 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR24 [R/W] ICR25 [R/W] ICR26 [R/W] ICR27 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR28 [R/W] ICR29 [R/W] ICR30 [R/W] ICR31 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR32 [R/W] ICR33 [R/W] ICR34 [R/W] ICR35 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR36 [R/W] ICR37 [R/W] ICR38 [R/W] ICR39 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR40 [R/W] ICR41 [R/W] ICR42 [R/W] ICR43 [R/W]  
---11111 ---11111 ---11111 ---11111  
ICR44 [R/W] ICR45 [R/W] ICR46 [R/W] ICR47 [R/W]  
+1  
+2  
+3  
000440H  
000444H  
000448H  
00044CH  
000450H  
000454H  
000458H  
00045CH  
000460H  
000464H  
000468H  
00046CH  
Interrupt Control unit  
Interrupt Control unit  
---11111  
---11111  
---11111  
---11111  
000470H  
to  
00047CH  
RSRR [R/W] STCR [R/W] TBCR [R/W]  
10000000 *2 00110011 *2 00XXXX00 *1 XXXXXXXX  
CTBR [W]  
000480H  
000484H  
CLKR [R/W] WPR [W] DIVR0 [R/W] DIVR1 [R/W]  
Clock Control unit  
Reserved  
00000000 *1 XXXXXXXX 00000011 *1 00000000 *1  
000488H  
to  
0005FCH  
*1: These registers have different default values at reset level. The value shown is the INIT level value.  
*2: These registers have different default values at reset level. The value shown is the INIT level value from the INIT  
pin.  
(Continued)  
40  
MB91307 Series  
Register  
Address  
000600H  
000604H  
000608H  
Block  
+0  
+1  
+2  
+3  
DDR2 [R/W]  
00000000  
DDR6 [R/W] DDR7 [R/W]  
00000000 00000000  
T-unit  
Port Direction Register  
DDR8 [R/W] DDR9 [R/W] DDRA [R/W] DDRB [R/W]  
--0--000  
00000000  
00000000  
00000000  
00060CH  
000610H  
000614H  
PFR6 [R/W] PFR7 [R/W]  
11111111 -------1  
PFR8 [R/W] PFR9 [R/W] PFRA [R/W] PFRB1 [R/W]  
000618H  
00061CH  
000620H  
000624H  
--1--0--  
PFRB2 [R/W]  
00------  
1111111-  
0-001101  
00000000  
T-unit  
Port Function Register  
000628H  
to  
00063FH  
Reserved  
ASR0 [R/W]  
ACR0 [R/W]  
000640H  
000644H  
000648H  
00064CH  
000650H  
000654H  
00000000 00000000  
ASR1 [R/W]  
1111XX00 00000000  
ACR1 [R/W]  
XXXXXXXX XXXXXXXX  
ASR2 [R/W]  
XXXXXXXX XXXXXXXX  
ACR2 [R/W]  
XXXXXXXX XXXXXXXX  
ASR3 [R/W]  
XXXXXXXX XXXXXXXX  
ACR3 [R/W]  
T-unit  
XXXXXXXX XXXXXXXX  
ASR4 [R/W]  
XXXXXXXX XXXXXXXX  
ACR4 [R/W]  
XXXXXXXX XXXXXXXX  
ASR5 [R/W]  
XXXXXXXX XXXXXXXX  
ACR5 [R/W]  
XXXXXXXX XXXXXXXX  
XXXXXXXX XXXXXXXX  
(Continued)  
41  
MB91307 Series  
Register  
Address  
Block  
+0  
ASR6 [R/W]  
+1  
+2  
ACR6 [R/W]  
+3  
000658H  
00065CH  
000660H  
000664H  
000668H  
00066CH  
000670H  
000674H  
000678H  
00067CH  
000680H  
000684H  
XXXXXXXX XXXXXXXX  
ASR7 [R/W]  
XXXXXXXX XXXXXXXX  
ACR7 [R/W]  
XXXXXXXX XXXXXXXX  
AWR0 [R/W]  
XXXXXXXX XXXXXXXX  
AWR1 [R/W]  
011111111 11111111  
AWR2 [R/W]  
XXXXXXXX XXXXXXXX  
AWR3 [R/W]  
XXXXXXXX XXXXXXXX  
AWR4 [R/W]  
XXXXXXXX XXXXXXXX  
AWR5 [R/W]  
XXXXXXXX XXXXXXXX  
AWR6 [R/W]  
XXXXXXXX XXXXXXXX  
AWR7 [R/W]  
XXXXXXXX XXXXXXXX  
XXXXXXXX XXXXXXXX  
T-unit  
IOWR0 [R/W] IOWR1 [R/W] IOWR2 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX  
CSER [R/W] CHER [R/W]  
TCR [R/W]  
00000000  
000000001  
11111111  
000684H  
to  
0007F8H  
Reserved  
0007FCH  
000800H  
to  
000AFCH  
Reserved  
ESTS0 [R/W] ESTS1 [R/W] ESTS2 [R]  
X0000000 XXXXXXXX 1XXXXXXX  
000B00H  
000B04H  
DSU  
ECTL0 [R/W] ECTL1 [R/W] ECTL2 [W] ECTL3 [R/W]  
0X000000 00000000 000X0000 00X00X11  
(Continued)  
42  
MB91307 Series  
Register  
Address  
000B08H  
000B0CH  
000B10H  
Block  
+0  
+1  
ECNT1 [W]  
+2  
+3  
ECNT0 [W]  
EUSA [W]  
XXX00000  
EDTC [W]  
0000XXXX  
XXXXXXXX XXXXXXXX  
EWPT [R]  
00000000 00000000  
EDTR0 [W]  
EDTR1 [W]  
XXXXXXXX XXXXXXXX  
XXXXXXXX XXXXXXXX  
000B14H  
to  
000B1CH  
EIA0 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA1 [W]  
000B20H  
000B24H  
000B28H  
000B2CH  
000B30H  
000B34H  
000B38H  
000B3CH  
000B40H  
000B44H  
000B48H  
000B4CH  
000B50H  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA2 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA3 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA4 [W]  
DSU  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA5 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA6 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA7 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EDTA [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EDTM [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOA0 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOA1 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EPCR [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
(Continued)  
43  
MB91307 Series  
(Continued)  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
EPSR [R/W]  
000B54H  
000B58H  
000B5CH  
000B60H  
000B64H  
000B68H  
000B6CH  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIAM0 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIAM1 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOAM0/EODM0 [W]  
DSU  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOAM1/EODM1 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOD0 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOD1 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
000B70H  
to  
000FFCH  
Reserved  
DMASA0 [R/W]  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
DMADA0 [R/W]  
001000H  
001004H  
001008H  
00100CH  
001010H  
001014H  
001018H  
00101CH  
001020H  
001024H  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
DMASA1 [R/W]  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
DMADA1 [R/W]  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
DMASA2 [R/W]  
DMAC  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
DMADA2 [R/W]  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
DMASA3 [R/W]  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
DMADA3 [R/W]  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
DMASA4 [R/W]  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
DMADA4 [R/W]  
DMAC  
XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX  
44  
MB91307 Series  
INTERRUPT SOURCES AND INTERRUPT VECTORS  
Interrupt number  
Interrupt source  
Interrupt level Offset TBR default address  
Decimal  
0
Hex  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
Reset  
3FCH  
3F8H  
3F4H  
3F0H  
3ECH  
3E8H  
3E4H  
3E0H  
3DCH  
3D8H  
3D4H  
3D0H  
3CCH  
3C8H  
3C4H  
3C0H  
3BCH  
3B8H  
3B4H  
3B0H  
3ACH  
3A8H  
3A4H  
3A0H  
39CH  
398H  
394H  
390H  
38CH  
388H  
384H  
380H  
37CH  
378H  
000FFFFCH  
000FFFF8H  
000FFFF4H  
000FFFF0H  
000FFFECH  
000FFFE8H  
000FFFE4H  
000FFFE0H  
000FFFDCH  
000FFFD8H  
000FFFD4H  
000FFFD0H  
000FFFCCH  
000FFFC8H  
000FFFC4H  
000FFFC0H  
000FFFBCH  
000FFFB8H  
000FFFB4H  
000FFFB0H  
000FFFACH  
000FFFA8H  
000FFFA4H  
000FFFA0H  
000FFF9CH  
000FFF98H  
000FFF94H  
000FFF90H  
000FFF8CH  
000FFF88H  
000FFF84H  
000FFF80H  
000FFF7CH  
000FFF78H  
Mode vector  
1
System reserved  
2
System reserved  
3
System reserved  
4
System reserved  
5
System reserved  
6
Coprocessor absent trap  
Coprocessor error trap  
INTE instruction  
7
8
9
Instruction break exception  
Operand break trap  
Step trace trap  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NMI request (tool)  
Undefined instruction exception  
NMI requ  
15 (FH)  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
ICR16  
ICR17  
External interrupt 0  
External interrupt 1  
External interrupt 2  
External interrupt 3  
External interrupt 4  
External interrupt 5  
External interrupt 6  
External interrupt 7  
Reload timer 0  
Reload timer 1  
Reload timer 2  
UART0(RX completed)  
UART1(RX completed)  
UART2(RX completed)  
UART0(TX completed)  
UART1(TX completed)  
UART2(TX completed)  
DMAC0(end, error)  
(Continued)  
45  
MB91307 Series  
Interrupt number  
Interrupt source  
Interrupt level Offset TBR default address  
Decimal  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
Hex  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
DMAC1(end, error)  
DMAC2(end, error)  
DMAC3(end, error)  
DMAC4(end, error)  
A/D  
ICR18  
ICR19  
ICR20  
ICR21  
ICR22  
ICR23  
ICR24  
ICR25  
ICR26  
ICR27  
ICR28  
ICR29  
ICR30  
ICR31  
ICR32  
ICR33  
ICR34  
ICR35  
ICR36  
ICR37  
ICR38  
ICR39  
ICR40  
ICR41  
ICR42  
ICR43  
ICR44  
ICR45  
ICR46  
ICR47  
374H  
370H  
36CH  
368H  
364H  
360H  
35CH  
358H  
354H  
350H  
34CH  
348H  
344H  
340H  
33CH  
338H  
334H  
330H  
32CH  
328H  
324H  
320H  
31CH  
318H  
314H  
310H  
30CH  
308H  
304H  
300H  
2FCH  
2F8H  
2F4H  
2F0H  
2ECH  
000FFF74H  
000FFF70H  
000FFF6CH  
000FFF68H  
000FFF64H  
000FFF60H  
000FFF5CH  
000FFF58H  
000FFF54H  
000FFF50H  
000FFF4CH  
000FFF48H  
000FFF44H  
000FFF40H  
000FFF3CH  
000FFF38H  
000FFF34H  
000FFF30H  
000FFF2CH  
000FFF28H  
000FFF24H  
000FFF20H  
000FFF1CH  
000FFF18H  
000FFF14H  
000FFF10H  
000FFF0CH  
000FFF08H  
000FFF04H  
000FFF00H  
000FFEFCH  
000FFEF8H  
000FFEF4H  
000FFEF0H  
000FFEECH  
I2C  
System reserved  
System reserved  
System reserved  
System reserved  
U-TIMER0  
U-TIMER1  
U-TIMER2  
Time base timer overflow  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
Delay interrupt source bit  
System reserved (REALOS use)  
System reserved (REALOS use)  
System reserved  
System reserved  
System reserved  
(Continued)  
46  
MB91307 Series  
(Continued)  
Interrupt source  
Interrupt number  
Interrupt level Offset TBR default address  
Decimal  
69  
Hex  
45  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
2E8H  
2E4H  
2E0H  
2DCH  
2D8H  
2D4H  
2D0H  
2CCH  
2C8H  
2C4H  
2C0H  
000FFEE8H  
000FFEE4H  
000FFEE0H  
000FFEDCH  
000FFED8H  
000FFED4H  
000FFED0H  
000FFECCH  
000FFEC8H  
000FFEC4H  
000FFEC0H  
70  
46  
71  
47  
72  
48  
73  
49  
74  
4A  
4B  
4C  
4D  
4E  
4F  
75  
76  
77  
78  
79  
80  
to  
255  
50  
to  
FF  
2BCH  
to  
000H  
000FFEBCH  
to  
000FFC00H  
Used by INT instructions  
47  
MB91307 Series  
PERIPHERAL RESOURCES  
1. Interrupt Controller  
(1) Overview  
The interrupt controller receives and processes arbitration of interrupts.  
Hardware Configuration  
This module is configured from the following elements.  
• ICR register  
• Interrupt priority determination circuit  
• Interrupt level and interrupt number (vector) generator  
• Hold request removal request generator  
Principal Functions  
This module primarily provides the following functions.  
• NMI request / interrupt request detection  
• Order of priority determination (according to level and number)  
• Notification (to CPU) of interrupt level of source according to determination  
• Notification (to CPU) of interrupt number of source according to determination  
• Instruction (to CPU) to recover from stop mode when an interrupt other than NMI/interrupt level “11111” is  
generated  
• Generation of hold request removal requests to the bus master  
48  
MB91307 Series  
(2) Register List  
bit 7  
6
5
4
3
2
1
0
Address:  
ICR4  
ICR3  
ICR2  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
R/W  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
R/W  
00000440  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
ICR16  
ICR17  
ICR18  
ICR19  
ICR20  
ICR21  
ICR22  
ICR23  
ICR24  
ICR25  
ICR26  
ICR27  
ICR28  
ICR29  
ICR30  
ICR31  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
R
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
R/W  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
R/W  
00000441  
00000442  
00000443  
00000444  
00000445  
00000446  
00000447  
00000448  
00000449  
0000044A  
0000044B  
0000044C  
0000044D  
0000044E  
0000044F  
00000450  
00000451  
00000452  
00000453  
00000454  
00000455  
00000456  
00000457  
00000458  
00000459  
0000045A  
0000045B  
0000045C  
0000045D  
0000045E  
0000045F  
(Continued)  
49  
MB91307 Series  
(Continued)  
bit 7  
6
5
4
3
2
1
0
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
Address:  
ICR4  
ICR3  
ICR2  
ICR1  
ICR0  
00000460H  
00000461H  
00000462H  
00000463H  
00000464H  
00000465H  
00000466H  
00000467H  
00000468H  
00000469H  
0000046AH  
0000046BH  
0000046CH  
0000046DH  
0000046EH  
0000046FH  
ICR32  
ICR33  
ICR34  
ICR35  
ICR36  
ICR37  
ICR38  
ICR39  
ICR40  
ICR41  
ICR42  
ICR43  
ICR44  
ICR45  
ICR46  
ICR47  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
ICR4  
R
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
ICR3  
R/W  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
ICR2  
R/W  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
ICR1  
R/W  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
ICR0  
R/W  
Address:  
MHALTI  
R/W  
LVL4  
R
LVL3  
R/W  
LVL2  
R/W  
LVL1  
R/W  
LVL0  
R/W  
00000045H  
HRCL  
50  
MB91307 Series  
(3) Block Diagram  
(“1” when LEVEL 11111)  
WAKEUP  
UNMI  
Determine order of priority  
5
LEVEL4 to LEVEL0  
NMI  
processing  
HLDREQ  
MHALTI  
hold  
request  
LEVEL  
determination  
LEVEL,  
VECTOR  
generation  
6
ICR00  
RI00  
VCT5 to VCT0  
VECTOR  
determination  
ICR47  
RI47  
(DLYIRQ)  
R-bus  
51  
MB91307 Series  
2. External Interrupt - NMI Control Block  
(1) Overview  
The External Interrupt-control block controls external interrupt requests input at the NMI and INT0 to INT7 pins.  
The request level can be selected from “H,” “L,” “rising edge,” or “falling edge” detection (except for NMI).  
(2) Register List  
• External interrupt enable register (ENIR)  
bit  
7
6
5
4
3
2
1
0
EN7  
EN6  
EN5  
EN4  
EN3  
EN2  
EN1  
EN0  
• External interrupt source register (EIRR)  
bit  
15  
14  
13  
12  
11  
10  
9
8
ER7  
ER6  
ER5  
ER4  
ER3  
ER2  
ER1  
ER0  
• Request level setting register (ELVR)  
bit  
15  
14  
13  
12  
11  
10  
9
8
LB7  
LA7  
LB6  
LA6  
LB5  
LA5  
LB4  
LA4  
bit  
7
6
5
4
3
2
1
0
LB3  
LA3  
LB2  
LA2  
LB1  
LA1  
LB0  
LA0  
(3) Block Diagram  
R-bus  
8
9
8
8
Interrupt enable register  
Source F/F  
Interrupt  
request  
9
INT0 to INT7  
NMI  
Gate  
Edge detection circuit  
Interrupt source register  
Interrupt level setting register  
52  
MB91307 Series  
3. REALOS Related Hardware  
REALOS related hardware is used by the REALOS operating system. Therefore, when REALOS is in use, these  
resources cannot be used by user programs.  
Delay Interrupt Module  
(1) Overview  
The delay interrupt module is a module that generates interrupts for task switching. This module can be used  
with software instructions to generate and cancel interrupts to the CPU.  
(2) Register List  
bit  
7
6
5
4
3
2
1
0
Address :  
DLYI  
[R/W]  
00000044H  
DICR  
(3) Block Diagram  
R-bus  
DLYI  
Interrupt request  
53  
MB91307 Series  
Bit Search Module  
(1) Overview  
Searches data written to input registers for “0” or “1” or change points, and outputs the value of the detected bits.  
(2) Register List  
31  
0
Address :  
Address :  
Address :  
Address :  
0 detection data register  
1 detection data register  
Change point detection register  
Detection results register  
BSD0  
BSD1  
BSDC  
BSRR  
000003F0  
000003F4  
000003F8  
000003FC  
H
H
H
H
(3) Block Diagram  
D-bus  
Input latch  
Detection  
mode  
Address  
decoder  
1 detection data capture  
Bit search circuit  
Search results  
54  
MB91307 Series  
4. 16-bit Reload Timer  
(1) Overview  
The 16-bit timer is configured from a 16-bit down-counter, 16-bit reload register, prescaler for internal count clock  
generation, and a control register.  
For the input clock signal, a selection of three internal clock signals (machine clock multiplied by 2, 8, or 32) or  
external clock is provided.  
The output pin (TOUT) produces a toggle output waveform at every underflow in reload mode, and a square  
wave indicating counting in progress in one-shot mode.  
The input pin (TIN) can be used for event input in external event count mode, and trigger input or gate input in  
internal clock mode.  
The external event count function can be used in reload mode or as a frequency multiplier in external clock mode.  
The MB91306R/MB91307R contain 3 channels (0 to 2) of this timer.  
(2) Register List  
• Control status register (TMCSR)  
15  
14  
13  
12  
11  
10  
9
8
CSL1  
CSL0  
MOD2 MOD1  
7
6
5
4
3
2
1
0
MOD0  
OUTL  
RELD  
INTE  
UF  
CNTE  
TRG  
• 16-bit timer register (TMR)  
15  
0
0
• 16-bit reload register (TMRLR)  
15  
55  
MB91307 Series  
(3) Block Diagram  
16  
16-bit reload register  
8
Reload  
RELD  
OUTE  
OUTL  
INTE  
UF  
16-bit down counter  
16  
2
OUT  
CTL.  
GATE  
2
IRQ  
CSL1  
Clock selector  
CNTE  
TRG  
CSL0  
Re-trigger  
2
Port (TIN)  
Port (TOT)  
IN CTL.  
EXCK  
3
Prescaler  
clear  
φ
φ
φ
21 23 25  
MOD2  
MOD1  
MOD0  
Internal clock  
3
56  
MB91307 Series  
5. U-TIMER (16 bit timer for UART baud rate generation)  
(1) Overview  
The U-TIMER is a 16-bit timer used to generate the baud rate for the UART. Any desired baud rate can be set  
using the combination of chip operating frequency and U-TIMER reload value.  
The U-TIMER can also be used as an interval timer by generating an interrupt from a count underflow event.  
This device features a 3-channel built-in U-TIMER. By connecting two U-TIMER channels used as interval timers  
in a cascade connection, it is possible to count intervals up to a maximum of 232 × φ.  
The available case connections are channel 0 to channel 1, and channel 1 to channel 2.  
(2) Register List  
15  
8
7
0
UTIM  
UTIMR  
(R)  
(W)  
UTIMC  
(R/W)  
(3) Block Diagram  
15  
15  
0
0
UTIMR (reload register)  
Load  
UTIM (timer)  
Clock  
Underflow  
control  
φ
MUX  
(Peripheral clock)  
Channel 0 only  
f.f.  
To UART  
Under flow U-TIMER 1  
57  
MB91307 Series  
6. UART  
(1) Overview  
The UART is an I/O port for asynchronous (start-stop synchronized) or CLK synchronized transmission, providing  
the following features. This device features a 3-channel built-in UART.  
• Full duplex double buffer  
• Asynchronous (start-stop synchronized) or CLK synchronized transmission enabled  
• Supports multi-processor mode  
• Fully programmable baud rate  
Built-in timer can be set to any desired baud rate (see U-TIMER description)  
• Independent baud rate setting from external clock enabled.  
• Error detection functions (parity, framing, overrun)  
Transfer signal NRZ encoded  
• DMA transfer start from interrupt enabled  
• DMAC interrupt source cleared by write operation to DRCL register.  
(2) Register List  
15  
8
7
0
SCR  
SSR  
SMR  
(R/W)  
(R/W)  
SIDR (R)/SODR (W)  
DRCL  
8 bit  
(W)  
8 bit  
• Serial input register/Serial output registe (SIDR/SODR)  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
• Serial status register (SSR)  
7
6
5
4
3
2
1
0
PE  
ORE  
FRE  
RDRF TDRE  
RIE  
TIE  
• Serial mode register (SMR)  
7
6
5
4
3
2
1
0
MD1  
MD0  
CS0  
SCKE  
• Serial control register (SCR)  
7
6
5
4
3
2
1
0
PEN  
P
SBL  
CL  
A/D  
REC  
RXE  
TXE  
• DRCL register (DRCL)  
7
6
5
4
3
2
1
0
58  
MB91307 Series  
(3) Block Diagram  
Control signal  
RX interrupt  
(to CPU)  
SC (clock)  
TX clock  
TX interrupt  
(to CPU)  
From U-TIMER  
Clock select  
circuit  
RX clock  
External clock  
SC  
RX control circuit  
TX control circuit  
SI (receiving data)  
Start bit detect  
circuit  
Sent start  
circuit  
Receiving bit  
counter  
Sending bit  
counter  
Receiving parity  
counter  
Sending parity  
counter  
SO (Sending data)  
Receiving status  
decision circuit  
Receiving shifter  
Sending shifter  
Receiving  
end  
Sending  
start  
SIDR  
SODR  
DMA receiving  
error signal  
(to DMAC)  
R-bus  
MD1  
MD0  
PEN  
P
PE  
ORE  
FRE  
SBL  
SMR  
register  
SCR  
register  
SSR  
register  
CL  
RDRF  
TDRE  
CS0  
A/D  
REC  
RXE  
TXE  
SCKE  
SOE  
RIE  
TIE  
Control signal  
59  
MB91307 Series  
7. A/D Converter (Sequential comparison type)  
(1) Overview  
This A/D converter is a module that coverts analog input voltages to digital values, and provides the following  
features.  
• Minimum conversion time 5.4 µs/ch (at machine clock 33 MHz-CKLP)  
• Built-in sample & hold circuit  
• Resolution 10 bits (8-bit accuracy)  
• Analog input: 4 channels by program selection  
Single conversion mode: Conversion on 1 select channel  
Scan conversion mode: Select continuous multiple channels. Up to 4 channels can be selected by program.  
Continuous conversion mode: Continuous conversion on selected channel  
Stop conversion mode: 1-channel conversion then pause and wait until the next start is applied  
(enables synchronized conversion start)  
• DMA transfer start from interrupt enabled  
• Start sources can be selected from software, external trigger (falling edge), reload timer (rising edge).  
(2) Register List  
• Control status register (ADCS)  
bit  
15  
14  
13  
12  
11  
10  
9
8
BUSY  
INT  
INTE  
PAUS  
STS1  
STS0  
STRT  
bit  
7
6
5
4
3
2
1
0
MD1  
MD0  
ANS2  
ANS1  
ANS0  
ANE2  
ANE1  
ANE0  
• Data register (ADCR)  
bit  
15  
14  
13  
12  
11  
10  
9
9
8
8
bit  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
60  
MB91307 Series  
(3) Block Diagram  
AVCC AVRH AVSS  
Internal voltage  
Sample & hold circuit  
Sequential  
Data register (ADCR)  
AD control register  
Channel decoder  
Timing generator  
Clock (CLKP)  
Prescaler  
ATG (External pin trigger)  
Reload timer ch1 (Internal connection)  
(4) Precautions for Use:  
When the A/D converter is started from an external trigger or internal timer, the ADCS register A/D start source  
bits STS1, STS0 are set, and at this time the input values for the external trigger and internal timer should be  
set to the inactive side. If these values are set to the active side, abnormal operation may result.  
When setting the STS1, STS0 bits, set ATG = “1” input, reload timer (channel 2) = “0” output.  
Note : If internal impedance is higher than the specified value, it may not be possible to obtain analog input  
value sampling within the specified sampling time, so that proper results will not be obtained.  
61  
MB91307 Series  
8. I2C Interface  
(1) Overview  
The I2C interface operates as a master/slave device on the I2C bus at serial I/O ports with IC bus support. The  
following features are provided.  
• Master/slave sending and receiving  
• Arbitration function  
• Clock synchronization function  
• Slave address/general call address detection function  
Transfer direction detection function  
• Start condition repeat generation and detection function  
• Bus error detection function  
• 10-bit/7-bit master/slave addressing  
• Compatible with standard mode (Max 100 Kbps) or high speed mode (Max 400 Kbps)  
Transfer end interrupt/bus error interrupt generation  
(2) Register List  
Bus Control Register (IBCR)  
15  
14  
13  
12  
11  
10  
9
8
Address : 000094H  
Default value →  
BER  
BEIE  
SCC  
MSS  
ACK  
GCAA  
INTE  
INT  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bus Status Register (IBSR)  
Address : 000095H  
Default value →  
7
6
5
4
3
2
1
0
BB  
RSC  
AL  
LRB  
TRX  
AAS  
GCA  
ADT  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
10-Bit Slave Address Register  
Address : 000096H  
15  
14  
13  
12  
11  
10  
9
8
TA9  
TA8  
R/W  
0
R/W  
0
Default value →  
7
6
5
4
3
2
1
0
Address : 000097H  
TA7  
TA6  
TA5  
TA4  
TA3  
TA2  
TA1  
TA0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default value →  
(Continued)  
62  
MB91307 Series  
(Continued)  
• 10-Bit Slave Address Mask Register (ITMK)  
15  
14  
13  
12  
11  
10  
9
8
Address : 000098H  
ENTB  
RAL  
TM9  
TM8  
R/W  
0
R
0
R/W  
1
R/W  
1
Default value →  
7
6
5
4
3
2
1
0
Address : 000099H  
TM7  
TM6  
TM5  
TM4  
TM3  
TM2  
TM1  
TM0  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Default value →  
• 7-Bit Slave Address Register (ISBA)  
7
6
5
4
3
2
1
0
Address : 00009BH  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default value →  
• 7-Bit Slave Address Mask Register (ISMK)  
15  
14  
13  
12  
11  
10  
9
8
Address : 00009AH  
ENSB  
SM6  
SM5  
SM4  
SM3  
SM2  
SM1  
SM0  
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Default value →  
• Data Register (IDAR)  
7
6
5
4
3
2
1
0
Address : 00009DH  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default value →  
• Clock Control Register (ICCR)  
15  
14  
13  
12  
11  
10  
9
8
Address : 00009EH  
TEST  
EN  
CS4  
CS3  
CS2  
CS1  
CS0  
W
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Default value →  
• Clock Disable Register (IDBL)  
7
6
5
4
3
2
1
0
Address : 00009FH  
DBL  
R/W  
0
Default value →  
63  
MB91307 Series  
(3) Block Diagram  
ICCR  
EN  
I2 C operation enabled  
Clock enabled  
IDBL  
DBL  
ICCR  
Clock multiplier 2  
2 3 4 5  
CS4  
CS3  
CS2  
CS1  
CS0  
Sync  
32  
Shift clock generator  
Clock select 2 (1/12)  
Shift clock  
edge change  
IBSR  
Bus busy  
BB  
Repeat start  
RSC  
LRB  
TRX  
Start - stop  
condition detector  
Last Bit  
TX/RX  
Error  
First Byte  
ADT  
AL  
Arbitration lost detector  
IBCR  
BER  
SCL  
BEIE  
INTE  
INT  
SDA  
Interrupt request  
IRQ  
End  
IBCR  
SCC  
Start  
Master  
MSS  
ACK  
Start - stop  
condition generator  
ACK OK  
GC-ACK OK  
GCAA  
IDAR  
IBSR  
AAS  
Slave  
Global call  
Slave address  
compare  
GCA  
ENTB  
ISMK  
RAL  
ITBA  
ITMK  
ISBA  
ISMK  
64  
MB91307 Series  
9. DMAC (DMA Controller)  
(1) Overview  
This module is used to accomplish DMA (Direct Memory Access) transfer on FR family devices.  
DMA transfer controlled by this module increases system performance by enabling high speed transfer of many  
types of data without going through the CPU.  
Hardware Configuration  
This module is principally configured from the following units:  
• Five independent DMA channels  
• 5 channels independent access control circuit  
• 32-bit address registers (reload enabled: 2 per channel)  
• 16-bit transfer count registers (reload enabled: 2 per channel)  
• 4-bit block count registers (1 per channel)  
• External transfer request input pins: DREQ0,DREQ1,DREQ2 (ch0, ch1, ch2 only)  
• External transfer request acknowledge output pins: DACK0,DACK1,DACK2 (ch0, ch1, ch2 only)  
• DMA output completed pins: DEOP0,DEOP1,DEOP2 (ch0, ch1, ch2 only)  
• Fly-by transfer (memory to I/O, memory to memory) (ch0, ch1, ch2 only)  
Two-cycle transfer  
Principal Functions  
Data transfer using the DMAC module primarily involves the following functions:  
• Supports independent data transfer on multiple channels (5 channels)  
(1) Order of priority (ch0 > ch1 > ch2 > ch3 > ch4)  
(2) The order can be reversed between ch0 and ch1.  
(3) DMAC startup sources  
Input from an external-only pin (edge detection/level detection, ch0, ch1, ch2 only)  
Request from a built-in peripheral (shared interrupt request, including external interrupts)  
Software request (register write)  
(4) Transfer modes  
Demand transfer / burst transfer / step transfer / block transfer  
Addressing mode 32-bit full address designation (increment/decrement/fixed)  
(address increment can be specified up to -255 to +255)  
Data type, byte / half-word / word length  
Single-shot / reload selection available  
65  
MB91307 Series  
(2) Register Descriptions  
(bit) 31  
24 23 16 15 08 07  
00  
DMACA0 0000200  
H
H
H
H
H
H
H
H
H
H
H
ch0 Control/status register A  
ch0 Control/status register B  
ch1 Control/status register A  
ch1 Control/status register B  
ch2 Control/status register A  
ch2 Control/status register B  
ch3 Control/status register A  
ch3 Control/status register B  
ch4 Control/status register A  
ch4 Control/status register B  
Overall control register  
DMACB0 0000204  
DMACA1 0000208  
DMACB1 000020C  
DMACA2 0000210  
DMACB2 0000214  
DMACA3 0000218  
DMACB3 000021C  
DMACA4 0000220  
DMACB4 0000224  
DMACR 0000240  
DMASA0 0001000  
DMADA0 0001004  
DMASA1 0001008  
DMADA1 000100C  
DMASA2 0001010  
DMADA2 0001014  
DMASA3 0001018  
DMADA3 000101C  
DMASA4 0001020  
DMADA4 0001024  
H
H
H
H
H
H
H
H
H
H
ch0 Transfer source address register  
ch0 Transfer source address register  
ch1 Transfer source address register  
ch1 Transfer source address register  
ch2 Transfer source address register  
ch2 Transfer source address register  
ch3 Transfer source address register  
ch3 Transfer source address register  
ch4 Transfer source address register  
ch4 Transfer source address register  
66  
MB91307 Series  
(3) Block Diagram  
Counter  
Peripheral start request/stop  
input  
DMA start  
source selection  
circuit & request  
acceptance  
DMA transfer request to  
bus controller  
Buffer  
Selector  
External pin start request/stop  
input  
control  
DTC two-stage register  
DTCR  
Counter  
Buffer  
DSS3 to DSS0  
Priority  
circuit  
IRQ4 to  
IRQ0  
To interrupt controller  
ERIR, EDIR  
Read/write  
control  
Selector  
Read  
Write  
MCLREQ  
BLK register  
Peripheral interrupt clear  
Status  
transition  
circuit  
TYPE, MOD, WS  
DDNO register  
DDNO  
To bus  
controller  
DMA controller  
DDAD two-stage register  
SDAM, SASZ7 to SASZ0 SADR  
Write back  
Access  
address  
DDAD two-stage register  
DADM, DASZ7 to DASZ0 DADR  
Write back  
DMAC 5-channel Block Diagram  
67  
MB91307 Series  
10. External Interface  
(1) Overview  
The external interface controller controls the interface between the LSI’s internal bus and external memory or I/  
O devices.  
This section describes the functions of the external interface.  
(2) Features  
• Up to 32 bit-length (4G bytes space) address output.  
• Connects directly to many external memory (8 bit/16 bit) devices, allows control of multiple access timings.  
Asynchronous SRAM, asynchronous ROM/Flash memory (multiple write strobe type or byte enable type)  
Page mode ROM/flash memory (2/4/8 page size enabled)  
Burst ROM/Flash memory (MBM29BL160D/161D/162D etc.)  
Address/data multiplexed bus (8 bit/16 bit width only)  
Synchronous memory* (ASIC built-in memory etc.)  
*: Does not connect to synchronous SRAM.  
• 8 independent bank (chip select area) settings, each with corresponding chip select output available  
Each area size can be set in multiples of 64K bytes (from 64K bytes to 2G bytes per chip select area).  
Each area can be set in any desired area of logic address space (boundaries limited by area size).  
• The following functions can be independently set for each chip select area.  
Chip select area enable/disable (no access to prohibited areas)  
Access timing type for each area, etc.  
Detailed access timing settings (individual access type settings for wait cycle, etc.)  
Data bus width setting (8 bit/16 bit)  
Byte ordering endian setting* (big or little).  
*: CS0 area available with big endian only.  
Write prohibited setting (read-only areas)  
Internal cache loading enable/disable settings  
Pre-fetch function enable/disable settings  
Maximum burst length setting (1,2,4,8)  
• Different detailed timing settings for each access timing type  
Different settings can be used for each chip select area even for the same access timing type.  
Auto wait setting up to 15 cycles (asynchronous SRAM, ROM, Flash, I/O areas)  
Bus cycle extension with external RDY input enabled (asynchronous SRAM, ROM, Flash, I/O areas)  
First access wait and page wait settings enabled (burst, page mode ROM/FLASH areas)  
Different idle, recovery cycles setup delay insertion etc. enabled  
• Fly-by transfer with DMA enabled  
Transfer between memory and I/O with 1 access  
Memory wait cycle can be synchronized with I/O wait cycle during fly-by  
Hold time can be obtained by delaying transfer access only  
Specific idle/recovery cycles can be set for fly-by transfer  
• External bus arbitration using BRQ and BGRNT enabled  
• Pins not used in external interface can be set for use as general purpose I/O ports  
68  
MB91307 Series  
(3) Block Diagram  
Internal  
address bus  
Internaldata  
bus  
32  
32  
External data bus  
Switch  
Switch  
Write buffer  
Read buffer  
MUX  
Data block  
Address block  
+1 or +2  
External address bus  
Address buffer  
ASR  
ASZ  
CS0 to CS7  
Comparator  
RD  
External pin control block  
WR0, WR1  
AS, BAA  
All block control  
BRQ  
BGRNT  
RDY  
Resisters &  
controls  
(4) I/O Pins  
These are the external interface pins. (Some pins have dual functions.)  
< Normal bus interface >  
A24 to A0, D31 to D16  
CS0, CS1, CS2, CS3, CS4, CS5, CS6, CS7  
AS, SYSCLK, MCLK  
RD  
WE, WR0 (UUB) , WR1 (ULB)  
RDY, BRQ, BGRNT  
< Memory interface >  
MCLK  
LBA ( = AS) , BAA*  
*: For burst ROM, Flash use  
69  
MB91307 Series  
< DMA interface >  
IOWR, IORD  
DACK0, DACK1, DACK2  
DREQ0, DREQ1, DREQ2  
DEOP0/DSTP0, DEOP1/DSTP1, DEOP2/DSTP2  
(5) Register List  
Address 31  
00000640H  
00000644H  
00000648H  
0000064CH  
00000650H  
00000654H  
00000658H  
0000065CH  
00000660H  
00000664H  
00000668H  
0000066CH  
24 23  
16 15  
08 07  
ACR0  
ACR1  
ASR2  
ACR3  
ACR4  
ACR5  
ACR6  
ACR7  
AWR1  
AWR3  
AWR5  
AWR7  
00  
ASR0  
ASR1  
ASR2  
ASR3  
ASR4  
ASR5  
ASR6  
ASR7  
AWR0  
AWR2  
AWR4  
AWR6  
00000670H Reserved Reserved Reserved Reserved  
00000674H Reserved Reserved Reserved Reserved  
00000678H  
0000067CH Reserved Reserved Reserved Reserved  
00000680H CSER CHER Reserved TCR  
IOWR0  
IOWR1  
IOWR2  
Reserved  
00000684H Reserved Reserved Reserved Reserved  
00000688H Reserved Reserved Reserved Reserved  
0000068CH Reserved Reserved Reserved Reserved  
• • •  
000007F8H Reserved Reserved Reserved Reserved  
000007FCH Reserved (MODR) Reserved Reserved  
• • •  
• • •  
• • •  
• • •  
Reserved: This address is reserved, and should always be set to “0.”  
MODR: Cannot be accessed from user programs.  
70  
MB91307 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
Rating  
Parameter  
Supply voltage*1  
Symbol  
Unit  
Remarks  
Min  
Max  
VCC  
VCCI  
VSS 0.5  
VSS + 4.0  
VSS + 2.2  
VSS + 4.0  
VSS + 4.0  
VCC + 0.3  
V
V
*2  
*2  
*3  
*3  
*8  
Internal supply voltage  
VSS 0.5  
Analog supply voltage  
AVCC  
AVRH  
VI  
VSS 0.5  
V
Analog reference voltage  
Input voltage*1  
VSS 0.5  
V
VSS 0.3  
V
Analog pin input voltage  
VIA  
VSS 0.3  
AVCC + 0.3  
VCC + 0.3  
2.0  
V
Output voltage*1  
VO  
VSS 0.3  
2.0  
V
*8  
*7  
*7  
*4  
*5  
Maximum clamp current  
ICLAMP  
ΣICLAMP⏐  
IOL  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
°C  
°C  
Total maximum clamp current  
L level maximum output current  
L level average output current  
L level maximum total output current  
L level average total output current  
H level maximum output current  
H level average output current  
H level maximum total output current  
H level average total output current  
Power consumption  
20  
10  
IOLAV  
ΣIOL  
8
100  
50  
ΣIOLAV  
IOH  
*6  
*4  
*5  
10  
4  
IOHAV  
ΣIOH  
ΣIOHAV  
PD  
50  
20  
750  
+70  
+150  
*6  
Operating temperature  
TA  
0
Storage temperature  
TSTG  
*1 : The parameter is based on VSS = AVSS = 0 V.  
*2 : VCC must not be lower than VSS 0.3 V.  
*3 : AVCC and AVRH shall never exceed VCC + 0.3 V. Also AVRH shall never exceed AVCC.  
*4 : Maximum output current determines the peak value of any one of the corresponding pins.  
*5 : Average output current is defined as the value of the average current flowing over 100 ms at any one of the  
corresponding pins.  
*6 : Average total output current is defined as the value of the average current flowing over 100 ms at all of the  
corresponding pins.  
*7 : Applicable to pins : P20 to P27, P60 to P67, P70, PJ0 to PJ7, PI0 to PI5, PH0 to PH7, PB0 to PB5, PA0 to  
PA7, P80 to P82, P85, P90 to P97, AN0 to AN3  
Use within recommended operating conditions.  
Use at DC voltage (current) .  
The +B signal should always be applied with a limiting resistance placed between the +B signal and the  
microcontroller.  
The value of the limiting resistance should be set so that when the +B signal is applied the input current to  
the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.  
71  
MB91307 Series  
Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input  
potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect  
other devices.  
Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is  
provided from the pins, so that incomplete operation may result.  
Note that if the +B input is applied during power-on, the power supply is provided from the pins and the  
resulting supply voltage may not be sufficient to operate the power-on reset.  
Care must be taken not to leave the +B input pin open.  
Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input  
pins, etc.) cannot accept +B signal input.  
Sample recommended circuits :  
Input/Output Equivalent circuits  
Protective diode  
VCC  
P-ch  
N-ch  
Limiting  
resistance  
+B input (0 V to 16 V)  
R
*8 : VI and VO must never exceed VCC + 0.3 V. However if the maximum current to/from an input is limited by some  
means with external components, the ICLAMP rating supersedes the VI rating.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
72  
MB91307 Series  
2. Recommended Operating Conditions  
(VSS = AVSS = 0 V)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
3.0  
Max  
3.6  
VCC  
VCCI  
V
V
Supply voltage  
1.65  
VSS 0.3  
AVSS  
0
1.95  
Analog supply voltage  
Analog reference voltage  
Operating temperature  
AVCC  
AVRH  
TA  
VSS + 3.6  
AVCC  
+70  
V
V
°C  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
73  
MB91307 Series  
3. DC Characteristics  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Typ  
Parameter  
Symbol Pin name  
Condition  
Unit Remarks  
Min  
Max  
VIH  
See note *  
0.7 × VCC  
VCC + 0.3  
V
“H” level input  
voltage  
Input pins  
other than *  
Hysteresis  
input  
VHIS  
0.8 × VCC  
VSS  
VCC + 0.3  
V
0.25 ×  
VCC  
VIL  
See note *  
V
“L” level input  
voltage  
Input pins  
other than *  
Hysteresis  
input  
VILS  
VSS  
0.2 × VCC  
V
D16 to D31  
A00 to A25  
P6 to PH  
“H” level output  
voltage  
VCC = 3.0 V  
VOH  
VCC 0.5  
VCC  
V
V
IOH = − 4.0 mA  
D16 to D31  
A00 to A25  
P6 to PH  
“L” level output  
voltage  
VCC = 3.0 V  
IOL = 8.0 mA  
VOL  
VSS  
0.4  
Input leak  
current  
(Hi-Z output leak  
current)  
D16 to D31  
A00 to A25  
P8 to PH  
VCC = 3.6 V  
ILI  
5  
+5  
µA  
kΩ  
0.45 V<VI<VCC  
VCC = 3.6 V  
VI = 0.45 V  
Pull-up resistance  
RUP  
INIT  
12  
12  
25  
25  
100  
100  
Pull-down  
resistance  
VCC = 3.6 V  
VI = 3.3 V  
RDOWN  
P82/BRQ  
kΩ  
(4x  
multiplied)  
66 MHz  
operation  
fC = 16.5 MHz  
VCC = 3.3 V  
VCCI = 1.8 V  
ICC  
150  
mA  
fC = 16.5 MHz  
VCC = 3.3 V  
Supply current  
VCC+VCCI(  
ICCS  
50  
mA Sleep mode  
VCCI = 1.8 V  
TA = 25 °C  
VCC = 3.3 V  
VCCI = 1.8 V  
ICCH  
150  
µA Stop mode  
Other than:  
VCC  
Input capacitance  
CIN  
VSS  
AVCC  
5
15  
pF  
AVSS  
* : Pins without hysteresis input pins: D16 to D31, RDY, BRQ, INIT  
74  
MB91307 Series  
4. AC Characteristics  
(1) Clock Timing Standards  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Pin  
name  
Condi-  
tion  
Parameter  
Clock frequency (1)  
Clock cycle time  
Symbol  
Unit  
Remarks  
PLL system*1  
Min  
Max  
X0  
X1  
fC  
12.5  
16.5 MHz  
(self oscillation  
16.5MHz,multiplied  
x4,maximum internal  
operation 66MHz)  
X0  
X1  
tC  
60.6  
ns  
X0  
X1  
Self oscillation (x1/2  
frequency input)  
Clock frequency (2)  
Clock frequency (3)  
Clock cycle time  
fC  
fC  
tC  
10  
10  
40  
16  
33  
33  
100  
MHz  
MHz  
X0  
X1  
X0  
X1  
ns External clock  
ns  
PWH  
PWL  
X0  
X1  
Input clock pulse width  
Input clock rise, fall time  
tCR  
tCF  
X0  
X1  
8
ns  
(tCR + tCF)  
fCP  
fCPP  
fCPT  
tCP  
0.78*2  
0.78*2  
0.78*2  
15.2  
66  
33  
66  
MHz CPU system  
Internal operating clock frequency  
Internal operating clock cycle time  
MHz Peripheral system  
MHz External bus system  
1280*2 ns CPU system  
tCPP  
tCPT  
30.3  
1280*2 ns Peripheral system  
1280*2 ns External bus system  
15.2  
*1 : When using the PLL, the clock frequency should be around 12.5 to 16.5 MHz.  
*2 : The values shown represent a minimum clock frequency of 12.5 MHz input at the X0 pin, using the oscillator  
circuit PLL and a gear ratio of 1/16.  
75  
MB91307 Series  
Clock timing measurement conditions:  
tC  
0.8 VCC  
0.2 VCC  
Output pin  
C = 50 pF  
PWL  
PWH  
tCR  
tCF  
Warranted operating range  
VCC (V)  
Warranted operating temperature:  
(TA =0 °C to +70 °C)  
fCPP is represented by the shaded area  
1.95  
1.65  
fCP / fCPP  
(MHz)  
0
0.78  
33  
Internal clock  
66  
External/internal clock setting range  
(MHz)  
f
f
CP  
,
CPT  
66  
CPU, external bus systems  
f
CPP  
33  
Peripheral system  
16.5  
CPU: Divided ratio for peripherals  
4 : 4  
2 : 2  
1 : 2  
Notes : • When using the PLL, the external clock input should be around 16.5 MHz.  
• Set PLL oscillator stabilization time > 300 µs.  
• The internal clock gear setting should be within the values shown in (1) clock timing standards.  
76  
MB91307 Series  
(2) Clock Output Timing  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit Remarks  
Min  
Max  
MCLK,  
SYSCLK  
Cycle time  
tCYC  
tCHCL  
tCLCL  
tCPT  
ns *1  
ns *2  
ns *3  
MCLK↑→MCLK↓  
SYSCLK↑→SYSCLK↓  
MCLK,  
SYSCLK  
1/2 × tCYC 3 1/2 × tCYC + 3  
1/2 × tCYC 3 1/2 × tCYC + 3  
MCLK↓→MCLK↑  
SYSCLK↓→SYSCLK↑  
MCLK,  
SYSCLK  
t
CYC  
t
CHCL  
tCLCH  
V
OH  
VOH  
MCLK,  
SYSCLK  
V
OL  
*1 : tCYC represents the frequency of one clock cycle including the gear period.  
*2 : The values shown represent standards for × 1 gear period.  
For gear period settings of 1/2, 1/4, 1/8, use the following formula replacing n with the value 1/2, 1/4, 1/8  
respectively.  
(1/2 × 1/n) × tCYC 10  
*3 : The values shown represent standards for × 1 gear period.  
Note : tCPT indicates the internal operating clock time. See “ (1) Clock Timing Standards”.  
77  
MB91307 Series  
(3) Reset and Hardware Standby Input Standards  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit Remarks  
Min  
Max  
Hardware standby input time  
tHSTL  
VCCI  
tCP × 5  
ns  
ns  
INIT input time  
(power-on)  
*
tINTL  
INIT  
INIT input time  
(other than power-on)  
tCP × 5  
ns  
tRSTL, tHSTL, tINTL  
HST  
INIT  
0.2 VCC  
* : INIT input time (at power-on)  
FAR, Ceralock : φ × 215 or greater recommended  
Crystal  
φ
: φ × 221 or greater recommended  
: Power on X0/X1 period × 2  
Note : tCP indicates the clock cycle time. See “ (1) Clock Timing Standards”.  
78  
MB91307 Series  
(4) Normal Bus Access Read/Write Operation  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min  
3
Max  
CS0 to CS7 setup  
CS0 to CS7 hold  
tCSLCH  
tCSHCH  
ns  
ns  
MCLK, SYSCLK,  
CS0 to CS7  
3
tCYC/2 + 6  
MCLK, SYSCLK,  
A23 to A00  
Address setup  
Address hold  
tASCH  
tCHAX  
tAVDV  
3
3
ns  
ns  
MCLK, SYSCLK,  
A23 to A00  
tCYC/2 + 6  
Valid address →  
valid data input time  
A23 to A00,  
D31 to D16  
3/2 ×  
tCYC 11  
ns  
*
tCHWL  
tCHWH  
6
6
ns  
ns  
MCLK, SYSCLK,  
WR0 to WR1  
WR0 to WR1 delay time  
WR0 to WR1 minimum pulse  
width  
tWLWH  
WR0 to WR1  
tCYC 3  
ns  
Data setup WRx↑  
tDSWH  
tWHDX  
tCHRL  
tCHRH  
tRLDV  
tDSRH  
tRHDX  
tRLRH  
tASLCH  
tASHCH  
tCYC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR0 to WR1,  
D31 to D16  
WRx↑ → data hold time  
5
6
MCLK, SYSCLK,  
RD  
RD delay time  
6
tCYC 10  
RD↓ → valid data input time  
Data setup RDtime  
RD↑ → data hold time  
RD minimum pulse width  
AS setup  
*
RD,  
D31 to D16  
10  
0
RD  
tCYC 3  
3
3
MCLK, SYSCLK,  
AS  
AS hold  
* : To extend bus time by automatic wait insertion or RDY input, add to this value (tCYC × number of extended cycles).  
Note : tCYC indicates the cycle time. See “ (2) Clock Output Timing”.  
79  
MB91307 Series  
t
CYC  
BA1  
V
OH  
V
OH  
V
OH  
VOH  
MCLK,  
SYSCLK  
t
ASLCH  
t
ASHCH  
V
OH  
AS  
LBA  
V
OL  
t
CSLCH  
t
CSHCH  
V
OH  
CS0 to CS7  
V
OL  
t
ASCH  
t
CHAX  
V
V
OH  
OL  
V
V
OH  
OL  
A23 to A00  
t
CHRL  
t
CHRH  
t
RLRH  
RD  
V
OH  
V
OL  
t
RHDX  
t
RLDV  
t
DSRH  
t
AVDV  
D31 to D16  
V
V
OH  
OL  
V
V
OH  
OL  
t
CHWL  
tCHWH  
t
WLWH  
V
OH  
WR0 to WR1  
V
OL  
t
WHDX  
t
DSWH  
V
V
OH  
OL  
V
V
OH  
OL  
Write  
D31 to D16  
80  
MB91307 Series  
(5) Ready Input Timing  
Parameter  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min  
Max  
RDY setup time →  
MCLK, SYSCLK↑  
MCLK, SYSCLK,  
RDY  
tRDYS  
10  
ns  
ns  
MCLK, SYSCLK↑  
RDY hold time  
MCLK, SYSCLK,  
RDY  
tRDYH  
0
t
CYC  
V
OH  
V
OH  
MCLK,  
V
OL  
VOL  
SYSCLK  
t
RDYH  
t
CHASL  
t
RDYS  
tRDYS  
tRDYH  
RDY  
Wait applied  
V
OH  
VOH  
V
OL  
VOL  
RDY  
Wait not applied  
V
OH  
VOH  
V
OL  
VOL  
81  
MB91307 Series  
(6) Hold Timing  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min  
3
Max  
13.5  
13.5  
tCHBGL  
tCHBGH  
ns  
ns  
MCLK, SYSCLK,  
BGRNT  
BGRNT delay time  
3
Pin floating  
BGRNTtime  
tXHAL  
tHAHV  
tCYC 10  
tCYC 10  
tCYC + 10  
tCYC + 10  
ns  
ns  
BGRNT  
BGRNT↑ → valid time  
Note: After a BRQ is accepted, a minimum of 1 cycle is required before BGRNT changes.  
tCYC  
VOH  
VOH  
VOH  
VOH  
MCLK,  
SYSCLK  
BRQ  
tCHBGH  
tCHBGL  
VOH  
BGRNT  
Pins  
VOL  
tHXAL  
tHAHV  
High-Z  
82  
MB91307 Series  
(7) UART Timing  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Parameter  
Symbol Pin name Condition  
Unit Remarks  
Min  
Max  
SC0 to SC2  
Serial clock cycle time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
8 tCPP  
ns  
ns  
SC0 to SC2,  
SO0 to SO2  
SCLK↓ → SOUT delay time  
80  
100  
60  
80  
Internal  
shift lock  
mode  
SC0 to SC2,  
SI0 to SI2  
Valid SIN SCLK↑  
ns  
ns  
SC0 to SC2,  
SI0 to SI2  
SCLK↑ → valid SIN hold time  
SC0 to SC2  
SC0 to SC2  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
tSHSL  
tSLSH  
4 tCPP  
4 tCPP  
ns  
ns  
SC0 to SC2,  
SO0 to SO2  
External  
shift lock  
mode  
SCLK↓ → SOUT delay time  
Valid SIN SCLK↑  
tSLOV  
tIVSH  
tSHIX  
60  
60  
150  
ns  
ns  
ns  
SC0 to SC2,  
SI0 to SI2  
SC0 to SC2,  
SI0 to SI2  
SCLK↑ → valid SIN hold time  
Notes: • Above ratings are for operation in CLK synchronized mode.  
• tCPP is the cycle time of the peripheral system clock.  
Internal Shift Clock Mode  
tSCYC  
VOH  
SC0, SC1  
SO0, SO1  
VOL  
tSLOV  
VOL  
VOH  
VOL  
tIVSH  
tSHIX  
VOH  
VOL  
VOH  
VOL  
SI0, SI1  
External Shift Clock Mode  
SC0, SC1  
tSLSH  
tSHSL  
VOH  
VOL  
VOL  
VOL  
tSLOV  
VOH  
VOL  
SO0, SO1  
SI0, SI1  
tIVSH  
tSHIX  
VOH  
VOL  
VOH  
VOL  
83  
MB91307 Series  
(8) Timer Clock Input Timing  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min  
Max  
tTIWH  
tTIWL  
Input pulse width  
TIN0 to TIN2  
2 tCYCP  
ns  
Note: tCYCP is the cycle time of the peripheral system clock.  
TIN0 to TIN2  
tTIWL  
tTIWH  
(9) Trigger Input Timing  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Parameter  
Symbol Pin name Condition  
tATGX ATG  
Unit Remarks  
Min  
Max  
A/D startup trigger input time  
5 tCYCP  
ns  
Note: tCYCP is the cycle time of the peripheral system clock.  
tATGX, tINP, tPTG  
ATG  
84  
MB91307 Series  
(10) DMA Controller Timing  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min  
5 tCYC  
5 tCYC  
Max  
6
DREQ 0 to DREQ2  
DSTP 0 to DSTP2  
DREQ input pulse width  
DSTP input pulse width  
tDRWH  
tDSWH  
tCLDL  
ns  
ns  
MCLK, SYSCLK,  
DACK0 to DACK2  
DACK delay time  
DEOP delay time  
IORD delay time  
IOWR delay time  
ns  
ns  
ns  
ns  
tCLDH  
tCLEL  
6
6
MCLK, SYSCLK,  
DEOP 0 to DEOP2  
tCLEH  
tCLIRL  
tCLIRH  
tCLIWL  
tCLIWH  
6
6
MCLK, SYSCLK  
MCLK, SYSCLK  
6
6
6
85  
MB91307 Series  
tCYC  
BA1  
BA2  
VOH  
VOH  
MCLK,  
VOL  
VOL  
VOL  
SYSCLK  
tCLDL  
tCLDH  
VOH  
VOL  
DACK0 to DACK2  
DEOP0 to DEOP2  
tCLEL  
tCLEH  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
tCLIRL  
tCLIRH  
IORD  
tCLIWL  
tCLIWH  
IOWR  
tDRWH  
VOH  
DREQ0 to DREQ2  
VOL  
tDSWH  
VOH  
DSTP0 to DSTP2  
VOL  
86  
MB91307 Series  
(11) I2C Timing  
(VCCI = 1.65 V to 1.95 V, VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
High-speed mode*4  
Standard mode  
Parameter  
Symbol Condition  
Unit  
Min  
Max  
Min  
Max  
SCL clock frequency  
fSCL  
0
100  
0
400  
kHz  
(Repeat) “start” condition hold time  
SDA ↓ → SCL ↓  
tHDSTA  
4.0  
0.6  
µs  
SCL clock “L” width  
SCL clock “H” width  
tLOW  
tHIGH  
4.7  
4.0  
1.3  
0.6  
µs  
µs  
Repeat “start” condition setup time  
SCL ↑ → SDA ↓  
tSUSTA  
4.7  
0
3.45*2  
0.6  
0
0.9*3  
µs  
µs  
ns  
µs  
µs  
R = 1.0 k,  
C = 50 pF*1  
Data hold time  
SCL ↓ → SDA ↓ ↑  
tHDDAT  
Data setup time  
SDA ↓ ↑ → SCL ↑  
tSUDAT  
tSUSTO  
tBUS  
250  
4.0  
4.7  
100  
0.6  
1.3  
“Stop” condition setup time  
SCL ↑ → SDA ↑  
Bus free time between “stop” and  
“start” conditions  
*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.  
*2 : The maximum tHDDAT only has to be met if the device does not stretch the “L” width (tLOW) of the SCL signal.  
*3 : A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement  
tSUDAT 250 ns must then be met.  
*4 : For use at over 100 kHz, set the resource clock to at least 6 MHz.  
SDA  
t
BUS  
t
SUDAT  
t
LOW  
t
HDSTA  
SCL  
t
HDSTA  
t
HDDAT  
t
HIGH  
t
SUSTA  
tSUSTO  
87  
MB91307 Series  
5. A/D Converter Electrical Characteristics  
(VCCI = 1.65 V to 1.95 V, VCC = +3.0 V to +3.6 V, VSS = AVSS = 0 V, TA = 0 °C to +70 °C)  
Value  
Typ  
10  
Parameter  
Symbol Pin name  
Unit  
Min  
Max  
10  
Resolution  
Total error  
Linear error  
BIT  
LSB  
LSB  
LSB  
LSB  
LSB  
µs  
4.5  
3.0  
Differential linear error  
Zero transition error  
Full scale transition error  
Conversion time  
2.5  
VOT  
VFST  
AN0 to AN3  
1.5  
+ 0.5  
+ 4.5  
AN0 to AN3 AVRH 4.5 AVRH 1.5 AVRH + 4.5  
5.4 *1  
0.1  
10  
Analog port input current  
Analog input voltage  
Reference voltage  
IAIN  
VAIN  
AN0 to AN3  
AN0 to AN3  
AVRH  
µA  
AVss  
AVss  
AVRH  
AVCC  
V
V
IA  
600  
µA  
Supply current  
AVCC  
IAH  
IR  
10 *2  
µA  
600  
10 *2  
5
µA  
Reference voltage supply current  
Inter-channel variation  
AVRH  
IRH  
µA  
AN0 to AN3  
LSB  
*1 : At VCC = AVCC = 3.0 V to 3.6 V, VCCI = 1.65 V to 1.95 V machine clock 33 MHz.  
*2 : Current in CPU stop mode with A/D converter not operating (at VCC = AVCC = AVRH = 3.6 V, VCCI = 1.95 V)  
• About the external impedance of the analog input and its sampling time  
• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling  
time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting  
A/D conversion precision.  
• Analog input circuit model  
R
Analog input  
Comparator  
C
During sampling : ON  
R
C
MB91307R/306R 5.0 k(Max) 15 pF (Max)  
MB91V307R 8.1 k(Max) 10 pF (Max)  
Note : The values are reference values.  
88  
MB91307 Series  
To satisfy the A/D conversion precision standard, consider the relationship between the external impedance  
and minimum sampling time and either adjust the operating frequency or decrease the external impedance  
so that the sampling time is longer than the minimum value.  
The relationship between external impedance and minimum sampling time  
External impedance = 0 kto 20 kΩ  
External impedance = 0 kto 100 kΩ  
MB91V307R  
MB91V307R  
100  
20  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MB91307R  
MB91306R  
MB91307R  
MB91306R  
6
4
2
0
0
5
10  
15  
20  
25  
30  
35  
0
1
2
3
4
5
6
7
8
Minimum sampling time [µs]  
Minimum sampling time [µs]  
• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 mF to the analog input pin.  
• About errors  
As | AVRH | becomes smaller, values of relative errorsgrow larger.  
89  
MB91307 Series  
Definition of A/D Converter Terms  
• Resolution  
Indicates the ability of the A/D converter to discriminate analog variation  
• Linear error  
Expresses the deviation between actual conversion characteristics and a straight line connecting the device’s  
zero transition point (00 0000 0000←→00 0000 0001) and full scale transition point (11 1111 1110←→11  
1111 1111)  
• Differential linear error  
Expresses the deviation of the logical value of input voltage required to create a variation of 1 LSB in output  
code.  
[Differential linear error]  
[Linear Error]  
3FFH  
3FEH  
3FDH  
Actual variation  
Theoretical  
N 1  
N 2  
N 1  
N 2  
{1 LSB × (N 1) + VTO}  
VFST  
Actual variation  
(measured  
value)  
VNT  
(measured  
value)  
004H  
003H  
002H  
001H  
V(N 1)T  
(measured  
value)  
Actual variation  
VNT  
(measured value)  
Theoretical values  
Actual variation  
(measured value)  
VTO  
AVRL  
AVRH  
AVRL  
AVRH  
Analog input  
[LSB]  
Analog input  
VNT {1 LSB × (N 1) + VOT}  
Linear error in digital output N  
=
1 LSB  
V (N + 1) T VNT  
Differential linear error in digital output N =  
VFST VOT  
1  
[LSB]  
1 LSB  
1 LSB =  
[V]  
1022  
AVRH AVRL  
1 LSB” =  
[V]  
(theoretical value)  
1024  
VOT : Voltage at which the digital output transitions from “000”H to “001”H.  
VFST : Voltage at which the digital output transitions from “3FE”H to “3FF”H.  
VNT : Voltage at which the digital output transitions from (N-1) to N.  
90  
MB91307 Series  
Total error  
Expresses the difference between actual and theoretical values as error, including zero transition error, full-  
scale error, and linearity error.  
[Total error]  
3FFH  
Actual variation  
1.5 LSB  
3FEH  
{1 LSB × (N 1) + 0.5 LSB  
3FDH  
VNT  
(measured  
value)  
004H  
003H  
002H  
001H  
Actual variation  
theoretical value  
0.5 LSB  
AVRL  
AVRH  
Analog input  
VNT {1 LSB” × (N 1) + 0.5 LSB”}  
Total error in digital output N  
=
[LSB]  
1 LSB”  
VOT” (theoretical value) = AVRL + 0.5 LSB” [V]  
VFST” (theoretical value) = AVRH 1.5 LSB” [V]  
VNT : Voltage at which digital output transitions from (N-1) to N.  
91  
MB91307 Series  
EXAMPLE CHARACTERISTICS  
(1) Sample output voltage characteristics (TA = +25 °C)  
Sample output H voltage (VOH) characteristics  
Sample output L voltage (VOL) characteristics  
3.6  
3.4  
3.2  
3.0  
2.8  
0.4  
0.3  
0.2  
0.1  
0.0  
3.0  
3.2  
3.4  
3.6  
3.0  
3.2  
3.4  
3.6  
Supply voltage (V)  
Supplyvoltage(V)  
(2) Sample input voltage characteristics (TA = +25 °C)  
Sample input H/L level characteristics (hysteresis)  
Sample input H/L level characteristics (CMOS)  
3.0  
3.0  
2.0  
V
IH  
2.0  
1.0  
0.0  
V
V
IH  
IL  
1.0  
0.0  
V
IL  
3.0  
3.2  
3.4  
3.6  
3.0  
3.2  
3.4  
3.6  
Supply voltage (V)  
Supplyvoltage(V)  
(3) Sample supply current characteristics  
Sample supply current (ICC) characteristics  
Sample supply current (ICC) characteristics  
(TA = +25 °C, 66 MHz)  
(VCC = 3.3 V, 66 MHz)  
200  
150  
100  
50  
200  
150  
100  
50  
0
0.0  
3.0  
3.2  
3.4  
3.6  
0
25  
70  
Supply voltage (V)  
Temperature ( °C)  
(Continued)  
92  
MB91307 Series  
(Continued)  
Sample sleep current (ICCS) characteristics  
(TA = +25 °C, 33 MHz)  
Sample sleep current (ICCS) characteristics  
(VCC = 3.3 V, 33 MHz)  
50  
40  
30  
20  
50  
40  
30  
20  
3.0  
3.2  
3.4  
3.6  
0
25  
70  
Supply voltage (V)  
Temperature ( °C)  
Sample A/D supply current (IA) characteristics  
Sample A/D reference current (IR) characteristics  
(TA = +25 °C, 33 MHz)  
(TA = +25 °C, 33 MHz)  
500  
400  
300  
200  
500  
400  
300  
200  
3.0  
3.2  
3.4  
3.6  
3.0  
3.2  
3.4  
3.6  
Supply voltage (V)  
Supply voltage (V)  
(4) Port resistance characteristics  
Sample pull-up resistance characteristics  
Sample pull-down resistance characteristics  
(TA = +25 °C)  
(TA = +25 °C)  
30  
25  
20  
15  
30  
25  
20  
15  
3.0  
3.2  
3.4  
3.6  
3.0  
3.2  
3.4  
3.6  
Supply voltage (V)  
Supply voltage (V)  
93  
MB91307 Series  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
Lead-free package  
For development tool use  
MB91306RPFV  
MB91307RPFV  
120-pin, Plastic LQFP  
(FPT-120P-M21)  
135-pin, Ceramic PGA  
(PGA-135C-A02)  
MB91V307RCR  
94  
MB91307 Series  
PACKAGE DIMENSION  
120-pin, Plastic LQFP  
(FPT-120P-M21)  
Note 1) * : These dimensions do not include resin protrusion.  
Resin protrusion is +0.25(.010) MAX(each side).  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
18.00±0.20(.709±.008)SQ  
+0.40  
16.00 –0.10  
.630 +..000146 SQ  
*
90  
61  
91  
60  
0.08(.003)  
Details of "A" part  
1.50 +00..1200  
(Mounting height)  
.059 +..000048  
INDEX  
0~8˚  
"A"  
120  
31  
0.10±0.05  
(.004±.002)  
(Stand off)  
1
30  
LEAD No.  
0.145 +00..0035  
.006 +..000012  
0.60±0.15  
(.024±.006)  
0.22±0.05  
(.009±.002)  
M
0.50(.020)  
0.08(.003)  
0.25(.010)  
C
2002 FUJITSU LIMITED F120033S-c-4-4  
Dimensions in mm (inches)  
Note : The values in parentheses are reference values.  
95  
MB91307 Series  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0502  
© 2005 FUJITSU LIMITED Printed in Japan  

相关型号:

MB91307

32-Bit Microcontroller
FUJITSU

MB91307APFV

暂无描述
FUJITSU

MB91307B

32-Bit Microcontroller
FUJITSU

MB91307BPFF

Microcontroller
FUJITSU

MB91307BPFV

32-Bit Microcontroller
FUJITSU

MB91307RPFF

Microcontroller
FUJITSU

MB91307RPFV

32-Bit Microcontroller
FUJITSU

MB91310

Proprietary 32-bit Microcontroller
FUJITSU

MB91314A

32-bit Microcontroller
FUJITSU

MB91314APMC-GE1

32-bit Microcontroller
FUJITSU

MB91316

32-bit Proprietary Microcontrollers
FUJITSU

MB91316A

32-bit Proprietary Microcontrollers
FUJITSU