FA5332PM [FUJI]

Bipolar IC For Power Factor Correction; 双极型IC功率因数校正
FA5332PM
型号: FA5332PM
厂家: FUJI ELECTRIC    FUJI ELECTRIC
描述:

Bipolar IC For Power Factor Correction
双极型IC功率因数校正

功率因数校正
文件: 总13页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Bipolar IC  
For Power Factor Correction  
FA5331P(M)/FA5332P(M)  
Description  
Dimensions, mm  
FA5331P(M) and FA5332P(M) are control ICs for a power  
factor correction system. These ICs use the average current  
control system to ensure stable operation. With this system, a  
power factor of 99% or better can be achieved.  
Á SOP-16  
9
16  
FA5331P(M) is a 1st generation IC and FA5332P(M) is 2nd  
generation IC which light-load characteristics are improved.  
Features  
8
1
10.06  
• Drive circuit for connecting a power MOS-FET(Io=±1.5A)  
• Pulse-by-pulse overcurrent and overvoltage limiting function  
• Output ON/OFF control function by external signals  
• External synchronizing signal terminal for synchronous  
operation with other circuits  
0.7  
0.40±0.1  
1.27±0.2  
• Undervoltage malfunction prevention function  
• Low standby current (90µA typical) for simple start-up circuit  
• 16-pin package (DIP/SOP)  
Á DIP-16  
FA5331P  
±2% accuracy reference voltage for setting DC output and  
overvoltage protection [FA5332P(M) only]  
• When there is a possibility of light-load operation,  
FA5332P(M) is suitable.  
16  
9
Block diagram  
1
8
19.4  
1.5  
0.81  
7.6  
0.5±0.1  
2.54±0.25  
FA5332P  
9
16  
1
8
19.2  
1.3  
0.71  
Pin Pin  
Description  
No. symbol  
1
IFB  
Current error amplifier output  
Inverting input to current error amplifier  
Multiplier input  
2
IIN–  
VDET  
OVP  
VFB  
VIN–  
GND  
OUT  
VC  
7.62  
3
0.48±0.1  
2.54±0.25  
4
Overvoltage protection input  
Voltage error amplifier output  
Inverting input to voltage error amplifier  
Ground  
5
6
7
8
Output  
9
Power supply to output circuit  
Power supply  
10  
11  
12  
13  
14  
15  
16  
VCC  
CS  
Soft-start  
ON/OFF Output ON/OFF control input  
REF  
SYNC  
CT  
Reference voltage  
Oscillator synchronization input  
Oscillator timing capacitor and resistor  
Non-inverting input to current error amplifier  
IDET  
1
FA5331P(M)/FA5332P(M)  
Absolute maximum ratings  
Item  
Symbol  
Rating  
FA5331P(M)  
30  
Unit  
FA5332P(M)  
30  
Supply voltage  
Output current  
Input voltage  
VCC, VC  
IO  
V
A
V
±1.5  
±1.5  
VSYNC, VON/OFF, VVIN– –0.3 to +5.3  
VVDET, VOVP  
–0.3 to +5.3  
VIDET  
–10.0 to +5.3  
–10.0 to +5.3  
V
Total power dissipation Pd  
(Ta=25°C)  
850 (DIP-16) *1  
650 (SOP-16) *2 650 (SOP-16) *2  
850 (DIP-16) *1  
mW  
Notes:  
Operating temperature Topr  
–30 to +85  
–30 to +85  
°C  
°C  
1
Derating factor Ta > 25°C: 6.8mW/°C (on PC board)  
Derating factor Ta > 25°C: 5.2mW/°C (on PC board)  
*
Storage temperature  
Tstg  
–40 to +150  
–40 to +150  
2
*
Recommended operating conditions  
Item  
Symbol  
FA5331P(M) FA5332P(M) Unit  
Min.  
10  
–1.0  
0
Max. Min. Max.  
Supply voltage  
VCC, VC  
VIDET  
VVDET  
VPVDET  
CT  
28  
0
10  
28  
0
V
V
V
V
IDET terminal input voltage  
VDET terminal input voltage  
VDET terminal peak input voltage  
Oscillator timing capacitance  
Oscillator timing resistance  
Oscillation frequency  
–1.0  
0
2.0  
2.0  
2.4  
2.4  
0.65  
0.65  
330  
10  
1000 pF  
RT  
75  
kΩ  
kHz  
fOSC  
10  
0
220  
100  
15  
150  
27  
Noise filter resistance connected to IDET terminal Rn  
0
Electrical characteristics (Ta=25°C, CT=470pF, RT=22k, VCC=VC=18V)  
Oscillator section  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
Oscillation frequency  
fOSC  
CT=470pF  
68  
75  
82  
68  
75  
82  
kHz  
RT=22kΩ  
Frequency variation 1 (due to supply voltage change)  
Frequency variation 1 (due to temperature change)  
Output peak voltage  
fdV  
VCC=10 to 30V  
Ta=–30 to +85°C  
1
1
3
8
%
%
V
dT  
f
5
5
VOSC  
3.55  
3.55  
Synchronizing input peak voltage  
VSYNC  
SYNC terminal voltage 1.5  
1.5  
V
Voltage error amplifier section  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
1.48 1.54 1.60 1.519 1.550 1.581 V  
Reference voltage  
Input bias current  
Open-loop voltage gain  
Output voltage  
Vr  
IBE  
AVE  
–500 –50  
80  
–500 –50  
80  
nA  
dB  
V
VOE+  
No load  
VOE=0V  
3.5  
3.8  
3.5  
3.8  
OE–  
V
50  
200  
50  
200  
mV  
µA  
Output source current  
IOE+  
–900  
–900  
2
FA5331P(M)/FA5332P(M)  
Current error amplifier section  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
Input threshold voltage  
VTH IDET VDET=0V  
0
30  
60  
mV  
VFB=Vr, Rn=30Ω  
Input bias current  
Open-loop voltage gain  
Output voltage  
IBC  
IDET=0V  
No load  
VIFB=0V  
–350 –230  
80  
–350 –250 –150 µA  
VC  
A
80  
dB  
V
VOC+  
VOC–  
IOC+  
3.5  
3.8  
3.5  
3.8  
50  
200  
50  
200  
mV  
µA  
Output source curent  
–900  
–900  
Reference voltage section  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
Output voltage  
VREF  
4.8  
5.0  
2
5.2  
25  
4.8  
5.0  
2
5.2  
25  
5
V
Voltage variation 1 (by supply voltage variation)  
Voltage variation 2 (by load change)  
VRDV  
VCC=10 to 30V  
mV  
mV  
RDT  
V
OR  
I =0.1 to 2mA  
Multiplier section  
Item  
Symbol Test condition FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
MVDET  
VDET terminal input voltage  
VFB terminal input voltage  
Output current  
V
0
2.0  
3.5  
0
2.4  
3.5  
V
VMVFB  
IM  
1.5  
1.5  
V
VIIN–=0V  
–65  
–65  
µA  
Output voltage coefficient  
K
–1.0  
–1.0  
Pulse width modulation circuit section  
Item  
Symbol Test condition  
FA5331P(M)  
Min. Typ. Max. Min. Typ. Max.  
89 92 95 89 92 95  
FA5332P(M)  
Unit  
Maximum duty cycle  
DMAX  
%
Output circuit section  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
Output voltage  
VOL  
VOH  
IO=100mA  
IO=–100mA  
VCC=18V  
No load  
1.3  
1.8  
1.3  
1.8  
V
V
15.5 16.5  
15.5 16.5  
Rise time  
Fall time  
tr  
tr  
300  
200  
300  
200  
ns  
ns  
No load  
Soft-start circuit section  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
Input threshold voltage  
Charge current  
VTHCSO  
Duty cycle=0%  
Duty cycle=DMAX  
CS terminal=0V  
0.1  
0.1  
V
THCSM  
V
3.55  
–10  
3.55  
–10  
V
ICHG  
µA  
3
FA5331P(M)/FA5332P(M)  
Overvoltage protection circuit section  
Item  
Symbol Test condition  
FA5331P(M)  
Min. Typ. Max. Min. Typ. Max.  
1.56 1.64 1.72 1.617 1.650 1.683 V  
FA5332P(M)  
Unit  
Input threshold voltage  
VTHOVP  
OVP terminal  
voltage  
Input threshold voltage/reference voltage(VTHOVP/ Vr)  
Delay time  
Ͱ
1.044 1.065 1.086 –  
TPDOVP  
200  
200  
ns  
Overcurrent limiting circuit section  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
–1.25 –1.15 –1.05 –1.20 –1.10 –1.00 V  
THOCP  
Input threshold voltage  
Delay time  
V
IDET terminal  
voltage  
TPDOCP  
200  
200  
ns  
Output ON/OFF circuit section  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
Threshold voltage  
Input current at ON  
VTHONOFF Ta=–30°C  
Ta=+25°C  
3.7  
2.8  
1.5  
4.3  
3.4  
2.8  
V
2.0  
3.5  
V
Ta=+85°C  
V
ITHON  
ON/OFF terminal  
voltage=3.5V  
60  
120  
µA  
ON/OFF terminal  
voltage=VTHONOFF  
10  
40  
µA  
Undervoltage lockout circuit section  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
OFF to ON threshold voltage  
ON to OFF threshold voltage  
Voltage hysteresis  
VTHUON  
ITHUOFF  
VUHYS  
14.3 15.3 16.3 14.6 15.3 16.0  
V
V
V
7.6  
8.3  
7.0  
9.0  
7.6  
8.3  
7.0  
9.0  
Overall device  
Item  
Symbol Test condition  
FA5331P(M)  
FA5332P(M)  
Unit  
Min. Typ. Max. Min. Typ. Max.  
Standby current  
ICCST  
VCC=14V  
Pin 12=0V  
90  
10  
1.1  
140  
15  
90  
10  
1.1  
140  
15  
µA  
CCOP  
I
Operating-state supply current  
OFF-state supply current  
mA  
mA  
ICCOFF  
1.8  
1.8  
4
FA5331P(M)/FA5332P(M)  
Description of each circuit  
13 REF  
1. Oscillator section  
This section outputs sawtooth waves oscillating between 0.15  
and 3.55V using the capacitor charge and discharge  
characteristics. Figure 1 shows how to connect the required  
external components to this circuit. The oscillation frequency  
is determined by the CT and RT values. The relationship  
between the CT and RT values is shown in characteristic  
curves. Pin 14 (SYNC) is a synchronizing input terminal  
whose threshold voltage is about 1V. As Fig. 1 shows, input  
rectangular synchronizing signal waves to pin 14 through an  
RC circuit. Set the free-running frequency about 10% lower  
than the synchronizing signal frequency. Connect a clamp  
diode (D1) to prevent an unwanted current inside the IC.  
RT  
CT  
15  
CT  
OSC  
R
14  
SYNC  
Csy  
D1  
Fig. 1 Oscillator  
2. Voltage error amplifier and overvoltage limiting circuit  
The voltage error amplifier forms a voltage feedback loop to  
keep the output voltage stable. The positive input terminal of  
this amplifier is connected to the reference voltage (Vr). Fig. 2  
shows how to connect the required external components to  
this circuit.  
Vo  
C1  
5
R2  
R1  
R4  
The output voltage (Vo) is as follows:  
ER.AMP  
_
R1 + R2  
6
............................................(1)  
Vo =  
• Vr  
R3  
A1  
MUL  
R1  
+
FA5331: Vr=1.54V(typ.)  
FA5332: Vr=1.55V(typ.)  
Vr  
Connect a resistor and a capacitor in parallel across error  
amplifier output pin 5 and error amplifier negative input pin  
6 to set the voltage gain (Av).  
OVP  
C1  
4
F.F  
Vp  
The Av value is as follows:  
R4  
............................... (2)  
Av =  
R3 ( 1 + jω C1 • R4 )  
Fig. 2 Voltage error amplifier and overvoltage limiting circuit  
Error amplifier cutoff frequency (fc) is as follows:  
1
fc =  
................................................. (3)  
2π C1 • R4  
If 100 or 120Hz ripples appear at the error amplifier output, the  
active filter does not operate stably. To ensure stable  
operation, set the fc value to about 1Hz.  
An overvoltage detection comparator (C1) is built in to limit the  
voltage if the output voltage exceeds the design value. The  
reference input voltage (Vp) is as follows:  
Vp = α • Vr ............................................................. (4)  
α =1.065  
The connections shown in Fig. 2 limit the output voltage to α  
times the design value.  
5
FA5331P(M)/FA5332P(M)  
3. Current error amplifier and overcurrent limiting circuit  
The current error amplifier forms a current loop to change the  
input circuit current into sinusoidal waves. As Fig. 3 shows, the  
multiplier output is connected to pin 2 (IIN –) through a resistor  
(RA) to input the reference current signal. Pin 16 (IDET) is a  
current input terminal. Design the circuit so that the voltage at  
pin 16 will be within the range from 0 (GND potential) to –1.0V.  
Connect a phase correction resistor and capacitors across pin  
1 (amplifier output) and pin 2. See Fig. 4 for the expected gain  
characteristics of the circuit shown in Fig. 3.  
MUL  
Vm  
RA  
R5  
1
2
C3  
10k  
C2  
CURR.AMP  
_
A2  
+
PWM  
com parator  
VREF  
5V  
RC  
5k  
RB  
16  
15k  
Here,  
Cn  
Rn  
1
Z =  
C2  
OPC  
.................................................. (5)  
F.F  
2π R5 • C3  
Vocp  
1
Current  
detection  
p =  
............................................. (6)  
2π R5 • C  
Fig. 3 Current error amplifier and overcurrent limiting circuit  
C2 • C3  
C =  
C2 + C3  
The voltage gain (G1) between Z and P of the circuit (gain  
between pins 16 and 1) is given as follows:  
Voltage gain  
(dB)  
R5  
RA  
G1 = 20 • log10 { 0.75 (  
+ 1) }  
....................(7)  
Ensure an adequate phase margin by selecting C1 and C2 so  
that the p/z ratio is about 10. The current error amplifier output  
is used as an input to the comparator for PWM.  
G1  
The overcurrent detection comparator (C2) limits an  
Z
P
Frequency  
overcurrent. The threshold voltage for overcurrent detection at  
pin 16 is –1.15V for FA5331 and –1.10V for FA5332. Connect  
noise filters Rn and Cn to prevent the voltage at pin 16 from  
fluctuating due to noise, causing the comparator to malfunction.  
For Rn, select a resistor of up to 100for FA5331 and up to  
27for FA5332. (See P64, 4. No-load operation )  
Fig. 4 Voltage gain-frequency  
CURR.AMP(A2) output Vc  
Oscillator output Va  
4. Comparator for PWM  
Figure 5 shows the comparator for PWM. When the oscillator  
output (Va) is smaller than the current error amplifier output  
(Vc), the comparator output is high and the output ON signal is  
generated at pin 8. Pin 11 (CS) is a terminal for soft start. This  
terminal charges capacitor C4 with the internal constant current  
(10µA) for a soft start. Priority is given to Vb and Vc whichever  
is lower.  
C3  
CS  
C4  
11  
Vb  
PWM com parator  
10µA  
Fig. 5 PWM comparator  
5. Multiplier  
VIN  
The multiplier generates a reference current signal. Input a  
fully rectified sinusoidal signal voltage into pin 3 (VDET).  
Design the circuit to keep the peak voltage at pin 3 within a  
range from 0.65V to 2V for FA5331 and 0.65V to 2.4V for  
FA5332. The multiplier output voltage (Vm) is roughly given as  
follows (see Fig. 6):  
ER.AMP(A1) output  
R7  
Ve  
Vm  
Vm = 1.25 – (Ve –1.55) • Vs.................................... (8)  
MUL  
As Fig. 3 shows Vm is internally connected to pin 2 (IIN–) of the  
current error amplifier A2 through a 10kresistor. (See the  
characteristic curve, page 66 for the input and output  
characteristics of the multiplier.)  
3
Vs  
R6  
Fig. 6 Multiplier  
6
FA5331P(M)/FA5332P(M)  
6. ON/OFF control input circuit  
Figure 7 shows the ON/OFF control input circuit. If pin 12 is set  
to the high level (enable), this IC outputs pulses from the OUT  
pin. If pin 12 is set to the low level (disable), the internal bias  
power (reference voltage) goes off and the IC current  
consumption becomes about 1/10 that of its ON state. The  
output level of pin 11 (CS for soft start) also goes low.  
Vcc  
ON/OFF  
12  
10µA  
1k  
7. Output circuit  
100k  
As Fig. 8 shows, pin 9 is configured as the high power terminal  
(VC), independent of the IC power terminal (VCC). This pin  
allows an independent drive resistance when the power  
MOSFET is ON and OFF. If the drive resistances in the ON and  
OFF states are Rg (on) and Rg (off), the following formulas can  
be used to determine the total gate resistance  
Rg:  
Fig. 7 ON/OFF control input circuit  
Rg (on) = Rg1 + Rg2 ............................................. (9)  
Rg (off) = Rg2 ..................................................... (10)  
VCC  
10  
In the standby state, the output level of pin 8 is held low.  
If the potential at the drain terminal of the power MOSFET  
fluctuates, the gate-drain capacitance may drive the IC output  
voltage at pin 8 to below 0. Once the voltage at pin 8 reaches  
–0.6V, an unwanted current flows in the IC and a large abnormal  
current flows in the output circuit when the output transistor is  
turned on. To prevent this, connect a Schottky diode across the  
gate and source of the power MOSFET.  
+
Rg1  
Rg2  
Cv  
9
8
Pin7  
GND  
7
Schottky  
diode  
Fig. 8 Output circuit  
7
FA5331P(M)/FA5332P(M)  
Design advice  
1. Start circuit  
DB1  
Figure 9 shows a sample start circuit. Since the IC current  
while the Vcc pin voltage rises from 0V to VTHON is as small as  
90µA (typ.), the power loss in resistor RA is small. If an  
additional winding is prepared in the voltage step-up inductor  
(L), power to the control circuit can be supplied from this  
circuit. However, the voltage must be stabilized by a regulator  
circuit (REG) to prevent an excess rise of the IC supply voltage  
(Vcc). Use fast or ultra-fast rectifier diodes for the rectifier circuit  
(DB1) of the winding for high-frequency operation.  
L
Io  
RA  
AC input  
Vcc  
REG  
16  
10  
C
CA  
RS  
FA5331/FA5332  
7
2. Current sensing resistor  
The current sensing resistor (Rs) detects the current in the  
inductor. Rs is used to make the input current sinusoidal. The  
current in the inductor produces a negative voltage across Rs.  
The voltage is input to IC pin 16 (IDET). Determine the value  
of Rs so that the peak voltage of the IDET pin is –1V.  
Fig. 9 Start circuit  
Vin  
2 • Pin  
Rs =  
.................................................. (11)  
Example: FA5332  
When Vin is 85V and Pin is 300W, the formulas of (11)  
and (12) can be calculated as:  
Vin: Minimum AC input voltage (effective value) [V]  
Pin: Maximum input power [W]  
Since the threshold voltage of the overcurrent limiting circuit  
(pin 16) is –1.15V for FA5311 for and –1.10V for FA5332, the  
peak input current limit (ip) is determined by:  
85  
2 • 300  
Rs =  
= 0.2 [ ]  
1.10  
0.2  
ip =  
= 5.5 [ A ]  
1.15  
FA5331: ip=  
...............................................(12)  
Rs  
And,  
1.10  
Rs  
FA5332: ip=  
R6  
R6 + R7  
2 • 85 •  
= 0.65 [ V ]  
3. Voltage step-up type converter  
Figure 9 shows the basic circuit of a voltage step-up type  
converter which is used as a power factor correction.  
If R6 is set to 2.7kto satisfy these formulas, R7 becomes  
480k.  
(a) Output voltage  
Example:  
For stable operation, set the output voltage to be 10V or more  
over the peak value of the maximum input voltage. When  
using this IC for an active filter, set the output voltage (Vo) as  
follows:  
When Vin is 85V, Vo is 385V, and γ is 0.2, the formula of (14)  
can be calculated as:  
2.48 104  
fs • Pin  
......................................... (15)  
[ H ]  
L ≥  
............................................ (13)  
Vo ≥ √ 2 • Vin + 10V  
Vin: Maximum AC input voltage [V]  
(effective value of sinusoidal wave)  
(c) Smoothing capacitor  
When a voltage step-up converter is used in a power factor  
(b) Voltage step-up inductor  
correction circuit, the input current waveform is regulated to be  
in-phase with the input voltage waveform. Therefore, ripple  
noise of twice the input line frequency appears at the output.  
The output voltage (υo) is represented as:  
When using a voltage step-up converter in continuous current  
mode, the ratio of inductor current ripple to the input peak  
current is set to about 20%. Determine the inductance as  
follows:  
Vin2 ( Vo – 2 • Vin )  
Io  
L ≥  
υo = Vo –  
• Sin 2 ωo t  
................................ (14)  
................... (16)  
γ • fs • Pin • Vo  
2 • ωo •C  
Vin: Minimum AC input voltage (effective value) [V]  
γ : Ratio of inductor current ripple (peak to peak value) to the  
input peak current (about 0.2)  
fs: Switching frequency [Hz]  
Pin: Converter’s maximum input power [W]  
Vo:Average output voltage  
Io: Output current  
ωo: 2π fo (fo: Input power frequency, 50 or 60Hz)  
C: Smoothing capacitor value  
Therefore, the peak-to-peak value of the output ripple voltage  
Vrp is given by:  
As the characteristic curves on page 66 show, the peak  
voltage at pin 3 should be at least 0.65V, even when the AC  
input voltage is minimal. Considering this, determine R6 and  
R7 shown in Fig. 6.  
Io  
Vrp =  
..................................................... (17)  
ωoC  
Using formula (17), determine the necessary C value.  
8
FA5331P(M)/FA5332P(M)  
4. No-load operation  
The following condition should be meet to prevent from  
overvoltage and audible noise during no-load or light-load  
operation.  
13 REF  
ROFST  
For FA5331 (Fig.10)  
0.85•Ͱ ROFST(k)Ͱ  
2
1
IIN–  
C3  
R5  
C2  
Rx  
FA5331  
IFB  
(3.5•103–0.26•Rn)•12  
where, Ͱ=ꢀ  
42+0.26•Rn  
and, Rn 100Ω  
and, RX: don’t connect.  
Rn  
Current  
16  
IDET  
detection  
Cn  
•You must not connect RX which reduces DC gain of current  
error amplifier.  
•You can connect R5 which is series with capacitor C3.  
Fig.10  
For FA5332 (Fig.11)  
Rn 27Ω  
and, RX: don’t connect.  
13 REF  
•You must not connect RX which reduces DC gain of current  
error amplifier.  
ROFST  
•You can connect R5 which is series with capacitor C3.  
•If you connect ROFST, dead time of AC input current will  
extend.  
2
1
IIN–  
C3  
R5  
C2  
Rx  
FA5332  
IFB  
5. How to prevent from intermittent switching of low  
frequency  
An intermittent switching, which frequency is lower than 10Hz,  
occurs in some applications.  
Rn  
Current  
detection  
16  
IDET  
In this case, it is possible to prevent from this intermittent  
switching to reduce feedback gain by decreasing the  
resistance of R4. (See Fig. 2)  
Cn  
You must check the effect thoroughly because this intermittent  
switching depends on load, temperature and input condition.  
Fig.11  
9
FA5331P(M)/FA5332P(M)  
Characteristic curves (Ta = 25°C)  
Oscillation frequency (fOSC) vs.  
timing resistor resistance (RT)  
FA5331  
FA5332  
200  
100  
50  
CT=330pF  
CT=470pF  
20  
10  
CT=680pF  
100  
50  
10  
20  
RT [k]  
Oscillation frequency (fOSC) vs.  
ambient temperature (Ta)  
FA5331  
FA5332  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
Vcc=18V  
CT=470pF  
RT=22k  
100  
–40  
–20  
0
20  
40  
80  
60  
Ta [˚C]  
Output duty cycle vs. CS terminal voltage (VCS)  
ON/OFF control terminal current vs.  
ON/OFF control terminal voltage  
10  
FA5331P(M)/FA5332P(M)  
IIN– terminal voltage vs. VDET terminal voltage  
Multiplier I/O  
FA5331  
FA5332  
1.4  
VFB=1.5V  
1.2  
VFB=1.6V  
VFB=1.7V  
1.0  
0.8  
0.6  
VFB=3.5V  
VFB=2.0V  
0.4  
0.2  
0
0
0.4  
0.8  
1.2  
1.6  
2
2.4  
VDET terminal voltage [V]  
IDET terminal voltage vs. IIN– terminal voltage  
Normal operation  
FA5331  
FA5332  
0
0
0.5  
1.0  
1.5  
–0.5  
–1.0  
–1.5  
0.5  
1.0  
1.5  
0
0.5  
1.0  
1.5  
0
IIN– terminal voltage [V]  
IIN– terminal voltage [V]  
H-level output voltage (VOH) vs.  
L-level output voltage(VOL) vs.  
output sink current (ISINK  
output source current (ISOURCE  
)
)
11  
FA5331P(M)/FA5332P(M)  
Overcurrent limiting threshold voltage vs.  
ambient temperature (Ta)  
FA5331  
FA5332  
–1.08  
–1.09  
Vcc=18V  
–1.1  
–1.11  
–1.12  
–1.13  
100  
–40  
–20  
0
20  
40  
80  
60  
Ta [˚C]  
OVP terminal threshold voltage vs.  
ambient temperature (Ta)  
FA5331  
FA5332  
1.67  
Vcc=18V  
1.66  
1.65  
1.64  
1.63  
1.62  
1.61  
100  
–40  
–20  
0
20  
40  
Ta [˚C]  
80  
60  
Supply current (ICC) vs. supply voltage (VCC  
)
Supply current (ICC) vs. supply voltage (VCC)  
Normal operation  
OFF mode  
12  
FA5331P(M)/FA5332P(M)  
Application circuit  
Á Example of FA5331 application circuit  
Á Example of FA5332 application circuit  
Parts tolerances characteristics are not defined in the circuit design sample shown above. When designing an actual circuit for a product, you  
must determine parts tolerances and characteristics for safe and economical operation.  
13  

相关型号:

FA5366X

SINGLE COLOR LED
ETC
FOX
FOX

FA540

2.5V HCMOS Automotive Grade SMD Oscillator
FOX

FA545R-75.000MHZ

Oscillator, 2MHz Min, 75MHz Max, 75MHz Nom
FOX

FA545R-75.000MHZ-BM1000

HCMOS Output Clock Oscillator, 75MHz Nom, ROHS AND REACH COMPLIANT, SMD, 4 PIN
FOX

FA5500AN

Switching Controller, Current-mode, 1A, CMOS, PDSO8, SO-8
FUJI

FA5500AP

Switching Controller, Current-mode, 1A, CMOS, PDIP8, DIP-8
FUJI

FA5500P

Switching Controller, Current-mode, 1A, CMOS, PDIP8, DIP-8
FUJI

FA5501AN

Switching Controller, Current-mode, 1A, CMOS, PDSO8, SO-8
FUJI

FA5501AP

Switching Controller, Current-mode, 1A, CMOS, PDIP8, DIP-8
FUJI