GPCE061A [GENERALPLUS]

16-Bit Sound Controller With 32K X 16 Fla sh Memory;
GPCE061A
型号: GPCE061A
厂家: Generalplus Technology Inc.    Generalplus Technology Inc.
描述:

16-Bit Sound Controller With 32K X 16 Fla sh Memory

文件: 总29页 (文件大小:2555K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GPCE061A  
16-Bit Sound Controller With  
32K X 16 Flash Memory  
OCT. 01, 2013  
Version 1.5  
GENERALPLUS TECHNOLOGY INC. reserves the right to change this documentation without prior notice. Information provided by GENERALPLUS  
TECHNOLOGY INC. is believed to be accurate and reliable. However, GENERALPLUS TECHNOLOGY INC. makes no warranty for any errors which may  
appear in this document. Contact GENERALPLUS TECHNOLOGY INC. to obtain the latest version of device specifications before placing your order. No  
responsibility is assumed by GENERALPLUS TECHNOLOGY INC. for any infringement of patent or other rights of third parties which may result from its use.  
In addition, GENERALPLUS products are not authorized for use as critical components in life support devices/ systems or aviation devices/systems, where a  
malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Generalplus.  
GPCE061A  
Table of Contents  
PAGE  
1. GENERAL DESCRIPTION.......................................................................................................................................................................... 4  
2. BLOCK DIAGRAM ...................................................................................................................................................................................... 4  
3. FEATURES.................................................................................................................................................................................................. 4  
4. APPLICATION FIELD.................................................................................................................................................................................. 4  
5. SIGNAL DESCRIPTIONS............................................................................................................................................................................ 5  
5.1. PAD ASSIGNMENT ................................................................................................................................................................................. 6  
6. FUNCTIONAL DESCRIPTIONS.................................................................................................................................................................. 7  
6.1. CPU ..................................................................................................................................................................................................... 7  
6.2. MEMORY ............................................................................................................................................................................................... 7  
6.2.1. SRAM........................................................................................................................................................................................ 7  
6.2.2. Flash memory ........................................................................................................................................................................... 7  
6.3. PLL, CLOCK, POWER MODE................................................................................................................................................................... 7  
6.3.1. PLL (Phase Lock Loop)............................................................................................................................................................. 7  
6.4. STANDBY MODE..................................................................................................................................................................................... 7  
6.5. LOW VOLTAGE DETECTION AND LOW VOLTAGE RESET............................................................................................................................. 8  
6.5.1. Low voltage detection (LVD) ..................................................................................................................................................... 8  
6.5.2. Low voltage reset...................................................................................................................................................................... 8  
6.6. INTERRUPT............................................................................................................................................................................................ 8  
6.7. I/O........................................................................................................................................................................................................ 8  
6.8. TIMER / COUNTER.................................................................................................................................................................................. 9  
6.8.1. Timebase ................................................................................................................................................................................ 10  
6.9. SLEEP, WAKEUP AND WATCHDOG ......................................................................................................................................................... 10  
6.9.1. Wakeup and sleep .................................................................................................................................................................. 10  
6.9.2. Watchdog................................................................................................................................................................................ 10  
6.10.ADC (ANALOG TO DIGITAL CONVERTER) / DAC .................................................................................................................................... 10  
6.11.SERIAL INTERFACE I/O (SIO).................................................................................................................................................................11  
6.12.UART ..................................................................................................................................................................................................11  
6.13.AUDIO ALGORITHM................................................................................................................................................................................11  
6.14.IDE TOOLS FUNCTION ..........................................................................................................................................................................11  
6.15.BONDING OPTION SUMMARY ................................................................................................................................................................ 12  
6.15.1. Watchdog function.............................................................................................................................................................. 12  
6.16.SECURITY FUNCTION ........................................................................................................................................................................... 12  
7. ELECTRICAL SPECIFICATIONS ............................................................................................................................................................. 13  
7.1. ABSOLUTE MAXIMUM RATINGS ............................................................................................................................................................. 13  
7.2. DC CHARACTERISTICS (VDD = 3.6V, VDDIO = 3.6V (PORTA & B), TA = 25) ....................................................................................... 13  
7.3. DC CHARACTERISTICS (VDD = 3.3V, VDDIO = 5.5V (PORTA & B), TA = 25) ....................................................................................... 14  
7.4. DC CHARACTERISTICS (VDD = 3.3V, VDDIO = 3.3V (PORTA & B), TA = 25) ....................................................................................... 14  
7.5. ADC CHARACTERISTICS (VDD = 3.3V, TA = 25)................................................................................................................................ 15  
7.6. V2VREF REGULATOR CHARACTERISTICS (VDD = 3.3V, TA = 25) ...................................................................................................... 15  
7.7. DAC CHARACTERISTICS (VDD = 3.3V, TA = 25)................................................................................................................................ 15  
7.8. PULL HIGH RESISTER AND VDDIO ......................................................................................................................................................... 16  
7.9. I/O OUTPUT HIGH CURRENT IOH AND VOH .............................................................................................................................................. 16  
© Generalplus Technology Inc.  
Proprietary & Confidential  
2
Oct. 01, 2013  
Version: 1.5  
GPCE061A  
7.10.PULL LOW RESISTER AND VDDIO.......................................................................................................................................................... 16  
7.11.I/O OUTPUT LOW CURRENT IOL AND VOL ............................................................................................................................................... 16  
7.12.DAC OUTPUT CURRENT VS. VDD (2MA MODE WITH 500HM RESISTOR) .................................................................................................. 16  
7.13.DAC OUTPUT CURRENT VS. VDD (3MA MODE WITH 500HM RESISTOR) .................................................................................................. 16  
8. APPLICATION CIRCUITS......................................................................................................................................................................... 17  
8.1. APPLICATION CIRCUIT - (1)................................................................................................................................................................... 17  
8.2. APPLICATION CIRCUIT - (2)................................................................................................................................................................... 18  
8.3. APPLICATION CIRCUIT - (3)................................................................................................................................................................... 19  
8.4. APPLICATION CIRCUIT - (4)................................................................................................................................................................... 20  
8.5. APPLICATION CIRCUIT - (5)................................................................................................................................................................... 21  
8.6. APPLICATION CIRCUIT - (6)................................................................................................................................................................... 22  
8.7. APPLICATION CIRCUIT - (7)................................................................................................................................................................... 23  
9. PACKAGE/PAD LOCATIONS ................................................................................................................................................................... 24  
9.1. ORDERING INFORMATION ..................................................................................................................................................................... 24  
9.2. PACKAGE INFORMATION ....................................................................................................................................................................... 24  
9.2.1. LQFP 80.................................................................................................................................................................................. 24  
10.TABLE OF GPCE061/060/040 COMPARISON......................................................................................................................................... 27  
11. DISCLAIMER............................................................................................................................................................................................. 28  
12.REVISION HISTORY ................................................................................................................................................................................. 29  
© Generalplus Technology Inc.  
Proprietary & Confidential  
3
Oct. 01, 2013  
Version: 1.5  
GPCE061A  
16-BIT SOUND CONTROLLER  
WITH 32K X 16 FLASH MEMORY  
1. GENERAL DESCRIPTION  
3. FEATURES  
The GPCE061A, a 16-bit architecture product, carries the newest  
16-bit microprocessor, μ’nSP™ (pronounced as micro-n-SP),  
developed by Sunplus Technology. This high processing speed  
assures the μ’nSP™ is capable of handling complex digital signal  
processes easily and rapidly. Therefore, the GPCE061A is  
applicable to the areas of digital sound process and voice  
recognition. The operating voltage of 3.0V through 3.6V and  
speed of 0.32MHz through 49.152MHz yield the GPCE061A to be  
easily used in varieties of applications. The memory capacity  
includes 32K-word flash memory plus a 2K-word working SRAM.  
Other features include 32 programmable multi-functional I/Os, two  
16-bit timers/counters, 32768Hz Real Time Clock, Low Voltage  
Reset/Detection, eight channels 10-bit ADC (one channel built-in  
MIC amplifier with auto gain controller), 10-bit DAC output and  
many others.  
„ 16-bit μ’nSP™ microprocessor  
„ CPU clock: 0.32MHz - 49.152MHz  
„ Operating voltage: 3.0V - 3.6V  
„ Program Flash Operating voltage: 3.0V - 3.6V  
„ IO PortA & B operating voltage: 3.0V - 5.5V  
„ 32K-word flash memory  
„ 2K-word working SRAM  
„ Software-based audio processing  
„ Crystal Resonator  
„ Standby mode (Clock Stop mode) for power savings,  
Max. 2.0μA @ VDD = 3.6V  
„ Two 16-bit timers/counters  
„ Two 10-bit DAC outputs  
„ 32 general I/Os (bit programmable)  
„ 14 INT sources with two priority levels  
„ Key wakeup function (IOA0 - 7)  
„ PLL feature for system clock  
2. BLOCK DIAGRAM  
„ 32768Hz Real Time Clock (RTC)  
„ Eight channels 10-bit AD converter  
„ ADC external top reference voltage  
„ 2.0V voltage regulator output, 5mA of driving capability  
„ Serial interface I/O (SIO)  
16-bit  
16-bit Timer/Counter  
FLASH  
RAM  
ICE  
ICECLK  
ICESDA  
SLEEP  
RESET  
u'nSP  
and  
ICE  
x 2  
TimerBase  
INT control  
controller  
VMIC  
VEXTREF  
VADREF  
AGC  
MICOUT  
MICP  
CPU  
Clock  
VCOIN  
„ Built-in microphone amplifier and AGC function  
„ UART receiver and transmitter (full duplex)  
„ Low voltage reset and low voltage detection  
„ Watchdog enable (bonding option)  
„ ICE function for development and down load into flash memory  
„ Security function to protect code to be read and written.  
10-bit A/D  
& AGC  
PLL  
X32I  
X32O  
RTC  
MICN  
OPI  
LVD/LVR  
WATCHDOG  
AUD1  
AUD2  
10-bit DAC1 Output  
10-bit DAC2 Output  
UART  
SIO  
IOB7 (Rx)  
IOB10 (Tx)  
IOB1 (SDA)  
IOB0 (SCK)  
32 PIN GENERAL I/O PORT  
IOA15 - 0  
IOB15 - 0  
4. APPLICATION FIELD  
„ Voice recognition products  
„ Intelligent interactive talking toys  
„ Advanced educational toys  
„ Kids learning products  
„ Kids storybook  
„ General speech synthesizer  
„ Long duration audio products  
„ Recording / playback products  
© Generalplus Technology Inc.  
Proprietary & Confidential  
4
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
5. SIGNAL DESCRIPTIONS  
Mnemonic  
PIN No.  
Type  
Description  
IOA [15:8]  
IOA [7:0]  
46 - 39  
34 - 27  
I/O  
I/O  
IOA [15:8]: bi-directional I/O ports.  
IOA [7:0] can be software programmed to wakeup I/O pins.  
IOA [6:0] can be optioned as ADC Line-in input.  
IOB [15:11]: bi-directional I/O ports.  
IOB [15:11]  
IOB 10  
IOB 9  
IOB 8  
IOB 7  
IOB 6  
IOB 5  
IOB 4  
IOB 3  
IOB 2  
IOB 1  
IOB 0  
DAC1  
DAC2  
X32I  
50 - 54  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
12  
13  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
IOB10 can also be selected as UART Transmitter (Tx).  
IOB9 can also be Multi-duty cycle output of TimerB (BPWMO).  
IOB8 can also be Multi-duty cycle output of TimerA (APWMO).  
IOB7 can also be selected as UART receiver (Rx).  
IOB6 is a bi-directional I/O ports.  
IOB5 can also be selected as feedback signal with EXT2.  
IOB4 can also be selected as feedback signal with EXT1.  
IOB3 can also be selected as an external interrupt input pin (EXT2)(Negative-edge Triggered).  
IOB2 can also be selected as an external interrupt input pin (EXT1)(Negative-edge Triggered).  
IOB1 can also be selected as a serial interface data (SDA).  
IOB0 can also be selected as a serial interface clock (SCK).  
Audio DAC1 output.  
O
Audio DAC2 output.  
I
Oscillator Crystal input.  
X32O  
VCOIN  
AGC  
1
O
Oscillator Crystal output.  
70  
16  
19  
21  
14  
I
RC filter connection for PLL.  
I
AGC control pin.  
MICN  
MICP  
I
Microphone differential input (negative).  
Microphone differential input (positive).  
I
V2VREF  
O
2.0V output voltage, 5.0mA of driving capability (can be used as external ADC Line_IN top  
reference voltage).  
MICOUT  
OPI  
18  
O
Microphone 1st amplifier output.  
Microphone 2nd amplifier input.  
17  
I
VEXTREF  
VMIC  
23  
I
ADC Line_IN top external reference voltage input pin.  
Microphone power supply.  
25  
O
VADREF  
VDD  
22  
O
AD reference voltage (generated by internal AD converter).  
Positive supply for logic.  
5, 69  
I
VSS  
10, 26, 71  
I
Ground reference for logic and I/O pins.  
Positive supply for I/O pins.  
VDDIO  
VSSIO  
AVDD  
37, 38, 56  
I
35, 36, 48  
I
Ground reference for I/O pins.  
24  
15  
68  
49  
7
I
Positive supply for analog circuit including ADC, DAC and 2.0V regulator.  
Ground reference for analog circuit including ADC, DAC and 2.0V regulator.  
An active low reset to the chip.  
AVSS  
I
RESET  
I
O
I
SLEEP  
ICE  
Sleep mode (active high).  
ICE enable (active high).  
ICECLK  
ICESDA  
TEST  
8
I
ICE serial interface clock.  
9
I/O  
I
ICE serial interface data.  
3
Connected to high for test mode, normally connected to GND (test mode disabled) or  
unconnected.  
ROMT  
47  
I
Flash memory test, normally unconnected.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
5
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
Mnemonic  
N/C  
PIN No.  
Type  
Description  
55  
4
I
I
I
I
Not used.  
N/C  
Do NOT bonding and connect this pin. If user bonding this pin, IC will not work.  
Bonded for watchdog disabled, unbonded for watchdog enabled.  
Security fuse.  
WDGOPT*  
PFUSE, PVIN  
6
20, 11  
Note*: WDGOPT is the watchdog option pin, selected by bonding option. Remain WDGOPT unbonded to enable the watchdog.  
In contrast, bonding this pad will disable watchdog. The reason of placing WDTOPT adjacent to VDD is to facilitate  
connection between VDD and WDGOPT when disabling watchdog is necessary.  
VDD  
WDGOPT  
5.1. PAD Assignment  
71 70 69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
1
2
X32O  
X32I  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
IOB11  
IOB12  
IOB13  
IOB14  
3
TEST  
4
5
6
N/C  
VDD  
WDGOPT  
IOB15  
7
ICE  
ICECLK  
ICESDA  
VSS  
SLEEP  
8
(0,0)  
9
VSSIO  
ROMT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PVIN  
IOA15  
IOA14  
DAC1  
DAC2  
V2VREF  
AVSS  
IOA13  
IOA12  
AGC  
IOA11  
OPI  
41  
40  
IOA10  
IOA9  
MICOUT  
MICN  
PFUSE  
21 22 23 24 25  
26 27 28 29 30 31 32 33 34  
35 36 37  
38 39  
This IC substrate should be connected to VSS  
Note1: To ensure the IC functions properly, please bond all of VDD and VSS pins.  
Note2: The 0.1μF capacitor between VDD and VSS should be placed to IC as closed as possible.  
Note3: Do NOT bonding and connect N/C pin. If user bonding N/C pin, IC will not work.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
6
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
6.FUNCTIONAL DESCRIPTIONS  
6.1. CPU  
The GPCE061A is equipped with a 16-bit μ’nSP™, the newest  
16-bit microprocessor by Sunplus and pronounced as micro-n-SP.  
Eight registers are involved in μ’nSP™: R1 - R4 (General-purpose  
registers), PC (Program Counter), SP (Stack Pointer), Base  
Pointer (BP) and SR (Segment Register). The interrupts include  
three FIQs (Fast Interrupt Request) and eight IRQs (Interrupt  
Request), plus one software-interrupt, BREAK.  
Moreover,  
a
high performance hardware multiplier with the  
capability of FIR filter is also built in to reduce the software  
multiplication loading.  
6.2. Memory  
6.2.1. SRAM  
The amount of SRAM is 2K-word (including Stack), ranged from  
$0000 through $07FF with access speed of two CPU clock cycles.  
Phase Lock Loop  
Fosc/n  
CPU Clock  
FOSC  
32768Hz X'tal  
(PLL)  
PLL OUT  
24.576MHz(default)  
20.48MHz  
System Clock generator  
n:1,2,4,8,16,32,64  
(Default : Fosc/8)  
32.768MHz  
40.96MHz  
49.152MHz  
b2 b1 b0  
b7  
b6 b5  
b7,b6,b5 of P_SystemClock(W)($7013H)  
System clock frequency selection  
of P_SystemClock(W)($7013H)  
CPU clock frequency selection  
6.2.2. Flash memory  
Flash memory ($008000 ~ $00FFFF) is a high-speed memory with  
access speed of two CPU clock cycles. FLASH erase and  
program functions must be used in IDE tools.  
wake CPU up whenever RTC occurs.  
Since the RTC is  
generated each 0.5 seconds, time can be traced by the numbers  
of RTC occurrence. In addition, GPCE061A supports 32768Hz  
oscillator in normal mode and auto-power-saving mode. In  
normal mode, 32768Hz OSC always runs at the highest power  
consumption. In auto-power-saving mode, however, it runs in  
normal mode for the first 7.5 seconds and changes back to  
power-saving mode automatically to save powers.  
6.3. PLL, Clock, Power Mode  
6.3.1. PLL (Phase Lock Loop)  
The purpose of PLL is to provide a base frequency (32768Hz) and  
to pump the frequency from 20.48MHz to 49.152MHz for system  
clock (FOSC). The default PLL frequency is 24.576MHz.  
6.4. Standby Mode  
The GPCE061A also offers a standby mode for low power  
application needs. To enter standby mode, the desired key  
wakeup port (IOA [7:0]) must be configured to input first. And  
read the Port_IOA_Latch(R) to latch the IOA state before entering  
the standby mode. Also remember to enable the corresponding  
interrupt source(s) for wakeup. After that, stop the CPU clock by  
writing the STOP CLOCK Register (b0~b2 of Port_SystemClock  
(W)) to enter standby mode. In such mode, SRAM and I/Os  
remain in the previous states till CPU being awoken. The  
wakeup sources in GPCE061A include Port IOA7 - 0 and IRQ1 -  
IRQ6. After GPCE061A is awoken, the CPU will continue to  
execute the program. Programmer can also enable or disable  
the 32768Hz OSC when CPU is in standby mode.  
6.3.1.1. System clock  
Basically, the system clock is provided by PLL and programmed  
by the Port_SystemClock (W) to determine the frequency of clock  
for system. The default system clock FOSC = 24.576MHz and  
CPU clock is Fosc/8 if not specified. The initial CPU clock is  
Fosc/8 after system wakes up and to be adjusted to desired CPU  
clock by programming the Port_SystemClock (W). This avoids  
Flash ROM reading failure when system wakes up.  
6.3.1.2. 32768Hz RTC  
The Real Time Clock (RTC) is normally used in watch, clock or  
other time related products. A 2Hz-RTC (1/2 second) function is  
loaded in GPCE061A. The RTC counts the timing as well as to  
© Generalplus Technology Inc.  
Proprietary & Confidential  
7
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
6.5. Low Voltage Detection and Low Voltage Reset  
6.5.1. Low voltage detection (LVD)  
Interrupt Source  
Key change wakeup  
4096Hz  
Interrupt Name  
Priority  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
IRQ3_KEY  
IRQ4_4KHz  
IRQ4_2KHZ  
IRQ4_1KHz  
IRQ5_4Hz  
There are two LVD levels to be selected: 2.9V, and 3.3V. These  
levels can be programmed via Port_LVD_Ctrl (W). As an  
example, suppose LVD is given to 2.9V. When the voltage drops  
below 2.9V, the b15 of Port_LVD_Ctrl is read as HIGH. In such  
state, program can be designed to react to this condition.  
2048Hz  
1024Hz  
4Hz  
2Hz  
IRQ5_2Hz  
Time-base 1  
Time-base 2  
UART (TxRDY or RxRDY)  
IRQ6_TMB1  
IRQ6_TMB2  
UART IRQ  
6.5.2. Low voltage reset  
In addition to the LVD, the GPCE061A has another important  
function, Low Voltage Reset (LVR). With the LVR function, a  
reset signal is generated to reset system when the operating  
voltage drops below 2.3V for 10 consecutive CPU clock cycles.  
Without LVR, the CPU becomes unstable and malfunctions when  
the operating voltage drops below 2.3V. The LVR will reset all  
functions to the initial operational (stable) states when the voltage  
drops below 2.3V. A LVR timing diagram is given as follows:  
6.7. I/O  
Two I/O ports are built in GPCE061A, PortA and PortB. The  
PortA is an ordinary I/O with programmable wakeup capability. In  
addition to the regular IO function, the PortB can also perform  
some special functions in certain pins. Suppose operating  
voltage is running at 3.6V (VDD) and VDDIO (power for I/O)  
operates from 3.6V (VDD) to 5.5V. In such condition, the I/O pad  
is capable of operating from 0V through VDDIO. However IOB13  
and IOB14 are recommended to operate <=3.6V during standby  
mode, otherwise these two IOs will have current leakage. The  
following diagram is an I/O schematic.  
FCPU  
VDD  
2.3V  
Tw  
Tvdd  
Buffer(R)  
RESET  
Treset  
Tw=FCPU x 10 cycle  
Port_Data(W)  
Tvdd > Tw  
Treset = FCPU x512 cycle  
Register  
pull high  
pull low  
Port_Buffer(W)  
Port_DIR(R/W)  
Port_ATTR(R/W)  
Pin pad  
Control  
logic  
6.6. Interrupt  
The GPCE061A has 14 interrupt sources, grouped into two types,  
FIQ (Fast Interrupt Request) and IRQ (Interrupt request). The  
priority of FIQ is higher than IRQ. FIQ is the high-priority interrupt  
while IRQ is the low-priority one. An IRQ can be interrupted by a  
FIQ, but not by another IRQ. A FIQ cannot be interrupted by any  
other interrupt sources.  
Data(R)  
Although data can be written into the same register through  
Port_Data and Port_Buffer, they can be read from different places,  
Buffer (R) and Data (R). The IOA [7:0] is the key wakeup port.  
To activate key wakeup function, latch data on PORT_IOA_Latch  
and enable the key wakeup function. Wakeup is triggered when  
the PortA state is different from at the time latched. In addition to  
Interrupt Source  
Interrupt Name  
Priority  
PWM Service (Fosc/1024) FIQ_PWM/IRQ0_PWM High(FIQ)  
Timer A  
Timer B  
EXT2  
FIQ_TMA/ IRQ1_TMA High(FIQ)  
FIQ_TMB/ IRQ2_TMB High(FIQ)  
an ordinary I/O port, PortB carries some special functions.  
summary of PortB special functions is listed as follows:  
A
IRQ3_EXT2  
IRQ3_EXT1  
Low  
Low  
EXT1  
© Generalplus Technology Inc.  
Proprietary & Confidential  
8
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
Special function in PortB  
PortB  
IOB0  
IOB1  
IOB2  
Special Function  
Function Description  
Serial interface clock  
Note  
Refer to see SIO section  
SCK  
SDA  
EXT1  
Serial interface data  
Refer to see SIO section  
IOB2 set as input mode  
External interrupt source 1(Negative-edge Triggered)  
Feedback Output1 Works with IOB4 by adding a RC circuit between IOB2 set as inverted output  
them to get an OSC to EXT1 interrupt  
IOB3  
EXT2  
External interrupt source 2(Negative-edge Triggered)  
IOB3 set as input mode  
Feedback Output2 Works with IOB5 by adding a RC circuit between IOB3 set as inverted output  
them to get an OSC to EXT2 interrupt  
IOB4  
IOB5  
IOB7  
IOB8  
IOB9  
IOB10  
Feedback Input1  
Feedback Input2  
Rx  
-
-
-
-
UART Receiver  
TimerA PWM output  
TimerB PWM output  
UART Transmitter  
Refer to see UART section  
Refer to Timer/Counter section  
Refer to Timer/Counter section  
Refer to UART section  
APWMO  
BPWMO  
Tx  
Default state: Pull Low  
PWM: Pulse Width Modulation  
Refer to the above table, the configuration of IOB2, IOB3, IOB4,  
and IOB5 involves feedback function in which an OSC frequency  
can be obtained from EXT1 (EXT2) by simply adding a RC circuit  
between IOB2 (IOB3) and IOB4 (IOB5).  
Initially, write a value of N into a timer and select a desired clock  
source, timer will start counting from N, N+1, N+2, ... through  
FFFF. An INT (TimerA/TimerB) signal is generated at the next  
clock after reaching “FFFF” and the INT signal is transmitted to  
INT controller for further processing. At the same time, N will be  
reloaded into timer and start all over again. The clock source A is  
a high frequency source and clock source B is a low frequency  
source. The combination of clock source A and B provides a  
variety of speeds to TimerA. A “1” represents pass signal and not  
gating. In contrast, “0” indicates deactivating timer. The EXT1  
and EXT2 are the external clock sources. Moreover, counter can  
generate time-out signal for input clock source to a four bits (16  
levels) PWM pulse width counter. A variety of clock duration can  
be generated and exported from IOB8 (APWMO) and IOB9  
(BPWMO).  
6.8. Timer / Counter  
The GPCE061A provides two 16-bit timers/counters, TimerA and  
TimerB. The TimerA is called a universal counter. TimerB is a  
general-purpose counter. The clock source of TimerA comes  
from the combination of clock source A and clock source B. In  
TimerB, the clock source is given from source C. When timer  
overflows, an INT signal is sent to CPU to generate a time-out  
signal.  
Clock of Source A Clock of Source B Clock of Source C  
Fosc/2  
Fosc/256  
32768Hz  
8192Hz  
4096Hz  
1
2048Hz  
1024Hz  
256Hz  
TMB1  
4Hz  
Fosc/2  
Fosc/256  
32768Hz  
8192Hz  
4096Hz  
1
The following example is a 3/16-duration cycle. The APWMO  
waveform is made by selecting  
a
pulse width through  
Port_TimerA_Ctrl (W) [9:6]. As a result, each 16 cycles will  
generate a pulse width defined in control port. These PWM  
signals can be applied for controlling the speed of motor or other  
devices.  
2Hz  
0
1
0
EXT1  
EXT2  
EXT1  
© Generalplus Technology Inc.  
Proprietary & Confidential  
9
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
TimerA_Timeout  
APWMO  
Tapwmo  
Tduty  
6.9.2. Watchdog  
Generally speaking, the clock source A and C are fast clock  
sources and source B comes from RTC system (32768Hz).  
Therefore, clock source B can be utilized as a precise counter for  
time counting, e.g., the 2Hz clock can be used for real time  
counting.  
The purpose of watchdog is to monitor if the system operates  
normally. Within a certain period, watchdog must be cleared. If  
watchdog is not cleared, CPU assumes the program has been  
running in an abnormal condition. As a result, the CPU will reset  
the system to the initial state and start running the program all  
over again. The watchdog function can be removed by bonding  
option. In GPCE061A, the clear period is 0.75 seconds. If  
watchdog is cleared within each 0.75 seconds, the system will not  
be reset. To clear watchdog, simply write “xxxx xxxx xxxx xx01B”  
6.8.1. Timebase  
Timebase, generated by 32768Hz, is a combination of frequency  
selections. The outputs of timebase block are named to TMB1  
and TMB2. TMB1 is frequency for TimerA (Clock source B).  
The TMB1 and TMB2 are the sources for Interrupt (IRQ6).  
Furthermore, timebases generates additional 2Hz to 4096Hz  
interrupt sources (IRQ4 and IRQ5) for Real-Time-Clock (RTC).  
to  
Port_Watchdog_Clear(W).  
The  
content  
written  
to  
Port_Watchdog_Clear(W) for watchdog clearance must be exactly  
the same as the one illustrated above (xxxx xxxx xxxx xx01B).  
Other values given to the Port_Watchdog_Clear(W) for watchdog  
clearance may end up with system reset. The watchdog function  
remains enabled during standby mode if the 32768Hz is turned  
on.  
TMB2  
128Hz  
TMB1  
8Hz  
256Hz  
16Hz  
512Hz  
32Hz  
6.10. ADC (Analog to Digital Converter) / DAC  
1024Hz  
64Hz  
The GPCE061A has eight channels 10-bit ADC (Analog to Digital  
Converter). The function of an ADC is to convert analog signal to  
digital signal, e.g. a voltage level into a digital word. The eight  
channels of ADC can be seven channels of line-in from IOA [6:0]  
or one channel microphone (MIC) input through amplifier and AGC  
controller. The MIC amplifier circuit is capable of reducing  
common mode noise by transmitting signals through differential  
MIC Inputs (MICN, MICP). Moreover, an external resistor can be  
applied to adjust microphone gain and time of AGC operating.  
The AD needs to select source of line-in before conversion. The  
ADC is able to choose the external or internal (=AVDD) top  
reference voltage. If constant voltage source is unavailable,  
GPCE061A offers a constant voltage 2.0V with 5.0mA driving  
ability with a capacitor connected.  
Default: 128Hz  
Default: 8Hz  
6.9. Sleep, Wakeup and Watchdog  
6.9.1. Wakeup and sleep  
1) Sleep: After power-on reset, IC starts running until a sleep  
command occurs. When sleep command is  
a
accepted, IC will turn the system clock (PLL) off. After  
all, it enters sleep mode.  
2) Wakeup: CPU waking up from sleep mode requires a wakeup  
signal to turn the system clock (PLL) on. The IRQ  
signal makes CPU to complete the wakeup process  
and initialization. The key wakeup and interrupt  
sources (IRQ1 - IRQ6) can be used for wakeup  
sources.  
The GPCE061A has two 10-bit D/A with 2.0mA or 3.0mA driving  
current for audio outputs, DAC1 and DAC2.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
10  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
6.11. Serial Interface I/O (SIO)  
Serial interface I/O offers one-bit serial interface for  
communication. This serial interface is capable of transmitting or  
a
receiving data via two I/O pins, IOB0 (SCK) and IOB1 (SDA).  
WRITE MODE  
write control bit=0  
SCK  
Ax+1  
Ax  
Ax-1  
A0  
Dx+1  
Dx  
D0  
Dx+1  
Dx  
D0  
SDA  
SDA  
STOP  
2nd write P_SIO_Data (W), $701AH  
1st write P_SIO_Data (W), $701AH  
read control bit = 1  
READ MODE  
SCK  
Ax+1  
Ax  
Ax-1  
A0  
Dx+1  
Dx  
D0  
Dx+1  
Dx  
D0  
SDA  
SDA  
1st Read P_SIO_Data (R), $701AH  
STOP  
2nd Read P_SIO_DAta (R), $701AH  
6.12. UART  
UART block provides  
a
full-duplex standard interface that  
Rx and Tx of UART are shared with IOB7 and IOB10. When  
GPCE061A receives and/or transmits a frame of data, the b7  
(RxRDY) and/or b6 (TxRDY) in Port_UART_Command2(R) will be  
set to “1” and the UART IRQ is activated at the same time.  
facilitates the communication with other devices. With this  
interface, GPCE can transmit and receive simultaneously. The  
maximum baud-rate can be up to 115200bps. This function can  
be accomplished by using PortB and Interrupt (UART IRQ). The  
start  
bit  
parity  
bit  
stop  
bit  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
1-bit Start  
8-bit data  
1-bit Stop  
can be enabled/disable;  
also even/odd check  
6.13. Audio Algorithm  
The following speech types can be used in GPCE061A: PCM,  
SACM_S200, SACM_S480, SACM_S530, SACM_S720,  
6.14. IDE Tools Function  
The functions of IDE include the follows:  
1). C compiler, Assembly, and Linker.  
SACM_A1600, SACM_A1601, SACM_A3600, SACM_DVR520,  
SACM_DVR1600, SACM_DVR3200, and SACM_DVR4800. For  
melody synthesis, the GPCE061A supports SACM_MS01 (FM)  
and SACM_MS02 (wave-table) synthesizers.  
2). Download program into FLASH (refer to 8.7.application  
circuit-(7)).  
3). Single step trace  
4). Break point (break point for debugging)  
5). Run (execute)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
11  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
6.15. Bonding Option Summary  
6.16. Security Function  
The GPCE061A has the following bonding option:  
Security function is able to protect code to be read or written.  
When program is downloaded into flash memory, program can be  
read/written from IDE tools. For security purpose, burn fuse to  
disable IDE function, where PFUSE supplies 7.0V and PVIN  
connects to ground (0V) about one second (Please refer to the  
following circuit diagram). After all, the flash memory can no  
longer be read or written.  
6.15.1. Watchdog function  
WDGOPT is the optional pin for watchdog by bonding option.  
The shape looks as the figure given below. When watchdog is  
selected, WDGOPT is unbonded. If watchdog is not selected,  
WDGOPT is bonded. The reason for WDGOPT adjacent to VDD  
is that when watchdog is not selected, it is easy to make the  
connection between VDD and WDGOPT.  
VDD  
WDGOPT  
© Generalplus Technology Inc.  
Proprietary & Confidential  
12  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
7.ELECTRICAL SPECIFICATIONS  
7.1. Absolute Maximum Ratings  
Characteristics  
Symbol  
Ratings  
DC Supply Voltage  
V+  
VDDIO  
VIN  
< 4.0V  
< 7.0V  
PortA/B Pad Supply Voltage  
Input Voltage Range  
Operating Temperature  
Storage Temperature  
-0.5V to V+ + 0.5V  
0to +60℃  
TA  
-50to +150℃  
TSTO  
Note: Stresses beyond those given in the Absolute Maximum Rating table may cause operational errors or damage to the device. For normal operational  
conditions see DC Electrical Characteristics.  
7.2. DC Characteristics (VDD = 3.6V, VDDIO = 3.6V (PortA & B), TA = 25)  
Limit  
Characteristics  
Symbol  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
Operating Voltage  
Operating Current  
VDD  
IOP  
3.0  
3.3  
3.6  
V
-
FOSC = 49.152MHz,  
-
-
-
-
33  
mA  
AD, DAC disable, no load  
2.0  
5.0  
Disable 32KHz crystal  
Standby Current  
ISTB  
μA  
Enable 32Khz, Disable PLL (FOSC  
)
Input High Level  
Input Low Level  
Output DAC current  
(AUD1, AUD2)  
VIH  
VIL  
0.7VDDIO  
-
-
-
-
V
V
-
-
0.3VDDIO  
-2.0  
2.0mA mode  
3.0mA mode  
VOH = 2.9V  
VOL = 0.7V  
For one channel  
DAC  
IAUD  
-
-
mA  
-3.0  
Output High Current  
Output Low Current  
Input Pull-Low Resister  
(PA15 :0, PB15 :0)  
IOH  
IOL  
-
-
-
-
-3.2  
mA  
mA  
7.0  
RPL  
RPH  
-
-
-
-
165  
210  
KΩ  
KΩ  
VIN = VDDIO  
VIN = VSS  
Input Pull-High Resister  
(PA15 :0, PB15 :0)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
13  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
7.3. DC Characteristics (VDD = 3.3V, VDDIO = 5.5V (PortA & B), TA = 25)  
Limit  
Characteristics  
Symbol  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
Operating Voltage  
Operating Current  
VDD  
IOP  
3.0  
3.3  
3.6  
V
-
FOSC = 49.152MHz,  
AD, DAC disable, no loading  
Disable 32KHz crystal  
When IOB13, IOB14 < = 3.6V  
Enable 32Khz, Disable PLL (FOSC  
When IOB13, IOB14 < = 3.6V  
-
-
-
26  
-
-
mA  
2.0  
5.0  
Standby Current  
ISTB  
μA  
)
Input High Level  
Input Low Level  
Output DAC current  
(AUD1, AUD2)  
VIH  
VIL  
0.7VDDIO  
-
-
-
V
V
-
0.3VDDIO  
-
-2.0  
-3.0  
-5.0  
12  
2.0mA mode  
3.0mA mode  
VOH = 4.0V  
VOL = 1.0V  
For one channel  
DAC  
IAUD  
-
-
mA  
Output High Current  
Output Low Current  
Input Pull-Low Resister  
(PA15:0, PB15:0)  
IOH  
IOL  
-
-
-
-
mA  
mA  
VIN = VDDIO  
VIN = VSS  
RPL  
RPH  
-
-
110  
150  
-
-
KΩ  
KΩ  
Input Pull-High Resister  
(PA15:0, PB15:0)  
7.4. DC Characteristics (VDD = 3.3V, VDDIO = 3.3V (PortA & B), TA = 25)  
Limit  
Characteristics  
Symbol  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
Operating Voltage  
Operating Current  
VDD  
IOP  
3.0  
3.3  
3.6  
V
-
FOSC = 49.152MHz,  
-
-
26  
-
-
mA  
AD, DAC disable, no loading  
2.0  
Disable 32KHz crystal  
Standby Current  
ISTB  
μA  
5.0  
Enable 32Khz, Disable PLL (FOSC)  
Input High Level  
Input Low Level  
Output DAC current  
(AUD1, AUD2)  
VIH  
VIL  
0.7VDDIO  
-
-
-
V
V
-
-
-
0.3VDDIO  
-2.0  
-3.0  
-2.9  
6.7  
2.0mA mode  
3.0mA mode  
For one channel  
DAC  
IAUD  
-
-
mA  
Output High Current  
Output Low Current  
Input Pull-Low Resister  
(PA15:0, PB15:0)  
IOH  
IOL  
-
-
-
-
mA  
mA  
V
OH = 2.6V  
OL = 0.7V  
V
VIN = VDDIO  
VIN = VSS  
RPL  
RPH  
-
-
175  
242  
-
-
KΩ  
KΩ  
Input Pull-High Resister  
(PA15:0, PB15:0)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
14  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
7.5. ADC Characteristics (VDD = 3.3V, TA = 25)  
Unit  
Typ.  
1.0  
Characteristics  
Symbol  
Unit  
Min.  
Max.  
ADC Power Dissipation for LINE_IN  
ADC Power Dissipation For MIC_IN  
ADC LINE_IN Input Voltage Range from  
IOA[6:0]  
IADC  
-
-
-
-
mA  
mA  
1.9  
-
VINL (Note 1)  
VSS - 0.3  
-
VDD + 0.3  
V
ADC Microphone Input Voltage Range  
VINM  
VSS - 0.3  
-
-
-
VDD + 0.3  
VDD + 0.3  
10  
V
V
External ADC Top Voltage  
Resolution of ADC  
VEXTREF (Note 2)  
RESO  
2.0  
-
bits  
Signal-to-Noise Plus Distortion of ADC from  
Line In  
SINAD (Note 4)  
-
56  
-
dB  
Effective Number of Bit  
ENOB (Note 5)  
INL  
-
-
-
-
-
9.0  
±4.0  
±0.5  
-
bits  
LSB (Note 3)  
LSB  
Integral Non-Linearity of ADC  
Differential Non-Linearity of ADC  
AD Conversion Rate  
-
DNL (Note 6)  
FCONV  
-
-
-
FCPU/512  
42  
Hz  
Microphone Amplifier Gain (Note 7)  
A MIC  
dB  
Note1: Internal protection diodes clamp the analog input to VDD and VSS. These diodes allow the analog input to swing from (VSS-0.3V) to (VDD+0.3V)  
without causing damages to the devices.  
Note2: The ADC performance is limited by the system noise level and therefore, the GPCE061A only guarantees to the 8-bit accuracy when VEXTREF is 2.0V.  
Note3: The LSB means Least Significant Bit. VINL = 2.0V, 1LSB = 2.0V/2^10 = 1.953mV.  
Note4: The SINAD testing condition at VINLp-p = 0.8*VDD, FCONV = Fcpu/512 = 49MHz/512 = 95KHz, Fin = 1.0KHz Sine waves at VDD = 3.0V from the IOA  
[6:0] input.  
Note5: ENOB = (SINAD-1.76)/6.02.  
Note6: The ADC of GPCE061A guarantees no data missed during conversion.  
Note7: The microphone amplifier maximum gain = 15 * (60K / (1.5K + REXT) V/V. The REXT is external resistor between OPI and MICOUT. The gain is  
132V/V (=42dB) when REXT is 5.1K.  
7.6. V2VREF Regulator Characteristics (VDD = 3.3V, TA = 25)  
Limit  
Characteristics  
Symbol  
Unit  
Test Condition  
Min.  
1.8  
-
Typ.  
2.0  
Max.  
2.2  
-
AVDD = 3.3V, IOUT 5mA  
Output Voltage Accuracy  
Output Current  
V2VREF  
IOUT  
V
mA  
V
5.0  
AVDD = 3.3V, V2VREF = 2.0V  
IOUT 5mA, V2VREF = 2.0V  
Input Voltage  
AVDD  
3.0  
3.3  
3.6  
Note1: The V2VREF Regulator output current maximum 5mA, It is not matching to make a large current driver application. Our suggestion can be used  
as external ADC Line_IN reference voltage.  
7.7. DAC Characteristics (VDD = 3.3V, TA = 25)  
Unit  
Characteristics  
DAC resolution  
Symbol  
Unit  
Min.  
Typ.  
Max.  
10  
RESO  
SNR  
FS  
-
-
-
54  
-
bit  
dB  
Hz  
V
Signal to Noise Ratio of DAC  
Sample Rate  
-
-
100K  
VDD/2  
Output Voltage Accuracy range  
VDAC  
0
-
Note1: The DAC output voltage in accuracy range have max 10 bits resolution.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
15  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
7.8. Pull High Resister and VDDIO  
7.11. I/O Output Low Current IOL and VOL  
500  
400  
300  
200  
100  
25  
20  
15  
10  
5
0
0
0.5  
1.5  
2.5  
3.5  
4.5  
2.4  
3.4  
VDD (V)  
4.4  
VOL (V)  
IO  
7.9. I/O Output High Current IOH and VOH  
7.12. DAC output current vs. VDD (2mA mode with  
500hm resistor)  
15  
3
2
1
0
10  
5
0
0.5  
1.5  
2.5  
3.5  
4.5  
VOH (V)  
2.4  
2.8  
3.2  
3.6  
VDD (V)  
7.10. Pull Low Resister and VDDIO  
7.13. DAC output current vs. VDD (3mA mode with  
500hm resistor)  
300  
200  
100  
0
4
3
2
1
0
2.4  
3.4  
VDD (V)  
4.4  
IO  
2.4  
2.8  
3.2  
3.6  
VDD (V)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
16  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
8.APPLICATION CIRCUITS  
8.1. Application Circuit - (1)  
Note*: These capacitor values are for design guidance only. Different capacitor values may be required for different crystal/resonator used.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
17  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
8.2. Application Circuit - (2)  
Note*: These capacitor values are for design guidance only. Different capacitor values may be required for different crystal/resonator used.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
18  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
8.3. Application Circuit - (3)  
Note*: These capacitor values are for design guidance only. Different capacitor values may be required for different crystal/resonator used.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
19  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
8.4. Application Circuit - (4)  
Note*: These capacitor values are for design guidance only. Different capacitor values may be required for different crystal/resonator used.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
20  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
8.5. Application Circuit - (5)  
Note*: These capacitor values are for design guidance only. Different capacitor values may be required for different crystal/resonator used.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
21  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
8.6. Application Circuit - (6)  
/
Note*: These capacitor values are for design guidance only. Different capacitor values may be required for different crystal/resonator used.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
22  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
8.7. Application Circuit - (7)  
100K  
Note*: These capacitor values are for design guidance only. Different capacitor values may be required for different crystal/resonator used.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
23  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
9.PACKAGE/PAD LOCATIONS  
9.1. Ordering Information  
Product Number  
Package Type  
Chip form  
Green Package form - LQFP 80  
GPCE061A-NnnV-C  
GPCE061A-NnnV-HL04n-W  
Note1: Code number is assigned for customer.  
Note2: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).  
Note3: HL04n-W, HL04 is assign for LQFP80, n is assign for customer, W is watch dog bonding option (W=0 enable, W=1 disable).  
9.2. Package Information  
9.2.1. LQFP 80  
Dimension in inch  
Symbol  
Min.  
-
Typ.  
Max.  
0.063  
0.006  
0.057  
0.011  
0.009  
0.008  
0.006  
A
A1  
A2  
b
-
0.002  
0.053  
0.007  
0.007  
0.004  
0.004  
-
0.055  
0.009  
b1  
c
0.008  
-
c1  
D
-
0.551 BSC  
0.472 BSC  
0.551 BSC  
0.472 BSC  
0.020 BSC  
D1  
E
E1  
e
© Generalplus Technology Inc.  
Proprietary & Confidential  
24  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
Dimension in inch  
Symbol  
Min.  
Typ.  
Max.  
L
0.018  
0.024  
0.030  
L1  
R1  
R2  
0.039 REF  
0.003  
0.003  
0.008  
0°  
-
-
-
0.008  
-
S
-
θ
3.5°  
-
7°  
θ 1  
θ 2  
θ 3  
0°  
-
11°  
12°  
12°  
13°  
13°  
11°  
PAD No.  
PAD Name  
PAD No.  
PAD Name  
1
X32O  
X32I  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
IOA6  
IOA7  
2
3
TEST  
N/C  
VSSIO  
VSSIO  
VDDIO  
VDDIO  
IOA8  
4
5
VDD  
6
N/C  
7
ICE  
8
ICECLK  
ICESDA  
VSS  
N/C  
9
N/C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
IOA9  
PVIN  
IOA10  
IOA11  
IOA12  
IOA13  
IOA14  
IOA15  
N/C  
DAC1  
DAC2  
V2VREF  
AVSS  
AGC  
OPI  
MICOUT  
MICN  
PFUSE  
MICP  
VADREF  
VEXTREF  
AVDD  
VMIC  
N/C  
N/C  
VSSIO  
N/C  
SLEEP  
IOB15  
IOB14  
IOB13  
IOB12  
IOB11  
NC  
VSS  
IOA0  
N/C  
IOA1  
N/C  
IOA2  
IN/C  
IOA3  
VDDIO  
IOB10  
IOB9  
IOA4  
IOA5  
© Generalplus Technology Inc.  
Proprietary & Confidential  
25  
Oct. 01, 2013  
Version: 1.5  
GPCE061A  
PAD No.  
PAD Name  
PAD No.  
PAD Name  
67  
68  
69  
70  
71  
72  
73  
IOB8  
IOB7  
IOB6  
IOB5  
IOB4  
IOB3  
IOB2  
74  
75  
76  
77  
78  
79  
80  
IOB1  
IOB0  
RESET  
N/C  
VDD  
VCOIN  
VSS  
© Generalplus Technology Inc.  
Proprietary & Confidential  
26  
Oct. 01, 2013  
Version: 1.5  
GPCE061A  
10. TABLE OF GPCE061/060/040 COMPARISON  
The information in this table is the different from GPCE061/060/040.  
Item  
Working Voltage  
GPCE040A  
GPCE060A  
GPCE061A  
3.0V ~ 3.6V @ 49.152MHz  
3.0V ~ 3.6V  
3.0V ~ 5.5V  
2.4V ~ 3.6V @ 40.96MHz, 32.768MHz,  
24.576MHz, 20.48MHz  
2.4V ~ 5.5V  
IO Working Voltage  
Memory size  
24K Words ROM  
32K Words ROM  
32K Words Flash Memory  
MICN/MICP 10K  
pull up resistors  
Built in (ref. the GPCE060A/040A datasheet Using external resistors (ref. GPCE061A  
Ω
application circuit 1)  
datasheet application circuit 1)  
Pin 7 in LQFP80 package  
Pin 8 in LQFP80 package  
NC (ref LQFP80 package)  
Ground reference for I/O and logic pins (VSS)  
(ref LQFP80 package)  
ICE, the ICE Enable (ref LQFP80 package)  
ICECLK, the ICE serial interface clock. 100K  
Ω
pull low resistor is necessary to prevent current  
leakage.  
(ref LQFP80 package)  
Pin 9 in LQFP80 package  
Pin20,11 in LQFP80 package  
(Pfuse, Pvin)  
NC (ref LQFP80 package)  
NC (ref LQFP80 package)  
ICESDA, the ICE serial interface data  
NC in normal mode, for security using (ref.  
GPCE061A datasheet)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
27  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
11. DISCLAIMER  
The information appearing in this publication is believed to be accurate.  
Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the  
terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this  
publication or regarding the freedom of the described chip(s) from patent infringement. FURTHER, GENERALPLUS MAKES NO  
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter  
the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other  
information in this publication are current before placing orders. Products described herein are intended for use in normal commercial  
applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support  
equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that  
application circuits illustrated in this document are for reference purposes only.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
28  
Oct. 01, 2013  
Version: 1.5  
 
GPCE061A  
12. REVISION HISTORY  
Date  
Revision #  
Description  
Page  
OCT. 01, 2013  
NOV. 18, 2011  
OCT. 13, 2010  
MAY 23, 2008  
JUL. 11, 2006  
1.5  
1.4  
1.3  
1.2  
1.1  
Add COMAIR logo to the cover page  
Modify 8.7 Application Circuit - (7).  
Modify 3.FEATURES.  
23  
4
Modify 8. APPLICATION CIRCUITS.  
1. Modify the 9.2 Ordering Information.  
2. Delete the 9.3.2 PLCC84.  
17-23  
24  
25  
3. Modify the 8. APPLICATION CIRCUITS.  
Original  
17-23  
31  
DEC. 19, 2005  
1.0  
Note: The GPCE061A data sheet v1.0 is a continued version of SPCE061A data sheet v0.8.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
29  
Oct. 01, 2013  
Version: 1.5  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY