GPY0050A1-HG08x [GENERALPLUS]

12--bit ADC with Microphone Preamplifier;
GPY0050A1-HG08x
型号: GPY0050A1-HG08x
厂家: Generalplus Technology Inc.    Generalplus Technology Inc.
描述:

12--bit ADC with Microphone Preamplifier

文件: 总21页 (文件大小:953K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GPY0050A1  
12-bit ADC with Microphone  
Preamplifier  
Sep. 25, 2017  
Version 1.1  
GENERALPLUS TECHNOLOGY INC. reserves the right to change this documentation without prior notice. Information provided by GENERALPLUS  
TECHNOLOGY INC. is believed to be accurate and reliable. However, GENERALPLUS TECHNOLOGY INC. makes no warranty for any errors which may  
appear in this document. Contact GENERALPLUS TECHNOLOGY INC. to obtain the latest version of device specifications before placing your order. No  
responsibility is assumed by GENERALPLUS TECHNOLOGY INC. for any infringement of patent or other rights of third parties which may result from its use.  
In addition, GENERALPLUS products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a  
malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Generalplus.  
GPY0050A1  
Table of Contents  
PAGE  
1. GENERAL DESCRIPTION......................................................................................................................................................................3  
2. FEATURES .............................................................................................................................................................................................3  
3. BLOCK DIAGRAM..................................................................................................................................................................................3  
4. SIGNAL DESCRIPTIONS .......................................................................................................................................................................4  
4.1. PAD ASSIGNMENT.............................................................................................................................................................................5  
4.2. PACKAGE PIN ASSIGNMENT ................................................................................................................................................................5  
5. FUNCTIONAL DECRIPTIONS ................................................................................................................................................................6  
5.1. SPI SERIAL INTERFACE......................................................................................................................................................................6  
5.1.1. SPI Command Mode Setting.................................................................................................................................................6  
5.1.2. Command Mode Address Format..........................................................................................................................................6  
5.1.3. Command Mode Data Format...............................................................................................................................................7  
5.1.4. SPI Timing ............................................................................................................................................................................8  
5.2. ANALOG-TO-DIGITAL CONVERTER.....................................................................................................................................................13  
5.3. ADC S/H TIME................................................................................................................................................................................14  
5.4. MICROPHONE PREAMPLIFIER............................................................................................................................................................15  
6. ELECTRICAL SPECIFICATIONS..........................................................................................................................................................16  
6.1. ABSOLUTE MAXIMUM RATINGS .........................................................................................................................................................16  
6.2. DC CHARACTERISTICS (VDD=5.0V, TA = 25C) ..................................................................................................................................16  
7. APPLICATION CIRCUIT .......................................................................................................................................................................17  
8. PACKAGE/PAD LOCATIONS ...............................................................................................................................................................18  
8.1. ORDERING INFORMATION .................................................................................................................................................................18  
8.2. PACKAGE INFORMATION ...................................................................................................................................................................18  
8.2.1. SSOP 20.............................................................................................................................................................................18  
8.2.2. SSOP 16.............................................................................................................................................................................19  
9. DISCLAIMER........................................................................................................................................................................................20  
10.REVISION HISTORY.............................................................................................................................................................................21  
© Generalplus Technology Inc.  
Proprietary & Confidential  
2
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
12-BITS ADC WITH MICROPHONE PREAMPLIFIER  
1. GENERAL DESCRIPTION  
2. FEATURES  
The GPY0050A1 is a 12-bit sampling Analog-to-Digital Converter  
Wide operating range: 2.2V 5.5V  
(ADC) with  
a
synchronous serial interface and differential  
SPI Serial Interface  
One 12-bit ADC (12-bit SAR ADC)  
ADC Sampling Up to 125KHz  
microphone input preamplifier. The device contains an on-chip  
control register allowing control of ADC and microphone amplifier  
via the SPI interface.  
One Microphone Preamplifier with AGC  
3. BLOCK DIAGRAM  
VDD  
4
IN[3:0]  
S/H  
4
Comparator  
IN[7:4]  
DCLK  
CSN  
VDD  
SAR  
SPI  
ENMICB  
VDD/2  
12 bit DAC  
Control  
Interface  
Logic  
VMIC  
VCM  
DIN  
DOUT  
R2 60k  
MICP  
MICN  
R1 1.5k  
MIC  
PreAmp  
AGC  
OPA  
Control  
VCM  
MICOUT  
(IN7)  
OPI  
OPO  
(IN4)  
AGC VSS  
(IN6)  
Note: When user needs 8 channels ADC, we recommend replacing GPY0050A1 with GPY0050B.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
3
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
4. SIGNAL DESCRIPTIONS  
GPY0050A1-HG08x (SSOP-20)  
Mnemonic  
PIN No.  
Type  
Description  
Electrical Characteristics  
Serial data output. Data is shifted out on the falling edge of  
DCLK. This output is high impedance when CSN is high.  
Serial data input. If CSN is low, data is latched on the rising  
edge of DCLK.  
DOUT  
1
O
-
DIN  
2
I
-
DCLK  
3
4
I
Data Clock input  
-
CSN  
I
Chip select. Active Low  
-
VDD / VDDA  
IN0  
5 / 6  
7
P
Power VDD  
VDD=2.2V ~ 5.5V  
I
ADC input channel 0  
-
IN1  
8
I
ADC input channel 1  
-
IN2  
9
I
ADC input channel 2  
-
IN3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19 / 20  
I
ADC input channel 3  
-
OPO / IN4  
OPI  
O / I  
OPA Output. / ADC input channel 4  
OPA inverting input.  
-
I
O / I  
O / I  
I
-
AGC / IN6  
MICOUT / IN7  
MICN  
AGC control pin. / ADC input channel 6  
Microphone preamplifier output. / ADC input channel 7  
Inverting input of the differential microphone signal  
Non-inverting input of the differential microphone signal  
VDD/2. MIC Preamplifier signal ground  
Power Switch for Microphone bias  
Power Ground  
-
-
-
MICP  
I
-
VCM  
O
VDD/2  
VMIC  
O
-
-
VSSA / VSS  
P
GPY0050A1-HG01x (SSOP-16)  
Mnemonic  
PIN No.  
Type  
Description  
Electrical Characteristics  
Serial data output. Data is shifted out on the falling edge of  
DCLK. This output is high impedance, when CSN is high.  
Serial data input t. If CSN is low, data is latched on the rising  
edge of DCLK.  
DOUT  
1
O
-
DIN  
2
I
-
DCLK  
CSN  
3
4
I
Data Clock input  
-
I
Chip select. Active Low  
-
VDD  
5
P
Power VDD  
VDD=2.2V ~ 5.5V  
IN0  
6
I
ADC input channel 0  
-
IN1  
7
I
ADC input channel 1  
-
IN2  
-
I
ADC input channel 2  
-
IN3  
-
I
ADC input channel 3  
-
OPO / IN4  
OPI  
8
O / I  
OPA Output. / ADC input channel 4  
OPA inverting input.  
-
9
I
O / I  
O / I  
I
-
AGC / IN6  
MICOUT / IN7  
MICN  
MICP  
VCM  
10  
11  
12  
13  
14  
15  
16  
AGC control pin. / ADC input channel 6  
Microphone preamplifier output. / ADC input channel 7  
Inverting input of the differential microphone signal  
Non-inverting input of the differential microphone signal  
VDD/2. MIC Preamplifier signal ground  
Power Switch for Microphone bias  
Power Ground  
-
-
-
I
-
O
VDD/2  
VMIC  
VSS  
O
-
-
P
© Generalplus Technology Inc.  
Proprietary & Confidential  
4
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
4.1. PAD Assignment  
3
2
1
18  
18  
17  
CSN  
4
5
VCM  
16  
15  
VDD  
MICP  
MICN  
VDDA  
IN0  
5
6
14  
GFG507  
MICOUT / IN7  
13  
7
8
9
10  
11  
12  
4.2. Package Pin Assignment  
GPY0050A1-HG08x  
GPY0050A1-HG01x  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DOUT  
DIN  
VSS  
DOUT  
DIN  
VSS  
VSSA  
VMIC  
VCM  
MICP  
MICN  
VMIC  
3
DCLK  
CSN  
VDD  
VDDA  
IN0  
DCLK  
CSN  
VDD  
IN0  
VCM  
4
MICP  
5
MICN  
6
MICOUT / IN7  
AGC / IN6  
OPI  
7
MICOUT / IN7  
AGC / IN6  
OPI / IN5  
IN1  
8
IN1  
OPO / IN4  
9
IN2  
10  
SSOP-16 150mil  
IN3  
OPO / IN4  
SSOP-20 150mil  
Note: When user needs 8 channels ADC, we recommend replacing GPY0050A1 with GPY0050B.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
5
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
5. FUNCTIONAL DECRIPTIONS  
5.1. SPI Serial Interface  
The GPY0050A1 supports SPI Mode 0 and Mode 3 waveform.  
When CSN is low, the DIN is latched on the rising of DCLK and  
DOUT is shifted out on the falling edge of DCLK. If CSN is high,  
it will disable SPI interface, set DOUT pin in high impedance state  
and maintain the register data. When the GPY0050A1 is power  
on, the power on reset (POR) will set all of register to default  
value.  
Shift-in  
Shift-out  
CSN  
DCLK  
(SPI Mode 0)  
DCLK  
(SPI Mode 3)  
The first command bit, the Sbit, must always be high and  
indicate the start of command input. The second bit, R/Wbit,  
controls Read or Write register. The next two bits (CMM_ADDR)  
select register address. The last 4 bits (CMD_DATA) of data will  
be written to register.  
MSB  
DIN  
MSB  
DOUT  
High Impendence  
5.1.1. SPI Command Mode Setting  
Bit  
7(MSB)  
6
5
4
3
2
1
0(LSB)  
Function  
S
R/W  
CMD_ADDR  
CMD_DATA  
Bit  
Function  
Type  
Description  
Condition  
7
6
S
W
Start Bit. Control byte starts with first High bit on DIN.  
R/W  
R/W  
Read / Write signal.  
0 = write  
1 = read  
4-5  
0-3  
CMD_ADDR  
CMD_DATA  
R/W  
R/W  
Command Address  
00 ADC_CHSEL  
01 EN_CTRL  
10 Test Mode  
11 Test Mode  
Command Data  
5.1.2. Command Mode Address Format  
CMD_ADDR  
Function  
ADC_CHSEL  
EN_CTRL  
Type  
Description  
00  
01  
10  
R/W ADC channel selection signals  
R/W ADC / MIC enable controlling signals.  
R/W Test mode  
Test Mode  
© Generalplus Technology Inc.  
Proprietary & Confidential  
6
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
5.1.3. Command Mode Data Format  
CMD_ADDR = 00ADC_CHSEL  
CMD_DATA  
Function  
Description  
Conditions  
111 = IN7  
110 = IN6  
101 = IN5 - Not available  
100 = IN4  
[3:1]  
ADC_CHSEL  
ADC channel select signals.  
011 = IN3  
010 = IN2  
001 = IN1  
000 = IN0 (Default)  
1 = Reset  
[0]  
SFT_RST  
Software reset  
0 = Active (Default)  
Note: When microphone preamplifier enable (EN_MIC=1), ADC_CHSEL cannot be set IN5~IN7 channel.  
CMD_ADDR = 01: EN_CTRL  
CMD_DATA  
Function  
Description  
Conditions  
1 = Enable  
[3]  
EN_ADBIAS  
ADC and ADC bias enable signal.  
0 = Disable (Default)  
1 = 10-bit mode  
0 = 12-bit mode (Default)  
1 = Enable  
[2]  
[1]  
[0]  
MOD_ADC  
EN_AGC  
EN _MIC  
ADC bit mode select signal.  
Microphone AGC Control  
Microphone enable signal.  
0 = Disable (Default)  
1 = Enable  
0 = Disable (Default)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
7
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
5.1.4. SPI Timing  
CSN  
1
8
1
8
1
8
1
8
1
DCLK  
Command  
Hi Byte  
Low Byte  
Hi Byte  
Low Byte  
DIN  
S W 0 1  
1 0 0 0  
S W 0 0  
0 0 1 0  
Enable ADC  
Select IN1  
(MSB)  
11 10 9  
(LSB)  
DOUT  
8 7 6 5 4 3 2 1 0  
IN1 ADC Data  
ADC  
MUX  
ADC Select IN0  
ADC Select IN1  
ADC  
S/H  
Sampling Time = 3*DCLKs  
Figure 1. SPI Model 0 ADC 12 bit Conversion Timing  
CSN  
1
8
1
8
1
8
1
8
1
DCLK  
Command  
Hi Byte  
Low Byte  
Hi Byte  
Low Byte  
DIN  
S W 0 1  
1 0 0 0  
S W 0 0  
0 0 1 0  
Enable ADC  
Select IN1  
(MSB)  
11 10 9  
(LSB)  
DOUT  
8 7 6 5 4 3 2 1 0  
IN1 ADC Data  
ADC  
MUX  
ADC Select IN0  
ADC Select IN1  
ADC  
S/H  
Sampling Time = 3*DCLKs  
Figure 2. SPI Model 3 ADC 12-bit Conversion Timing  
© Generalplus Technology Inc.  
Proprietary & Confidential  
8
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
CSN  
1
8
1
8
1
8
1
8
1
DCLK  
Command  
Hi Byte  
Low Byte  
Hi Byte  
Low Byte  
DIN  
S W 0 1  
1 1 0 0  
S W 0 0  
0 0 1 0  
Enable ADC  
Select IN1  
(MSB)  
9
(LSB)  
DOUT  
8 7 6 5 4 3 2 1 0  
IN1 ADC Data  
ADC  
MUX  
ADC Select IN0  
ADC Select IN1  
ADC  
S/H  
Sampling Time = 3*DCLKs  
Figure 3. SPI Model 0 ADC 10-bit Conversion Timing  
CSN  
1
8
1
8
1
8
1
8
1
DCLK  
Command  
Hi Byte  
Low Byte  
Hi Byte  
Low Byte  
DIN  
S W 0 1  
1 1 0 0  
S W 0 0  
0 0 1 0  
Enable ADC  
Select IN1  
(MSB)  
9
(LSB)  
0
DOUT  
8 7 6 5 4 3 2 1  
IN1 ADC Data  
ADC  
MUX  
ADC Select IN0  
ADC Select IN1  
ADC  
S/H  
Sampling Time = 3*DCLKs  
Figure 4. SPI Model 3 ADC 10-bit Conversion Timing  
© Generalplus Technology Inc.  
Proprietary & Confidential  
9
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
CSN = Low  
1
8
1
8
1
8
1
8
1
DCLK  
Hi Byte  
Low Byte  
Hi Byte  
Low Byte  
Hi Byte  
DIN  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
S W 0 0  
0 0 1 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
Select IN1  
DOUT 11 10 9  
8
7
6
5
4
3
2
1
0
11 10 9  
8
7
6
5
4
3
2
1
0
11 9 8 7 6  
IN0 ADC Data  
IN0 ADC Data  
IN1 ADC Data  
ADC MUX  
ADC MUX Select IN0  
ADC MUX Select IN1  
ADC S/H  
Sampling Time = 3*DCLKs  
Figure 5. Channel switch during continuous ADC 12-bit conversion.  
CSN = Low  
1
8
1
8
1
8
1
8
1
DCLK  
Hi Byte  
Low Byte  
Hi Byte  
Low Byte  
Hi Byte  
DIN  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
S W 0 0  
0 0 1 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
Select IN1  
DOUT  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9 8 7 6 5  
IN0 ADC Data  
IN0 ADC Data  
IN1 ADC Data  
ADC MUX Select IN0  
ADC MUX Select IN1  
ADC MUX  
ADC S/H  
Sampling Time = 3*DCLKs  
Figure 6. Channel switch during continuous ADC 10-bit conversion.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
10  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
CSN  
1
8
1
8
1
8
1
8
DCLK  
Command  
(Dummy)  
Command  
(Dummy)  
Hi Byte  
Low Byte  
DIN  
S
R
0 0 0 0 0 0  
S W 0 0  
0 0 1 0  
0 0 0 0 0 0 0 0  
S
R
0 0 0 0 0 0  
Select IN1  
DOUT  
11 10 9  
8 7 6 5 4 3 2 1 0  
IN0 ADC Data  
ADC MUX  
ADC S/H  
ADC MUX Select IN0  
ADC MUX Select IN1  
Figure 7. Channel switch during discontinuous ADC 12-bit conversion.  
CSN  
1
8
1
8
1
8
1
8
DCLK  
Command  
(Dummy)  
Command  
(Dummy)  
Hi Byte  
Low Byte  
DIN  
S
R
0 0 0 0 0 0  
S W 0 0  
0 0 1 0  
0 0 0 0 0 0 0 0  
S
R
0 0 0 0 0 0  
Select IN1  
DOUT  
9
8
7
6
5
4
3
2
1
0
IN0 ADC Data  
ADC MUX  
ADC S/H  
ADC MUX Select IN0  
ADC MUX Select IN1  
Figure 8. Channel switch during discontinuous ADC 10-bit conversion.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
11  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
CSN = Low  
1
8
1
8
1
8
1
8
1
DCLK  
Hi Byte  
Low Byte  
Hi Byte  
Low Byte  
Hi Byte  
DIN  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
S W 0 0  
0 0 1 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
Select IN1  
DOUT  
9
8
7
6
5
4
3
2
1
0
9 8 7 6 5 4 3 2  
IN1 ADC Data  
IN1 ADC Data  
Software  
Reset  
EN_ADBIAS  
MOD_ADC  
ADC MUX  
ADC S/H  
ADC MUX Select IN1  
ADC MUX Select IN0  
Figure 9. Software Reset Trigger.  
CSN  
DCLK  
DIN  
1
8
1
8
1
8
S
R
0 0  
X X X X  
S
R
0 1  
X X X X  
S
R
0 1  
X X X X  
DOUT  
3
2
1
0
3
2
1
0
3 2 1 0  
Register  
ADC_CHSEL  
Register  
EN_CTRL  
Register  
Test_Mode  
X: Dont Care  
Figure 11. Control registers read-back.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
12  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
5.2. Analog-to-Digital Converter  
GPY0050A1 ADC is a 12-bit Successive Approximation Register  
(SAR) ADC. The ADC provides 12-bit / 10-bit conversion mode  
operation and 8 analog input channels (see Figure 12). The  
converter digitizes the input signal from 0V to full-scale voltage  
(see Figure 13). The internal applied voltage reference value  
FS = Full Scale Voltage = VDD  
1LSB=VDD / ( 212 1 ) = VDD / 4095 12bit Mode  
1LSB=VDD / ( 210 1 ) = VDD / 1023 10bit Mode  
11111  
11110  
11101  
11100  
1LSB  
determines the full-scale input voltage range.  
reference of the GPY0050A1 is fixed to VDD  
The voltage  
.
User can operate the ADC in continuing or discontinuing  
conversion mode by CSN pin. In continuing conversion mode,  
CSN pin is always kept low.  
The GPY0050A1 requires  
00011  
00010  
00001  
00000  
16-DCLKs per conversion (see Figure 5 & 6).  
Continuous Mode Sampling Rate = fDCLK / 16  
In discontinuing conversion mode, the ADC sampling and holding  
signal (ADC_S/H) is controlled by CSN pin. The ADC will hold  
analog value on CSN falling edge, and need 24-DCLKs to  
complete conversion (see Figure 7 & 8). In discontinuing  
conversion mode, user can easily control sampling and holding  
time by CSN pin.  
0V  
VDD (FS)  
Input voltage  
Figure 13. Ideal Input Voltage and Output Codes  
The ADC_CHSEL register is used to select ADC input channel  
(IN0 ~ IN7). The IN5 ~ IN7 pins are shared with microphone  
preamplifier block. Therefore, the MUX cannot be set to IN5 ~  
IN7 channel when microphone preamplifier is enabled. When  
user needs  
8
channels ADC, we recommend replacing  
GPY0050A1 with GPY0050B.  
IN0  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
MUX  
S/H  
Comp  
SAR  
Control  
Logic  
12-bit  
DAC  
Figure 12. ADC Function Block Diagram  
© Generalplus Technology Inc.  
Proprietary & Confidential  
13  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
5.3. ADC S/H Time  
Using the input equivalent circuit in Figure 14, the capacitance  
The Sample and Hold error must be less than LSB/2.  
charging voltage is given by:  
tc  
1LSB = VDD / (2N -1)  
VIN VS (1eRt C  
)
IN  
LSB/2 VDD / 2N+1 > Error x VS.MAX  
where  
Rt = RS + RIN  
N = 10 ADC 10 bits Mode  
tc = ADC S/H time  
N = 12 ADC 12 bits Mode  
Error: Refer Table 1 to find the minimum time constant to meet the  
above conditions  
Input Signal  
GPY0050A1  
VIN  
Find minimal S/H Time  
M x (Rt x CIN)  
RS  
INx  
RIN  
VS  
VS: Input Signal  
RS: Equivalent impedance of Input Signal  
Example: VDD=5V, VS.MAX=5V, RS=10kΩ, RIN=200Ω & CIN=15pF,  
CIN  
RIN: S/H Switch-On Resistance (200Ω)  
ADC 12bits Mode.  
CIN: S/H Capacitance (15pF)  
VIN: The voltage across Capacitor  
Select 10 time constants,  
LSB/2 VDD / 2N+1 = 5 / 213 = 0.61mV  
Figure 14. ADC input equivalent circuit  
Error x VS.MAX = 0.00167% x 5 = 0.23mV < LSB / 2  
Then we can show in the following table the percentage voltage  
value for the capacitor in a RC charging circuit for a given time  
constant.  
The minimal S/H time must be greater than 10 time constants.  
10 time RC constants = Rt xCIN = 10 x (10k + 200) x 15p = 1.53us  
M x (Rt x CIN)  
VIN / VS  
Error : ( 1-VIN / VS )  
Time Constant  
When the ADC works in continues mode, sampling time =  
3*(1/DCLK) must be greater than or equal to 1.53us.  
1 time constant  
3 time constants  
5 time constants  
7 time constants  
9 time constants  
10 time constants  
11 time constants  
63.212%  
95.021%  
99.326%  
99.909%  
99.988%  
99.995%  
99.998%  
36.78794%  
4.97871%  
0.67379%  
0.09119%  
0.01234%  
0.00454%  
0.00167%  
Find SPI Clock DCLK 3 / 1.53us = 1.96MHz  
Table 1. RC Charging Table  
© Generalplus Technology Inc.  
Proprietary & Confidential  
14  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
5.4. Microphone Preamplifier  
The GPY0050A1 Microphone Preamplifier consists of several  
distinct circuits: microphone bias switch (M1), first stage amplifier  
(MIC Preamplifier), second stage amplifier (OP-Amplifier) and  
AGC control circuitry, shown in Figure 15.  
set to maximum value (Gain=15 @ VDD=3.3V).  
The second stage amplifier consists of R1, R2 and OPA. The  
default gain is (1+R2/R1) = 41. Users can make a series  
resistance reduce the gain of second stage amplifier.  
When register EN_MIC is set to 1, the internal switch M1 will be  
turned on and VMIC pin will be shorted to VDD. In order to  
reduce power noise, recommend RC time constant of (RVMIC×CVMIC  
Gain of second stage amplifier = 1 + R2 / (R1+ROP1)  
)
The AGC Control senses OPO pin output waveform. When VOPO  
> VDD 0.3or VOPO < 0.3, the AGC will pump CAGC capacitor.  
The AGC voltage will rise to reduce gain of first stage amplifier  
until VOPO < VDD 0.3or VOPO > 0.3. In order to avoid the  
noise generated by the AGC Control, recommend capacitance of  
the CAGC must be greater than 2.2uF and resistance of the RAGC  
must be greater than 470.  
must be greater than 8ms and resistance of the RVMIC must be less  
than 2kΩ.  
The first stage microphone amplifier (MIC Preamplifier) is  
difference input preamplifier. The gain can be varied by the AGC.  
When AGC pin voltage rises, the MIC preamplifier will reduce the  
gain. If AGC function is turned off (EN_AGC=0), the gain will be  
VDD  
VDD  
RVMIC  
1k  
ENMICB  
VDD/2  
M1  
VMIC  
VCM  
CVMIC  
10uF  
RMIC1 CVCM  
3k  
1uF  
CMICP  
0.22uF  
MICP  
MICN  
R2 60k  
R1 1.5k  
MIC  
PreAmp  
MIC  
AGC  
OPA  
Control  
CMICN  
0.22uF  
RMIC2  
3k  
VCM  
MICOUT  
OPO  
OPI  
AGC  
COP1  
VSS  
0.22uF  
ROP1  
3k  
COP2  
4.7nF  
CAGC  
4.7uF  
RAGC  
470k  
Figure 15. Microphone Preamplifier Block Diagram and Application Circuit  
© Generalplus Technology Inc.  
Proprietary & Confidential  
15  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
6. ELECTRICAL SPECIFICATIONS  
6.1. Absolute Maximum Ratings  
Characteristics  
Symbol  
Ratings  
DC Supply Voltage  
V+  
VIN  
TA  
< 7.0V  
Input Voltage Range  
-0.5V to V+ + 0.5V  
0to + 60℃  
Operating free-air Temperature Range  
Storage Temperature  
-50to + 150℃  
TSTO  
Note: Stresses beyond those given in the Absolute Maximum Rating table may cause permanent damage to the device. For normal operational conditions,  
see AC/DC Electrical Characteristics.  
6.2. DC Characteristics (VDD=5.0V, TA = 25C)  
Item  
Operation Voltage  
Test Conditions  
Symbol  
VDD  
Min.  
Typ.  
Max.  
5.5  
1.0  
3.5  
2
Unit  
V
2.2  
-
Shutdown Current  
ISTBY  
IDD  
-
-
0.1  
uA  
Operating Current  
VDD = 5.0V  
2.2  
mA  
DCLK Frequency  
-
-
-
-
-
-
MHz  
DCLKs  
DCLKs  
KHz  
bits  
ADC Conversion Time  
ADC Acquisition Time  
ADC Conversion Rate  
Resolution of ADC  
-
16  
3
-
-
DCLK/16  
FCONV  
125  
12  
RESO  
-
Signal-to-Noise Plus Distortion of  
ADC from Line In  
SINAD  
-
64  
-
dB  
Effective Number of Bit  
Integral Non-Linearity of ADC  
Differential Non-Linearity of ADC  
No Missing Code  
ENOB  
INL  
-
-
10.5  
±1.0  
±0.8  
12  
-
-
bits  
LSB  
LSB  
bits  
KΩ  
DNL  
-
-
-
-
Microphone Input Impedance  
Microphone AGC Gain  
Microphone Total Harmonic  
Distortion  
RIN  
-
10  
-
VIN=15mV~300mV, CAGC=47uF  
VIN=20mV, f = 1.0KHz  
Gain  
6
-
40  
dB  
THD+N  
-
60  
-
dB  
© Generalplus Technology Inc.  
Proprietary & Confidential  
16  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
7. APPLICATION CIRCUIT  
The demo board circuit of the GPY0050A1 is shown in Figure 16. User can easily evaluate GPY0050A1 performance by the demo board.  
In order to reduce power noise from other device, suggest connecting Power and GND Line from power source, adding power filter for the  
GPY0050A1 and dont share power and ground line with other devices. (See Figure 17 & 18)  
GPY0050A1  
Figure 16. Demo Board Circuit of the GPY0050A1  
Power Source  
Power Source  
MCU  
And other  
circuit  
MCU  
And other  
circuit  
BAT  
CPWR  
BAT  
CPWR  
Power Noise Filter  
Power Noise Filter  
GND  
GND  
Bead  
RFLT  
100  
GPY0050A1  
with  
GPY0050A1  
with  
CFLT  
CFLT  
100uF  
RFLT  
100  
100uF  
application  
circuit  
application  
circuit  
Bead  
Notice: Connect Power and GND from Power Source  
Notice: Connect Power and GND from Power Source  
Figure 17. Application Suggestions for Reducing Power Noise  
Figure 18. Application Suggestions for reducing power noise  
© Generalplus Technology Inc.  
Proprietary & Confidential  
17  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
8. PACKAGE/PAD LOCATIONS  
8.1. Ordering Information  
Product Number  
Package Type  
GPY0050A1 - C  
Chip form  
GPY0050A1 - HG08x  
GPY0050A1 - HG01x  
GPY0050A1 - EG08x  
Green Package - SSOP20 (150mil)  
Green Package - SSOP16 (150mil)  
Green Package (Tape & Reel) - SSOP20 (150mil)  
Green Package (Tape & Reel) - SSOP16 (150mil)  
GPY0050A1 - EG01x  
Note: Package form number (x = 1 - 9, serial number).  
8.2. Package Information  
8.2.1. SSOP 20  
Dimension in inch  
Symbol  
Min.  
0.053  
0.004  
-
Typ.  
Max.  
0.069  
0.010  
0.059  
0.012  
0.010  
0.344  
0.244  
0.157  
A
A1  
A2  
b
0.064  
0.006  
-
0.008  
0.007  
0.337  
0.291  
0.150  
-
-
C
D
0.341-  
0.236  
E
E1  
e
0.154  
0.025 BASIC  
0.025  
L
0.016  
0
0.050  
8
L1  
θº  
0.014 BASIC  
-
© Generalplus Technology Inc.  
Proprietary & Confidential  
18  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
8.2.2. SSOP 16  
Dimension in inch  
Symbol  
Min.  
0.053  
0.004  
0.008  
0.008  
0.189  
0.228  
0.150  
0.016  
Typ.  
Max.  
0.069  
0.010  
0.012  
0.011  
0.197  
0.244  
0.157  
0.050  
A
A1  
b
-
-
-
b1  
D
-
-
E
-
E1  
L
-
-
e
0.025 BASIC  
-
θº  
0
8
© Generalplus Technology Inc.  
Proprietary & Confidential  
19  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
9. DISCLAIMER  
The information appearing in this publication is believed to be accurate.  
Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the  
terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this  
publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO  
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter  
the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other  
information in this publication are current before placing orders. Products described herein are intended for use in normal commercial  
applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support  
equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that  
application circuits illustrated in this document are for reference purposes only.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
20  
Sep 25, 2017  
Version: 1.1  
GPY0050A1  
10. REVISION HISTORY  
Date  
Revision #  
Description  
Page  
3
Modify BLOCK DIAGRAN in section 3.  
Modify SIGNAL DESCRIPTIONS in section 4.  
Modify Package Pin Assignment in section 4.2.  
Modify Command Mode Data Format in section 5.1.3.  
Add ADC S/H Time in section 5.3.  
4
5
Sep. 25, 2017  
1.1  
7
14  
17  
17  
20  
Modify APPLICATION CIRCUIT in section 7.  
Modify Order Information in section 8.1.  
Original  
Nov. 03, 2016  
JUL. 11, 2016  
1.0  
0.1  
© Generalplus Technology Inc.  
Proprietary & Confidential  
21  
Sep 25, 2017  
Version: 1.1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY