GX4002-INE3 [GENNUM]

Dynamic on-chip power management control;
GX4002-INE3
型号: GX4002-INE3
厂家: GENNUM CORPORATION    GENNUM CORPORATION
描述:

Dynamic on-chip power management control

文件: 总74页 (文件大小:3209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace Equalization and Output  
De-Emphasis  
Key Features  
Description  
2 x 2 crosspoint switch architecture  
Integrated CDR with 9.95 to 11.3Gb/s and 14.025Gb/s  
reference-free operation  
The GX4002 is a low-power, high-speed 2 x 2 crosspoint  
switch, with robust signal conditioning circuits for driving  
and receiving high-speed signals through backplanes.  
Automatic rate detect  
The device consumes as low as 600mW of power (typical)  
with all channels operational. Unused portions of the chip  
can be turned off in order to further reduce power  
consumption.  
Dynamic on-chip power management control  
Multiple user-programmable power-down saving  
modes  
Independent programmable input trace equalization to  
reduce deterministic jitter (ISI)  
The signal conditioning features of the GX4002 include  
per-input clock and data recovery (CDR), programmable  
equalization and per-output programmable de-emphasis.  
The input equalizer removes ISI jitter—typically caused by  
PCB trace losses—by opening the input data eye in  
applications where long PCB traces are used. The  
integrated CDR “resets” the jitter budget, effectively  
erasing the signal distortion that can occur during  
transmission.  
Independent programmable output pre-emphasis for  
driving long board traces  
2
Digital control through I C interface  
Integrated analog-to-digital converter, which provides  
access to digital diagnostic information on supply  
voltage and die temperature  
Integrated eye monitor and PRBS7 generator/checker  
Polarity invert, output mute functions available  
Single 3.3V supply (±5%)  
Output pre-emphasis capability provides a boost of the  
high-frequency content of the output signal, such that the  
data eye remains open after passing through a long  
interconnect of PCB traces and connectors.  
On-chip I/O termination  
Low power consumption: 600mW typical  
The GX4002 features an integrated analog-to-digital  
converter, which, through the serial interface, provides  
digital diagnostic information about supply voltage and die  
temperature.  
Š
Low power option for 4.25 & 8.5Gb/s operation:  
415mW typical  
5mm x 5mm 32-pin QFN package  
-40°C to +100°C case operation  
RoHS-compliant  
The GX4002 device is packaged in a small-outline 5mm ×  
5mm 32-pin, high-frequency QFN package with exposed  
pad.  
Applications  
The GX4002 is Pb-free, and the encapsulation compound  
does not contain halogenated flame retardant. This  
component and all homogeneous sub components are  
RoHS-compliant.  
Enterprise and carrier applications  
10GbE, Fibre Channel and InfiniBand networks  
Redundancy switching  
Retimer for 10Gb/s and 14Gb/s backplane and  
linecards  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
1 of 74  
www.gennum.com  
Proprietary & Confidential  
55972 - 0  
March 2012  
I2C  
Temp Sensor  
Supply Sensor  
Digital Core  
CDR with  
Eye Monitor  
Trace  
EQ  
SDI0/SDI0  
Ch0  
Driver  
SDO0/SDO0  
2 x 2  
PRBS 7  
Generator  
PRBS 7  
Checker  
Differential  
Cross-point  
Switch Matrix  
Ch1  
Driver  
SDO1/SDO1  
Trace  
EQ  
CDR with  
Eye Monitor  
SDI1/SDI1  
Figure A: GX4002 Functional Block Diagram  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
2 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Revision History  
Version  
ECR  
Date  
Changes and / or Modifications  
Ability to propagate loss of lock to Ch0FAULT pin  
was added.  
0
157889  
March 2012  
Converted document to a Data Sheet. Updates  
throughout. Removed typical temperature  
monitor accuracy. Removed typical voltage  
monitor accuracy. Added AC common-mode  
channel characteristics. Added register 101 bits  
[5:3] to Table 7-1: Configuration and Status  
Register Map.  
November  
2011  
C
157185  
Correction to pin 21 and 23 in Table 1-1: Pin  
Descriptions.  
B
155955  
155765  
March 2011  
A
February 2011  
New document.  
Contents  
Key Features........................................................................................................................................................1  
Applications.........................................................................................................................................................1  
Description...........................................................................................................................................................1  
1. Pin Out...............................................................................................................................................................5  
1.1 Pin Assignment ..................................................................................................................................5  
1.2 Pin Descriptions ................................................................................................................................6  
2. Electrical Characteristics ............................................................................................................................8  
2.1 Absolute Maximum Ratings ..........................................................................................................8  
2.2 DC Electrical Characteristics ........................................................................................................8  
2.2.1 Power Features......................................................................................................................9  
2.3 AC Electrical Characteristics ..................................................................................................... 10  
2.4 Required Initialization Settings ................................................................................................ 12  
3. Detailed Description.................................................................................................................................. 13  
3.1 Multirate CDR Functionality ...................................................................................................... 13  
3.1.1 Rate Selection and Rate Detection............................................................................... 13  
3.1.2 Auto Retimer Bypass ........................................................................................................ 16  
3.2 Channel 0 Path (Ch0) .................................................................................................................... 17  
3.2.1 Ch0 Equalization................................................................................................................ 17  
3.2.2 Ch0 PLL Variable Loop Bandwidth.............................................................................. 18  
3.2.3 Channel 0 Output Polarity Invert................................................................................. 18  
3.3 Channel 1 Path (Ch1) .................................................................................................................... 19  
3.3.1 Integrated Limiting Amplifier ....................................................................................... 19  
3.3.2 Ch1 Equalization................................................................................................................ 19  
3.3.3 Ch1 PLL Variable Loop Bandwidth.............................................................................. 20  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
3 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.3.4 Pre-Emphasis Driver with Auto-Mute........................................................................ 21  
3.3.5 Channel 1 Output Polarity Invert................................................................................. 22  
3.4 Crosspoint ........................................................................................................................................ 23  
3.5 Status Indicators ............................................................................................................................ 27  
3.5.1 Ch0 Loss Of Signal (LOS) ................................................................................................. 27  
3.5.2 Ch1 Loss Of Signal............................................................................................................. 29  
3.5.3 Loss Of Lock (LOL)............................................................................................................. 32  
3.5.4 Ch0FAULT - Channel 0 Fault......................................................................................... 33  
3.6 Test Features ................................................................................................................................... 33  
3.6.1 PRBS Generator and Checker........................................................................................ 34  
3.6.2 Eye Monitor & Peak Detector......................................................................................... 36  
3.7 Digital Diagnostics ........................................................................................................................ 38  
3.7.1 Analog to Digital Converter (ADC) .............................................................................. 38  
3.8 Power Control Options ................................................................................................................ 48  
3.9 Device Reset .................................................................................................................................... 49  
3.9.1 Reset State During Power-up......................................................................................... 49  
3.9.2 RESET Timing...................................................................................................................... 50  
3.9.3 I/O and Register States During and After Reset ...................................................... 51  
3.10 Digital Control Interface ........................................................................................................... 51  
3.10.1 I2C Host Interface Mode................................................................................................ 51  
4. Typical Application Circuit ..................................................................................................................... 53  
4.1 Power Supply Filter Recommendations ................................................................................ 53  
4.2 Power Supply Domains ............................................................................................................... 54  
5. Layout Considerations.............................................................................................................................. 55  
6. Input/Output Equivalent Circuits......................................................................................................... 56  
7. Package and Ordering Information...................................................................................................... 59  
7.1 Package Dimensions ..................................................................................................................... 59  
7.2 Recommended PCB Footprint ................................................................................................... 59  
7.3 Packaging Data ............................................................................................................................... 60  
7.4 Solder Reflow Profile .................................................................................................................... 60  
7.5 Marking Diagram ........................................................................................................................... 61  
7.6 Ordering Information ................................................................................................................... 61  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
4 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
1. Pin Out  
1.1 Pin Assignment  
32  
25  
31  
26  
30  
29  
28  
27  
SDO0VCC  
SDO0VEE  
NC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
GND  
Ch0LF  
Ch0VCOVEE  
Ch0VCOFILT  
SDI0  
GX4002  
32-pin QFN  
(top view)  
NC  
RS1  
SDI1  
SDI0  
SDI1  
Ch0VEE  
Ch0VCC  
Ch1LOS  
9
10  
11  
12  
13  
14  
15  
16  
Ground Pad  
(bottom of package)  
Figure 1-1: GX4002 Pin Assignment  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
5 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
1.2 Pin Descriptions  
Table 1-1: Pin Descriptions  
Pin #  
Name  
Type  
Description  
1
2
SDO0VCC  
SDO0VEE  
NC  
Power  
Ground  
Power supply for channel 0 path output.  
Ground for channel 0 path output.  
No connect.  
3, 4  
Input Digital LVTTL/LVCMOS-compliant input.  
Rate Select Input for the Ch1 Signal Path.  
Digital  
Input  
5
RS1  
See Section 3.1 Multirate CDR Functionality for more details.  
6, 7  
SDI1, SDI1  
Input  
High-speed input for the channel 1 signal path.  
SFP+-compliant active-high digital output. Open-collector Loss-Of-Signal indicator for  
the channel 1 signal path. Requires an external pull-up resistor.  
Digital  
Output  
When Ch1LOS is LOW, a valid channel 1 input signal has been detected.  
When Ch1LOS is high-impedance, a valid channel 1 input signal has not been detected.  
Configurable as LVTTL/LVCMOS-compliant output.  
8
Ch1LOS  
9
Ch1LF  
Ch1VCOVEE  
Ch1VCOFILT  
Ch1VEE  
Passive  
Ground  
Passive  
Ground  
Power  
Loop filter capacitor connection for the channel 1 signal path.  
Ground for the channel 1 signal path VCO.  
10  
11  
12  
13  
Filter for the channel 1 signal path VCO supply.  
Ground for the channel 1 signal path and output.  
Power supply for the channel 1 signal path and output.  
Ch1VCC  
SDO1,  
SDO1  
14, 15  
Output  
High-speed differential output for the channel 1 signal path.  
Digital active-low LVTTL/LVCMOS-compliant Schmitt-trigger input.  
Device reset control pin.  
Digital  
Input  
16  
RESET  
Includes an internal pull-down resistor to hold the device in a reset state during  
power-up, should this pin be externally disconnected.  
17  
18  
Ch0VCC  
Ch0VEE  
Power  
Ground  
Input  
Power supply for the channel 0 signal path.  
Ground for the channel 0 signal path.  
19, 20  
21  
SDI0, SDI0  
Ch0VCOFILT  
Ch0VCOVEE  
Ch0LF  
High-speed input for the channel 0 signal path.  
Filter for the channel 0 signal path VCO supply.  
Ground for the channel 0 signal path VCO.  
Loop filter capacitor connection for the Ch0 signal path.  
Connect to GND.  
Passive  
Ground  
Passive  
Ground  
22  
23  
24  
GND  
Digital  
Input/  
Output  
Digital active-high serial data signal for the host interface.  
Bi-directional, I2C-compliant, open-drain driver/receiver.  
25  
26  
SDA  
SCL  
Digital  
Input  
Digital active-high clock input signal for the serial host interface.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
6 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 1-1: Pin Descriptions (Continued)  
Pin #  
Name  
Type  
Description  
27  
28  
VREG  
Passive  
LDO regulator capacitor connection. (1.8V)  
DIGVSS  
Ground  
Ground for low-speed digital I/O and internal logic.  
Input Digital LVTTL/LVCMOS-compliant input.  
Rate Select Input for the Ch0 Signal Path.  
Digital  
Input  
29  
RS0  
See Section 3.1 Multirate CDR Functionality for more details.  
SDO0,  
SDO0  
30, 31  
Output  
High-speed differential output for the channel 0 signal path.  
SFP+-compliant active-high digital output. Open-collector Ch0FAULT indicator. Requires  
an external pull-up resistor.  
When Ch0FAULT is LOW, the channel 0 path output is operating properly.  
When Ch0FAULT is high-impedance, the device has detected a fault condition.  
Digital  
Output  
32  
Ch0FAULT  
The Ch0FAULT is latched, and may be cleared via the host interface or by strobing the  
Ch0DSBL pin.  
Can be configured as a LVTTL/LVCMOS compatible output.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
7 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
2. Electrical Characteristics  
2.1 Absolute Maximum Ratings  
Parameter  
Value  
Supply Voltage  
-0.5 to +3.8VDC  
Input ESD Voltage  
2kV  
Storage Temperature Range  
-50°C < TA < 125°C  
Input Voltage Range (any input pin)  
Solder Reflow Temperature  
-0.3 to 3.8VDC*  
260°C  
*NOTE: Stress above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only, and functional operation of the device at  
these or any other conditions above those listed in the operational sections of this  
specification is not applied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
2.2 DC Electrical Characteristics  
Table 2-1: DC Electrical Characteristics  
VCC = +2.8V to +3.47V, TC = -40°C to 100°C. Typical values are VCC = +3.3V and TA = 25°C, unless otherwise specified.  
Specifications assume default setting to end-terminated 50Ω transmission lines, unless otherwise stated. Typical Data Rate = 14.025Gb/s  
Note: mApp refers to mA peak-to-peak value.  
Parameter  
Conditions  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
VCC  
Supply Voltage  
Power  
2.8  
3.3  
3.47  
800  
V
600  
mW  
1, 2  
Control Logic Input Specifications  
VIL  
VIH  
IIL  
Input Low Voltage  
Input High Voltage  
0
0.4  
V
V
VCC  
2.0  
VIL = 0V  
Input Low Current  
Input High Current  
-100  
μA  
VIH = 3.3V,  
VCC = 3.3V  
IIH  
100  
0.2  
μA  
Status Indicator Output Specifications  
Indicator Output Logic  
LOW  
I
SINK(max) = 3mA  
VOL  
0.4  
V
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
8 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 2-1: DC Electrical Characteristics (Continued)  
VCC = +2.8V to +3.47V, TC = -40°C to 100°C. Typical values are VCC = +3.3V and TA = 25°C, unless otherwise specified.  
Specifications assume default setting to end-terminated 50Ω transmission lines, unless otherwise stated. Typical Data Rate = 14.025Gb/s  
Note: mApp refers to mA peak-to-peak value.  
Parameter  
Conditions  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
Channel 0 Specifications  
Input Termination (SDI0)  
Differential  
80  
100  
50  
120  
Ω
Ω
Output Termination (SDO0)  
Channel 1 Specifications  
Input Termination  
(Ch1SDIP/N)  
Differential  
Differential  
80  
80  
100  
100  
120  
120  
Ω
Ω
Output Termination  
(Ch1SDOP/N)  
NOTES:  
1. Typical Conditions: T = 25°C, V = 3.3V. Maximum Conditions: T = 100°C, V = 3.467V.  
2. Each output terminated.  
2.2.1 Power Features  
Table 2-2: Power Features  
Typical  
Baseline  
Power  
(mW)  
Typical  
Incremental  
Power  
Feature  
Section  
Configuration  
Description  
(mW)  
GX4002 Base  
600  
SDO1 Pre-emphasis = 3dB @ 600mVppd  
PRBS7 Generator  
20  
3.3.4  
3.6.1  
Path for PRBS7 generator to  
Ch1SDO is on.  
115  
PRBS7 Checker  
Diag + ADC  
125  
14  
PRBS7 checker is on.  
3.6.1  
3.7  
Temperature, Supply Sensor, ADC.  
All, Ch0 and Ch1 horizontal and  
vertical eye monitors are on.  
Eye Monitor + ADC  
Ch0 EQ Boost  
50  
0
3.6.2  
3.2.1  
GX4002 with Ch0 CDR bypassed and  
powered-down  
-90mW  
GX4002 with Ch1 & Ch0 CDR bypassed and  
powered-down  
-185mW  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
9 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
2.3 AC Electrical Characteristics  
Table 2-3: AC Electrical Characteristics  
VCC = +2.8V to +3.47V, TC = -40°C to 100°C. Typical values are VCC = +3.3V and TA = 25°C, unless otherwise specified.  
Specifications assume default setting to end-terminated 50Ω transmission lines, unless otherwise stated. Typical Data Rate = 14.025Gb/s  
Parameter  
Conditions  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
10G configuration  
9.95  
11.3  
Gb/s  
Gb/s  
1
1
Data Rate  
16GFC configuration  
14.025  
Channel 0 Specifications  
Input Amplitude Range  
differential  
120  
20  
1
6
850  
100  
mVppd  
mVppd  
dB  
6
LOS Threshold Level Setting  
Range  
Equalization Gain  
Jitter Transfer Bandwidth  
Setting Range  
PRBS31 data  
0.1  
23  
MHz  
UIpp  
ms  
Total Output Jitter  
0.25  
0.5  
16G FC mode: loop  
filter cap = 100nF  
Ch0 CDR Lock Time  
Ch0SDO Output Rise/Fall  
Time (minimum)  
tr, tf  
tr, tf  
20% - 80%  
20% - 80%  
20  
ps  
ps  
7
8
Ch0SDO Output Rise/Fall  
Time (maximum)  
40  
Channel 1 Specifications  
Input Sensitivity  
10  
mVppd  
mVppd  
Input Overload  
1200  
Limiting Amplifier  
Equalization  
maximum EQ setting  
14  
dB  
2
Jitter Transfer Bandwidth  
Setting Range  
1
0.1  
23  
0.25  
MHz  
UIpp  
ps  
Ch1SDO Output Total Jitter  
PRBS31 data  
TJ  
20  
Ch1SDO Output Rise/Fall  
time  
tr, tf  
20% - 80%  
Ch1SDO Output AC  
Common Mode Voltage  
5
7.5  
mVrms  
mVppd  
3
minimum  
programmable  
setting  
Ch1LOS De-assert  
Threshold Level Setting  
Range  
maximum  
programmable  
setting  
400  
mVppd  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
10 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 2-3: AC Electrical Characteristics (Continued)  
VCC = +2.8V to +3.47V, TC = -40°C to 100°C. Typical values are VCC = +3.3V and TA = 25°C, unless otherwise specified.  
Specifications assume default setting to end-terminated 50Ω transmission lines, unless otherwise stated. Typical Data Rate = 14.025Gb/s  
Parameter  
Conditions  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
1 sigma, IC to IC  
over VCC Range  
1.50  
+0.5  
mVrms  
dB  
Ch1LOS Threshold Level  
Variation  
over temperature  
range -40°C to  
+100°C  
+0.5  
dB  
Ch1LOS Threshold Level  
Hysteresis Setting Range  
electrical  
0
3
5
6
dB  
μs  
4
Ch1LOS Response Time  
Ch1 CDR Lock Time  
20  
0.5  
16G FC mode: loop  
filter cap = 100nF  
ms  
minimum swing  
setting  
3
100  
850  
mVppd  
mVppd  
dB  
5
Differential Output Voltage  
Setting Range  
maximum swing  
setting  
Output Pre-emphasis  
Setting Range  
maximum setting  
NOTES:  
1. See Table 3-1 for details.  
2. At 7GHz.  
3. 600mVppd swing.  
4. For loop bandwidth = 13MHz (as detailed in Table 3-4).  
5. 600mVppd swing.  
6. At 7GHz (dielectric loss).  
7. Reg89[7:0] = "11001000" = Reg110[7:0]. Reg90[1:0] = "00" = Reg111[7:0]. Reg102[1:0] = "00". Reg118[4:3] = "11" = Reg119[4:3].  
Reg80[7:0] = "11101110". Reg81[4:0] = "11100" = Reg103[4:0]. Reg82[4:0] = "11010" = Reg104[4:0].  
8. Reg89[7:0] = "11111111" = Reg110[7:0]. Reg90[1:0] = "11" = Reg111[7:0]. Reg102[1:0] = "00". Reg118[4:3] = "00" = Reg119[4:3].  
Reg80[7:0] = "01000100". Reg81[4:0] = "01000" = Reg103[4:0]. Reg82[4:0] = "10000" = Reg104[4:0].  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
11 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
2.4 Required Initialization Settings  
The GX4002 configuration registers must be set as described in Table 2-4 below to meet  
the power specification listed in Table 2-1. The AC parametric specifications in Table 2-3  
are also based on these settings:  
Table 2-4: Required Initialization Settings  
Register  
Address  
(decimal)  
New  
Value  
(binary)  
Valid  
Range  
(decimal)  
Register  
Name  
Bit  
Position  
Parameter Name  
Function  
CH1_REG17  
CH1_REG18  
CH0_REG15  
CH0_REG16  
64  
65  
45  
46  
CH1PWR1  
CH1PWR2  
CH0PWR1  
CH0PWR2  
4:0  
6:5  
4:0  
4:3  
10101  
10  
0-31  
0-3  
Channel 1 power control  
Channel 1 power control  
Channel 0 power control  
Channel 0 power control  
10101  
10  
0-31  
0-3  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
12 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3. Detailed Description  
3.1 Multirate CDR Functionality  
There are two data rate ranges available for selection, so that a single part can be used  
for multiple applications. The GX4002 does not require a reference clock. Some example  
applications are as follows:  
10Gb/s Ethernet (10.3Gb/s)  
10Gb/s Ethernet with FEC (11.1Gb/s)  
10G Fibre Channel (10.5Gb/s)  
10G Fibre Channel with FEC (11.3Gb/s)  
Fibre Channel over Ethernet (10.3Gb/s)  
16G Fibre Channel (14.025Gb/s)  
Table 3-1: Mode Details  
Mode  
Description  
10G  
The part will retime in a continuous range from 9.95Gb/s to 11.3Gb/s.  
Through the serial interface, the part can be placed in 14G mode. In this  
mode, the CDRs will retime at 14.025Gb/s, and is intended for use in 16G Fibre  
Channel applications. An automatic rate detect circuit can be used that will  
determine if the incoming data rate is a legacy Fibre Channel rate, and will  
automatically bypass the CDRs. By using the automatic rate detect feature,  
RS0 and RS1 pins are not required. The automatic rate detect feature is not  
enabled by default when the device is configured in 14G mode.  
14G  
3.1.1 Rate Selection and Rate Detection  
The GX4002 has three different methods to select the data rate. The rate can be selected  
through the use of the RS0/RS1 pins, through the use of registers, or through automatic  
detection. The rate selection methods are described in more detail below.  
The GX4002 also contains a set of data-dependent registers. This enables parameters  
such as rise and fall times to be automatically configured based on the data rate. There  
are two profiles, one for low data rates such as 4G or 8G Fibre Channel, and one for high  
data rates such as 10GbE or 16G Fibre Channel. The register map (Appendix:  
Configuration and Status Register Map) shows which registers contain both low data  
rate and high data rate options.  
A configuration profile is invoked by one of three methods:  
1. Using input pins RS0 and RS1 to invoke a “hard” rate select for either the Ch0 path  
or Ch1 path respectively (CH0PLLRATESELVAL is HIGH and/or  
CH1PLLRATESELVAL is HIGH).  
2. Using host interface commands to invoke a “soft” rate select for either the Ch1 or  
Ch0 path, or for both Ch1 and Ch0 paths together using the CH1PLLRATESEL and  
CH0PLLRATESEL bits (CH1PLLRATESELVAL is HIGH and/or  
CH0PLLRATESELVAL is HIGH).  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
13 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3. Using on-chip automatic rate detection circuitry to detect the new data rate, and to  
invoke an internal rate select in either the Ch1 or Ch0 path independently. The  
application is defined using the RATEDETFCGBEN bits (CH1PLLRATESELVAL is  
LOW and/or CH0PLLRATESELVAL is LOW).  
Rate  
Select  
Valid  
Fibre  
Rate  
Selection  
Method  
Rate  
Select  
Registers  
Data Rate  
Dependent  
Register Set Used  
RS0/RS1  
Pins  
Channel/  
Ethernet  
Register  
Operation  
Register  
The CDRs are placed in bypass  
mode. Intended for 2G/4G/8G Fibre  
Channel or 1GbE  
Not  
Applicable  
Low Data Rate  
Profile  
LOW  
LOW  
Hard Rate  
Select  
HIGH  
Fibre  
Channel  
The CDR will lock to 14.025Gb/s  
High Data Rate  
data  
Profile  
Not  
Applicable  
HIGH  
The CDR will lock to 9.95G to  
11.3Gb/s data  
High Data Rate  
Ethernet  
Profile  
The CDRs are place in bypass mode.  
Intended for 2G/4G/8G Fibre  
Channel or 1GbE  
Low or  
High Z  
Not  
Applicable  
Low Data Rate  
Profile  
LOW  
Soft Rate  
Select  
HIGH  
Fibre  
Channel  
The CDR will lock to 14.025Gb/s  
High Data Rate  
data  
Profile  
Not  
Applicable  
High  
The CDR will lock to 9.95G to  
11.3Gb/s data  
High Data Rate  
Ethernet  
Profile  
If 14.025Gb/s is  
detected: High Data  
Rate Profile  
If the input data is 14.025Gb/s, the  
CDR will lock to it. Otherwise, the  
CDRs are automatically bypassed  
Fibre  
Channel  
If 14.025Gb/s is not  
detected: Low Data  
Rate Profile  
Automatic  
Rate  
Detect  
Not  
Applicable  
Not  
Applicable  
LOW  
If 9.95G to 11.3Gb/s  
is detected: High  
Data Rate Profile  
If the input data is 9.95G to 11.3G,  
the CDR will lock to it. Otherwise,  
the CDRs are automatically  
bypassed  
Ethernet  
If 9.95G to 11.3Gb/s  
is not detected: Low  
Data Rate Profile  
3.1.1.1 Hard Rate Select (Rate Select Pins)  
The RS0 pin controls the rate-dependent profile of the Ch0 path, and the RS1 pin  
controls the rate-dependent profile of the Ch1 path. The rate select valid bit,  
CH0PLLRATESELVAL (or CH1PLLRATESELVAL), must be HIGH for RS0 (or RS1) to  
control the rate.  
When the RS0 (or RS1) pin is held LOW, the low-speed rate-dependent registers of the  
channel 0 (or channel 1) path are active. When the RS0 (or RS1) pin is held HIGH, the  
high-speed rate-dependent profile of the channel 0 (or channel 1) path is active. RS0 is  
logically OR'ed with CH0PLLRATESEL, while RS1 is logically OR'ed with  
CH1PLLRATESEL. Due to the OR'ing operation, when RS0 and RS1 are used for rate  
control, CH0PLLRATESEL and CH1PLLRATESEL must be set LOW.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
14 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.1.1.2 Soft Rate Select  
The CH1PLLRATESEL and CH0PLLRATESEL bits can be programmed to select a rate  
profile using the host interface. Setting these parameters and their associated valid  
parameters (CH1PLLRATESELVAL and CH0PLLRATESELVAL) override the on-chip  
automatic rate detection circuitry. CH0PLLRATESEL is logically OR'd with the RS0 pin,  
while CH1PLLRATESEL is logically OR'd with RS1, so RS0 and RS1 must be LOW or  
hi-impedance for the PLLRATESEL bits to function properly.  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
Selects data rates:  
0 = 1.25 - 8.5G, 1= 10.3G or 14.025G.  
14  
CH0PLLRATESEL  
CH0PLLRATESELVAL  
CH1PLLRATESEL  
3:3  
4:4  
3:3  
4:4  
RW  
RW  
RW  
RW  
1
1
1
1
0-1  
0-1  
0-1  
0-1  
CH0PLL_REG5  
When HIGH, CH0PLLRATESEL or RS0 are  
valid, otherwise they are ignored.  
14  
24  
24  
Selects data rates:  
0 = 1.25 - 8.5G, 1= 10.3G or 14.025G.  
CH1PLL_REG5  
When HIGH, CH1PLLRATESEL or RS1 are  
valid, otherwise they are ignored.  
CH1PLLRATESELVAL  
The default setting is the high (10Gb/s or 14.025Gb/s) data-rate profile, with the on-chip  
automatic rate detection circuitry overridden.  
3.1.1.3 Automatic Rate Detection  
In addition to the controls outlined in the preceding tables, the auto rate detection  
circuitry has the following controls. To enable operation of the auto rate detection  
function, CH0RATEDETEN (or CH1RATEDETEN) can be set HIGH.  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
When HIGH, the Ch0 path rate detector is  
reset.  
CH0RATEDETRESET  
CH0RATEDETEN  
0
1
RW  
RW  
RW  
0
1
0-1  
0-1  
CH0RDET_REG1  
CH0RDET_REG2  
CH1RDET_REG1  
CH1RDET_REG2  
67  
When HIGH, enables the rate detector.  
Rate detector rate period (0.3µs to 13ms,  
100µs default).  
68  
72  
73  
CH0RATEDETRATEPER  
3:0  
1000  
0-15  
When HIGH, the Ch1 path rate detector is  
reset.  
CH1RATEDETRESET  
CH1RATEDETEN  
0
1
RW  
RW  
RW  
0
1
0-1  
0-1  
When HIGH, enables the rate detector  
Rate detector rate period (0.3µs to 13ms,  
100µs default).  
CH1RATEDETRATEPER  
3:0  
1000  
0-15  
If CH1RATEDETEN (or CH0RATEDETEN) is LOW, the CH1PLLRATESELVAL (or  
CH0PLLRATESELVAL) bit must be HIGH, otherwise the device will be in an undefined  
state.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
15 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
CH0RATEDETPERIOD(address 68) and CH1RATEDETPERIOD(address 73) control the  
frequency at which the automatic rate detection block checks the lock state of the PLL.  
The recommended setting for shortest lock time is 1001b.  
3.1.1.4 Application-Dependent Rate Select Profiles  
The RATEDETFCGBEN and RATEDETFCGBENVAL bits indicate whether the  
application traffic is running Fibre Channel, Ethernet or unspecified (for example: the  
transceiver may be required to handle either Fibre Channel or Ethernet traffic in mission  
mode). The default setting is Fibre Channel traffic.  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
When HIGH, the application is Fibre  
Channel. When LOW, the application is  
Ethernet.  
RATEDETFCGBEN  
2:2  
3:3  
RW  
RW  
1
1
0-1  
0-1  
CH0RDET_REG1  
67  
When HIGH, indicates that RATEDETFCGBEN  
is valid. When LOW, it is ignored.  
RATEDETFCGBENVAL  
Table 3-2: Summary of Rate Selection and Rate Detection Control  
CH1PLLRATESELVAL  
RATEDETFCGBENVAL  
Data Rate  
Configuration Profile  
CH0PLLRATESELVAL  
0
0
1
Undefined  
Undefined  
Profile selected based on  
detected rate  
0
1
Auto Rate Detect  
Auto Rate Detect  
Profile selected by hard or soft  
rate select  
0
1
Fixed rate determined by the  
combination of  
RATEDETFCGBEN and rate  
select (hard or soft)  
Profile selected by hard or soft  
rate select  
1
3.1.2 Auto Retimer Bypass  
The GX4002 supports an automatic rate detect feature for legacy Fibre Channel data  
rates when configured in 16G mode. Upon enabling the automatic rate detect feature,  
the device constantly monitors incoming data for a valid 14.025Gb/s data rate. If the  
input data rate is a legacy Fibre Channel rate, the CDR is automatically bypassed.  
While the automatic rate detect feature is enabled, and the CDR is in bypass mode, the  
device continues monitoring the incoming data rate. If the data rate changes to  
14.025Gb/s, the CDR goes back into retimed mode.  
The auto retimer bypass feature also applies to Ethernet mode.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
16 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
The following registers enable and configure the automatic rate detect feature:  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
CH0PLLBYPASS  
1:1  
2:2  
RW  
RW  
0
1
0-1  
0-1  
When HIGH, forces CDR into bypass mode.  
CH0PLL_REG5  
14  
When HIGH, enables automatic bypass  
mode for the Ch0 CDR.  
CH0PLLAUTOBYPASSEN  
When HIGH, resets the Ch0 path rate  
detector.  
CH0RATEDETRESET  
CH0RATEDETEN  
0:0  
1:1  
0:0  
1:1  
RW  
RW  
RW  
RW  
0
1
0
1
0-1  
0-1  
0-1  
0-1  
CH0RDET_REG1  
CH1RDET_REG1  
67  
72  
When HIGH, enables the Ch0 path  
automatic rate detector.  
When HIGH, resets the Ch1 path rate  
detector.  
CH1RATEDETRESET  
CH1RATEDETEN  
When HIGH, enables the Ch1 path  
automatic rate detector.  
The device can be configured to manually bypass each of the Ch1 and Ch0 CDRs  
through the CH0PLLBYPASS and CH1PLLBYPASS controls when the automatic bypass  
is disabled.  
3.2 Channel 0 Path (Ch0)  
The channel 0 path is comprised of a trace equalizer, a multi-rate CDR and an output  
driver.  
Ch0 Disable  
Input  
Output  
EQ  
CDR  
DR  
Figure 3-1: Channel 0 Path  
3.2.1 Ch0 Equalization  
The channel 0 path input has an equalizer with 6dB gain at 7GHz. The equalizer can be  
bypassed through the following register:  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
When HIGH, applies a fixed CH0 EQ boost of  
6dB. 0dB if LOW.  
CH0_REG3  
33  
CH0EQBOOST  
0:0  
RW  
1
0-1  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
17 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.2.2 Ch0 PLL Variable Loop Bandwidth  
The loop bandwidth of the channel 0 Phase Locked Loop (PLL) can be varied through the  
digital control interface. The loop bandwidths are individually controlled, and can cover  
the range of 1MHz to 23MHz through following five-bit registers (recommended settings  
are shown):  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Adjusts LBW positive temperature  
coefficient control.  
CH0PLL_REG1  
CH0PLL_REG2  
CH0PLL_REG9  
10  
CH0PLLLBWCURVT  
CH0PLLLBWCURVBE  
CH0PLLLBWMULT  
4:0  
4:0  
1:0  
RW  
RW  
RW  
10011  
01110  
10  
0-31  
0-31  
0-3  
Adjusts LBW negative temperature  
coefficient control.  
11  
18  
LBW multiplier;  
00 = 0.67, 10 = 1, 01 = 1.33, 11 = 1.67  
The temperature coefficient of the loop bandwidth can be adjusted by weighted  
summation of CH0PLLLBWCURVT, which has a positive temperature coefficient and  
CH0PLLLBWCURVBE, which has a negative temperature coefficient. The default reset  
values of the registers above produce an approximate loop bandwidth of 7MHz.  
Table 3-3: Typical Loop Bandwidths for Various Register Settings  
Loop  
CH0PLLLBWMULT  
CH0PLLLBWCURVT  
CH0PLLLBWCURVBE  
Bandwidth  
00  
10011  
10011  
10011  
11111  
11000  
01110  
01110  
01110  
10110  
11000  
4.6MHz  
7.3MHz  
9.9MHz  
13MHz  
10 (default)  
01  
10  
11  
22.7MHz  
3.2.3 Channel 0 Output Polarity Invert  
The channel 0 output polarity can be inverted through the following register:  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
When HIGH, inverts the Ch0 data path  
polarity.  
CH0PLL_REG5  
14  
CH0PLLPOLINV  
0:0  
RW  
0
0-1  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
18 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.3 Channel 1 Path (Ch1)  
The GX4002 channel 1 path contains a high-sensitivity limiting amplifier with optional  
equalization, a multi-rate CDR, and a pre-emphasis driver.  
Ch1 LOS  
Input  
Output  
LA  
CDR  
DR  
Chip Control & Status  
I2C  
Figure 3-2: Channel 1 Path  
3.3.1 Integrated Limiting Amplifier  
The GX4002 has an integrated Limiting Amplifier (LA), with better than 10mV  
sensitivity. Optional equalization is available on the limiting amplifier input.  
3.3.2 Ch1 Equalization  
The channel 1 input implements an equalizer that provides peaking at 7GHz. This  
feature allows for optimal performance with extended reach connections.  
The equalizer implements 0dB to 14dB of high-frequency boost in fifteen steps, while  
achieving optimal receive sensitivity at any given equalization setting. The equalization  
setting is set through the CH1LABOOST control.  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
CH1_REG1  
48  
CH1LABOOST  
3:0  
RW  
0000  
0-15  
0: 0dB to 15: 14dB.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
19 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
When the equalization setting is 0dB, the equalization function is bypassed and the  
receive sensitivity performance is the same as that of a limiting amplifier.  
8dB  
14dB  
Boost  
-6dB  
7GHz  
Figure 3-3: Channel 1 Equalization  
3.3.3 Ch1 PLL Variable Loop Bandwidth  
The loop bandwidth of the channel 1 Phase Locked Loops (PLLs) can be varied through  
the digital control interface. The loop bandwidths are individually controlled, and can  
cover a range of 1MHz to 23MHz through the following 5-bit registers:  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
Adjusts LBW positive temperature  
coefficient control.  
CH1PLL_REG1  
CH1PLL_REG2  
CH1PLL_REG9  
20  
CH1PLLLBWCURVT  
CH1PLLLBWCURVBE  
CH1PLLLBWMULT  
4:0  
4:0  
7:6  
RW  
RW  
RW  
10011  
01110  
10  
0-31  
0-31  
0-3  
Adjusts LBW negative temperature  
coefficient control.  
21  
28  
LBW multiplier;  
00 = 0.67, 10 = 1, 01 = 1.33, 11 = 1.67  
The temperature coefficient of the loop bandwidth can be adjusted by a weighted  
summation of CH1PLLLBWCURVT, which has a positive temperature coefficient, and  
CH1PLLLBWCURVBE, which has a negative temperature coefficient. The default reset  
values of the above registers produce an approximate loop bandwidth of 7MHz.  
Table 3-4: Typical Loop Bandwidths for Various Register Settings  
Loop  
CH1PLLLBWMULT  
CH1PLLLBWCURVT  
CH1PLLLBWCURVBE  
Bandwidth  
00  
10 (default)  
01  
10011  
10011  
10011  
01110  
01110  
01110  
4.6MHz  
7.3MHz  
9.9MHz  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
20 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 3-4: Typical Loop Bandwidths for Various Register Settings (Continued)  
Loop  
CH1PLLLBWMULT  
CH1PLLLBWCURVT  
CH1PLLLBWCURVBE  
Bandwidth  
10  
11  
11111  
11000  
10110  
11000  
13MHz  
22.7MHz  
3.3.4 Pre-Emphasis Driver with Auto-Mute  
The channel 1 driver is a pre-emphasis driver that can be used to compensate for losses  
in the connector and trace between the module and ASIC. The pre-emphasis can  
compensate for up to 6dB of loss. The output swing can be set from 100mV to 800mV in  
steps of 50mV through the CH1SDOSWING[3:0] register. The pre-emphasis amplitude  
can be varied from 0dB to 6dB in eight non-linear steps through CH1SDOPECTRL[4:2].  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Driver swing.  
CH1SDO_REG1  
CH1SDO_REG2  
77  
CH1SDOSWING  
CH1SDOPECTRL  
3:0  
4:2  
RW  
RW  
1010  
000  
0-15  
0-7  
0-15: 100-850mVppd, Default = 10: 600mV  
Pre-emphasis amplitude.  
78  
0: 0dB, 7: 6dB for 200mVppd swing.  
Ch1 signal after Pre-emphasis  
0.6  
V1  
0.4  
0.2  
Pre-emphasis  
V2  
0.0  
-V2  
-0.2  
-0.4  
-0.6  
-V1  
11110000 pattern  
268  
269  
270  
271  
272  
273  
274  
275  
UI  
Figure 3-4: Pre-Emphasis Waveform Description  
Figure 3-4 above shows the pre-emphasis waveform. Amplitudes V1, V2 and  
pre-emphasis in dB are defined as follows:  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
21 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
V1, V2 and Pre-emphasis are defined as follows:  
V1 which represents the “peak”  
V2 which represents DC or Steady State  
Pre-emphasis [dB] = 20 x log(V1/V2)  
The amount of pre-emphasis varies with CH1SDOSWING as shown in Table 3-5:  
Table 3-5: Pre-Emphasis vs. Ch1 SDO Swing  
CH1SDOSWING  
CH1SDOPECTRL  
Pre-emphasis  
0010 (200mV)  
0101 (350mV)  
1010 (600mV)  
0010 (200mV)  
0101 (350mV)  
1010 (600mV)  
0010 (200mV)  
0101 (350mV)  
1010 (600mV)  
001  
001  
001  
011  
011  
011  
111  
111  
111  
2.3dB  
1.8dB  
1.0dB  
4.7dB  
3.8dB  
3.1dB  
6.2dB  
5.5dB  
3.4dB  
The output can be configured to automatically mute if Ch1 LOS is detected through the  
following registers. When muted, the output driver remains powered-up, and the output  
common mode is maintained. The output driver can be configured to power-down  
when muted by setting the CH1SDOPWRDNONMUTE bit:  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
When HIGH, mutes driver and maintains  
output common mode when not in auto  
mute mode.  
CH1SDOMUTE  
5:5  
6:6  
7:7  
RW  
RW  
RW  
0
1
1
0-1  
0-1  
0-1  
When HIGH, enables muting the driver  
upon LOS. LOW disables muting.  
CH1SDO_REG3  
79  
CH1SDOAUTOMUTEEN  
CH1SDOPWRDNONMUTE  
When HIGH, enables power-down on mute  
for output stage. LOW disables  
power-down.  
3.3.5 Channel 1 Output Polarity Invert  
The channel 1 output polarity can be inverted through the following register:  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
CH1PLL_REG5  
24  
CH1PLLPOLINV  
0:0  
RW  
0
0-1  
When HIGH, inverts the Ch1 data path  
polarity.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
22 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.4 Crosspoint  
The GX4002 provides eight different crosspoint paths, as shown in Table 3-6. The blocks  
referenced in the different crosspoint paths are shown in Figure 3-5.  
EQ  
LA  
DR  
DR  
SDI0  
SDI1  
Ch0 CDR  
Ch1 CDR  
SDO0  
SDO1  
Figure 3-5: Crosspoint Block Diagram  
Table 3-6: Crosspoint Paths  
Mode  
Crosspoint Path  
Reference  
1
2
3
4
5
6
7
8
SDI1 =>LA=>DR=>SDO0  
Figure 3-6  
Figure 3-6  
Figure 3-7  
Figure 3-7  
Figure 3-8  
Figure 3-8  
Figure 3-9  
Figure 3-9  
SDI1 =>LA=>CH1CDR=>DR=>SDO0  
SDI1 =>LA=>CH0CDR=>DR=>SDO0  
SDI1 =>LA=>CH1CDR=>CH0CDR=>DR=>SDO0  
SDI0=>EQ=>DR=>SDO1  
SDI0=>EQ=>CH0CDR=>DR=>SDO1  
SDI0=>EQ=>CH1CDR=>DR=>SDO1  
SDI0=>EQ=>CH0CDR=>CH1CDR=>DR=>SDO1  
When the crosspoint is enabled, the standard data path is not interrupted. For example:  
in Mode 1, the input to SDI1 will also be accessible at SDO1. When using crosspoint  
modes, the automute feature for SDO1 or SDO0 may have to be disabled if the  
corresponding SDI1 or SDI0 inputs are unused.  
The relevant parameters in these registers and their values required to enable each of  
the crosspoint options indicated above, are shown in Table 3-7.  
The selection of a crosspoint path impacts the following feature:  
Polarity inversion  
Table 3-7 also captures the impact on these features in each crosspoint mode.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
23 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 3-7: Crosspoint Options  
1
2
3
4
5
6
7
8
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
Y
Y
Y
Y
N
N
N
N
N
N
N
N
Y
Y
Y
Y
7
0
7
1
7
2
7
4
7
5
7
6
7
7
24  
1
8
0
8
1
8
2
8
4
8
5
8
6
8
7
14  
1
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
24 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Peak  
Detector  
VEye  
Monitor  
Ch0 EQ  
Recovered  
Clock  
HEye Monitor  
0
1
Ch0 CDR (10G/14G)  
SDI0  
Retimed  
Input  
Data  
Data  
0
1
LBCH0OUTEN = 1  
0
0
1
SDO0  
Ch0 Driver  
1
CH0PLLPOLINV  
Ch0Clk  
PRBS 7  
LBCH0OUTCH1DATA = 1  
PRBS 7  
Generator  
Checker  
Ch1Clk  
Peak  
Detector  
1
0
0
1
Ch1 Driver  
SDO1  
VEye  
Monitor  
1
0
CH1PLLBYPASS = 1 (Mode 1)  
CH1PLLBYPASS = 0 (Mode 2)  
Ch1 LA  
1
Input  
Data  
Retimed  
Data  
Mode 1: SDI1 => LA => LD => SDO0  
0
SDI1  
Ch1 CDR (10G/14G)  
Mode 2: SDI1 => LA => Ch1 CDR => LD => SDO0  
LBCH1INEN = 0  
Recovered  
Standard data path:  
can be enabled in crosspoint mode  
HEye Monitor  
Clock  
Figure 3-6: Crosspoint Modes 1 & 2  
Peak  
Detector  
VEye  
Monitor  
Recovered  
Clock  
Ch0 EQ  
HEye Monitor  
LBCH0INEN = 1  
Ch0 CDR (10G/14G)  
0
1
SDI0  
Retimed  
Input  
Data  
Data  
0
LBCH0OUTEN = 0  
CH0PLLBYPASS = 0  
1
0
0
Ch0 Driver  
SDO0  
1
1
CHPLLPOLINV  
Ch0Clk  
LBCH0INCH1DATA = 1  
PRBS 7  
Generator  
PRBS 7  
Checker  
Ch1Clk  
Peak  
Detector  
1
0
Ch1 Driver  
SDO1  
VEye  
Monitor  
1
0
1
0
CH1PLLBYPASS = 1 (Mode 3)  
CH1PLLBYPASS = 0 (Mode 4)  
Ch1 LA  
1
0
Input  
Data  
Retimed  
Data  
Mode 3: SDI1 => LA => Ch0 CDR => LD => SDO0  
SDI1  
Ch1 CDR (10G/14G)  
Mode 4: SDI1 => LA => Ch1 CDR => Ch0 CDR => LD => SDO0  
LBCH1INEN = 0  
Recovered  
Standard data path:  
can be enabled in crosspoint mode  
HEye Monitor  
Clock  
Figure 3-7: Crosspoint Modes 3 & 4  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
25 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Peak  
Detector  
VEye  
Monitor  
Recovered  
Clock  
Ch0 EQ  
HEye Monitor  
LBCH0INEN = 0  
0
Ch0 CDR (10G/14G)  
SDI0  
Retimed  
Data  
Input  
Data  
1
0
1
CH0PLLBYPASS = 1 (MODE 5)  
CH0PLLBYPASS = 0 (MODE 6)  
0
1
0
1
Ch0 Driver  
SDO0  
Ch0Clk  
PRBS 7  
PRBS 7  
Generator  
Checker  
LBCH1OUTCH0DATA = 1  
Ch1Clk  
Peak  
Detector  
CH1PLLPOLINV  
1
0
1
Ch1 Driver  
SDO1  
VEye  
Monitor  
1
0
0
LBCH1OUTEN = 1  
Ch1 LA  
1
0
Retimed  
Data  
Input  
Data  
Mode 5: SDI0 => EQ => DR => SDO1  
SDI1  
Ch1 CDR (10G/14G)  
Mode 6: SDI0 => EQ => Ch0 CDR => DR => SDO1  
Recovered  
Standard data path:  
can be enabled in crosspoint mode  
HEye Monitor  
Clock  
Figure 3-8: Crosspoint Modes 5 & 6  
Peak  
Detector  
VEye  
Monitor  
Recovered  
Clock  
Ch0 EQ  
HEye Monitor  
LBCH0INEN = 0  
Ch0 CDR (10G/14G)  
0
1
SDI0  
Retimed  
Input  
Data  
Data  
0
1
CH0PLLBYPASS = 1 (MODE 7)  
CH0PLLBYPASS = 0 (MODE 8)  
0
0
1
Ch0 Driver  
SDO0  
1
Ch0 Clk  
PRBS 7  
Generator  
PRBS 7  
Checker  
LBCH1INCH0DATA = 1  
Ch1 Clk  
CH1PLLPOLINV  
0
Peak  
Detector  
1
0
SDO1  
Ch1 Driver  
VEye  
1
0
1
Monitor  
CH1PLLBYPASS = 0  
LBCH1OUTEN = 0  
Ch1 LA  
1
0
Retimed  
Data  
Input  
Data  
Mode 7: SDI0 => EQ => Ch1 CDR => DR => SDO1  
SDI1  
Ch1 CDR (10G/14G)  
Mode 8: SDI0 => EQ => Ch0 CDR = > Ch1 CDR => DR => SDO1  
LBCH1INEN = 1  
Recovered  
Standard data path:  
can be enabled in crosspoint mode  
HEye Monitor  
Clock  
Figure 3-9: Crosspoint Modes 7 & 8  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
26 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.5 Status Indicators  
The GX4002 supports three status indicators: Loss of Signal (LOS), Loss of Lock (LOL) and  
Channel 0 Fault (Ch0FAULT). LOS and LOL indicators are available on both the Ch1 and  
the Ch0 paths.  
3.5.1 Ch0 Loss Of Signal (LOS)  
The Ch0 LOS indicator status is available through a register. If desired, its status can be  
included in the generation of the Ch0FAULT output pin. The LOS assert threshold can be  
set from 20mV to 100mV in <1mV steps. In addition, the temperature coefficient of the  
LOS threshold can be adjusted to ensure consistent LOS operation over temperature.  
The LOS also has hysteresis that is programmable from 0dB to 6dB in steps of 0.5dB.  
The following registers are used to control the Ch0 LOS feature:  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Negative temperature coefficient LOS  
threshold setting.  
CH0_REG9  
CH0_REG10  
CH0_REG11  
39  
CH0LOSTHNEG  
CH0LOSTHPOS  
CH0LOSHYS  
7:0  
7:0  
3:0  
RW  
RW  
RW  
01010011  
00000000  
1001  
0-255  
0-255  
0-15  
Positive temperature coefficient LOS  
threshold setting.  
40  
41  
Sets LOS hysteresis from 0dB to 6dB in steps  
of 0.5dB.  
When HIGH, asserts LOS for internal  
functions, asserts LOS register (CH0PLLLOS)  
and asserts external indication through  
Ch0FAULT.  
CH0LOSSOFTASSERT  
3:3  
4:4  
RW  
RW  
0
0
0-1  
0-1  
CH0_REG12  
42  
When HIGH, LOS is controlled by  
CH0LOSSOFTASSERT.  
CH0LOSSOFTASSERTEN  
3.5.1.1 Ch0 LOS Threshold  
Figure 3-10 and Figure 3-11 show the typical recommended range of Ch0 LOS assert  
thresholds and corresponding CH0LOSTHNEG[7:0] setting to achieve these thresholds.  
It is recommended to keep CH0LOSPOS[7:0] = 0 to achieve a flat temperature  
coefficient for LOS threshold. The Ch0 LOS de-assert thresholds are the same as the Ch0  
LOS assert thresholds for a hysteresis setting of 0.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
27 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Hys = 0  
Hys = 9  
Hys = 15  
160  
140  
120  
100  
80  
0dB  
3dB  
6dB  
60  
40  
20  
0
0
50  
100  
150  
200  
250  
300  
CH0LOSTHNEG  
Figure 3-10: Ch0 LOS Assert Threshold – Typical  
Hys = 0  
Hys = 9  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
50  
100  
150  
200  
CH0LOSTHNEG  
Figure 3-11: Ch0 LOS De-Assert Threshold – Typical  
The LOS threshold will have a slight dependence on data rate.  
3.5.1.2 Manual LOS Assert  
The on-chip LOS circuit can be bypassed, and LOS asserted, through the host interface.  
This operation is initiated when CH0LOSSOFTASSERTEN is HIGH. The state of  
CH0LOSSOFTASSERT then controls the LOS register CH0PLLLOS and external  
indication through Ch0FAULT.  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
When HIGH, asserts LOS.  
CH0LOSSOFTASSERTEN must be HIGH to use  
this bit.  
CH0LOSSOFTASSERT  
3:3  
4:4  
RW  
RW  
0
0
0-1  
0-1  
CH0_REG12  
61  
When HIGH, LOS is controlled by  
CH0LOSSOFTASSERT.  
CH0LOSSOFTASSERTEN  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
28 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.5.2 Ch1 Loss Of Signal  
The Ch1 Loss Of Signal (LOS) indicator status is available through a register and the  
Ch1LOS pin. The Ch1LOS pin is by default open-drain, active-high. However, the pin  
can be configured in a LVCMOS/LVTTL compatible mode by setting  
OPENDRAINCH1LOS to 0. In addition, Ch1LOS can be configured to be active-low by  
setting POLINVCH1LOS HIGH. The status of Ch1LOS can be read out through  
CH1PLLLOS.  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
When HIGH, inverts polarity of Ch1LOS  
output.  
POLINVCH1LOS  
1:1  
RW  
0
0-1  
TOP_REG2  
2
When HIGH, makes Ch1LOS output driver  
open-drain.  
OPENDRAINCH1LOS  
CH1PLLLOS  
2:2  
0:0  
RW  
RO  
1
0
0-1  
0-1  
CH1PLL_REG10  
29  
Ch1 CDR loss of signal when HIGH.  
The LOS assert threshold can be set from 5mV to 400mV in three distinct ranges. The LOS  
assert threshold is a function of the CH1LABOOST setting. Figure 3-8 describes the  
selection of CH1LOSRANGE based on the required LOS assert threshold and  
CH1LABOOST settings.  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
1:0 - LOS range 0: highest - 3: lowest, 2  
(MSB) unused.  
CH1_REG14  
61  
CH1LOSRANGE  
2:0  
RW  
001  
0-7  
Table 3-8: LOS Assert Ranges  
LOS Assert Threshold Range  
Resolution  
(controlled by  
CH1LOSTHNEG/POS)  
CH1LABOOST  
[3:0]  
CH1LOSRANGE  
[1:0]  
Unit  
Min  
Max  
LOS Threshold -  
Total Range  
5
400  
mVppd  
0-7  
0-7  
5
30  
11 - Unused  
10 - Low Range  
01 - Mid Range  
00 - High Range  
11 - Low Range  
10 - Mid Range  
01 - Unused  
<0.1mV  
<1.0mV  
<2.0mV  
<0.1mV  
<1.0mV  
mVppd  
mVppd  
mVppd  
mVppd  
mVppd  
0-7  
30  
100  
5
100  
400  
30  
0-7  
8-15  
8-15  
8-15  
8-15  
30  
100  
100  
400  
00 - High Range  
<2.0mV  
mVppd  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
29 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.5.2.1 Ch1 LOS Threshold  
The LOS assert threshold is set using the following registers. Apart from setting the assert  
thresholds, these registers also set the temperature coefficient. Through weighted  
summing of the CH1LOSTHNEG[7:0] and CH1LOSTHPOS[7:0] values, a range of  
temperature coefficients can be achieved to ensure consistent LOS operation over  
temperature:  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Negative temperature coefficient LOS  
threshold setting.  
CH1_REG9  
56  
CH1LOSTHNEG  
CH1LOSTHPOS  
7:0  
7:0  
RW  
RW  
10000011  
00010001  
0-255  
0-255  
Positive temperature coefficient LOS  
threshold setting.  
CH1_REG10  
57  
Figure 3-12 to Figure 3-15 show the typical recommended range of CH1LOSASSERT  
thresholds and corresponding CH1LOSTHNEG[7:0] setting to achieve these thresholds.  
It is recommended to keep CH1LOSPOS[7:0] = 0. The CH1LOSDEASSERT thresholds  
are the same as the CH1LOSASSERT thresholds for a hysteresis setting of 0.  
CH1LOSHYS = 0  
CH1LOSHYS = 9  
CH1LOSHYS = 15  
700  
600  
500  
400  
300  
200  
100  
0
0dB  
3.5dB  
6dB  
0
50  
100  
150  
200  
250  
300  
CH1LOSTHNEG  
Figure 3-12: Ch1 LOS Threshold vs. Hysteresis (CH1LOSRANGE = 0)  
CH1LOSHYS = 0  
CH1LOSHYS = 9  
CH1LOSHYS = 15  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
50  
100  
150  
200  
250  
300  
CH1LOSTHNEG  
Figure 3-13: Ch1 LOS Threshold vs. Hysteresis (CH1LOSRANGE = 1)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
30 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
CH1LOSHYS = 0  
CH1LOSHYS = 9  
CH1LOSHYS = 15  
70  
60  
50  
40  
30  
20  
10  
0
0
50  
100  
150  
200  
250  
300  
CH1LOSTHNEG  
Figure 3-14: Ch1 LOS Threshold vs. Hysteresis (CH1LOSRANGE = 2)  
CH1LOSHYS = 0  
CH1LOSHYS = 9  
CH1LOSHYS = 15  
35  
30  
25  
20  
15  
10  
5
0
0
50  
100  
150  
200  
250  
300  
CH1LOSTHNEG  
Figure 3-15: Ch1 LOS Threshold vs. Hysteresis (CH1LOSRANGE = 3)  
3.5.2.2 Ch1 LOS Hysteresis  
The LOS detector supports programmable hysteresis ranging from 0dB to 6dB,  
adjustable in steps of less than 0.5dB. The following register can be used to program the  
hysteresis. Note that the effective hysteresis is somewhat dependent on the threshold  
value:  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
Sets LOS hysteresis from 0dB to 6dB in steps  
of 0.5dB.  
CH1_REG13  
60  
CH1LOSHYS  
3:0  
RW  
1001  
0-15  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
31 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Hysteresis control only affects the assert threshold. The LOS de-assert threshold is set by  
CH1LOSTHNEG and CH1LOSTHPOS controls only. Figure 3-16 shows the hysteresis  
characteristics and the impact of CH1LOSHYS[3:0]:  
LOS Asserted  
CH1LOSHYS  
Hys (dB)  
The LOS de-assert  
threshold stays constant,  
and only the LOS assert  
threshold level varies with  
the hysteresis setting,  
CH1LOSHYS.  
0
1
0.1  
0.3  
0.7  
1.1  
1.4  
1.8  
2.1  
2.5  
3.0  
3.4  
3.9  
4.4  
4.8  
5.4  
6.7  
LOS O/P  
2
CH1LOSHYS 15 to 0  
LOS De-asserted  
3
LOS Assert  
Threshold  
LOS De-assert  
Threshold  
4
5
Vin (mVppd)  
6
LOS Asserted  
7
8
LOS O/P  
9
10  
11  
12  
13  
15  
CH1LOSHYS 15 to 0  
LOS De-asserted  
LOS Assert  
Threshold  
LOS De-assert  
Threshold  
CH1LOSTHNEG  
(for fixed Vin)  
Hys (dB) = 20*log10(Vth_assert/Vth_deassert)  
Figure 3-16: Ch1 LOS Hysteresis  
3.5.2.3 Manual LOS Assert  
The on-chip LOS circuit can be bypassed, and LOS asserted, through the host interface.  
This operation is initiated when CH1LOSSOFTASSERTEN is HIGH. The state of  
CH1LOSSOFTASSERT then controls the LOS register CH1PLLLOS and external  
indication through Ch1LOS.  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
When HIGH, asserts LOS.  
CH1LOSSOFTASSERTEN must be HIGH to use  
this bit.  
CH1LOSSOFTASSERT  
6:6  
7:7  
RW  
RW  
0
0
0-1  
0-1  
CH1_REG14  
61  
When HIGH, LOS is controlled by  
CH1LOSSOFTASSERT.  
CH1LOSSOFTASSERTEN  
3.5.3 Loss Of Lock (LOL)  
The channel 0 and channel 1 LOL status indicators are both available in registers as  
shown below:  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
32 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
CH0PLL_REG10  
CH1PLL_REG10  
19  
29  
CH0PLLLOL  
CH1PLLLOL  
1:1  
1:1  
RO  
RO  
0
0
0-1  
0-1  
Ch0 CDR loss of lock when HIGH.  
Ch1 CDR loss of lock when HIGH.  
3.5.4 Ch0FAULT - Channel 0 Fault  
Various status indicator pins are combined to generate a single Ch0FAULT indicator  
output. The Ch0FAULT output is, by default, an open-drain output. It can be configured  
in a LVCMOS/LVTTL compliant mode through register 2, bit 3  
(OPENDRAINCH0FAULT). When set LOW, the Ch0FAULT output is configured as  
LVCMOS/LVTTL compatible output.  
The Ch0FAULT output is active-high by default. Its polarity can be changed to make it  
active-low through register 2, bit 0 (POLINVCH0FAULT). When set HIGH, Ch0FAULT is  
configured as an active-low output.  
The following status indicator controls can be combined to generate the Ch0FAULT  
output. Each of the indicators can be independently masked through the register  
controls. By default, the Ch0FAULT output combines (ORs) the status of all indicators.  
The following registers control the masking of the various indicators for Ch0FAULT and  
the configuration of Ch0FAULT pin.  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
When HIGH, masks out Ch1LOS from  
asserting CH0FAULT.  
FAULTMASKCH1LOS  
FAULTMASKCH1LOL  
FAULTMASKCH0LOS  
FAULTMASKCH0LOL  
FAULTMASKCH0FAULT  
POLINVCH0FAULT  
0:0  
1:1  
2:2  
3:3  
4:4  
0:0  
3:3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
0
0
1
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
When HIGH, masks Ch1LOL from asserting  
Ch0FAULT.  
When HIGH, masks outCh0LOS from  
asserting CH0FAULT.  
TOP_REG1  
1
When HIGH, masks Ch0LOL from asserting  
Ch0FAULT.  
When HIGH, masks out Ch0Fault from  
asserting CH0FAULT.  
When HIGH, inverts polarity of CH0FAULT  
output.  
TOP_REG2  
2
When HIGH, makes CH0FAULT output driver  
open drain.  
OPENDRAINCH0FAULT  
NOTE: To support system diagnostics, a manual Ch0FAULT assert feature is available through the following register:  
TOP_REG4 FORCECH0FAULT 4:4 RW  
4
0
0-1  
When HIGH, asserts CH0FAULT.  
3.6 Test Features  
The GX4002 contains built-in test features that can be used during module test, mission  
mode, or system testing.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
33 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.6.1 PRBS Generator and Checker  
The GX4002 has a built in PRBS7 generator and checker. The generator and checker are  
disabled by default to save power, and can be enabled through the digital control  
interface. There are multiple ways to use the PRBS generator/checker, as shown in  
Table 3-9 below:  
Table 3-9: PRBS Generator/Checker Modes of Operation  
Mode  
Description  
A data pattern, such as PRBS data or Fibre Channel/10GbE traffic, can be sent to the Ch1 path  
input. A PRBS7 pattern can be viewed at the Ch1 path output, or can be looped back to the  
Ch0 side to use the PRBS checker.  
Lock to data pattern on Ch1 input  
A data pattern, such as PRBS data or Fibre Channel/10GbE traffic, can be sent to the Ch0 path  
input. A PRBS7 pattern can be viewed at the Ch0 path output, or can be looped back to the  
Ch1 side to use the PRBS checker.  
Lock to data pattern on Ch0 input  
A reference at 1/8 (14G) or 1/4 (10G) of the desired rate can be sent to the Ch1 input. A PRBS7  
pattern can be viewed at the Ch1 path output, or can be looped back to the Ch0 side to use  
the PRBS checker. This mode can be used when testing a module so that high-speed test  
equipment is not required. See Figure 3-17.  
Lock to low-speed reference on  
Ch1 input  
A reference at 1/8 (14G) or 1/4 (10G) of the desired rate can be sent to the Ch0 input. A PRBS7  
pattern can be viewed at the Ch0 path output, or can be looped back to the Ch1 side to use  
the PRBS checker. This mode can be used when testing a module so that high-speed test  
equipment is not required. See Figure 3-18.  
Lock to low-speed reference on  
Ch0 input  
Peak  
Detector  
VEye  
Monitor  
Recovered  
Clock  
Ch0 EQ  
HEye Monitor  
LBCH0INEN = 0  
0
Ch0 CDR (10G/14G)  
SDI0  
Input  
Data  
Retimed  
Data  
1
CH0PLLBYPASS = 0  
0
1
LBCH0OUTEN = 0  
PRBS Out  
SDO0  
PRBSCHKCLKSEL = 1  
0
0
1
External  
Loopback  
Ch0 Driver  
1
CH0PLLPOLINV  
Ch0Clk  
PRBS 7  
PRBS 7  
Generator  
Checker  
LBCH1OUTPRBSGEN = 1  
Ch1Clk  
0
1
Peak  
Detector  
CH1PLLPOLINV  
1
0
1
Ch1 Driver  
SDO1  
VEye  
Monitor  
1
0
0
LBCH1OUTEN = 1  
Ch1 LA  
1
0
Input  
Data  
Retimed  
Data  
High-speed Data  
fclk/8 (14G)  
fclk/4 (10G)  
SDI1  
Ch1 CDR (10G/14G)  
High-speed Clock  
LBCH1INEN = 0  
Recovered  
Low-speed Reference  
Clock  
PRBSGENCLKSEL = 0  
HEye Monitor  
Figure 3-17: PRBS Generator on Ch1 Output and PRBS Check Monitoring Ch0 Input  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
34 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Peak  
Detector  
VEye  
Monitor  
Recovered  
Clock  
Ch0 EQ  
HEye Monitor  
LBCH0INEN = 0  
0
fclk/8 (14G)  
fclk/4 (10G)  
Ch0 CDR (10G/14G)  
SDI0  
Input  
Data  
Retimed  
Data  
1
0
1
LBCH0OUTEN = 1  
LBCH0OUTPRBSGEN  
= 1  
PRBSGENCLKSEL = 1  
Ch0Clk  
0
0
1
SDO0  
Ch0 Driver  
1
1
0
CH0PLLPOLINV  
PRBS 7  
PRBS 7  
Generator  
Checker  
Ch1Clk  
External  
Loopback  
Peak  
Detector  
CH1PLLPOLINV  
PRBS Out  
SDO1  
1
0
1
Ch1 Drv  
VEye  
Monitor  
1
0
0
CH1PLLBYPASS = 0  
LBCH1OUTEN = 0  
Ch1 LA  
1
0
Input  
Data  
Retimed  
Data  
High-speed Data  
SDI1  
Ch1 CDR (10G/14G)  
Recovered  
Clock  
High-speed Clock  
LBCH1INEN = 0  
Low-speed Reference  
PRBSCHKCLKSEL = 0  
HEye Monitor  
Figure 3-18: PRBS Generator on Ch0 Output and PRBS Check Monitoring Ch1 Input  
The following registers enable and configure the PRBS generator and checker:  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
When pulsed HIGH and LOW, starts off the  
PRBS generator.  
PRBSGENSTART  
0:0  
RW  
0
0-1  
TOP_REG3  
TOP_REG6  
3
6
7
When HIGH, clears the latched error flag  
from checker.  
PRBSCHKCLEARERR  
PRBSCHKSTATUS  
LBCH1INPRBSGEN  
1:1  
0:0  
1:1  
RW  
RO  
0
0
0
0-1  
0-1  
0-1  
When HIGH, checker detected an error.  
Selects PRBS generator output into Ch1  
CDR.  
RW  
LOOPBK_REG1  
Selects PRBS generator output into Ch1  
Driver.  
LBCH1OUTPRBSGEN  
LBCH0INPRBSGEN  
LBCH0OUTPRBSGEN  
PRBSGENCLKSEL  
PRBSCHKCLKSEL  
PDPRBSGEN  
6:6  
1:1  
6:6  
0:0  
1:1  
1:1  
2:2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
1
1
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
Selects PRBS generator output into Ch0  
CDR.  
LOOPBK_REG2  
LOOPBK_REG3  
PWRDN_REG2  
8
9
Selects PRBS generator output into Ch0  
Driver.  
When HIGH, selects Ch0 recovered clock.  
LOW selects Ch1 clock.  
When HIGH, selects Ch0 recovered clock.  
LOW selects Ch1 clock.  
When HIGH, power-down the PRBS  
generator and associated buffers.  
161  
When HIGH, power-down the PRBS  
generator and associated checkers.  
PDPRBSCHK  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
35 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
To ensure proper operation of the PRBS7 generator, PRBSGENSTART needs to be set  
HIGH and then LOW once after the generator is powered-up through PDPRBSGEN.  
To ensure proper operation of the PRBS7 checker, PRBSCHKCLEARERR needs to be set  
HIGH and then LOW after application of valid PRBS7 pattern to clear any spurious  
errors. PRBSCHKSTATUS, may be polled to check for errors flagged by the checker.  
The PRBS generator can be configured to apply the PRBS7 pattern to SDO1 or SDO0 or  
internally. Apply to either the Ch1 or the Ch0 CDR for retiming before transmitting out  
through SDO. Controls LBCH1INPRBSGEN, LBCH1OUTPRBSGEN,  
LBCH0INPRBSGEN and LBCH0OUTPRBSGEN determine the path of the PRBS pattern.  
Both PRBS generator and checker can be clocked off either the Ch0 or Ch1 recovered  
clocks independently through controls PRBSGENCLKSEL and PRBSCHKCLKSEL. The  
PRBS checker automatically selects retimed data from the CDR which is chosen to  
provide its clock through PRBSCHKCLKSEL.  
3.6.2 Eye Monitor & Peak Detector  
The GX4002 has built-in eye monitors in both the horizontal and vertical direction for  
the inner eye. These eye monitors are available for both Ch1 and Ch0 paths. In addition,  
both Ch1 and Ch0 inputs have peak detectors available to provide outer eye  
information. The information from these monitors can be used to indicate if the input to  
the module has degraded. These features can be used during mission mode.  
Figure 3-19 shows where the eye monitoring functions are implemented:  
EQ  
Ch0 CDR  
DR  
SDO0  
SDO1  
SDI0  
Vertical Eye  
Monitor,  
Peak Detect  
Horizontal  
Eye Monitor  
SDI1  
LA  
Ch1 CDR  
DR  
Figure 3-19: Eye Monitor Implementation  
The vertical eye monitor outputs a value proportional to the inner eye opening. The  
output of the eye monitor can be sampled and read out digitally through the ADC (see  
Section 3.7.1). The acquisition time for the eye monitor is approximately 10ms.  
The peak detector outputs a value proportional to the outer eye amplitude. The output  
of the peak detector can be sampled and read out digitally through the ADC. The  
acquisition time is approximately 10ms.  
The horizontal eye monitor outputs a value that is proportional to the horizontal eye  
opening, as shown in Figure 3-20 below. The output of the horizontal eye monitor can  
be sampled and read out digitally through the ADC. The acquisition time is  
approximately 10ms.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
36 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
0.25  
0.5  
Data Jitter, UIpp  
Figure 3-20: Horizontal Eye Monitor  
All eye monitoring functions can be independently enabled to optimize power. The  
following register can be used to enable and control the eye monitors. See Section 3.7 for  
details on sampling and reading out the monitors:  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Vertical eye monitor threshold adjustment,  
0-255.  
CH0_REG13  
43  
CH0VEYETHADJ  
CH0VEYETHPOL  
7:0  
0:0  
1:1  
2:2  
7:0  
0:0  
1:1  
2:2  
1:1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
00000000  
0-255  
0-1  
Vertical eye monitor threshold polarity.  
HIGH is positive.  
0
When HIGH, reduces the range to  
0-600mVppd.  
CH0_REG14  
CH1_REG15  
CH1_REG16  
44  
62  
63  
CH0VEYELORANGE  
CH0VEYEOFFCALEN  
CH1VEYETHADJ  
0
0-1  
Vertical eye monitor offset calibration  
enable.  
0
0-1  
Vertical eye monitor threshold adjustment,  
0-255.  
00000000  
0-255  
0-1  
Vertical eye monitor threshold polarity.  
HIGH is positive.  
CH1VEYETHPOL  
0
0
0
1
When HIGH, reduces the range to  
0-600mVppd.  
CH1VEYELORANGE  
CH1VEYEOFFCALEN  
CH0PDVEYEMON  
0-1  
Vertical eye monitor offset calibration  
enable.  
0-1  
Power-down for the Ch0 vertical eye  
monitor.  
0-1  
CH0PWRDN_REG3  
CH1PWRDN_REG3  
153  
158  
Power-down for the Ch0 horizontal eye  
monitor.  
CH0PDHEYEMON  
CH0PDPKDET  
2:2  
3:3  
1:1  
RW  
RW  
RW  
1
1
1
0-1  
0-1  
0-1  
Power-down for the Ch0 peak detector.  
Power-down for the Ch1 vertical eye  
monitor.  
CH1PDVEYEMON  
Power-down for the Ch1 horizontal eye  
monitor.  
CH1PDHEYEMON  
CH1PDPKDET  
2:2  
3:3  
RW  
RW  
1
1
0-1  
0-1  
Power-down for the Ch1 peak detector.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
37 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.7 Digital Diagnostics  
The GX4002 has an on-chip ADC to provide diagnostic information through the digital  
interface. Temperature and voltage can be monitored.  
3.7.1 Analog to Digital Converter (ADC)  
The ADC converts several analog quantities including temperature, supply, vertical and  
horizontal eye monitor outputs, and peak detector outputs.  
The ADC is a sigma-delta converter with programmable resolution allowing trade-off  
between conversion time and accuracy. The full scale dynamic range of the ADC is 0 to  
1.8V. The various sources can be selected into the ADC for conversion and read-out.  
Offset calibration signals are provided to zero-out the selected sources to facilitate the  
calibration. Calibrated offsets can be programmed-in, such that the data read-out has  
corrected offsets.  
Furthermore, a user-defined offset can be programmed-in to account for external  
systemic shifts. For example: if the temperature at the case is desired instead of the  
device temperature, the temperature delta between device and case can be  
programmed-in. Subsequent temperature read-outs will account for the temperature  
delta, and provide the case temperature.  
3.7.1.1 Usage Model  
Two usage models are possible, manual conversion and auto conversion.  
3.7.1.1.1 MANUAL CONVERSION MODE  
For manual conversion mode, register controls provide a conversion-on-demand  
interface. Polling or timing is required at the master end to read out the converted values  
in manual mode.  
The user is expected to select the desired source and to write a 1 to the  
ADCSTARTCONVbit to initiate the conversion. The user can poll the ADCDONECONV  
bit or time the conversion based on the requested resolution before reading out the data.  
To read out the data in the timed mode, a block read transfer can be performed on the  
ADCDONECONV, ADCOUTLO and ADCOUTHI registers. If the ADCDONECONV bit  
is HIGH, then the data is valid.  
The ADCSTARTCONVbit does not have to be reset before initiating another conversion.  
Similarly, the ADCDONECONV bit does not have to be reset before initiating another  
conversion. This minimizes the host interface transaction overhead while using the  
ADC.  
3.7.1.1.2 AUTO CONVERSION MODE  
The user selects the desired source, and enables the auto conversion mode by setting  
ADCAUTOCONVENHIGH. The ADC will continuously convert the selected source and  
update the ADCOUTHI/LO registers.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
38 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
The ADCDONECONV bit will always remain HIGH, indicating a valid converted value  
is available for read-out. This flag may be cleared by writing to the ADCSTARTCONVbit  
if positive indication of valid data is required.  
3.7.1.2 ADC Control Registers  
The following registers are used to select the various sources for conversion and  
read-out through the ADC. The offset calibration controls ADCOFFCALEN[3:0]  
facilitate calibrating the offsets of the selected sources:  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Selects input for ADC (see Table 3-3: ADC  
Source Select).  
ADCSRCSEL  
3:0  
7:4  
RW  
RW  
0000  
0000  
0-15  
0-15  
ADC_REG1  
143  
Selects source for offset calibration (see  
Table 3-2).  
ADCOFFCALEN  
Table 3-3: ADC Source Select  
ADCSRCSEL[3:0]  
Source  
0000  
0001  
0010  
0.9V  
Ch0 Vertical Eye  
Ch1 Vertical Eye  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Ch0 Horizontal Eye  
Ch1 Horizontal Eye  
Ch0 Peak Detector  
Ch1 Peak Detector  
RSVD  
RSVD  
RSVD  
Temperature Sensor  
Supply Sensor  
0.45V  
1.35V  
RSVD  
RSVD  
The following registers are used to program a calibrated offset for automatic offset  
correction. ADCOFFMODE and ADCRESOLUTION determine how the offset values  
are interpreted.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
39 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Register  
Address  
b
d
Register Name  
Parameter Name  
Bit Position  
Access  
Function  
Reset Value  
Valid Range  
d
ADC_REG7  
ADC_REG8  
149  
150  
ADCOFFSETLO  
ADCOFFSETHI  
7:0  
7:0  
RW  
RW  
00000000  
00000000  
0-255  
0-255  
ADC offset LSB, unsigned binary.  
ADC offset MSB, unsigned binary.  
The following registers are used to configure the ADC:  
Register  
Address  
b
d
Register Name  
Parameter Name  
Bit Position  
Access  
Function  
Reset Value  
Valid Range  
d
ADCRESET  
0:0  
1:1  
RW  
RW  
1
1
0-1  
0-1  
Reset for the ADC.  
When HIGH, enables auto conversion.  
Set LOW for manual.  
ADCAUTOCONVEN  
When HIGH, justify towards LSB. LOW  
justifies towards MSB.  
ADCJUSTLSB  
2:2  
RW  
1
0-1  
ADC_REG0  
142  
When LOW, offset is subtracted from the  
ADC output. When HIGH, offset is added  
to the ADC output.  
ADCOFFMODE  
3:3  
RW  
0
0-1  
NOTE: When HIGH, ADCOFFSETHI[7] is  
sign and rest of the bits are magnitude.  
A sign value of 1 represents negative  
numbers.  
ADCRESOLUTION  
ADCCLKRATE  
2:0  
5:3  
RW  
RW  
001  
0-7  
ADC resolution control.  
ADC clock divide ratio.  
ADC_REG2  
143  
0101  
0-15  
Table 3-4: ADC Resolution  
ADCRESOLUTION  
Number of ADC Clocks  
for Conversion  
ADC Resolution (bits)  
000  
001  
010  
011  
100  
101  
110  
111  
4
15  
63  
6
8
255  
10  
1023  
4095  
16383  
65535  
Unused  
12  
14  
16  
Unused  
Table 3-5: ADC Clock Rate  
ADCCLKRATE[2:0]  
ADC Sampling Clock Rate  
(MHz)  
ADC Conversion Time  
(μs) Res = 10 bits  
000  
001  
1
1023  
651  
1.6  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
40 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 3-5: ADC Clock Rate (Continued)  
ADC Sampling Clock Rate  
ADC Conversion Time  
(μs) Res = 10 bits  
ADCCLKRATE[2:0]  
(MHz)  
010  
011  
100  
101  
110  
111  
2.1  
2.7  
3.3  
3.9  
4.4  
5
477  
377  
311  
265 (default)  
231  
205  
The following registers are used to control the conversion, and read-out the converted  
data:  
Register  
Address  
b
d
Register Name  
Parameter Name  
Bit Position  
Access  
Function  
Reset Value  
Valid Range  
d
ADC_REG3  
ADC_REG4  
ADC_REG5  
ADC_REG6  
145  
146  
147  
148  
ADCSTARTCONV  
ADCDONECONV  
ADCOUTLO  
0:0  
0:0  
7:0  
7:0  
RW  
RO  
RO  
RO  
0
0-1  
0-1  
ADC starts conversion.  
ADC conversion done flag.  
ADC output LOW MSB.  
ADC output HIGH MSB.  
0
00000000  
00000000  
0-255  
0-255  
ADCOUTHI  
When HIGH, power-down the  
temperature sensor.  
PDTEMPSENSOR  
3:3  
RW  
1
0-1  
PWRDN_REG2  
161  
When HIGH, power-down the supply  
sensor.  
PDSUPPLYSENSOR  
PDADC  
4:4  
5:5  
RW  
RW  
1
1
0-1  
0-1  
When HIGH, power-down the ADC.  
3.7.1.3 ADC Offset Calibration  
The ADC supports conversion of several different sources. Each source can have a  
different offset associated with it. To allow accurate conversion for each source, it is  
recommended that the offset be calibrated for each source, so that the appropriate  
correction can be applied when converting a given source.  
There are two steps involved in the calibration of offsets:  
1. Offset measurement.  
2. Offset correction.  
3.7.1.3.1 OFFSET MEASUREMENT  
Offset measurement of any source requires zeroing-out the source, such that its output  
constitutes the offset only. With the source zeroed-out, the output of the ADC is then the  
cumulative offset. This offset is subtracted from subsequent measurements of the same  
source to get an accurate offset corrected conversion.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
41 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
The device supports offset measurement of each source through the ADCSRCSEL and  
ADCOFFCALEN register controls. ADCOFFCALEN selects the source to zero-out, as  
shown in Table 3-2:  
Table 3-2: Offset Measurement Sources  
ADC Offset Calibration  
ADCOFFCALEN[3:0]  
Source  
Input (Vcal)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.9V  
Ch0 Vertical Eye  
Ch1 Vertical Eye  
Ch0 Horizontal Eye  
Ch1 Horizontal Eye  
Ch0 Peak Detector  
Ch1 Peak Detector  
RSVD  
0.9V  
0.9V  
0.9V  
0.9V  
0.9V  
0.45V  
0.45V  
N/A  
RSVD  
N/A  
RSVD  
N/A  
Temperature Sensor  
Supply Sensor  
0.45V  
0.9V  
0.9V  
0.45V  
1.35V  
N/A  
1.35V  
RSVD  
RSVD  
N/A  
When a selected source is zeroed-out, the input to the ADC is set to its calibration voltage  
(Vcal) as per Table 3-2. The ideal code for that calibration voltage for a given resolution,  
can be subtracted from the output code to get the offset. Refer to the formula shown  
below:  
Equation 3-1  
Vcal  
1.8  
Offset = ADCOut (2N  
1)  
For example: if the temperature sensor is selected as the source, then it’s Vcal = 0.9V.  
Assuming that the ADC resolution (N) is set to 10 bits; by setting ADCOFFCALEN =  
“1010”, and reading-out the ADC, (in this example) ADCOUT = 521.  
Therefore, Offset = 521 - 511 = 10.  
This measured offset can be subtracted from subsequent measurements automatically,  
as described in the next section.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
42 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.7.1.3.2 OFFSET CORRECTION  
The ADC supports offset correction for both internal offsets as well as external  
systematic offsets through the ADCOFFSETLO and ADCOFFSETHI registers.  
The offset correction behaviour depends on the ADCOFFMODE control bit. Table 3-3  
describes the offset correction operation:  
Table 3-3: Offset Correction Operation  
ADCOFFMODE  
Operation  
Description  
ADCOUTLO,HI = uncorrected  
ADC Out[15:0] -  
ADCOFFSETLO,HI is un-signed.  
Result is unsigned. Output is all 0s  
for negative results.  
0
ADCOFFSETLO,HI  
ADCOFFSETLO,HI is sign + mag.  
ADCOUTLO,HI = uncorrected  
ADC Out[15:0] +  
Bit 15 is sign, and 1 represents  
positive. Result is unsigned. Output  
is all 0s for negative results.  
1
ADCOFFSETLO,HI  
Supporting both subtraction and addition of offsets allows the user the flexibility to  
adjust for systematic shifts. However, the default mode 0 (subtraction) should suffice for  
most applications.  
In the previous example, the offset was measured to be 10 for ADCOUT = 521 for the  
temperature sensor. This offset can be automatically subtracted for all subsequent  
measurements of the temperature sensor by setting ADCOFFSETLO = 10 and  
ADCOFFSETHI = 0. With these values, ADCOUT will read 511 (instead of 521).  
3.7.1.4 ADC Conversion Sequence  
The following sequence is recommended for ADC conversions:  
1. Power-up the ADC.  
2. Bring the ADC out of reset.  
3. Setup the ADC mode of operation (Auto or Manual).  
4. Setup the ADC resolution.  
5. Setup the ADC conversion rate (clock rate).  
6. Select the ADC source to convert.  
7. Setup the ADC offset and offset modes.  
8. Start the ADC conversion.  
9. Read the ADC-done conversion flag to confirm a successful conversion.  
10. Read the ADC output, first the low byte, immediately followed by high byte.  
The following section gives a detailed example of performing an ADC conversion in  
manual mode.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
43 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Example ADC Conversion in Manual Mode  
The following example illustrates how to use the ADC to read-out the supply sensor in  
manual conversion mode:  
1. Power-up the ADC and the supply sensor.  
Register: PWRDN_REG2, Address: 161, PDADC = 0.  
Register: PWRDN_REG2, Address: 161, PDSUPPLYSENSOR = 0.  
2. Bring the ADC out of reset.  
Register: ADC_REG0, Address: 142, ADCRESET = 0  
3. Set the ADC mode of operation to manual mode.  
Register: ADC_REG0, Address: 142, ADCAUTOCONVEN = 0.  
Note that this must be a separate write operation than the reset exit, even though  
it's the same register.  
4. Set the ADC resolution to 12 bits.  
Register: ADC_REG2, Address: 144, ADCRESOLUTION = 4.  
5. Set the ADC conversion rate.  
Register: ADC_REG2, Address: 144, ADCCLKRATE = 5 (default).  
6. Select the ADC source as the supply sensor.  
Register: ADC_REG1, Address: 143, ADCSRCSEL = 11 (decimal).  
7. Set the ADC offset and offset mode (in this example, an offset of 0 is assumed).  
Register: ADC_REG0, Address: 142, ADCOFFMODE = 0 (default).  
Register: ADC_REG7, Address: 149, ADCOFFSETLO = 0.  
Register: ADC_REG8, Address: 150, ADCOFFSETHI = 0.  
8. Start the ADC conversion.  
Register: ADC_REG3, Address: 145, ADCSTARTCONV = 1.  
Note that it is not required to reset the ADCSTARTCONV to 0 before starting  
another conversion. Writing a value of 1 to the ADCSTARTCONV bit again will  
initiate a new conversion.  
Read the ADC-done flag and output.  
Register: ADC_REG4,5,6 Address: 146-148, ADCDONECONV, ADCOUTLO,  
ADCOUTHI.  
These three registers can be read-out as burst read. Note that it is important that the  
LOW byte be read-out first, immediately followed by a HIGH byte. This is required to  
ensure data consistency. The ADCDONECONV flag can be checked to confirm  
successful conversion.  
3.7.1.5 ADC Transfer Functions for Each Source  
The following subsections show the typical transfer functions for each source that can  
be read-out from ADC.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
44 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Peak Detectors  
Table 3-4 and Figure 3-21 show typical peak detector outputs:  
Table 3-4: Peak Detector Outputs  
Peak Detector Input  
ADC (12-bit resolution)  
Amplitude (mVppd)  
ADC (10-bit resolution)  
10  
30  
806  
810  
201  
202  
204  
207  
212  
222  
233  
244  
250  
261  
273  
285  
296  
457  
498  
50  
817  
75  
830  
100  
140  
180  
220  
240  
280  
320  
360  
400  
1000  
1200  
849  
887  
931  
975  
998  
1044  
1092  
1139  
1184  
1828  
1993  
Peak Detector Output (Res=12b)  
2000  
1750  
1500  
1250  
1000  
750  
0
200  
400  
600  
800  
1000  
1200  
1400  
Ch1 Input (mVppd)  
Figure 3-21: Peak Detector Output  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
45 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Temperature Sensor  
Table 3-5 and Figure 3-22 show typical temperature sensor outputs:  
Table 3-5: Typical Temperature Sensor Output  
Temperature (°C)  
ADC (12-bit resolution)  
ADC (10-bit resolution)  
-20.00  
0.00  
653  
896  
163  
223  
284  
345  
405  
466  
496  
587  
20.00  
40.00  
60.00  
80.00  
90.00  
120.00  
1138  
1381  
1623  
1866  
1987  
2351  
ADC Temp Monitor Transfer Function  
700  
600  
500  
400  
300  
200  
100  
0
10-bit  
-40.00 -20.00 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00  
Temp(°C)  
Figure 3-22: ADC Temperature Monitor Transfer Function  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
46 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Supply Sensor  
Table 3-6 and Figure 3-23 show typical Ch0SDOVCC supply sensor outputs:  
Table 3-6: Typical Ch0SDOVCC Supply Sensor Output  
Ch0SDOVCC (V)  
ADC (12-bit resolution)  
ADC (10-bit resolution)  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
644  
771  
161  
192  
224  
256  
288  
319  
351  
383  
414  
446  
478  
510  
605  
573  
605  
898  
1025  
1152  
1279  
1406  
1532  
1659  
1786  
1913  
2040  
2167  
2294  
2421  
ADC Supply Monitor Transfer Function  
700  
600  
500  
400  
300  
200  
100  
0
10-bit  
2.0  
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Supply Voltage (V)  
Figure 3-23: ADC Supply Monitor Transfer Function  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
47 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.8 Power Control Options  
The GX4002 provides a high-degree of flexibility in configuring the device for optimal  
power through power-down and power adjustment registers. Typical usage scenarios  
are shown. For further description on each of the individual control bits, see Table 7-1,  
registers 134 to 137. This section describes the power-down controls for the following  
sub-systems:  
1. Ch1 CDR & SDO Power-Down  
2. Ch0 CDR Power-Down  
3. Ch0 SDO Power-Down  
Table 3-7: Ch1 CDR & SDO Power-Down  
Description  
0
0
1
1
x
0
x
1
x
x
x
x
x
x
x
1
1
0
Completely powers-down the Ch1 CDR and Ch1 SDO.  
Completely powers-down the Ch1 CDR and Ch1 SDO  
Main data path through Ch1 CDR and Ch1 SDO is powered-up for bypass  
mode. (Ch1LA has to be powered-up).  
0
0
0
0
0
0
1
1
1
1
0
0
Mission mode, Ch1 CDR & SDO enabled in low-power mode.  
Mission mode for fibre channel. Ch1 CDR & SDO are enabled with  
automatic bypass through rate detection.  
0
0
0
0
0
0
0
1
1
0
0
0
Diagnostic mode with horizontal eye monitor enabled.  
Diagnostic mode with divided recovered clock available through Ch1 SDO.  
Requires appropriate configuration of loopback registers.  
Table 3-8: Ch0 CDR Power-Down  
Description  
0
1
1
0
1
1
x
x
x
x
1
0
Completely powers-down the Ch0 CDR  
Main data path through Ch0 CDR is powered-up for bypass mode. (Ch0Eq  
has to be powered-up).  
0
0
0
1
1
0
Mission mode, Ch0 CDR is enabled in low power mode.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
48 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 3-8: Ch0 CDR Power-Down (Continued)  
Description  
0
0
0
0
0
0
0
1
1
0
0
0
Diagnostic mode with horizontal eye monitor enabled.  
Diagnostic mode with divided recovered clock available through Ch0 SDO.  
Requires appropriate configuration of loopback registers.  
Table 3-9: Ch0 SDO Power-Down  
Description  
1
x
0
0
x
1
0
0
x
x
x
0
x
x
1
0
Completely powers-down the Ch0 SDO.  
Completely powers-down the Ch0 SDO.  
Independently powers-down the Ch0 SDO cross point adjust feature.  
Ch0 SDO with all features enabled.  
3.9 Device Reset  
RESET is an active-low signal with LVTTL/LVCMOS compatible signalling levels. RESET  
has a weak pull-down to keep the device in reset upon power-up. RESET does not have  
schmitt trigger since reset negation is internally synchronized. See Figure 6-7.  
3.9.1 Reset State During Power-up  
The device requires RESET to be continuously asserted LOW during power ramp up.  
RESET must continue to be held in an asserted LOW state for the minimum specified  
time after the power supply has reached 90% of its final settling value. Following a  
RESET assertion at power-up, the device may be reset again at any time with the  
minimum specified pulse width on RESET. Refer to Figure 3-24.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
49 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Vcc  
0.9*Vcc  
RESET  
Minimum pulse width  
on RESET = t_chip_reset*  
for subsequent resets  
following reset  
t_chip_reset*  
*NOTE: Refer to Section 3.8.2  
assertion at power-up  
Figure 3-24: Reset State During Power-up  
3.9.2 RESET Timing  
The following RESET timing specifications apply:  
t_chip_reset: 10μs  
Defined as the minimum duration that RESET must be asserted after the supply has  
reached 90% of final settling value. The device can be accessed 1μs after RESET goes  
HIGH.  
0.9*VCC  
t_chip_reset  
V
CC  
RESET  
Figure 3-25: GX4002 Device Reset Timing Diagram  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
50 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
3.9.3 I/O and Register States During and After Reset  
All configuration registers are set to their post-reset defaults state immediately  
following RESET assertion.  
The following I/O states are applicable upon RESET assertion:  
Table 3-10: I/O and Register States During and After Reset  
Pin Name  
I/O State upon RESET Assertion  
This pin is configured as an input while RESET is asserted and  
immediately following RESET negation. When configured as an  
input, this pin is high-impedance.  
SDA  
This pin is configured as an input while RESET is asserted, and  
immediately following RESET negation. When configured as an  
input, this pin is high-impedance.  
SCL  
This pin is configured as an open-drain output while RESET is  
asserted and immediately following RESET negation.  
Ch0FAULT  
This output will be high-impedance, and its state will depend on  
the external pull-up.  
This pin is configured as an open-drain output while RESET is  
asserted and immediately following RESET negation. If a signal  
is present, the output will be pulled LOW. Otherwise, this output  
will be high-impedance and it’s state will depend on the  
external pull-up.  
Ch1LOS  
3.10 Digital Control Interface  
2
The GX4002 has a serial control interface to communicate with the part. An I C protocol  
can be used.  
2
3.10.1 I C Host Interface Mode  
2
The I C mode supports standard-mode (100kb/s) and fast-mode (400kb/s) signalling.  
The device only supports slave mode. The pins SDA and SCL are used for bi-directional  
serial data and clock respectively.  
The GX4002 device slave address is 24h (= 0100100x).  
2
The I C protocol is implemented as per the following description:  
2
Each access begins with a 7-bit I C slave address word, an 8-bit register address word,  
followed by two 8-bit data words written to, or read from, the GX4002.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
51 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
2
S
W
A
register address  
A
registers data  
A
P
I
C Slave Address  
Single 8-bit-Register Write Cycle - Over I 2C Bus  
Legend:  
A = Acknowledge (SDA LOW)  
N = No Acknowledge (SDA HIGH)  
S = Start Condition  
R = Read mode (=1)  
W = Write mode (=0)  
From Master to Slave  
From Slave to Master  
Sr = Restart Condition  
P = Stop Condition  
2
Figure 3-26: Single Register Write Cycle over I C Bus  
2
2
S
W
A
register address  
A
Sr  
R
A
registers data  
N P  
I
C Slave Address  
I C Slave Address  
Single 8-bit-Register Read Cycle - Over I2C Bus  
Legend:  
A = Acknowledge (SDA LOW)  
N = No Acknowledge (SDA HIGH)  
S = Start Condition  
R = Read mode (=1)  
W = Write mode (=0)  
From Master to Slave  
From Slave to Master  
Sr = Restart Condition  
P = Stop Condition  
2
Figure 3-27: Single Register Read Cycle over I C Bus  
2
S
W
A
register address (RA)  
A
data (RA)  
A
data (RA + 1)  
A
data (RA + 2)  
A
I
C Slave Address  
A
data (RA + n - 4)  
A
data (RA + n - 3)  
A
data (RA + n - 2)  
A
data (RA + n - 1) A P  
Multiple 8-bit-Registers (consecutive address) Write Cycle - Over I2C Bus  
Legend:  
A = Acknowledge (SDA LOW)  
N = No Acknowledge (SDA HIGH)  
S = Start Condition  
R = Read mode (=1)  
W = Write mode (=0)  
From Master to Slave  
From Slave to Master  
Sr = Restart Condition  
P = Stop Condition  
2
Figure 3-28: Bulk Register Write Cycle over I C Bus  
2
2
S
W
A
register address (RA)  
A
Sr  
R
A
data (RA)  
A
I
C Slave Address  
I
C Slave Address  
A
data (RA + n - 4) data (RA + n - 3)  
A
A
data (RA + n - 2)  
A
data (RA + n - 1)  
N P  
Multiple Registers (consecutive address) Read Cycle - Over I2C Bus  
Legend:  
A = Acknowledge (SDA LOW)  
N = No Acknowledge (SDA HIGH)  
S = Start Condition  
R = Read mode (=1)  
W = Write mode (=0)  
From Master to Slave  
From Slave to Master  
Sr = Restart Condition  
P = Stop Condition  
2
Figure 3-29: Bulk Register Read Cycle over I C Bus  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
52 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
4. Typical Application Circuit  
Populate for  
open-collector  
mode  
DIG_3V3  
SDO0_3V3  
Ch1_3V3  
Ch0_3V3  
To/from  
controller  
From SFP+  
connector  
or to/from  
13  
17  
1
controller  
16  
RESET  
SDO1  
8
Ch1LOS  
RESET  
SDO1  
Ch1LOS  
32 Ch0FAULT  
Ch0FAULT  
100nF  
100nF  
15  
6Ω  
100nF  
100Ω differential pair  
1kΩ  
1kΩ  
6
Ch1 Output  
SDI1  
SDI1  
SDI1  
14  
10Ω  
SDO1  
SDO1  
100Ω differential pair  
Ch1 Input  
AC Common Mode  
Enhancement  
100nF  
1µF  
7
Ch1LF  
9
SDI1  
Ch1LF  
100nF  
Ch1VCOFILT 11  
Place close to chip  
100nF  
Ch1VCOFILT  
100nF  
SDI0  
19  
20  
31 SDO0  
SDO0  
SDO0  
SDI0  
100Ω differential pair  
100Ω differential pair  
30  
Ch0 Input  
Ch0 Output  
GX4002  
100nF  
SDI0  
SDO0  
SDI0  
100nF  
100nF  
Ch0LF  
Ch0VCOFILT  
GND  
23  
21  
24  
Ch0LF  
Place close to chip  
DIG_3V3  
1µF  
Ch0VCOFILT  
4.7kΩ  
4.7kΩ  
GND  
SDA 25  
SCL 26  
RS0 29  
SDA  
SCL  
From SFP+  
connector  
or to/from  
controller  
3
NC  
RS0  
RS1  
NC  
RS1  
5
4
27  
VREG  
220nF  
2
10 12 18 22 28  
Figure 4-1: GX4002 Typical Application Circuit  
Place lowest value decoupling capacitor closest to the device  
Status indicator connections are shown for a LVCMOS/LVTTL compatible mode.  
These I/Os can be configured as open-drain with pull-up  
4.1 Power Supply Filter Recommendations  
RC filters for isolating supplies are not recommended due to the large currents drawn  
from each supply.  
The Ch0 and Ch1 VCOs do not have independent supplies. Both of the Ch0 and Ch1  
VCOs have internal regulators sourced from Ch0VCC and Ch1VCC respectively. As  
a result, additional filtering for the VCOs is not required  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
53 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
For improved isolation between the Ch0 and Ch1 paths, and to achieve the best Ch1  
Sensitivity and Ch0 Jitter Generation, a supply filter such as the one shown in Figure 4-2  
is recommended.  
Ch0SDOVCC  
L9  
C21  
1µF  
C22  
L9: Ferrite Bead (0603)  
1k, Rdc = 0.35Ω  
Example: Murata  
100nF  
Ch0VCC  
Ch1VCC  
P/N BLM18HE102SN1  
L10  
C23  
1µF  
C24  
L10: Ferrite Bead (0603)  
1k, Rdc = 0.35Ω  
Example: Murata  
V3.3  
100nF  
P/N BLM18HE102SN1  
L11  
C25  
1µF  
C26  
L11: Ferrite Bead (0603)  
1k, RDC = 0.35Ω  
Example: Murata  
100nF  
P/N BLM18HE102SN1  
Figure 4-2: Power Supply Filter Recommendations  
4.2 Power Supply Domains  
Figure 4-3 shows the power supply domains for the GX4002:  
Power Domains  
Legend  
1.8V  
Regulator  
Digital I/Os  
Host I/F  
Supply  
Sensor  
Ch0SDOVCC  
Diagnostics  
(ADC, Ch0Fault)  
Ch0VCC  
Ch1VCC  
Reg  
VCO  
Trace Driver  
O/P Stage  
Pre-Driver  
Ch0EQ  
Ch0 CDR  
PRBS Generator  
+ Checker  
Reg  
VCO  
Ch1 LA  
Trace Driver  
Ch1 CDR  
Ch1VCOFILT  
Figure 4-3: Power Supply Domains  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
54 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
5. Layout Considerations  
The following high-frequency design rules should be considered to achieve optimum  
performance of the GX4002:  
Use carefully designed controlled-impedance transmission lines with minimal local  
discontinuities for all high-speed data signals  
Place decoupling capacitors as close as possible to the supply pins  
For optimal electrical and thermal performance, the QFN’S exposed pad should be  
soldered to the module ground plane  
It is recommended to have LF cap ground and VCO caps ground to be common with  
multiple stitching of vias to ground. Capacitors should be placed from smallest  
value to largest value away from chip  
All supply decoupling capacitors should have multiple vias to ground/power  
planes, and placed as close to chip as possible  
All supplies/grounds should be routed to corresponding decoupling capacitors  
pads, and never to the centre pad  
The recommended PCB layout for the GX4002 device is shown in Section 7.2  
Some sample layouts are shown in Figure 5-1  
32  
31  
26  
25  
30  
29  
28  
27  
SDO0VCC  
SDO0VEE  
NC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
GND  
Ch0LF  
Ch0VCOVEE  
Ch0VCOFILT  
SDI0  
NC  
XPOINT  
RS1  
SDI1  
SDI0  
SDI1  
Ch0VEE  
Ch0VCC  
Ch1LOS  
9
10  
11  
12  
13  
14  
15  
16  
Ground Pad  
(bottom of package)  
OUT  
IN  
OUT  
IN  
IN  
OUT  
IN  
OUT  
Figure 5-1: Sample Layouts  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
55 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
6. Input/Output Equivalent Circuits  
Ch1VCC  
Ch1VCC  
Ch1VCC  
SDI1  
SDI1  
50Ω  
50Ω  
Ch1VEE  
Ch1VEE  
Ch1VEE  
Figure 6-1: SDI1  
Ch0VCC  
Ch0VCC  
Ch0VCC  
50Ω  
50Ω  
SDI0  
SDI0  
Ch0VEE  
Ch0VEE  
Ch0VEE  
Figure 6-2: SDI0  
Ch1VCC  
Ch1VCC  
50Ω  
50Ω  
SDO  
SDO  
Pre-emphasis  
Control  
2mA  
Swing Control  
Ch1VEE  
Ch1VEE Ch1VEE  
Figure 6-3: SDO1  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
56 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Ch0SDOVCC  
Ch0SDOVCC  
50Ω  
50Ω  
SDO  
SDO  
Ch0SDOVEE  
Ch0SDOVEE  
Figure 6-4: SDO0  
Ch0SDOVCC  
Ch0SDOVCC  
Ch0FAULT  
ch0FAULT  
Ch0SDOVEE Ch0SDOVEE  
Ch0SDOVEE Ch0SDOVEE  
Configured as open-drain  
Figure 6-5: Ch0FAULT  
Configured as LVCMOS  
Ch1VCC  
Ch1VCC  
Ch1LOS  
Ch1LOS  
Ch1VEE  
Ch1VEE  
Ch1VEE  
Ch1VEE  
Configured as LVCMOS  
Configured as open-drain  
Figure 6-6: Ch1LOS  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
57 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Ch1VCC  
Ch1VCC  
Ch1VCC  
Ch1VCC  
RESET  
50Ω  
5µA  
Ch1VEE  
Ch1VEE  
Ch1VEE  
Ch1VEE  
Ch1VEE  
Figure 6-7: RESET  
Ch0SDOVCC  
Ch0SDOVCC  
Ch0SDOVCC  
VREG  
50Ω  
I2C Clock Input  
SCL  
Schmitt  
Ch0SDOVEE  
Ch0SDOVEE  
Ch0SDOVEE  
Ch0SDOVEE  
Ch0SDOVCC  
1kΩ  
Ch0SDOVCC  
Ch0SDOVEE  
VREG  
I2C Clock Output  
Ch0SDOVEE  
Ch0SDOVEE  
Ch0SDOVEE  
2
Figure 6-8: I C, SCL, SDA  
Ch1VCC  
Ch1VCC  
Ch1VCC  
Ch1VCC  
50Ω  
RS0  
RS1  
To Rate Select Logic  
Schmitt  
25µA  
Ch1VEE  
Ch1VEE  
Ch1VEE  
Ch1VEE  
Ch1VEE  
Figure 6-9: RS0, RS1  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
58 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
7. Package and Ordering Information  
7.1 Package Dimensions  
The GX4002 is a 5mm x 5mm, 32-pin QFN.  
Pin #1 identification  
chamfer 0.400 x 45°  
5.000 0.050  
3.300 0.050  
Exp.DAP  
Pin 1 dot  
by marking  
0.400 0.050  
0.500 Bsc  
32L QFN  
(5 x 5mm)  
3.300 0.050  
Exp.DAP  
5.000 0.050  
0.230 0.050  
3.500  
Ref.  
Top View  
Bottom View  
A
0.203 Ref  
0.000-0.050  
MAX.  
NOM.  
MIN.  
0.900  
0.850  
0.800  
A
Side View  
7.2 Recommended PCB Footprint  
0.50  
Pin #1  
0.3  
0.6  
0.40 x 45°  
4.20  
3.30  
Notes:  
1. All dimensions in mm.  
2. Drawing not to scale.  
3. 16 thermal relief pins, evenly spaced on centre paddle,  
connected to ground plane.  
4. Drill size: 0.254mm.  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
59 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
7.3 Packaging Data  
Parameter  
Value  
32-pin QFN / 5mm x 5mm  
/ 0.5mm pad pitch  
Package Type  
Moisture Sensitivity Level  
3
Junction to Case Thermal Resistance, θj-c  
17.8°C/W  
Junction to Air Thermal Resistance (at zero airflow), θj-a  
26.4°C/W  
0.4°C/W  
Yes  
Psi = Junction-to-Top (of Package) Characterization Parameter, Ψ  
Pb-free and RoHS compliant  
7.4 Solder Reflow Profile  
The device is manufactured with Matte-Sn terminations and is compatible with both  
standard eutectic and Pb-free solder reflow profiles. MSL qualification was performed  
using the maximum Pb-free reflow profile shown in Figure 7-1.  
Temperature  
60s to 150s  
20s to 40s  
260°C  
250°C  
3°C/s maximum  
217°C  
6°C/s maximum  
200°C  
150°C  
25°C  
Time  
60s to180s maximum  
8m maximum  
Figure 7-1: Maximum Pb-free Solder Reflow Profile  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
60 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
7.5 Marking Diagram  
Pin 1 ID  
XXXX - Last 4 digits (excluding decimal)  
of SAP Batch Assembly (FIN) as listed  
on Packing Slip.  
E3 - Pb-free & Green indicator  
YYWW - Date Code  
GX4002  
XXXXE3  
YYWW  
7.6 Ordering Information  
Part Number  
Package  
Temperature Range  
GX4002-INE3  
32-pin QFN  
-40°C to 100°C  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
61 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Appendix: Configuration and Status Register Map  
NOTE: *Indicates bits for lower data rates (below 10G operation).  
Table 7-1: Configuration and Status Register Map  
Register  
Address  
Valid  
Range  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
RSVD  
0
RSVD  
7:0  
0:0  
RW  
RW  
00000000  
1
0-255  
0-1  
Reserved. Do not change.  
When HIGH, masks out Ch1LOS from asserting  
Ch0FAULT.  
FAULTMASKCH1LOS  
FAULTMASKCH1LOL  
FAULTMASKCH0LOS  
FAULTMASKCH0LOL  
When HIGH, masks Ch1LOL from asserting  
Ch0FAULT.  
1:1  
2:2  
3:3  
RW  
RW  
RW  
1
1
1
0-1  
0-1  
0-1  
When HIGH, masks out Ch0LOS from asserting  
Ch0FAULT.  
TOP_REG1  
1
When HIGH, masks Ch0LOL from asserting  
Ch0FAULT.  
When HIGH masks out Ch0FAULT from  
asserting Ch0FAULT.  
FAULTMASKCH0FAULT  
RSVD  
4:4  
7:5  
0:0  
1:1  
2:2  
RW  
RW  
RW  
RW  
RW  
0
000  
0
0-1  
0-7  
0-1  
0-1  
0-1  
Reserved. Do not change.  
When HIGH, inverts polarity of Ch0FAULT  
output.  
POLINVCH0FAULT  
POLINVCH1LOS  
OPENDRAINCH1LOS  
0
When HIGH, inverts polarity of Ch1LOS output.  
When HIGH, makes Ch1LOS output driver  
open-drain.  
TOP_REG2  
2
1
When HIGH, makes Ch0FAULT output driver  
open-drain.  
OPENDRAINCH0FAULT  
RSVD  
3:3  
7:4  
0:0  
RW  
RW  
RW  
1
0000  
0
0-1  
0-15  
0-1  
Reserved. Do not change.  
When pulsed HIGH and LOW, starts off the  
PRBS generator.  
PRBSGENSTART  
TOP_REG3  
TOP_REG4  
3
4
When HIGH, clears the latched error flag from  
checker.  
PRBSCHKCLEARERR  
1:1  
RW  
0
0-1  
RSVD  
7:2  
3:0  
4:4  
7:5  
7:0  
0:0  
7:1  
RW  
RW  
RW  
RW  
RW  
RO  
000000  
1111  
0-63  
0-15  
0-1  
Reserved. Do not change.  
RSVD  
Reserved. Do not change.  
FORCECH0FAULT  
RSVD  
0
When HIGH, asserts CH0FAULT.  
Reserved. Do not change.  
000  
0-7  
RSVD  
5
6
RSVD  
00001111  
0
0-255  
0-1  
Reserved. Do not change.  
PRBSCHKSTATUS  
RSVD  
When HIGH, checker detected an error.  
Reserved. Do not change.  
TOP_REG6  
RW  
0000000  
0-127  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
62 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
LBCH1INEN  
0:0  
1:1  
2:2  
3:3  
4:4  
5:5  
6:6  
7:7  
0:0  
1:1  
2:2  
3:3  
4:4  
5:5  
6:6  
7:7  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
0-1  
Selects LB input into Ch1 CDR.  
LBCH1INPRBSGEN  
LBCH1INCH0DATA  
RSVD  
Selects PRBS generator output into Ch1 CDR.  
Selects Ch0 data into Ch1 CDR.  
Reserved. Do not change.  
LOOPBK_REG1  
7
LBCH1OUTEN  
Selects LB input into Ch1 Driver.  
Selects Ch0 data into Ch1 Driver.  
Selects PRBS generator output into Ch1 Driver.  
Selects Ch1 Clock into Ch1 Driver.  
Selects LB input into Ch0 CDR.  
LBCH1OUTCH0DATA  
LBCH1OUTPRBSGEN  
LBCH1OUTCH1CLK  
LBCH0INEN  
LBCH0INPRBSGEN  
LBCH0INCH0DATA  
RSVD  
Selects PRBS generator output into Ch0 CDR.  
Selects Ch0 data into Ch0 CDR.  
Reserved. Do not change.  
LOOPBK_REG2  
8
LBCH0OUTEN  
Selects LB input into Ch0 Driver.  
Selects Ch1 data into Ch0 Driver.  
Selects PRBS generator output into Ch0 Driver.  
Selects Ch1 clock into Ch0 Driver.  
LBCH0OUTCH0DATA  
LBCH0OUTPRBSGEN  
LBCH0OUTCH1CLK  
When HIGH, selects Ch0 recovered clock. LOW  
selects Ch1 clock.  
PRBSGENCLKSEL  
0:0  
RW  
0
0-1  
LOOPBK_REG3  
9
When HIGH selects Ch0 recovered clock. LOW  
selects Ch1 clock.  
PRBSCHKCLKSEL  
RSVD  
1:1  
7:2  
4:0  
7:5  
4:0  
RW  
RW  
RW  
RW  
RW  
0
0-1  
0-63  
0-31  
0-7  
000111  
10011  
000  
Reserved. Do not change.  
Adjusts LBW positive temperature coefficient  
control.  
CH0PLLLBWCURVT  
RSVD  
CH0PLL_REG1  
CH0PLL_REG2  
10  
11  
Reserved. Do not change.  
Adjusts LBW negative temperature coefficient  
control.  
CH0PLLLBWCURVBE  
01110  
0-31  
RSVD  
7:5  
1:0  
3:2  
7:4  
7:0  
RW  
RW  
RW  
RW  
RW  
000  
01  
0-7  
0-3  
Reserved. Do not change.  
Reserved. Do not change.  
CH0PLL control current.  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
RSVD  
RSVD  
12  
13  
CH0PLLCUR  
RSVD  
01  
0-3  
0000  
00100000  
0-15  
RSVD  
0-255  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
63 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
CH0PLLPOLINV  
0:0  
1:1  
2:2  
RW  
RW  
RW  
0
0
1
0-1  
0-1  
0-1  
When HIGH, inverts data path polarity.  
When HIGH, forces CDR into bypass mode.  
When HIGH, enables automatic bypass mode.  
CH0PLLBYPASS  
CH0PLLAUTOBYPASSEN  
CH0PLL_REG5  
14  
Selects data rates:  
CH0PLLRATESEL  
3:3  
4:4  
RW  
RW  
1
1
0-1  
0 = 1.25 - 8.5G, 1= 10.3G or 14.025G  
When HIGH, CH0PLLRATESEL is valid, otherwise  
it is ignored.  
CH0PLLRATESELVAL  
0-1  
0-7  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:5  
7:0  
7:0  
7:0  
5:0  
RW  
RW  
RW  
RW  
RW  
000  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
RSVD  
RSVD  
15  
16  
17  
00001010  
00100000  
00000101  
000000  
0-255  
0-255  
0-255  
0-63  
CH0PLL_REG9  
CH0PLL_REG10  
18  
19  
LBW multiplier:  
00 = 0.67, 10 = 1, 01 = 1.33, 11 = 1.67  
CH0PLLBWMULT  
7:6  
RW  
10  
0-3  
CH0PLLLOS  
CH0PLLLOL  
RSVD  
0:0  
1:1  
7:2  
RO  
RO  
RW  
0
0
0-1  
0-1  
Loss of signal when HIGH.  
Loss of lock when HIGH.  
Reserved. Do not change.  
000000  
0-63  
Adjusts LBW positive temperature coefficient  
control.  
CH1PLLLBWCURVT  
RSVD  
4:0  
7:5  
4:0  
RW  
RW  
RW  
10011  
000  
0-31  
0-7  
CH1PLL_REG1  
CH1PLL_REG2  
20  
21  
Reserved. Do not change.  
Adjusts LBW negative temperature coefficient  
control.  
CH1PLLLBWCURVBE  
01110  
0-31  
RSVD  
7:5  
1:0  
3:2  
7:4  
7:0  
0:0  
1:1  
2:2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
000  
0-7  
0-3  
Reserved. Do not change.  
RSVD  
01  
Reserved. Do not change.  
CH1PLL_REG3  
RSVD  
22  
23  
CH1PLLCUR  
RSVD  
01  
0-3  
Ch1 PLL control current.  
0000  
0-15  
0-255  
0-1  
Reserved. Do not change.  
RSVD  
00100000  
Reserved. Do not change.  
CH1PLLPOLINV  
CH1PLLBYPASS  
CH1PLLAUTOBYPASSEN  
0
0
1
When HIGH, inverts data path polarity.  
When HIGH, forces CDR into bypass mode.  
When HIGH, enables automatic bypass mode.  
0-1  
0-1  
CH1PLL_REG5  
24  
Selects data rates:  
CH1PLLRATESEL  
3:3  
4:4  
RW  
RW  
1
1
0-1  
0-1  
0 = 1.25 - 8.5G, 1 = 10.3G or 14.025G  
When HIGH, CH1PLLRATESEL is valid.  
Otherwise, it is ignored.  
CH1PLLRATESELVAL  
RSVD  
RSVD  
RSVD  
RSVD  
7:5  
7:0  
7:0  
7:0  
RW  
RW  
RW  
RW  
000  
0-7  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
RSVD  
RSVD  
25  
26  
27  
00001010  
00100000  
00000101  
0-255  
0-255  
0-255  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
64 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
RSVD  
5:0  
7:6  
RW  
RW  
001000  
10  
0-63  
0-3  
Reserved. Do not change.  
CH1PLL_REG9  
28  
LBW multiplier:  
00 = 0.67, 10 = 1, 01 = 1.33, 11 = 1.67  
CH1PLLBWMULT  
CH1PLLLOS  
CH1PLLLOL  
RSVD  
0:0  
1:1  
7:2  
7:0  
7:0  
7:0  
RO  
RO  
0
0-1  
0-1  
Loss of signal when HIGH.  
Loss of lock when HIGH.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
CH1PLL_REG10  
29  
0
RW  
RW  
RW  
RW  
000000  
00000000  
00000000  
00000000  
0-63  
RSVD  
RSVD  
RSVD  
30  
31  
32  
RSVD  
0-255  
0-255  
0-255  
RSVD  
RSVD  
When HIGH, applies fixed Ch0 equalizer boost  
of 6dB. 0dB if LOW.  
Valid for below 10G operation.  
CH0EQBOOST*  
CH0EQBOOST  
0:0  
1:1  
RW  
RW  
1
1
0-1  
0-1  
CH0_REG3  
33  
When HIGH, applies a fixed Ch0 Equalizer  
boost of 6dB, 0dB if LOW.  
Valid for 10G to 14G operation.  
RSVD  
7:2  
6:0  
RW  
RW  
000000  
0-63  
Reserved. Do not change.  
Offset correction. 63 for 0 correction  
with +64/-63 steps.  
CH0EQOFFOVRVAL  
0111111  
0-127  
CH0_REG4  
34  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:7  
7:0  
7:0  
7:0  
7:0  
RW  
RW  
RW  
RW  
RW  
0
0-1  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
RSVD  
RSVD  
RSVD  
35  
36  
37  
38  
00000000  
00000101  
00000000  
00000000  
0-255  
0-255  
0-255  
0-255  
Negative temperature coefficient LOS  
threshold setting.  
CH0_REG9  
39  
40  
CH0LOSTHNEG  
CH0LOSTHPOS  
7:0  
7:0  
RW  
RW  
01010011  
00000000  
0-255  
0-255  
Positive temperature coefficient LOS threshold  
setting.  
CH0_REG10  
CH0LOSHYS  
RSVD  
3:0  
7:4  
2:0  
3:3  
RW  
RW  
RW  
RW  
1001  
0000  
000  
0
0-15  
0-15  
0-7  
0: minimum hysteresis, 15: maximum hysteresis.  
Reserved. Do not change.  
CH0_REG11  
41  
RSVD  
Reserved. Do not change.  
CH0LOSSOFTASSERT  
0-1  
When HIGH, does a software LOS assert.  
CH0_REG12  
CH0_REG13  
42  
43  
When HIGH, selects software LOS. LOW selects  
hardware LOS.  
CH0LOSSOFTASSERTEN  
RSVD  
4:4  
7:5  
7:0  
RW  
RW  
RW  
0
0-1  
0-7  
000  
Reserved. Do not change.  
Vertical eye monitor threshold adjustment,  
0-255.  
CH0VEYETHADJ  
00000000  
0-255  
Vertical eye monitor threshold polarity. HIGH is  
positive.  
CH0VEYETHPOL  
0:0  
1:1  
RW  
RW  
0
0
0-1  
0-1  
When HIGH, reduces the range to  
0-600mVppd.  
CH0VEYELORANGE  
CH0_REG14  
44  
CH0VEYEOFFCALEN  
RSVD  
2:2  
7:3  
RW  
RW  
0
0-1  
Vertical eye monitor offset calibration enable.  
Reserved. Do not change.  
00000  
0-31  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
65 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
Main power configuration register for the Ch0  
path. Default is the high-power setting. Refer  
to Section 2.4.  
CH0PWR1  
4:0  
RW  
01010  
0-31  
CH0_REG15  
45  
RSVD  
RSVD  
7:5  
2:0  
RW  
RW  
000  
111  
0-7  
Reserved. Do not change.  
Reserved. Do not change.  
0-31  
Secondary power configuration register for the  
Ch0 path. Default is the high-power setting.  
Refer to Section 2.4.  
CH0_REG16  
46  
CH0PWR2  
4:3  
RW  
01  
0-3  
0-1  
RSVD  
RSVD  
7:5  
7:0  
RW  
RW  
000  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
47  
48  
00000000  
0-255  
0-15  
0-15  
0-15  
0: 0dB to 15: 14dB.  
Valid for below 10G operation.  
CH1LABOOST*  
RSVD  
3:0  
7:4  
3:0  
RW  
RW  
RW  
0000  
0000  
0000  
CH1_REG1  
Reserved. Do not change.  
0: 0dB to 15: 14dB.  
Valid for 10G to 14G operation.  
CH1LABOOST  
CH1_REG2  
RSVD  
49  
50  
51  
RSVD  
RSVD  
7:4  
7:0  
RW  
RW  
0000  
0-15  
Reserved. Do not change.  
Reserved. Do not change.  
00000000  
0-255  
Offset correction. 63 for 0 correction with  
+64/-63 steps.  
CH1LAOFFOVRVAL  
6:0  
RW  
0111111  
0-127  
CH1_REG4  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:7  
7:0  
7:0  
7:0  
7:0  
RW  
RW  
RW  
RW  
RW  
0
0-1  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
RSVD  
RSVD  
RSVD  
52  
53  
54  
55  
00010000  
00000000  
00000000  
00001010  
0-255  
0-255  
0-255  
0-255  
Negative temperature coefficient LOS  
threshold setting.  
Valid for below 10G operation.  
CH1_REG9  
CH1_REG10  
CH1_REG11  
56  
57  
58  
CH1LOSTHNEG*  
CH1LOSTHPOS*  
CH1LOSTHNEG  
7:0  
7:0  
7:0  
RW  
RW  
RW  
10000011  
00010001  
10000011  
0-255  
0-255  
0-255  
Positive temperature coefficient LOS threshold  
setting. Valid for below 10G operation.  
Negative temperature coefficient LOS  
threshold setting.  
Valid for 10G to 14G operation.  
Positive temperature coefficient LOS threshold  
setting.  
Valid for 10G to 14G operation.  
CH1_REG12  
CH1_REG13  
59  
60  
CH1LOSTHPOS  
7:0  
RW  
00010001  
0-255  
0: minimum hysteresis, 15: maximum hysteresis.  
Valid for below 10G operation.  
CH1LOSHYS*  
CH1LOSHYS  
3:0  
7:4  
RW  
RW  
1001  
1001  
0-15  
0-15  
0: minimum hysteresis, 15: maximum hysteresis.  
Valid for 10G to 14G operation.  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
66 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
RW  
Function  
Reset Value  
d
d
Address  
Range  
1:0 - LOS range 0: highest - 3: lowest, 2 (MSB)  
unused. Valid for below 10G operation.  
CH1LOSRANGE*  
2:0  
5:3  
001  
0-7  
0-7  
1:0 - LOS range 0: highest - 3: lowest, 2 (MSB)  
unused.  
CH1LOSRANGE  
RW  
001  
Valid for 10G to 14G operation.  
CH1_REG14  
61  
When HIGH, selects a software LOS. LOW  
selects hardware LOS.  
CH1LOSSOFTASSERT  
CH1LOSSOFTASSERTEN  
CH1VEYETHADJ  
6:6  
7:7  
7:0  
0:0  
RW  
RW  
RW  
RW  
0
0-1  
0-1  
When HIGH, selects software LOS. LOW selects  
hardware LOS.  
0
00000000  
0
Vertical eye monitor threshold adjustment,  
0-255.  
CH1_REG15  
CH1_REG16  
62  
63  
0-255  
0-1  
Vertical eye monitor threshold polarity. HIGH is  
positive.  
CH1VEYETHPOL  
CH1VEYELORANGE  
CH1VEYEOFFCALEN  
RSVD  
1:1  
2:2  
7:3  
RW  
RW  
RW  
0
0
0-1  
0-1  
When HIGH, reduces the range to 0-600mVppd  
Vertical eye monitor offset calibration enable.  
Reserved. Do not change.  
00000  
0-31  
Main power configuration register for the Ch1  
path. Default is the high-power setting. Refer  
to Section 2.4.  
CH1PWR1  
4:0  
RW  
01010  
0-31  
CH1_REG17  
64  
RSVD  
RSVD  
7:5  
4:0  
RW  
RW  
000  
0-7  
Reserved. Do not change.  
Reserved. Do not change.  
11100  
0-31  
Secondary power configuration register for the  
Ch1 path. Default is the high-power setting.  
Refer to Section 2.4.  
CH1_REG18  
CH1_REG19  
65  
66  
CH1PWR2  
6:5  
RW  
00  
0-3  
RSVD  
7:7  
7:0  
0:0  
1:1  
RW  
RW  
RW  
RW  
0
0-1  
0-255  
0-1  
Reserved. Do not change.  
RSVD  
00000000  
Reserved. Do not change.  
CH0RATEDETRESET  
CH0RATEDETEN  
0
1
When HIGH, the rate detector is reset.  
When HIGH, the rate detector is enabled.  
0-1  
When HIGH, the application is Fibre Channel,  
when LOW the application is Ethernet.  
CH0RDET_REG1  
67  
RATEDETFCGBEN  
2:2  
RW  
1
0-1  
RATEDETFCGBENVAL  
RSVD  
3:3  
7:4  
RW  
RW  
1
0-1  
When HIGH, FCGBEn is valid.  
Reserved. Do not change.  
0000  
0-15  
Rate detector rate period (0.3µs to 13ms, 100µs  
default).  
CH0RATEDETRATEPER  
3:0  
RW  
1000  
0-15  
CH0RDET_REG2  
68  
RSVD  
7:4  
7:0  
7:0  
7:0  
0:0  
1:1  
7:2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0000  
00000000  
00000000  
00000000  
0
0-15  
0-255  
0-255  
0-255  
0-1  
Reserved. Do not change.  
RSVD  
RSVD  
RSVD  
69  
70  
71  
RSVD  
Reserved. Do not change.  
RSVD  
Reserved. Do not change.  
RSVD  
Reserved. Do not change.  
CH1RATEDETRESET  
CH1RATEDETEN  
RSVD  
When HIGH, the rate detector is reset.  
When HIGH, the rate detector is enabled.  
Reserved. Do not change.  
CH1RDET_REG1  
72  
1
0-1  
000000  
0-63  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
67 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
Rate detector rate period (0.3µs to 13ms, 100µs  
default).  
CH1RATEDETRATEPER  
3:0  
RW  
1000  
0-15  
0-15  
CH1RDET_REG2  
73  
RSVD  
RSVD  
RSVD  
RSVD  
7:4  
7:0  
7:0  
7:0  
RW  
RW  
RW  
RW  
0000  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Driver swing.  
RSVD  
RSVD  
RSVD  
74  
75  
76  
00000000  
00000000  
00000000  
0-255  
0-255  
0-255  
CH1SDOSWING*  
CH1SDOSWING  
3:0  
7:4  
1:0  
RW  
RW  
RW  
1010  
1010  
00  
0-15  
0-15  
0-3  
0-15: 100-850mVppd, default=10: 600mV.  
Valid for below 10G operation.  
CH1SDO_REG1  
77  
Driver swing.  
0-15: 100-850mVppd, default=10: 600mV.  
Valid for 10G to 14G operation.  
Rise time control.  
CH1SDOPERTCTRL*  
0:18ps, 1 & 2:22ps, 3: 30ps for 450mVppd  
swing. Valid for below 10G operation.  
CH1SDO_REG2  
78  
Pre-emphasis amplitude.  
CH1SDOPECTRL*  
RSVD  
4:2  
7:5  
RW  
RW  
000  
000  
0-7  
0-7  
0: 1.3dB, 7: 6dB for 450mVppd swing.  
Valid for below 10G operation.  
Reserved. Do not change.  
Rise time control.  
0:18ps, 1 & 2:22ps, 3: 30ps for 450mVppd  
swing.  
Valid for 10G to 14G operation.  
CH1SDOPERTCTRL  
CH1SDOPECTRL  
1:0  
4:2  
RW  
RW  
00  
0-3  
Pre-emphasis amplitude.  
000  
0-31  
0: 1.3dB, 7: 6dB for 450mVppd swing.  
Valid for 10G to 14G operation.  
CH1SDO_REG3  
79  
When HIGH, mutes driver and maintains  
common mode when not in auto mute mode.  
CH1SDOMUTE  
5:5  
6:6  
7:7  
RW  
RW  
RW  
0
1
1
0-1  
0-1  
0-1  
When HIGH, enables muting the driver upon  
LOS.  
CH1SDOAUTOMUTEEN  
CH1SDOPWRDNONMUTE  
When HIGH, enables power-down on mute for  
output stage.  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
80  
81  
82  
83  
84  
85  
86  
87  
88  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:0  
7:0  
7:0  
7:0  
70  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0000000  
0000000  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
00000000  
00000100  
00000010  
00000100  
10000010  
00101111  
01010000  
7:5  
7:0  
7:0  
7:0  
Ch0 swing setting LSB. 0x0 = 0mVppd, 0xC8 =  
400mVppd, 0x190 = 800mVppd swing.  
Valid for below 10G operation.  
SDO0_REG10  
89  
CH0SWINGSETLO  
7:0  
RW  
00000000  
0-255  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
68 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
Ch0 swing setting MSB. 0x0 = 0mVppd, 0xC8 =  
400mVppd, 0x190 = 800mVppd swing.  
Valid for below 10G operation.  
CH0SWINGSETHI  
1:0  
RW  
00  
0-3  
SDO0_REG11  
90  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:2  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
2:0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
000000  
00011111  
00011111  
00000000  
00000000  
00000000  
00000000  
00000000  
11110000  
01010101  
00000000  
000  
0-63  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-7  
When HIGH, mutes driver and maintains  
common mode when not in auto mute mode.  
CH0SDOMUTE  
3:3  
4:4  
5:5  
RW  
RW  
RW  
0
1
1
0-1  
0-1  
0-1  
When HIGH, enables muting the driver upon  
LOS.  
CH0SDO_REG25  
101  
CH0SDOAUTOMUTEEN  
CH0SDOPWRDNONMUTE  
When HIGH, enables power-down on mute for  
output stage.  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:6  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
00  
0-3  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
102  
103  
104  
105  
106  
107  
108  
109  
00010011  
00000000  
00000000  
00000010  
00000100  
10000010  
00101111  
01010000  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
Ch0 swing setting LSB. 0x0 = 0mVppd, 0xC8 =  
400mVppd, 0x190 = 800mVppd swing.  
Valid for 10G to 14G operation.  
SDO0_REG34  
SDO0_REG35  
110  
111  
CH0SWINGSETLO  
CH0SWINGSETHI  
7:0  
1:0  
RW  
RW  
00000000  
00  
0-255  
0-3  
Ch0 swing setting MSB. 0x0 = 0mVppd, 0xC8 =  
400mVppd, 0x190 = 800mVppd swing.  
Valid for 10G to 14G operation.  
RSVD  
RSVD  
RSVD  
RSVD  
7:2  
7:0  
7:0  
7:0  
RW  
RW  
RW  
RW  
000000  
0-63  
0-255  
0-255  
0-255  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
RSVD  
RSVD  
112  
113  
114  
00000000  
00000000  
00000000  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
69 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
0:0  
5:1  
6:6  
7:7  
7:0  
7:0  
7:0  
7:0  
7:0  
4:0  
5:5  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
00000000  
00000000  
11110000  
11111010  
11111010  
00000001  
01010000  
01010000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
1
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-255  
0-1  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Enable all Ch0 Faults.  
CH0FAULTEN  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
RSVD  
01111  
0-31  
Reserved. Do not change.  
When HIGH, clears the latched Ch0 fault status.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Hardware Fault mask.  
CH0FLT_REG1  
134  
CH0FAULTCLEARSTATUS  
0
0-1  
RSVD  
0
0-1  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
135  
136  
137  
138  
139  
RSVD  
00000000  
11111111  
11111111  
11111111  
00001111  
00000  
0-255  
0-255  
0-255  
0-255  
0-255  
0-31  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
CH0FAULTMUTE  
RO  
0
0-1  
CH0FLT_REG7  
140  
141  
Latched signal from CH0FAULT output pin of  
Ch0Fault.  
CH0FAULTCH0FAULT  
6:6  
RO  
0
0-1  
RSVD  
RSVD  
7:7  
7:0  
RW  
RW  
0
0-1  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
00000000  
0-255  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
70 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
ADCRESET  
0:0  
1:1  
RW  
RW  
1
1
0-1  
0-1  
Reset for the ADC.  
When HIGH, enables auto conversion. Set LOW  
for manual.  
ADCAUTOCONVEN  
ADCJUSTLSB  
When HIGH, justify towards LSB. LOW justifies  
towards MSB.  
2:2  
3:3  
RW  
RW  
1
0
0-1  
0-1  
ADC_REG0  
142  
When LOW, offset is subtracted from the ADC  
output. When HIGH, offset is added to the ADC  
output.  
ADCOFFMODE  
NOTE: When HIGH, ADCOFFSETHI[7] is sign and  
rest of the bits are magnitude. A sign value of 1  
represents negative numbers.  
RSVD  
7:4  
3:0  
7:4  
2:0  
5:3  
7:6  
0:0  
7:1  
0:0  
7:1  
7:0  
7:0  
7:0  
7:0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
0000  
0000  
0-15  
0-15  
0-15  
0-7  
Reserved. Do not change.  
ADCSRCSEL  
ADCOFFCALEN  
ADCRESOLUTION  
ADCCLKRATE  
RSVD  
Select input for ADC (see Section 3.7.1).  
Select source for offset calibration.  
ADC resolution control: 0-7 -> 4b to 16b.  
ADC clock divide ratio.  
ADC_REG1  
ADC_REG2  
143  
144  
0000  
001  
101  
0-7  
00  
0-3  
Reserved. Do not change.  
ADCSTARTCONV  
RSVD  
0
0-1  
ADC start conversion.  
ADC_REG3  
ADC_REG4  
145  
146  
0000000  
0
0-127  
0-1  
Reserved. Do not change.  
ADCDONECONV  
RSVD  
ADC conversion done flag.  
Reserved. Do not change.  
RW  
RO  
0000000  
00000000  
00000000  
00000000  
00000000  
0-127  
0-255  
0-255  
0-255  
0-255  
ADC_REG5  
ADC_REG6  
ADC_REG7  
ADC_REG8  
147  
148  
149  
150  
ADCOUTLO  
ADCOUTHI  
ADCOFFSETLO  
ADCOFFSETHI  
ADC output LOW MSB.  
RO  
ADC output HIGH MSB.  
RW  
RW  
ADC offset LSB, unsigned binary.  
ADC offset MSB, unsigned binary  
When HIGH, power-down for the entire Ch0  
path.  
CH0PDCH0PATH  
CH0PDCH0CDR*  
CH0PDCH0CDR  
0:0  
1:1  
2:2  
RW  
RW  
RW  
0
0
0
0-1  
0-1  
When HIGH, power-down for the entire CDR.  
Valid for below 10G operation.  
CH0PWRDN_REG1  
151  
When HIGH, power-down for the entire CDR.  
Valid for 10G to 14G operation.  
CH0PDCH0SDO  
RSVD  
3:3  
7:4  
0:0  
1:1  
7:2  
RW  
RW  
RW  
RW  
RW  
1
0010  
0
0-1  
0-15  
0-1  
When HIGH, power-down for the entire driver.  
Reserved. Do not change.  
CH0PDEQ  
CH0PDLOS  
RSVD  
When HIGH, power-down for the equalizer.  
When HIGH, power-down for the LOS.  
Reserved. Do not change.  
CH0PWRDN_REG2  
152  
0
0-1  
100000  
0-63  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
71 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
CH0PDRATEDET  
0:0  
1:1  
RW  
RW  
1
1
0-1  
0-1  
When HIGH, power-down for rate detector.  
When HIGH, power-down for the Ch0 vertical  
eye monitor.  
CH0PDVEYEMON  
CH0PDHEYEMON  
When HIGH, power-down for the Ch0  
horizontal eye monitor.  
2:2  
RW  
1
0-1  
CH0PWRDN_REG3  
153  
When HIGH, power-down for the Ch0 peak  
detector.  
CH0PDPKDET  
RSVD  
3:3  
4:4  
5:5  
RW  
RW  
RW  
1
1
1
0-1  
0-1  
0-1  
0-3  
Reserved. Do not change.  
When HIGH, power-down for the divided Ch0  
clock divider.  
CH0PDCKDIVOUT  
RSVD  
RSVD  
7:6  
7:0  
RW  
RW  
01  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
154  
155  
00001111  
0-255  
0-1  
When HIGH, power-down for the entire Ch1  
path.  
CH1PDCH1PATH  
CH1PDCH1CDR*  
CH1PDCH1CDR  
0:0  
1:1  
2:2  
RW  
RW  
RW  
0
0
0
When HIGH, power-down for the entire CDR.  
Valid for below 10G operation.  
0-1  
0-1  
CH1PWRDN_REG0  
When HIGH, power-down for the entire CDR.  
Valid for 10G to 14G operation.  
CH1PDCH1SDO  
RSVD  
3:3  
7:4  
7:0  
0:0  
1:1  
2:2  
7:3  
0:0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0-1  
0-15  
0-255  
0-1  
When HIGH, power-down the trace driver.  
Reserved. Do not change.  
0001  
CH1PWRDN_REG1  
CH1PWRDN_REG2  
156  
157  
RSVD  
00000000  
Reserved. Do not change.  
CH1PDLA  
RSVD  
0
When HIGH, power-down for the LA.  
Reserved. Do not change.  
1
0-1  
CH1PDLOS  
RSVD  
0
00000  
1
0-1  
When HIGH, power-down for the LOS.  
Reserved. Do not change.  
0-31  
0-1  
CH1PDRATEDET  
When HIGH, power-down for rate detector.  
When HIGH, power-down for the Ch1 vertical  
eye monitor.  
CH1PDVEYEMON  
CH1PDHEYEMON  
CH1PDPKDET  
1:1  
2:2  
3:3  
4:4  
5:5  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
1
0-1  
0-1  
0-1  
0-1  
0-1  
When HIGH, power-down for the Ch1  
horizontal eye monitor.  
When HIGH, power-down for the Ch0 peak  
detector.  
CH1PWRDN_REG3  
158  
When HIGH, power-down for the delay  
monitor.  
CH1PDDELMON  
CH1PDCKDIVOUT  
When HIGH, power-down for the divided Ch1  
clock divider.  
RSVD  
RSVD  
RSVD  
7:6  
7:0  
7:0  
RW  
RW  
RW  
01  
0-3  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
RSVD  
RSVD  
159  
160  
00001111  
00011111  
0-255  
0-255  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
72 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
Table 7-1: Configuration and Status Register Map (Continued)  
Register  
Valid  
Bit  
Position  
b
Register Name  
Parameter Name  
Access  
Function  
Reset Value  
d
d
Address  
Range  
RSVD  
0:0  
1:1  
RW  
RW  
1
1
0-1  
0-1  
Reserved. Do not change.  
When HIGH, power-down the PRBS generator  
and associated buffers.  
PDPRBSGEN  
When HIGH, power-down the PRBS checker  
and associated buffers.  
PDPRBSCHK  
2:2  
3:3  
RW  
RW  
1
1
0-1  
0-1  
PWRDN_REG2  
161  
When HIGH, power-down the temperature  
sensor(s).  
PDTEMPSENSOR  
PDSUPPLYSENSOR  
PDADC  
4:4  
5:5  
7:6  
7:0  
RW  
RW  
RW  
RW  
1
1
0-1  
0-1  
0-3  
When HIGH, power-down the supply sensor.  
When HIGH, power-down the ADC.  
Reserved. Do not change.  
RSVD  
00  
N/A  
RSVD  
162 to 195  
RSVD  
0-255  
Reserved. Do not change.  
NOTE: * Indicates bits for lower data rates (below 10G operation)  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
73 of 74  
Proprietary & Confidential  
55972 - 0  
March 2012  
CAUTION  
ELECTROSTATIC SENSITIVE DEVICES  
DATA SHEET  
The product is in production. Gennum reserves the right to make changes to  
the product at any time without notice to improve reliability, function or  
design, in order to provide the best product possible.  
DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A  
STATIC-FREE WORKSTATION  
Phone: +1 (905) 632-2996  
E-mail: sales@gennum.com  
Fax: +1 (905) 632-2055  
www.gennum.com  
GENNUM CORPORATE HEADQUARTERS  
4281 Harvester Road, Burlington, Ontario L7L 5M4 Canada  
CANADA  
JAPAN KK  
TAIWAN  
Suite 320, 3553 31st St. N.W.  
Calgary, Alberta T2L 2K7  
Canada  
Shinjuku Green Tower Building 27F  
6-14-1, Nishi Shinjuku  
Shinjuku-ku, Tokyo, 160-0023  
Japan  
6F-4, No.51, Sec.2, Keelung Rd.  
Sinyi District, Taipei City 11502  
Taiwan R.O.C.  
Phone: +1 (403) 284-2672  
Fax: +1 (905) 632-2055  
Phone: (886) 2-8732-8879  
Fax: (886) 2-8732-8870  
E-mail: gennum-taiwan@gennum.com  
Phone: +81 (03) 3349-5501  
Fax: +81 (03) 3349-5505  
415 Legget Drive, Suite 200  
Kanata, Ontario K2K 2B2  
Canada  
E-mail: gennum-japan@gennum.com  
UNITED KINGDOM  
South Building, Walden Court  
Parsonage Lane,  
Bishop’s Stortford Hertfordshire, CM23 5DB  
United Kingdom  
Web Site: http://www.gennum.co.jp  
MEXICO  
Phone: +1 (613) 270-0458  
Fax: +1 (613) 270-0429  
Venustiano Carranza 122 Int. 1  
Centro, Aguascalientes  
Mexico CP 20000  
GERMANY  
Phone: +44 1279 714170  
Fax: +44 1279 714171  
Gennum Canada Limited  
Niederlassung Deutschland  
München, Germany  
Phone: +1 (416) 848-0328  
2, West Point Court, Great Park Road  
Bradley Stoke, Bristol BS32 4PY  
Great Britain  
NORTH AMERICA WESTERN REGION  
691 South Milpitas Blvd., Suite #200  
Milpitas, CA 95035  
Phone: +49 89 309040 290  
Fax: +49 89 309040 293  
E-mail: gennum-germany@gennum.com  
United States  
Phone: +44 1454 462200  
Fax: +44 1454 462201  
Phone: +1 (408) 934-1301  
Fax: +1 (408) 934-1029  
E-mail: naw_sales@gennum.com  
INDIA  
SNOWBUSH IP - A DIVISION OF GENNUM  
#208(A), Nirmala Plaza,  
Airport Road, Forest Park Square  
Bhubaneswar 751009  
India  
439 University Ave. Suite 1700  
Toronto, Ontario M5G 1Y8  
Canada  
NORTH AMERICA EASTERN REGION  
4281 Harvester Road  
Burlington, Ontario L7L 5M4  
Canada  
Phone: +91 (674) 65304815  
Fax: +91 (674) 259-5733  
Phone: +1 (416) 925-5643  
Fax: +1 (416) 925-0581  
E-mail: sales@snowbush.com  
Phone: +1 (905) 632-2996  
Fax: +1 (905) 632-2055  
E-mail: nae_sales@gennum.com  
Web Site: http://www.snowbush.com  
Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of  
the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent  
infringement.  
All other trademarks mentioned are the properties of their respective owners.  
GENNUM and the Gennum logo are registered trademarks of Gennum Corporation.  
© Copyright 2011 Gennum Corporation. All rights reserved.  
www.gennum.com  
GX4002 2x2 14.025Gb/s Crosspoint Switch with Trace  
Equalization and Output De-Emphasis  
Data Sheet  
74 of 74  
74  
Proprietary & Confidential  
55972 - 0  
March 2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY