GD5F1GQ4RF9IS [GIGADEVICE]

SPI(x1/x2/x4) NAND Flash;
GD5F1GQ4RF9IS
型号: GD5F1GQ4RF9IS
厂家: GigaDevice    GigaDevice
描述:

SPI(x1/x2/x4) NAND Flash

文件: 总59页 (文件大小:1817K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPI(x1/x2/x4) NAND Flash  
1G  
GD5F1GQ4xFxxS  
DATASHEET  
1
SPI(x1/x2/x4) NAND Flash  
Contents  
1G  
1
2
FEATURE...........................................................................................................................................................4  
GENERAL DESCRIPTION...............................................................................................................................5  
2.1  
PRODUCT LIST ........................................................................................................................................................ 6  
2.2 CONNECTION DIAGRAM .................................................................................................................................................. 7  
2.3 PIN DESCRIPTION........................................................................................................................................................... 7  
2.4 BLOCK DIAGRAM ........................................................................................................................................................... 8  
3
4
5
ARRAY ORGANIZATION .................................................................................................................................9  
MEMORY MAPPING.......................................................................................................................................10  
DEVICE OPERATION.....................................................................................................................................11  
5.1 SPI MODES ................................................................................................................................................................ 11  
5.2 HOLD MODE ............................................................................................................................................................. 12  
5.3 WRITE PROTECTION ..................................................................................................................................................... 12  
5.4 POWER OFF TIMING..................................................................................................................................................... 12  
6
7
COMMANDS DESCRIPTION.........................................................................................................................13  
WRITE OPERATIONS ....................................................................................................................................14  
7.1 WRITE ENABLE (WREN) (06H) ..................................................................................................................................... 14  
7.2 WRITE DISABLE (WRDI) (04H) ..................................................................................................................................... 14  
8
9
FEATURE OPERATIONS...............................................................................................................................15  
8.1 GET FEATURES (0FH) AND SET FEATURES (1FH) ............................................................................................................... 15  
READ OPERATIONS......................................................................................................................................17  
9.1 PAGE READ................................................................................................................................................................. 17  
9.2 PAGE READ TO CACHE (13H)......................................................................................................................................... 17  
9.3 READ FROM CACHE (03H) ............................................................................................................................................ 18  
9.4 FAST READ FROM CACHE (0BH)..................................................................................................................................... 18  
9.5 READ FROM CACHE X2 (3BH)........................................................................................................................................ 19  
9.6 READ FROM CACHE X4 (6BH)........................................................................................................................................ 20  
9.7 READ FROM CACHE DUAL IO (BBH) ............................................................................................................................... 21  
9.8 READ FROM CACHE QUAD IO (EBH)............................................................................................................................... 22  
10  
READ ID.......................................................................................................................................................23  
10.1 READ ID (9FH) ......................................................................................................................................................... 23  
10.2 READ UID ................................................................................................................................................................ 24  
10.3 READ PARAMETER PAGE ............................................................................................................................................. 25  
11  
PROGRAM OPERATIONS.........................................................................................................................30  
11.1 PAGE PROGRAM ........................................................................................................................................................ 30  
11.2 PROGRAM LOAD (PL) (02H) ....................................................................................................................................... 31  
2
SPI(x1/x2/x4) NAND Flash  
1G  
11.3 PROGRAM LOAD X4 (PL X4) (32H)............................................................................................................................... 32  
11.4 PROGRAM EXECUTE (PE) (10H)................................................................................................................................... 33  
11.5 INTERNAL DATA MOVE ............................................................................................................................................... 34  
11.6 PROGRAM LOAD RANDOM DATA (84H) ........................................................................................................................ 34  
11.7 PROGRAM LOAD RANDOM DATA X4 (C4H/34H)............................................................................................................ 35  
12  
ERASE OPERATIONS ...............................................................................................................................36  
12.1 BLOCK ERASE (D8H) .................................................................................................................................................. 36  
RESET OPERATIONS................................................................................................................................37  
13  
13.1 SOFT RESET (FFH) ..................................................................................................................................................... 37  
13.2 HARDWARE RESET ..................................................................................................................................................... 38  
13.2.1 RESET FUNCTION DESCRIPTION.................................................................................................................................. 38  
13.2.2 HARDWARE RESET SETTING..................................................................................................................................... 39  
14  
ADVANCED FEATURES............................................................................................................................40  
14.1 OTP REGION ............................................................................................................................................................ 40  
14.2 BLOCK PROTECTION ................................................................................................................................................... 41  
14.3 STATUS REGISTER AND DRIVER REGISTER........................................................................................................................ 42  
14.4 ASSISTANT BAD BLOCK MANAGEMENT .......................................................................................................................... 43  
14.5 INTERNAL ECC .......................................................................................................................................................... 44  
15  
16  
17  
18  
19  
20  
21  
22  
23  
POWER ON TIMING...................................................................................................................................45  
ABSOLUTE MAXIMUM RATINGS............................................................................................................46  
CAPACITANCE MEASUREMENT CONDITIONS....................................................................................47  
DC CHARACTERISTIC..............................................................................................................................48  
AC CHARACTERISTICS............................................................................................................................49  
PERFORMANCE TIMING ..........................................................................................................................50  
ORDERING INFORMATION ......................................................................................................................52  
PACKAGE INFORMATION ........................................................................................................................53  
REVISION HISTORY...................................................................................................................................57  
3
SPI(x1/x2/x4) NAND Flash  
1G  
1 FEATURE  
1Gb SLC NAND Flash  
Program/Erase/Read Speed  
- Page Program time: 400us typical  
- Block Erase time: 3ms typical  
2048-Byte+128-Byte Physical Page Size(2)  
- Internal ECC Off (ECC_EN=0):  
- Page read time: 80us maximum(w/I ECC)  
2048-Byte+128-Byte Full Access  
- Internal ECC On (ECC_EN=1, default):  
Program: 2048-Byte+64-Byte  
Reliability  
- Endurance: 100K program/erase cycles  
- Data retention: 10 Years  
Read:  
2048-Byte+128-Byte  
Standard, Dual, Quad SPI  
Low Power Consumption  
- Standard SPI: SCLK, CS#, SI, SO, WP#, HOLD#  
- Dual SPI: SCLK, CS#, SIO0, SIO1, WP#, HOLD#  
- Quad SPI: SCLK, CS#, SIO0, SIO1, SIO2, SIO3  
- 40mA maximum active current  
- 90uA(1) maximum standby current  
Enhanced access performance  
- 2kbyte cache for fast random read  
- Cache read and cache program  
High Speed Clock Frequency  
- 120MHz for fast read with 30PF load  
- Quad I/O Data transfer up to 480Mbits/s  
Advanced Feature for NAND  
Software/Hardware Write Protection  
- Write protect all/portion of memory via software  
- Register protection with WP# Pin  
- Internal ECC option, per 528bytes  
- Internal data move by page with ECC  
- Top or Bottom, Block selection combination  
The first block(Block0) is guaranteed to be a valid block  
at the time of shipment.  
Advanced security Features  
- 8K-Byte OTP Region (4 page OTP)  
Single Power Supply Voltage  
- Full voltage range for 1.8V: 1.7V ~ 2.0V  
- Full voltage range for 3.3V: 2.7V ~ 3.6V  
Note (1): When Temperature is 105, the maximum standby current is 200uA  
(2). 2048Byte+128Byte Page Size can accommodate more advanced ECC algorithm by user’s choice, even though  
the internal 4-bit ECC algorithm only requires 64-Byte spare area.  
Internal 4-bit ECC is set to on (ECC_EN=1) as shipment default, it can be disabled by setting ECC_EN=0.  
- When Internal ECC is enabled, user can only program the first 64-Byte portion of the entire 128-Byte spare  
area, and the rest 64-Byte spare area cannot be programed. User can still read the entire 128-Byte spare area.  
- When Internal ECC is disabled, user can read and program the entire 128-Byte spare area.  
4
SPI(x1/x2/x4) NAND Flash  
2 GENERAL DESCRIPTION  
1G  
SPI (Serial Peripheral Interface) NAND Flash provides an ultra cost-effective while high density non-volatile memory  
storage solution for embedded systems, based on an industry-standard NAND Flash memory core. It is an attractive  
alternative to SPI-NOR and standard parallel NAND Flash, with advanced features:  
Total pin count is 8, including VCC and GND  
Density is 1Gbit  
Superior write performance and cost per bit over SPI-NOR  
Significant low cost than parallel NAND  
This low-pin-count NAND Flash memory follows the industry-standard serial peripheral interface, and always remains the  
same pin out from one density to another. The command sets resemble common SPI-NOR command sets, modified to  
handle NAND specific functions and added new features. GigaDevice SPI NAND is an easy-to-integrate NAND Flash  
memory, with specified designed features to ease host management:  
User-selectable internal ECC. ECC code is generated internally during a page program operation. When a page  
is read to the cache register, the ECC code is detect and correct the errors when necessary. The 64-bytes spare area  
is available even when internal ECC enabled. The device outputs corrected data and returns an ECC error status.  
Internal data move or copy back with internal ECC. The device can be easily refreshed and manage garbage  
collection task, without need of shift in and out of data.  
Power on Read with internal ECC. The device will automatically read first page of fist block to cache after power  
on, then host can directly read data from cache for easy boot. Also the data is promised correctly by internal ECC.  
It is programmed and read in page-based operations, and erased in block-based operations. Data is transferred to or  
from the NAND Flash memory array, page by page, to a data register and a cache register. The cache register is closest  
to I/O control circuits and acts as a data buffer for the I/O data; the data register is closest to the memory array and acts as  
a data buffer for the NAND Flash memory array operation. The cache register functions as the buffer memory to enable  
page and random data READ/WRITE and copy back operations. These devices also use a SPI status register that reports  
the status of device operation.  
5
SPI(x1/x2/x4) NAND Flash  
1G  
2.1 Product List  
Page Size  
Product Number  
Density  
Voltage  
Package Type  
Temperature  
-40to 85℃  
-40to 105℃  
40to 85℃  
-40to 85℃  
-40to 105℃  
-40to 85℃  
-40to 85℃  
-40to 105℃  
-40to 85℃  
-40to 85℃  
-40to 105℃  
-40to 85℃  
-40to 85℃  
-40to 105℃  
-40to 85℃  
-40to 85℃  
-40to 105℃  
-40to 85℃  
GD5F1GQ4RFFIS  
GD5F1GQ4RFFJS  
GD5F1GQ4RFFFS  
GD5F1GQ4RFZIS  
GD5F1GQ4RFZJS  
GD5F1GQ4RFZFS  
GD5F1GQ4RF9IS  
GD5F1GQ4RF9JS  
GD5F1GQ4RF9FS  
GD5F1GQ4UFYIS  
GD5F1GQ4UFYJS  
GD5F1GQ4UFYFS  
GD5F1GQ4UFFIS  
GD5F1GQ4UFFJS  
GD5F1GQ4UFFFS  
GD5F1GQ4UFZIS  
GD5F1GQ4UFZJS  
GD5F1GQ4UFZFS  
SOP16 300mil  
1.7V to 2.0V  
TFBGA24(6*4 Ball Array)  
LGA8(6*8mm)  
1Gbit  
2Kbyte + 128Byte  
WSON8(8*6mm)  
2.7V to 3.6V  
SOP16 300mil  
TFBGA24(6*4 Ball Array)  
6
SPI(x1/x2/x4) NAND Flash  
2.2 Connection Diagram  
1G  
CS#  
SO  
1
2
8
7
VCC  
1
2
3
4
5
6
7
8
HOLD#  
VCC  
16  
15  
14  
13  
12  
11  
10  
9
SCLK  
SI  
HOLD#/RESET#  
Top View  
RESET#  
NC  
NC  
WP# 3  
VSS 4  
6 SCLK  
SI  
NC  
Top View  
5
NC  
NC  
NC  
CS#  
SO  
NC  
8LEAD WSON  
VSS  
WP#  
16-LEAD SOP  
Top View  
4
3
2
1
HOLD#  
SI  
WP#  
NC  
RESET# VCC  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
SCLK CS# SO  
NC  
A
NC  
B
NC  
NC  
NC  
E
NC  
F
C
D
24-BALL TFBGA  
Figure2-1 Connection Diagram  
2.3 Pin Description  
Pin Name  
CS#  
I/O  
Description  
I
Chip Select input, active low  
Serial Data Output / Serial Data Input Output 1  
SO/SIO1  
WP#/SIO2  
VSS  
I/O  
I/O  
Write Protect, active low / Serial Data Input Output 2  
Ground  
Ground  
SI/SIO0  
SCLK  
I/O  
I
Serial Data Input / Serial Data Input Output 0  
Serial Clock input  
HOLD#/RESET#/SIO3 I/O  
VCC Supply  
Hold input, active low / Reset input, active low /Serial Data Input Output3  
Power Supply  
7
SPI(x1/x2/x4) NAND Flash  
1G  
2.4 Block Diagram  
WP#/  
SIO2  
HOLD#/  
RESET#/  
SIO3  
SCLK SI/SIO0 SO/SIO1  
CS#  
Serial NAND controler  
Vcc  
Vss  
NAND  
memory  
core  
Cache  
memory  
ECC and status register  
Figure2-2 Block Diagram  
8
SPI(x1/x2/x4) NAND Flash  
3 ARRAY ORGANIZATION  
1G  
Each device has  
1G  
Each block has  
Each page has  
128M+8M  
1024 x 64  
1024  
128K+8K  
2K+128  
bytes  
pages  
blocks  
64  
-
-
-
Figure3-1. Array Organization  
SO  
SI  
Cache Register  
Data Register  
2048  
2048  
128  
128  
1 page = (2K + 128 bytes)  
1 block = (2K + 128 bytes) x 64 pages  
= (128K + 8K) bytes  
Per device:  
1Gb: 1024blocks  
1 device:  
For 1Gb = (128K + 8K) bytes x 1024 blocks  
= 1Gb  
1 block  
Internal ECC = OFF  
SO  
SI  
Cache Register  
Data Register  
2048  
2048  
64  
64  
1 page = (2K + 64 bytes)  
1 block = (2K + 64 bytes) x 64 pages  
= (128K + 4K) bytes  
Per device:  
1Gb: 1024blocks  
1 device:  
For 1Gb = (128K + 4K) bytes x 1024 blocks  
= 1Gb  
1 block  
Internal ECC= ON  
Note:  
1.When Internal ECC is enableduser can program the first 64 bytes of the entire 128 bytes spare area and  
the last 64 bytes of the whole spare area cannot be programeduser can read the entire 128 Byte spare area.  
2.When Internal ECC is disableduser can read and program the entire 128 bytes spare area.  
9
SPI(x1/x2/x4) NAND Flash  
4 MEMORY MAPPING  
1G  
<
6
7
1
8
2
15 >  
1023  
Blocks  
RA<15:6>  
0
Pages  
RA<5:0>  
0
1
63  
Bytes  
CA<11:0>  
0
1
2
2175  
Note:  
1. CA: Column Address. The 12-bit address is capable of addressing from 0 to 4095 bytes; however, only bytes 0  
through 2175 are valid. Bytes 2176 through 4095 of each page are “out of bounds,” do not exist in the device,  
and cannot be addressed.  
2. RA: Row Address. RA<5:0> selects a page inside a block, and RA<15:6> selects a block:  
10  
SPI(x1/x2/x4) NAND Flash  
5 DEVICE OPERATION  
1G  
5.1 SPI Modes  
SPI NAND supports two SPI modes:  
• CPOL = 0, CPHA = 0 (Mode 0)  
• CPOL = 1, CPHA = 1 (Mode 3)  
Input data is latched on the rising edge of SCLK and data shifts out on the falling edge of SCLK for both modes. All timing  
diagrams shown in this data sheet are mode 0. See Figure5-1 for more details.  
Figure5-1. SPI Modes Sequence Diagram  
CPOL CPHA  
0
0
SCLK  
1
1
SCLK  
SI  
MSB  
LSB  
SO  
CS#  
MSB  
LSB  
Note: While CS# is HIGH, keep SCLK at VCC or GND (determined by mode 0 or mode 3).  
Standard SPI  
SPI NAND Flash features a standard serial peripheral interface on 4 signals bus: Serial Clock (SCLK), Chip Select  
(CS#), Serial Data Input (SI) and Serial Data Output (SO).  
Dual SPI  
SPI NAND Flash supports Dual SPI operation when using the x2 and dual IO commands. These commands allow  
data to be transferred to or from the device at two times the rate of the standard SPI. When using the Dual SPI command  
the SI and SO pins become bidirectional I/O pins: SIO0 and SIO1.  
Quad SPI  
SPI NAND Flash supports Quad SPI operation when using the x4 and Quad IO commands. These commands allow  
data to be transferred to or from the device at four times the rate of the standard SPI. When using the Quad SPI command  
the SI and SO pins become bidirectional I/O pins: SIO0 and SIO1, and WP# and HOLD#/RESET# pins become SIO2 and  
SIO3.  
11  
SPI(x1/x2/x4) NAND Flash  
1G  
5.2 HOLD Mode  
The HOLD# function is only available when QE=0, If QE=1, The HOLD# functions is disabled, the pin acts as dedicated  
data I/O pin.  
The HOLD# signal goes low to stop any serial communications with the device, but doesnt stop the operation of write  
status register, programming, or erasing in progress.  
The operation of HOLD, need CS# keep low, and starts on falling edge of the HOLD# signal, with SCLK signal being low  
(if SCLK is not being low, HOLD operation will not start until SCLK being low). The HOLD condition ends on rising edge of  
HOLD# signal with SCLK being low (If SCLK is not being low, HOLD operation will not end until SCLK being low).  
The SO is high impedance, both SI and SCLK dont care during the HOLD operation, if CS# drives high during HOLD  
operation, it will reset the internal logic of the device. To re-start communication with chip, the HOLD# must be at high and  
then CS# must be at low.  
Figure5-2. Hold Condition  
CS#  
SCLK  
HOLD#  
HOLD  
HOLD  
5.3 Write Protection  
SPI NAND provides Hardware Protection Mode besides the Software Mode. Write Protect (WP#) prevents the block lock  
bits (BP0, BP1, BP2 and INV, CMP) from being over written. If the BRWD bit is set to 1 and WP# is LOW, the block protect  
bits cannot be altered.  
5.4 Power Off Timing  
Please do not turn off the power before Write/Erase operation is complete. Avoid using the device when the battery is low.  
Power shortage and/or power failure before Write/Erase operation is complete will cause loss of data and/or  
damage to data.  
12  
SPI(x1/x2/x4) NAND Flash  
6 COMMANDS DESCRIPTION  
1G  
Table6-1. Commands Set  
Command Name  
Write Enable  
Byte 1  
06H  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte N  
Write Disable  
04H  
Get Features  
0FH  
A7-A0  
A7-A0  
00H  
(D7-D0)  
(D7-D0)  
Wrap(9)  
Set Feature  
1FH  
dummy(1)  
Read UID  
EDH  
13H  
Read parameter page  
Page Read (to cache)  
Read From Cache  
Fast Read From Cache  
Read From Cache x 2  
Read From Cache x 4  
Read From Cache Dual IO  
Read From Cache Quad IO  
Read ID(5)  
A23-A16  
A15-A8  
A15-A8  
A7-A0  
13H  
A23-A16  
A7-A0  
A7-A 0(8)  
03H  
dummy(2) A15-A8  
dummy(2) A15-A8  
dummy(2) A15-A8  
dummy(2) A15-A8  
(D7-D0)  
0BH  
3BH  
6BH  
BBH  
EBH  
9FH  
A7-A0  
dummy(2)  
dummy(2)  
dummy(2)  
(D7-D0)  
A7-A0  
(D7-D0)x2  
(D7-D0)x4  
A7-A0  
A15-A0  
A15-A0(4) (D7-D0)x4  
dummy(3)  
(D7-D0)x2  
MID  
DID  
DID  
Program Load  
02H  
A15-A8  
A15-A8  
A23-A16  
A15-A8  
A15-A8  
A23-A16  
A7-A0  
A7-A0  
A15-A8  
A7-A0  
A7-A0  
A15-A8  
(D7-D0)  
(D7-D0)x4  
A7-A0  
Next byte  
Next byte  
Byte N  
Byte N  
Program Load x4  
Program Execute  
Program Load Random Data  
Program Load Random Data x4  
Block Erase(128K)  
Reset(6)  
32H  
10H  
84H(7)  
C4H/34H(7)  
D8H  
FFH  
(D7-D0)  
(D7-D0)x4  
A7-A0  
Next byte  
Next byte  
Byte N  
Byte N  
Notes:  
1. The dummy byte can be inputted or not.  
2. The x8 clock = dummy<7:0>.  
3. The x8 clock = dummy<7:0>, D7-D0.  
4. The x8 clock = A15-A0, dummy<7:0>, D7-D0.  
5. MID is Manufacture ID (C8h for GigaDevice), DID is Device ID.  
6. Reset command:  
During busy, Reset will reset PAGE READ/PROGRAM/ERASE operation.  
During idle, Reset will reset status register bits P_FAIL/E_FAIL/ECCS bits.  
7. Those commands are only available in Internal Data Move operation.  
8. A0 need be 0 for the 03H command.  
9. The output would be updated by real-time, until CS# is driven high.  
10. Read UID/parameter page all are same as page read to cache.  
13  
SPI(x1/x2/x4) NAND Flash  
7 WRITE OPERATIONS  
1G  
7.1 Write Enable (WREN) (06H)  
The Write Enable (WREN) command is for setting the Write Enable Latch (WEL) bit. The Write Enable Latch (WEL) bit  
must be set prior to following operations that change the contents of the memory array:  
Page program  
OTP program/OTP protection  
Block erase  
The WEL bit can be cleared after a reset command.  
Figure7-1. Write Enable Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
06H  
High-Z  
SO  
7.2 Write Disable (WRDI) (04H)  
The Write Disable command is for resetting the Write Enable Latch (WEL) bit. The WEL bit is also reset by following  
condition:  
Page program  
OTP program/OTP protection  
Block erase  
Figure7-2. Write Disable Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
04H  
High-Z  
SO  
14  
SPI(x1/x2/x4) NAND Flash  
8 FEATURE OPERATIONS  
1G  
8.1 Get Features (0FH) and Set Features (1FH)  
The GET FEATURES (0FH) and SET FEATURES (1FH) commands are used to monitor the device status and alter the  
device behavior. These commands use a 1-byte feature address to determine which feature is to be read or modified.  
Features such as OTP and block locking can be enabled or disabled by setting specific feature bits (shown in the following  
table). The status register is mostly read, except WEL, which is a writable bit with the WRITE ENABLE (06H) command.  
When a feature is set, it remains active until the device is power cycled or the feature is written to. Unless otherwise  
specified in the following table, once the device is set, it remains set, even if a RESET (FFH) command is issued.  
Table8-1. Features Settings  
Register Addr.  
7
6
5
4
3
2
1
0
Protection A0H  
BRWD  
Reserved  
BP2  
BP1  
BP0  
INV  
CMP  
Reserved  
QE  
Feature  
Status  
B0H  
C0H  
OTP_PRT OTP_EN Reserved ECC_EN Reserved Reserved  
Reserved ECCS2 ECCS1 ECCS0 P_FAIL E_FAIL  
Reserved  
WEL  
OIP  
Feature  
D0H HOLDB/RST DS_IO[1] DS_IO[0] Reserved Reserved Reserved  
Reserved  
Reserved  
Note: If BRWD is enabled and WP# is LOW, then the block lock register cannot be changed.  
If QE is enabled, the quad IO operations can be executed.  
All the reserved bits must be held low when the feature is set.  
00h is the default data byte value for Output Driver Register after power-up.  
These registers are write/read type, except for Register of Status (C0H) is read only.  
HOLDB/RST is for WSON8 Package only. By default HOLDB/RST registers is 0 after power-on-reset or hardware  
reset, and this bit default is HOLD function.  
Figure8-2. Get Features Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
1 byte address  
SCLK  
SI  
Command  
0FH  
7
6
5
4
3
2
1
0
Data byte  
MSB  
SO  
High-Z  
7
6
5
4
3
2
1
0
MSB  
Note: The output would be updated by real-time, until CS# is driven high.  
15  
SPI(x1/x2/x4) NAND Flash  
1G  
The set features command supports a dummy byte mode after the data byte as well. The features in the feature byte B0H  
are all volatile except OTP_PRT bit.  
Figure8-3. Set Features Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SCLK  
SI  
Data byte  
Command  
1FH  
1 byte address  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
MSB  
MSB  
SO  
High-Z  
16  
SPI(x1/x2/x4) NAND Flash  
9 READ OPERATIONS  
1G  
9.1 Page Read  
The PAGE READ (13H) command transfers the data from the NAND Flash array to the cache register. The command  
sequence is as follows:  
• 13H (PAGE READ to cache)  
• 0FH (GET FEATURES command to read the status)  
• 03H or 0BH (Read from cache)/3BH (Read from cache x2)/6BH (Read from cache x4)/BBH (Read from cache  
dual IO)/EBH (Read from cache quad IO)  
The PAGE READ command requires a 24-bit address. After the block/page addresses are registered, the device starts  
the transfer from the main array to the cache register, and is busy for tRD time. During this time, the GET FEATURE (0FH)  
command can be issued to monitor the status. Followed the page read operation, the RANDOM DATAREAD  
(03H/0BH/3BH/6BH/BBH/EBH) command must be issued in order to read out the data from cache. The output data starts  
at the initial address specified in the command, and will continue until CS# is pulled high to terminate this operation.  
Refer waveforms to view the entire READ operation.  
9.2 Page Read to Cache (13H)  
Figure9-1.Page Read to cache Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
28 29 30 31  
SCLK  
SI  
Command  
13H  
24-bit address  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
1 byte address  
SLK  
SI  
tCS  
Get Feature  
0FH  
7
6
5
4
3
2
1
0
MSB  
High-Z  
SO  
CS#  
16 17 18 19 20 21 22 23 24  
SCLK  
SI  
Data byte  
SO  
7
6
5
4
3
2
1
0
7
MSB  
17  
SPI(x1/x2/x4) NAND Flash  
9.3 Read From Cache (03H)  
1G  
Figure9-2. Read From Cache Sequence Diagram  
CS#  
8
9 10 11 12 13 14 15 16  
Dummy Byte  
0
1
2
3
4
5
6
7
17 18 19 20 21  
A15-0  
30 31  
SCLK  
Command  
03H  
SI  
7
6
5
4
3
2
1
0
15 14 12 11  
13  
3
2
1
0
High-Z  
SO  
CS#  
32 33 34 35 36 37 38 39  
SCLK  
SI  
Byte 0  
Byte 1  
6 5  
SO  
7
6
5
4
3
2
1
0
7
MSB  
MSB  
9.4 Fast Read From Cache (0BH)  
Figure9-3. Read From Cache Sequence Diagram  
CS#  
8
9 10 11 12 13 14 15 16  
Dummy Byte  
0
1
2
3
4
5
6
7
17 18 19 20 21  
A15-0  
30 31  
SCLK  
Command  
0BH  
SI  
7
6
5
4
3
2
1
0
15 14 13 12 11  
3
2
1
0
High-Z  
SO  
CS#  
32 33 34 35 36 37 38 39  
Dummy Byte  
40 41 42 43 44 45 46 47  
SCLK  
SI  
7
6
5
4
3
2
1
0
Byte 0  
Byte 1  
6 5  
SO  
7
6
5
4
3
2
1
0
7
MSB  
MSB  
18  
SPI(x1/x2/x4) NAND Flash  
9.5 Read From Cache x2 (3BH)  
1G  
Figure9-4. Read From Cache x2 Sequence Diagram  
CS#  
8
9 10 11 12 13 14 15 16  
Dummy Byte  
0
1
2
3
4
5
6
7
17 18 19 20 21  
A15-0  
30 31  
SCLK  
Command  
3BH  
SI  
7
6
5
4
3
2
1
0
15 14 12 11  
13  
3
2
1
0
High-Z  
SO  
CS#  
32 33 34 35 36 37 38 39  
Dummy Byte  
40 41 42 43 44 45 46 47  
SCLK  
SI  
7
6
5
4
3
2
1
0
6
4
2
0
1
6
7
4
2
0
1
6
7
4
2
Byte 0  
Byte 1  
Byte 2  
SO  
7
5
3
5
3
5
3
MSB  
MSB  
19  
SPI(x1/x2/x4) NAND Flash  
9.6 Read From Cache x4 (6BH)  
1G  
The Quad Enable bit (QE) of feature (B0[0]) must be set to enable the read from cache x4 command.  
Figure9-5. Read From Cache x4 Sequence Diagram  
CS#  
8
9 10 11 12 13 14 15 16  
Dummy Byte  
0
1
2
3
4
5
6
7
17 18 19 20 21  
A15-0  
30 31  
SCLK  
SI  
Command  
6BH  
7
6
5
4
3
2
1
0
15 14 12 11  
13  
3
2
1
0
High-Z  
SO  
CS#  
32 33 34 35 36 37 38 39  
Dummy Byte  
40 41 42 43 44 45 46 47  
SCLK  
7
6
5
4
3
2
1
0
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SI(SIO0)  
SO(SIO1)  
WP#(SIO2)  
HOLD#(SIO3)  
Byte0 Byte1 Byte2 Byte3  
20  
SPI(x1/x2/x4) NAND Flash  
9.7 Read From Cache Dual IO (BBH)  
1G  
The Read from Cache Dual I/O command (BBH) is similar to the Read form Cache x2 command (3BH), followed by a 12bit  
column address for the starting byte address and a dummy byte by SIO0 and SIO1, each bit being latched in during the  
rising edge of SCLK, then the cache contents are shifted out 2-bit per clock cycle from SIO0 and SIO1. The first address  
byte can be at any location. The address increments automatically to the next higher address after each byte of data shifted  
out until the end of whole page.  
Figure9-6. Read From Cache Dual IO Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SCLK  
Command  
BBH  
SI(SIO0)  
6
4
5
2
3
0
1
6
7
4
5
2
3
0
1
6
7
4
5
2
3
0
1
6
7
4
5
2
3
0
1
SO(SIO1)  
7
A7-0  
Dummy  
Byte0  
Dummy, A11-8  
CS#  
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
SI(SIO0)  
SO(SIO1)  
6
7
4
5
2
3
0
1
6
7
4
5
2
3
0
1
6
7
4
5
2
3
0
1
6
7
4
5
2
3
0
1
6
7
Byte1  
Byte2  
Byte3  
Byte4  
21  
SPI(x1/x2/x4) NAND Flash  
9.8 Read From Cache Quad IO (EBH)  
1G  
The Read from Cache Quad IO command is similar to the Read from Cache x4 command, followed a 12-bit column address  
for the starting byte address and a dummy byte by SIO0, SIO1, SIO3, SIO4, each bit being latched in during the rising  
edge of SCLK, then the cache contents are shifted out 4-bit per clock cycle from SIO0, SIO1, SIO2, SIO3. The first byte  
addressed can be at any location. The address is automatically incremented to the next higher address after each byte of  
data is shifted out until the end of whole page. The Quad Enable bit (QE) of feature (B0[0]) must be set to enable the read  
from cache quad IO command.  
Figure9-7. Read From Cache Quad IO Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SCLK  
Command  
EBH  
SI(SIO0)  
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
4
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
SO(SIO1)  
5
6
7
WP#(SIO2)  
HOLD#(SIO3)  
Byte0 Byte1  
Dummy  
Dummy, A11-A8  
A7-0  
22  
SPI(x1/x2/x4) NAND Flash  
1G  
10 Read ID  
10.1 Read ID (9FH)  
The READ ID command is used to identify the NAND Flash device.  
• The READ ID command outputs the Manufacturer ID and the device ID. See Table10-1 for details.  
Figure10-1. Read ID Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
Command  
SI  
9FH  
Manufacturer ID  
High-Z  
SO  
7
6
5
4
3
2
1
0
CS#  
17 18 19 20 21 22 23  
25 26 27 28 29 30 31  
16  
24  
SCLK  
SI  
Device ID(byte1)  
Device ID(byte2)  
SO  
7
MSB  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
MSB  
Table10-1. READ ID Table  
ID  
Description  
Part No  
Value  
Page Size  
Manufacture ID (GigaDevice)  
SPI NAND 3.3V  
GD5F1GQ4UFxxS  
GD5F1GQ4RFxxS  
GD5F1GQ4UFxxS  
GD5F1GQ4RFxxS  
GD5F1GQ4UFxxS  
GD5F1GQ4RFxxS  
C8h  
SPI NAND 1.8V  
Device ID  
(Byte 1)  
SPI NAND 1Gbit 3.3V  
SPI NAND 1Gbit 1.8V  
SPI NAND 1Gbit 3.3V  
SPI NAND 1Gbit 1.8V  
B3h  
A3h  
48h  
2Kbyte +  
128Byte  
Device ID  
(Byte 2)  
23  
SPI(x1/x2/x4) NAND Flash  
1G  
10.2 Read UID  
The Read Unique ID function is used to retrieve the 16 byte unique ID (UID) for the device. The unique ID when combined  
with the device manufacturer shall be unique.  
The UID data may be stored within the Flash array. To allow the host to determine if the UID is without bit errors, the UID  
is returned with its complement. If the XOR of the UID and its bit-wise complement is all ones, then the UID is valid. To  
accommodate robust retrieval of the UID in the case of bit errors, sixteen copies of the UID and the corresponding  
complement shall be stored by the target. For example, reading bytes 32-63 returns to the host another copy of the UID  
and its complement.  
Bytes  
0-15  
Value  
UID  
16-31  
UID complement (bit-wise)  
The Read UID command sequence is as follows:  
1. Use EDh+00h read UID from array to cache.  
2. Use 0FH (GET FEATURES command ) read the status  
3. User can use Read from cache command (03H/0BH/3BH/6BH/BBH/EBH), read UID from cache.  
Read UID to Cache (EDH+00H) + Get Feature (0FH)  
Figure10-2. Read UID to cache and Get Feature command Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
11 12 13 14 15  
SCLK  
SI  
Command  
EDH  
Command  
00H  
High-Z  
SO  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
1 byte address  
SLK  
SI  
tCS  
Get Feature  
0FH  
7
6
5
4
3
2
1
0
MSB  
High-Z  
SO  
CS#  
16 17 18 19 20 21 22 23 24  
SCLK  
SI  
Data byte  
SO  
7
6
5
4
3
2
1
0
7
MSB  
24  
SPI(x1/x2/x4) NAND Flash  
10.3 Read Parameter Page  
1G  
The Read Parameter Page function retrieves the data structure that describes the chip’s organization, features, timings  
and other behavioral parameters. This data structure enables the host processor to automatically recognize the SPI-NAND  
Flash configuration of a device. The whole data structure is repeated at least three times. The Read from cache command  
can be issued during execution of the read parameter page to read specific portion-soft the parameter page.  
The Read parameter page command sequence is as follows  
1) Set “OTP_EN=1”, Use set_feature set data 0x50 to B0 register, to enable OTP_EN.  
2) Send 13h command with address 24’h000004. Load parameter page from array to cache.  
3) Use 0FH (GET FEATURES command ) read the status  
4) User can use Read from cache command (03H/0BH/3BH/6BH/BBH/EBH), read parameter page from cache.  
Figure10-4. Read parameter page to cache and Get Feature command Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
28 29 30 31  
SCLK  
SI  
Command  
13H  
24-bit address  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
1 byte address  
SLK  
SI  
tCS  
Get Feature  
0FH  
7
6
5
4
3
2
1
0
MSB  
High-Z  
SO  
CS#  
16 17 18 19 20 21 22 23 24  
SCLK  
SI  
Data byte  
SO  
7
6
5
4
3
2
1
0
7
MSB  
25  
SPI(x1/x2/x4) NAND Flash  
1G  
Parameter page table as follow  
Byte  
O/M Description  
0-3  
M
Parameter page signature  
4FH  
4EH  
46H  
49H  
Byte 0: 4FH, “O”  
Byte 1: 4EH, “N”  
Byte 2: 46H, “F”  
Byte 3: 49H, “I”  
4-5  
6-7  
M
M
Revision number  
0-15 Reserved (0)  
Features supported  
0-15 Reserved (0)  
00H  
00H  
00H  
00H  
8-9  
M
Reserved (0)  
00H  
00H  
00H  
10-31  
Reserved (0)  
00H  
Manufacturer Information block  
32-43  
M
Device manufacturer (12 ASCII characters)“GIGADEVICE  
47H  
49H  
47H  
41H  
44H  
45H  
56H  
49H  
43H  
45H  
20H  
20H  
47H  
44H  
35H  
46H  
31H  
47H  
51H  
34H  
44-63  
M
Device model (20 ASCII characters)  
Device Model  
“GD5F1GQ4U”  
“GD5F1GQ4R”  
ORGANIZATION VCC RANGE  
X4  
X4  
2.7v ~ 3.6v  
1.7v ~ 1.95v  
55H/52H  
20H  
20H  
20H  
20H  
20H  
26  
SPI(x1/x2/x4) NAND Flash  
1G  
20H  
20H  
20H  
20H  
20H  
20H  
C8H  
00H  
00H  
00H  
00H  
00H  
64  
M
O
JEDEC manufacturer ID“C8”  
65-66  
Date code  
67-79  
80-83  
Reserved  
Memory organization block  
M
Number of data bytes per page  
00H  
08H  
00H  
00H  
80H  
00H  
00H  
02H  
00H  
00H  
20H  
00H  
40H  
00H  
00H  
00H  
00H  
04H  
00H  
00H  
01H  
00H  
84-85  
86-89  
M
M
Number of spare bytes per page  
Number of data bytes per partial page  
90-91  
92-95  
M
M
Number of spare bytes per partial page  
Number of pages per block  
96-99  
M
Number of blocks per logical unit (LUN)  
100  
101  
M
M
Number of logical units (LUNs)  
Reserved  
102  
M
M
Number of bits per cell  
01H  
14H  
00H  
01H  
05H  
01H  
103-104  
Bad blocks maximum per LUN  
105-106  
107  
M
M
Block endurance  
Guaranteed valid blocks at beginning of target  
27  
SPI(x1/x2/x4) NAND Flash  
1G  
108-109  
M
Block endurance for guaranteed valid blocks  
01H  
05H  
04H  
00H  
110  
111  
M
M
Number of programs per page  
Partial programming attributes  
5-7 Reserved  
4 1 = partial page layout is partial page data followed by partial page spare  
1-3 Reserved  
0 1 = partial page programming has constraints  
Number of bits ECC correctability  
Number of interleaved address bits  
4-7 Reserved (0)  
112  
113  
M
M
08H  
00H  
0-3 Number of interleaved address bits  
Interleaved operation attributes  
4-7 Reserved (0)  
114  
O
00H  
3 Address restrictions for program cache  
2 1 = program cache supported  
1 1 = no block address restrictions  
0 Overlapped / concurrent interleaving support  
Reserved  
115-127  
00H  
00H  
Electrical parameters block  
I/O capacitance  
128  
M
M
06H  
01H  
00H  
129-130  
IO clock support  
3-1 5 Reserved (0)  
2 1 = supports 80MHz  
1 1 = supports 104MHz  
0 1 = supports 120MHz  
131-132  
O
Reserved (0)  
00H  
00H  
133-134  
135-136  
137-138  
139-140  
141-163  
M
M
M
M
tPROG Maximum page program time (us)  
tBERS Maximum block erase time (us)  
tR Maximum page read time (us)  
Reserved  
BCH  
02H  
88H  
13H  
50H  
00H  
00H  
00H  
00H  
Reserved  
Vendor block  
164-165  
166-253  
254-255  
M
M
Vendor specific Revision number  
Vendor specific  
00H  
00H  
Integrity CRC  
Set on test  
28  
SPI(x1/x2/x4) NAND Flash  
1G  
Redundant parameter pages  
256-511  
512-767  
768+  
M
M
O
Value of bytes 0-255  
Value of bytes 0-255  
Additional redundant parameter pages  
Notes:  
1. “O” Stands for Optional, “M” for Mandatory  
2. The Integrity CRC (Cycling Redundancy Check) field is used to verify that the contents of the parameters page were transferred  
correctly to the host. Please refer to ONFI 1.0 specifications for details.  
The CRC shall be calculated using the following 16-bit generator polynomial: G(X) = X16 + X15 +X2 + 1This  
polynomial in hex may be represented as 8005h.  
3The CRC value shall be initialized with a value of 4F4Eh before the calculation begins. There is no XOR applied to the  
final CRC value after it is calculated. There is no reversal of the data bytes or the CRC calculated value.  
Device Model  
“GD5F1GQ4U”  
“GD5F1GQ4R”  
ORGANIZATION  
VCC RANGE  
2.7v ~ 3.6v  
CRC value B254/B255  
D9H/B9H  
X4  
X4  
1.7v ~ 1.95v  
01H/74H  
29  
SPI(x1/x2/x4) NAND Flash  
11 PROGRAM OPERATIONS  
1G  
11.1 Page Program  
The PAGE PROGRAM operation sequence programs 1 byte to 2176 bytes of data with in a page. The page program  
sequence is as follows:  
• 02H (PROGRAM LOAD)/32H (PROGRAM LOAD x4)  
• 06H (WRITE ENABLE)  
• 10H (PROGRAM EXECUTE)  
• 0FH (GET FEATURE command to read the status)  
Firstly, a PROGRAM LOAD (02H/32H) command is issued. PROGRAM LOAD consists of an 8-bit Op code, followed by 4  
dummy bits and a 12-bit column address, then the data bytes to be programmed. The data bytes are loaded into a cache  
register that is 2176 bytes long. If more than 2176bytes are loaded, then those additional bytes are ignored by the cache  
register. The command sequence ends when CS# goes from LOW to HIGH. Figure11-1 shows the PROGRAMLOAD  
operation. Secondly, prior to performing the PROGRAM EXECUTE operation, a WRITE ENABLE (06H) command must  
be issued. As with any command that changes the memory contents, the WRITEENABLE must be executed in order to set  
the WEL bit. If this command is not issued, then the rest of the program sequence is ignored.  
Note:  
1.  
2.  
3.  
The contents of Cache Register doesn’t reset when Program Load (02h) command, Program Random Load (84h) command and  
RESET (FFh) command.  
When Program Execute (10h) command was issued just after Program Load (02h) command, SPI-NAND controller outputs 0xFF  
data to the NAND for the address that data was not loaded by Program Load (02h) command.  
When Program Execute (10h) command was issued just after Program Load Random Data (84h) command, SPI-NAND controller  
outputs contents of Cache Register to the NAND.  
4. The addressing should be done in sequential order in a block.  
30  
SPI(x1/x2/x4) NAND Flash  
11.2 Program Load (PL) (02H)  
1G  
Figure11-1. Program Load Sequence Diagram  
CS#  
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
22 23  
SCLK  
Command  
02H  
Dummy<3:0>, A11-A0  
SI  
0
0
0
0 11 10  
3
2
1
0
CS#  
17424  
17431  
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Data Byte  
2175/2111  
Data Byte0  
Data Byte1  
SI  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
MSB  
Note: when internal ECC disabled the Data Byte is 2175, when internal ECC enabled the Data Byte is 2111.  
31  
SPI(x1/x2/x4) NAND Flash  
11.3 Program Load x4 (PL x4) (32H)  
1G  
The Program Load x4 command (32H) is similar to the Program Load command (02H) but with the capability to input the  
data bytes by four pins: SIO0, SIO1, SIO2, and SIO3. The command sequence is shown below. The Quad Enable bit (QE)  
of feature (B0[0]) must be set to enable the program load x4 command.  
Figure11-2. Program Load x4 Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
20 21 22 23 24 25 26 27 28 29 30 31  
SCLK  
Command  
32H  
Dummy<3:0>, A11-A0  
15 14 13  
Byte0 Byte1 Byte2 Byte3  
SI(SIO0)  
3
2
1
0
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
SO(SIO1)  
WP#(SIO2)  
HOLD#(SIO3)  
CS#  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCLK  
Byte  
2175/2111  
Byte4 Byte5 Byte6  
Byte7 Byte8 Byte9 Byte10Byte11  
SI(SIO0)  
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
SO(SIO1)  
WP#(SIO2)  
HOLD#(SIO3)  
Note: when internal ECC disabled the Byte is 2175, when internal ECC enabled the Byte is 2111.  
32  
SPI(x1/x2/x4) NAND Flash  
11.4 Program Execute (PE) (10H)  
1G  
After the data is loaded, a PROGRAM EXECUTE (10H) command must be issued to initiate the transfer of data from the  
cache register to the main array. PROGRAM EXECUTE consists of an 8-bit Op code, followed by a 24-bit address. After  
the page/block address is registered, the memory device starts the transfer from the cache register to the main array, and  
is busy for tPROG time. This operation is shown in Figure11-3. During this busy time, the status register can be polled to  
monitor the status of the operation (refer to Status Register). When the operation completes successfully, the next series  
of data can be loaded with the PROGRAM LOAD command.  
Figure11-3. Program Execute Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
28 29 30 31  
SCLK  
SI  
Command  
10H  
24-bit address  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
SI  
tCS  
Status register address  
get feature  
0FH  
7
6
5
4
3
2
1
0
MSB  
High-Z  
SO  
CS#  
SCLK  
SI  
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
Status register data out  
Status register data out  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
MSB  
MSB  
33  
SPI(x1/x2/x4) NAND Flash  
11.5 Internal Data Move  
1G  
The INTERNAL DATA MOVE command sequence programs or replaces data in a page with existing data. The  
INTERNAL DATA MOVE command sequence is as follows:  
• 13H (PAGE READ to cache)  
Optional 84H/C4H/34H (PROGRAM LOAD RANDOM DATA)  
• 06H (WRITE ENABLE)  
• 10H (PROGRAM EXECUTE)  
• 0FH (GET FEATURE command to read the status)  
Prior to performing an internal data move operation, the target page content must be read out into the cache register by  
issuing a PAGE READ (13H) command. The PROGRAM LOAD RANDOM DATA (84H/C4H/34H) command can be  
issued, if user wants to update bytes of data in the page. New data is loaded in the 12-bit column address. If the random  
data is not sequential, another PROGRAM LOAD RANDOM DATA (84H/C4H/34H) command must be issued with the  
new column address. After the data is loaded, the WRITE ENABLE command must be issued, and the PROGRAM  
EXECUTE (10H) command can be issued to start the programming operation.  
11.6 Program Load Random Data (84H)  
This command consists of an 8-bit Op code, followed by 4 dummy bits, and a 12-bit column address. New data is loaded  
in the column address provided with the 12 bits. If the random data is not sequential, then another PROGRAM LOAD  
RANDOM DATA (84H) command must be issued with a new column address, see Figure11-4 for details. This command is  
only available during internal data move sequence.  
Figure11-4. Program Load Random Data Sequence Diagram  
CS#  
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
22 23  
SCLK  
SI  
Dummy<3:0>, A11-A0  
Command  
84H  
0
0
0
0 11 10  
3
2
1
0
CS#  
17424  
17431  
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Data Byte  
2175/2111  
Data Byte0  
Data Byte1  
SI  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
MSB  
Note: when internal ECC disabled the Data Byte is 2175, when internal ECC enabled the Data Byte is 2111.  
34  
SPI(x1/x2/x4) NAND Flash  
1G  
11.7 Program Load Random Data x4 (C4H/34H)  
The Program Load Random Data x4 command (C4H/34H) is similar to the Program Load Random Data command (84H)  
but with the capability to input the data bytes by four pins: SIO0, SIO1, SIO2, and SIO3. The command sequence is shown  
below. The Quad Enable bit (QE) of feature (B0[0]) must be set to enable for the program load random data x4 command.  
See Figure11-5 for details. Those two commands are only available during internal data move sequence.  
Figure11-5. Program Load Random Data x4 Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
20 21 22 23 24 25 26 27 28 29 30 31  
SCLK  
Command  
C4H/34H  
Dummy<3:0>, A11-A0  
15 14 13  
Byte0 Byte1  
SI(SIO0)  
3
2
1
0
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
SO(SIO1)  
WP#(SIO2)  
HOLD#(SIO3)  
CS#  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
Byte10Byte11  
SCLK  
Byte  
2175/2111  
SI(SIO0)  
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
SO(SIO1)  
WP#(SIO2)  
HOLD#(SIO3)  
Note: when internal ECC disabled the Data is 2175, when internal ECC enabled the Data is 2111.  
35  
SPI(x1/x2/x4) NAND Flash  
12 ERASE OPERATIONS  
1G  
12.1 Block Erase (D8H)  
Figure12-1. Block Erase Sequence Diagram  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
28 29 30 31  
SCLK  
Command  
D8H  
24-bit address  
23 22 21  
SI  
3
2
1
0
High-Z  
SO  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SLK  
SI  
tCS  
Status register address  
get feature  
0FH  
7
6
5
4
3
2
1
0
MSB  
High-Z  
SO  
CS#  
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
SCLK  
SI  
Status register data out  
Status register data out  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
MSB  
MSB  
The BLOCK ERASE (D8H) command is used to erase at the block level. The blocks are organized as 64 pages per  
block, 2176 bytes per page (2048 + 128 bytes). Each block is136 Kbytes. The BLOCK ERASE command (D8H) operates  
on one block at a time. The command sequence for the BLOCK ERASE operation is as follows:  
• 06H (WRITE ENBALE command)  
• D8H (BLOCK ERASE command)  
• 0FH (GET FEATURES command to read the status register)  
Prior to performing the BLOCK ERASE operation, a WRITE ENABLE (06H) command must be issued. As with any  
command that changes the memory contents, the WRITEENABLE command must be executed in order to set the WEL  
bit. If the WRITE ENABLE command is not issued, then the rest of the erase sequence is ignored. A WRITE ENABLE  
command must be followed by a BLOCK ERASE (D8H) command. This command requires a 24-bit address. After the  
row address is registered, the control logic automatically controls timing and erase-verify operations. The device is busy  
for tERS time during the BLOCK ERASE operation. The GET FEATURES (0FH) command can be used to monitor the  
status of the operation.  
When  
a
block erase operation is in progress, user can issue normal read from cache commands  
(03H/0BH/3BH/6BH/BBH/EBH) to read the data in the cache.  
36  
SPI(x1/x2/x4) NAND Flash  
13 RESET OPERATIONS  
1G  
13.1 Soft Reset (FFH)  
Figure13-1. Reset Sequence Diagram  
CS#  
tCS  
0
1
2
3
4
5
6
7
SCLK  
Command  
FFH  
SI  
High-Z  
SO  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SLK  
SI  
Status register address  
get feature  
0FH  
7
6
5
4
3
2
1
0
MSB  
High-Z  
SO  
CS#  
SCLK  
SI  
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
Status register data out  
Status register data out  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
MSB  
MSB  
The RESET (FFH) command stops all operations. For example, in case of a program or erase or read operation, the  
reset command can make the device enter the wait state. The device will automatically read first page of fist block to  
cache after RESET (FFH)  
During a cache program or cache read, a reset can also stops the previous operation and the pending operation. The  
OIP status can be read from 300ns after the reset command is sent.  
37  
SPI(x1/x2/x4) NAND Flash  
1G  
13.2 Hardware Reset  
13.2.1 Reset Function Description  
The RESET# pin allows the device to be reset by the host controller or system reset timer like watchdog for re-boot  
without a power off and on sequence.  
For the 8-pin package, pin7 can be configured as a RESET# pin depending on the status register setting, QE=0 and  
HOLD/RST=1(see Section Hardware RESET Setting). On the 16-pin/24-pin package, a dedicated RESET# pin is provided  
and it is independent of QE bit setting (see Section Hardware RESET Setting).  
The RESET# pin goes low for a period of tRLRH or longer will reset the flash memory. After a reset cycle, the flash  
is at the following states:  
-In standby mode  
-All the volatile bits return to the default value as after power-on-reset.  
-Data of page0/block0 is read out to the cache, user can issue read from cache command (03/0B/3B/6B/BB/EB) for  
data.  
Please note that no command can be accepted during the reset cycle. (tRB1 or tRB2).  
Figure5-3. Hardware RESET Timing  
Table13-1. Hardware RESET Timing  
Symbol  
tRLRH  
tRHSL  
tRB1  
Parameter  
Setup  
MIN  
Speed  
500  
50  
Unit.  
us  
Reset pulse width  
Reset high time before read  
MIN  
ns  
Reset recovery time (For NOT busy mode)  
Reset recovery time (For busy mode)  
MAX  
MAX  
500  
1
us  
tRB2  
ms  
38  
SPI(x1/x2/x4) NAND Flash  
13.2.2 Hardware RESET Setting  
1G  
a) 8-pin package  
For the 8-pin package, RESET#, HOLD# and data IO3 share the same pin7. The pin7 can be configured as any of  
the three functions depending on the status register setting. When QE=0, HOLDB/RST=1, the pin7 acts as a RESET#  
pin. When QE=1 or QE=0 HOLDB/RST=0, the pin7 will be configured as the other functions and Hardware Reset  
function can’t be used.  
QE and HOLDB/RST registers can be set by Set Feature command (see Table13-2). QE can be set by Set Feature  
command when address is B0H and HOLDB/RST can be set by Set Feature command when address is D0H. Both of  
them can be read out by Get Feature command with related address. Through reading the status registers, users could  
know the value and infer which function is supported on the pin7.  
By default QE and HOLDB/RST registers are both 0 after power-on-reset or hardware reset.  
Table13-2. Features Settings  
Register Addr.  
Protection A0H  
Feature B0H  
7
6
5
4
3
2
1
0
Reserved  
QE  
BRWD  
Reserved  
BP2  
BP1  
BP0  
INV  
CMP  
OTP_PRT  
Reserved  
HOLDB/RST  
OTP_EN Reserved ECC_EN Reserved Reserved Reserved  
ECCS2 ECCS1 ECCS0 P_FAIL E_FAIL WEL  
Status  
C0H  
OIP  
Feature D0H  
DS_IO[1] DS_IO[0] Reserved Reserved Reserved Reserved Reserved  
b) 16-pin/24-pin package  
For 16-pin/24-pin packages (see Figure2-1), a dedicated RESET# pin is provided and it is independent of QE bit  
setting. At the same time, HOLDB/RST register is not existed in 16-pin/24-pin package, and the corresponding bit in  
command Set/Get Feature with address D0H is reserved.  
Table13-3. Features Settings  
Register Addr.  
7
6
5
4
3
2
1
0
Reserved  
QE  
Protection A0H  
BRWD  
Reserved  
BP2  
BP1  
BP0  
INV  
CMP  
Feature B0H OTP_PRT OTP_EN  
Reserved  
ECCS1  
DS_IO[0]  
ECC_EN  
ECCS0  
Reserved Reserved Reserved  
P_FAIL E_FAIL WEL  
Status  
C0H Reserved  
ECCS2  
OIP  
Feature D0H Reserved  
DS_IO[1]  
Reserved Reserved Reserved Reserved Reserved  
39  
SPI(x1/x2/x4) NAND Flash  
14 ADVANCED FEATURES  
1G  
14.1 OTP Region  
The serial device offers a protected, One-Time Programmable NAND Flash memory area. 4 full pages (2176 bytes per  
page) are available on the device. Customers can use the OTP area any way they want, like programming serial  
numbers, or other data, for permanent storage. When delivered from factory, feature bit OTP_PRT is 0.  
To access the OTP feature, the user must set feature bits OTP_EN/OTP_PRT by SET FEATURES command. When the  
OTP is ready for access, pages 00h03H can be programmed in sequential order by PROGRAM LOAD (02H) and  
PROGRAM EXECUTE(10H) commands ( when not yet protected), and read out by PAGE READ (13H) command and  
output data by READ from CACHE(03H/0BH/3BH/6BH/BBH/EBH).  
Table14-1. OTP States  
OTP_PRT  
OTP_EN  
State  
x
0
1
0
1
1
Normal operation  
Access OTP region, read and program data.  
1. When the device power on state OTP_PRT is 0, user can set feature bit  
OTP_PRT and OTP_EN to 1, then issue PROGRAM EXECUTE (10H) to  
lock OTP, and after that OTP_PRT will permanently remain 1.  
2. When the device power on state OTP_PRT is 1, user can only read the  
OTP region data.  
Note: The OTP space cannot be erased and after it has been protected, it cannot be programmed again, please use this  
function carefully.  
Access to OTP data  
• Issue the SET FEATURES command (1FH)  
Set feature bit OTP_EN  
• Issue the PAGE PROGRAM (only when OTP_PRT is 0) or PAGE READ command  
Protect OTP region  
Only when the following steps are completed, the OTP_PRT will be set and users can get this feature out with 0FH  
command.  
• Issue the SET FEATURES command (1FH)  
Set feature bit OTP_EN and OTP_PRT  
• 06H (WRITE ENABLE)  
• Issue the PROGRAM EXECUTE (10H) command.  
40  
SPI(x1/x2/x4) NAND Flash  
1G  
14.2 Block Protection  
The block lock feature provides the ability to protect the entire device, or ranges of blocks, from the PROGRAM and ERASE  
operations. After power-up, the device is in the “locked” state, i.e., feature bits BP0, BP1and BP2are set to 1, INV, CMP  
and BRWD are set to 0. To unlock all the blocks, or a range of blocks, the SET FEATURES command must be issued to  
alter the state of protection feature bits. When BRWD is set and WP# is LOW, none of the writable protection feature bits  
can be set. Also, when a PROGRAM/ERASE command is issued to a locked block, status bit OIP remains 0.When an  
ERASE command is issued to a locked block, the erase failure, 04H, is returned. When a PROGRAM command is issued  
to a locked block, program failure,08h is returned.  
Table14-1. Block Lock Register Block Protect Bits  
CMP  
INV  
BP2  
BP1  
BP0  
Protect Row Address  
1G  
Protect Rows  
NONE  
Noneall unlocked  
Upper 1/64 locked  
Upper 1/32 locked  
Upper 1/16 locked  
Upper 1/8 locked  
Upper 1/4 locked  
Upper 1/2 locked  
All locked (default)  
Lower 1/64 locked  
Lower 1/32 locked  
Lower 1/16 locked  
Lower 1/8 locked  
Lower 1/4 locked  
Lower 1/2 locked  
Lower 63/64 locked  
Lower31/32 locked  
Lower 15/16 locked  
Lower7/8 locked  
Lower3/4 locked  
Block0  
x
0
0
0
0
0
0
x
x
0
0
0
0
0
0
x
0
0
0
0
1
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
FC00h ~ FFFFh  
F800h ~ FFFFh  
F000h ~ FFFFh  
E000h ~ FFFFh  
C000h ~ FFFFh  
8000h ~ FFFFh  
0000h ~ FFFFh  
0000h ~ 03FFh  
0000h ~ 07FFh  
0000h ~ 0FFFh  
0000h ~ 1FFFh  
0000h ~ 3FFFh  
0000h ~ 7FFFh  
0000h ~ FBFFh  
0000h ~ F7FFh  
0000h ~ EFFFh  
0000h ~ DFFFh  
0000h ~ BFFFh  
0000h ~ 003Fh  
0400h ~ FFFFh  
0800h ~ FFFFh  
1000h ~ FFFFh  
2000h ~ FFFFh  
4000h ~ FFFFh  
0000h ~ 003Fh  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
Upper 63/64 locked  
Upper31/32 locked  
Upper 15/16 locked  
Upper7/8 locked  
Upper3/4 locked  
Block0  
When WP# is not LOW, user can issue bellows commands to alter the protection states as want.  
• Issue SET FEATURES register write (1FH)  
• Issue the feature bit address (A0h) and the feature bits combination as the table  
41  
SPI(x1/x2/x4) NAND Flash  
14.3 Status Register and Driver Register  
1G  
The NAND Flash device has a 16-bit status register that software can read during the device operation for operation state  
query. The status register can be read by issuing the GET FEATURES (0FH)command, followed by the feature address  
C0h (see FEATURE OPERATION). The Output Driver Register can be set and read by issuing the SET FEATURE (0FH)  
and GET FEATURE command followed by the feature address D0h (see FEATURE OPERATION)..  
Table14-2. Status Register Bit Descriptions  
Bit  
Bit Name  
Program  
Fail  
Description  
P_FAIL  
This bit indicates that a program failure has occurred (P_FAIL set to 1). It will also  
be set if the user attempts to program an invalid address or a protected region,  
including the OTP area. This bit is cleared during the PROGRAM EXECUTE  
command sequence or a RESET command (P_FAIL = 0).  
E_FAIL  
WEL  
Erase Fail  
This bit indicates that an erase failure has occurred (E_FAIL set to 1). It will also be  
set if the user attempts to erase a locked region. This bit is cleared (E_FAIL = 0) at  
the start of the BLOCK ERASE command sequence or the RESET command.  
This bit indicates the current status of the write enable latch (WEL) and must be set  
(WEL = 1), prior to issuing a PROGRAM EXECUTE or BLOCK ERASE command.  
It is set by issuing the WRITE ENABLE command. WEL can also be disabled (WEL  
= 0), by issuing the WRITE DISABLE command.  
Write  
Enable  
Latch  
OIP  
Operation  
This bit is set (OIP = 1 ) when a PROGRAM EXECUTE, PAGE READ, BLOCK  
In Progress ERASE, or RESET command is executing, indicating the device is busy. When the  
bit is 0, the interface is in the ready state.  
ECCS2~ECCS0 ECC Status ECCS2~ECCS0 provides ECC status as the following table.  
Table14-3. ECC Status  
ECCS2  
ECCS1  
ECCS0  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No bit errors were detected during the previous read algorithm.  
Bit errors(<3) were detected and corrected.  
Bit errors(=4) were detected and corrected.  
Bit errors(=5) were detected and corrected.  
Bit errors(=6) were detected and corrected.  
Bit errors(=7) were detected and corrected.  
Bit errors(=8) were detected and corrected.  
Bit errors>8, error exceeded. And cannot be corrected.  
42  
SPI(x1/x2/x4) NAND Flash  
Table14-4. Driver Register Bits Descriptions  
DS_S0  
1G  
DS_S1  
Driver Strength  
0
0
1
1
0
1
0
1
50%  
25%  
75%  
100%  
14.4 Assistant Bad Block Management  
As a NAND Flash, the device may have blocks that are invalid when shipped from the factory, and a minimum number of  
valid blocks (NVB) of the total available blocks are specified. An invalid block is one that contains at least one page that has  
more bad bits than can be corrected by the minimum required ECC. Additional bad blocks may develop with use. However,  
the total number of available blocks will not fall below NVB during the endurance life of the product.  
Although NAND Flash memory devices may contain bad blocks, they can be used reliably in systems that provide bad-  
block management and error-correction algorithms, which ensure data integrity. Internal circuitry isolates each block from  
other blocks, so the presence of a bad block does not affect the operation of the rest of the NAND Flash array.  
NAND Flash devices are shipped from the factory erased. The factory identifies invalid blocks before shipping by  
programming the Bad Block Mark (00h) to the first spare area location in each bad block. This method is compliant with  
ONFI Factory Defect Mapping requirements. See the following table I bad-block mark.  
System software should initially check the first spare area location for non-FFH data I first page of each block prior to  
performing any program or erase operations on the NAND Flash device. A bad-block table can then be created, enabling  
system software to map around these areas. Factory testing is performed under worst-case conditions. Because invalid  
blocks may be marginal, it may not be possible to recover the bad-block marking if the block is erased.  
To simplify the system requirement and guard the data integration, GigaDevice SPI NAND provides assistant Management  
options as below.  
Table14-5. Bad Block Mark information  
Description  
Density  
Requirement  
Minimum number of valid blocks (NVB  
Total available blocks per die  
First spare area location  
)
1G  
1G  
1004  
1024  
Byte 2048  
Bad-block mark  
00h(use non FFH to check)  
43  
SPI(x1/x2/x4) NAND Flash  
1G  
14.5 Internal ECC  
The serial device offers data corruption protection by offering optional internal ECC.READs and PROGRAMs with internal  
ECC can be enabled or disabled by setting feature bit ECC_EN. ECC is enabled after device power up, so the default  
READ and PROGRAM commands operate with internal ECC in the “active” state. To enable/disable ECC, perform the  
following command sequence:  
• Issue the SET FEATURES command (1FH).  
Set the feature bit ECC_EN as you want:  
1. To enable ECC, Set ECC_EN to 1.  
2. To disable ECC, Clear ECC_EN to 0.  
During a PROGRAM operation, the device calculates an ECC code on the 2k page in the cache register, before the page  
is written to the NAND Flash array.  
During a READ operation, the page data is read from the array to the cache register, where the ECC code is calculated  
and compared with the ECC code value read from the array. If error bits are detected, the error is corrected in the cache  
register. Only corrected data is output on the I/O bus. The ECC status bit indicates whether or not the error correction was  
successful. The ECC Protection table below shows the ECC protection scheme used throughout a page.  
With internal ECC, the user must accommodate the following:  
• Spare area definitions provided in the ECC Protection table below.  
• ECC can protect according main and spare areas. WRITEs to the ECC area are ignored.  
Table14-6. ECC Protection and Spare Area  
Min Byte Address  
Max Byte Address  
1FFh  
ECC Protected Area  
Description  
000h  
200h  
400h  
600h  
800h  
810h  
820h  
830h  
840h  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Main 0  
User data 0  
3FFh  
Main 1  
User data 1  
5FFh  
Main 2  
User data 2  
7FFh  
Main 3  
User data 3  
80Fh  
Spare 0  
Spare 1  
Spare 2  
Spare 3  
User meta data 0(1)  
User meta data 1  
User meta data 2  
User meta data 3  
81Fh  
82Fh  
83Fh  
87Fh  
Spare Area Internal ECC parity data  
Note:  
1. 800H is reserved for initial bad block mark, and please check the initial bad block mark with internal ECC off.  
2. When Internal ECC is enableduser cannot program the Address 840H~87FH but user can read the Address  
840H~87FH.  
3. When Internal ECC is disabled, the whole page area is open for user.  
44  
SPI(x1/x2/x4) NAND Flash  
15 POWER ON TIMING  
1G  
Figure15-1. Power on Timing Sequence  
Vcc(max)  
Vcc(min)  
VWI  
Chip Selection is not allowed  
tVSL  
Device is fully  
accessible  
Time  
Table15-1. Power-On Timing and Write Inhibit Threshold for 1.8V/3.3V  
Symbol  
Parameter  
VCC(min) To CS# Low  
Write Inhibit Voltage  
Min  
Max  
Unit  
Tvsl  
5
ms  
1.8V  
3.3V  
1.7  
2.5  
VWI  
V
45  
SPI(x1/x2/x4) NAND Flash  
16 ABSOLUTE MAXIMUM RATINGS  
1G  
Parameter  
Ambient Operating Temperature  
Storage Temperature  
Applied Input/Output Voltage  
VCC  
Value  
Unit  
V
-40 to 105  
-55 to 125  
-0.6 to 4.0  
-0.6 to 4.0  
V
46  
SPI(x1/x2/x4) NAND Flash  
1G  
17 CAPACITANCE MEASUREMENT CONDITIONS  
Symbol  
CIN  
Parameter  
Min  
Typ  
Max  
6
Unit  
Pf  
Pf  
Pf  
ns  
V
Conditions  
Input Capacitance  
VIN=0V  
COUT  
CL  
Output Capacitance  
8
VOUT=0V  
Load Capacitance  
30  
Input Rise And Fall time  
Input Pulse Voltage  
5
0.1VCC to 0.8VCC  
0.2VCC to 0.7VCC  
0.5VCC  
Input Timing Reference Voltage  
Output Timing Reference Voltage  
V
V
Figure17-1. Input Test Waveform and Measurement Level  
Input timing reference level  
0.7VCC  
Output timing reference level  
0.5VCC  
0.8VCC  
0.1VCC  
AC Measurement Level  
0.2VCC  
Note: Input pulse rise and fall time are<5ns  
47  
SPI(x1/x2/x4) NAND Flash  
18 DC CHARACTERISTIC  
1G  
(T= -40~105, VCC=1.7~2.0V/2.7~3.6V)  
Symbol  
ILI  
Parameter  
Input Leakage Current  
Output Leakage Current  
Standby Current  
Test Condition  
Min.  
Typ  
Max.  
±2  
Unit.  
Μa  
ILO  
±2  
Μa  
ICC1  
CS#=VCC,  
90(1)  
Μa  
VIN=VCC or VSS  
CLK=0.1VCC /  
0.9VCC  
40  
30  
Ma  
Ma  
at 120MHz,  
Q=Open(*1,*2,*4 I/O)  
CLK=0.1VCC /  
0.9VCC  
ICC2  
Operating Current (Read)  
at 80MHz,  
Q=Open(*1,*2,*4 I/O)  
CS#=VCC  
ICC3  
ICC4  
VIL  
Operation Current (PP)  
Operation Current (BE)  
Input Low Voltage  
40  
40  
Ma  
Ma  
V
CS#=VCC  
0.2VCC  
VIH  
Input High Voltage  
0.7VCC  
VCC-0.2  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL =1.6mA  
IOH =-100uA  
0.4  
V
V
Note: 1. When Temperature is 105℃, the maximum standby current is 200uA  
48  
SPI(x1/x2/x4) NAND Flash  
19 AC CHARACTERISTICS  
1G  
(T= -40~105, VCC=1.7~2.0V/2.7~3.6V, CL=30pf)  
Symbol  
FC  
Parameter  
Serial Clock Frequency For: all command  
Serial Clock High Time  
Min.  
DC.  
4
Typ.  
Max.  
Unit.  
MHz  
ns  
120  
tCH  
tCL  
Serial Clock Low Time  
4
ns  
tCLCH  
tCHCL  
tSLCH  
tCHSH  
tSHCH  
tCHSL  
Serial Clock Rise Time (Slew Rate)  
Serial Clock Fall Time (Slew Rate)  
CS# Active Setup Time  
0.2  
0.2  
5
V/ns  
V/ns  
ns  
CS# Active Hold Time  
5
ns  
CS# Not Active Setup Time  
CS# Not Active Hold Time  
5
ns  
5
ns  
tSHSL/tCS CS# High Time  
Output Disable Time  
20  
ns  
tSHQZ  
tCLQX  
tDVCH  
tCHDX  
tHLCH  
tHHCH  
tCHHL  
tCHHH  
tHLQZ  
tHHQX  
tCLQV  
tWHSL  
tSHWL  
20  
ns  
Output Hold Time  
2
2
2
5
5
5
5
ns  
Data In Setup Time  
ns  
Data In Hold Time  
ns  
Hold# Low Setup Time (relative to Clock)  
Hold# High Setup Time (relative to Clock)  
Hold# High Hold Time (relative to Clock)  
Hold# Low Hold Time (relative to Clock)  
Hold# Low To High-Z Output  
Hold# HighTo Low-Z Output  
Clock Low To Output Valid  
ns  
ns  
ns  
ns  
15  
15  
8
ns  
ns  
ns  
WP# Setup Time Before CS# Low  
WP# Hold Time After CS# High  
20  
ns  
100  
ns  
49  
SPI(x1/x2/x4) NAND Flash  
20 PERFORMANCE TIMING  
1G  
Symbol  
TRST  
Parameter  
CS# High To Next Command After Reset(FFh)  
Read From Array  
Min.  
Typ.  
Max.  
500  
80  
Unit.  
us  
tRD  
us  
tPROG  
tBERS  
Page Programming Time  
Block Erase Time  
0.4  
3
0.7  
5
ms  
ms  
Figure20-1. Serial Input Timing  
tSHSL  
tSHCH  
tCHCL  
CS#  
tCHSL  
tSLCH  
tCHSH  
tCLCH  
SCLK  
tDVCH  
tCHDX  
SI  
MSB  
LSB  
High-Z  
SO  
Figure20-2. Output Timing  
CS#  
tCH  
tSHQZ  
SCLK  
tCLQV  
tCLQV  
tCLQX  
tCL  
tCLQX  
SO  
SI  
LSB  
Least significant address bit (LIB) in  
50  
SPI(x1/x2/x4) NAND Flash  
1G  
Figure20-3. Hold Timing  
CS#  
tCHHL  
tHLCH  
tCHHH  
tHHCH  
tHHQX  
SCLK  
tHLQZ  
SO  
HOLD#  
SI do not care during HOLD operation.  
Figure20-4. Reset Timing  
FFh  
OIP  
OIP  
tRST  
Note: The maximum Trst depends on different operations.  
Idle:  
maximum Trst = 5us;  
maximum Trst = 5us;  
Read:  
Program: maximum Trst = 10us;  
Erase: maximum Trst = 500us;  
51  
SPI(x1/x2/x4) NAND Flash  
21 ORDERING INFORMATION  
1G  
GD XX XX XX X X X X X X  
Packing Type  
T or No mark: Tube  
R: Tape & Reel  
Y: Tray  
GD Prefix  
Green Code  
G: Pb Free & Halogen Free Green Package  
S: G + special function (HW Reset + UID +  
Parameter Page)  
H: Pb Free & Halogen Free Green Package +  
Half of Spare Size  
Temperature Range  
I: Industrial(-40C to +85C)  
J:Industrial(-40   to +105  )  
F: Industrial+(1) (-40  ꢀto +85  )  
Package Type  
Y: WSON8 (6*8mm)  
F: SOP16 300mil  
Z:TFBGA24(6*4 Ball Array)  
9: LGA8 6*8mm  
Generation  
B: B Version  
C: C Version  
E: E Version  
F: F Version  
Voltage  
U:3.3V(2.7~3.6V)  
R:1.8V(1.7~2.0V)  
Interface  
Q4: Qua SPI x1/x2/x4  
Density  
1G: 1Gb 2G: 2Gb  
4G: 4Gb 8G: 8Gb  
Product Family  
5F: SPI NAND Flash  
Note: (1) Industrial+: Full Function Test for Automotive application and no AECQ.  
52  
SPI(x1/x2/x4) NAND Flash  
22 PACKAGE INFORMATION  
1G  
Figure22-1. WSON8 (8*6mm)  
c
D
E
A1  
Top View  
L
A
Side View  
b
e
E2  
D2  
Bottom View  
Dimensions  
Symbol  
Unit  
A
A1  
0.00  
c
b
D
D2  
3.30  
E
E2  
4.20  
e
L
Min  
0.70  
0.180  
0.203  
0.250  
0.007  
0.008  
0.010  
0.35  
7.90  
5.90  
0.45  
mm  
Nom  
Max  
Min  
0.75  
0.02  
0.05  
0
0.40  
8.00  
3.40  
6.00  
4.30  
1.27  
0.50  
0.80  
0.45  
8.10  
3.50  
6.05  
4.40  
0.55  
0.028  
0.030  
0.032  
0.014  
0.016  
0.018  
0.311  
0.315  
0.319  
0.130  
0.134  
0.138  
0.232  
0.236  
0.238  
0.165  
0.169  
0.173  
0.018  
0.020  
0.022  
Inch Nom  
Max  
0.001  
0.002  
0.05  
Note:  
1. Both the package length and width do not include the mold flash.  
2. The exposed metal pad area on the bottom of the package is floating.  
3. Coplanarity 0.08mm. Package edge tolerance0.10mm.  
4. The lead shape may be of little difference according to different package lead frames. These lead  
shapes are compatible with each other.  
53  
SPI(x1/x2/x4) NAND Flash  
1G  
Figure22-2. SOP16 300MIL  
D
E1  
E
h
L1  
L
h
θ
A”  
b
c
Base Metal  
A
A2  
A1  
Detail A”  
b
e
Symbol  
Unit  
Min  
A
A1  
A2  
b
c
D
E
E1  
e
L
L1  
h
θ
-
0.10  
0.20  
0.30  
2.05  
-
0.31  
0.41  
0.51  
0.10  
0.25  
0.33  
10.20 10.10  
10.30 10.30  
10.40 10.50  
7.40  
7.50  
7.60  
0.40  
-
0.25  
-
0
mm  
Nom  
Max  
Min  
-
1.27  
0.05  
1.40  
5
8
2.65  
2.55  
1.27  
0.016  
0.75  
0.010  
-
-
-
0.004 0.081 0.012 0.004 0.402 0.398 0.291  
0.008 0.016 0.010 0.406 0.406 0.295  
0
Inch  
Nom  
Max  
-
0.055  
0.197  
0.104 0.012 0.100 0.020 0.013 0.409 0.413 0.299  
0.05  
0.030 0.315  
54  
SPI(x1/x2/x4) NAND Flash  
1G  
Figure22-3. TFBGA-24BALL (6*4 ball array)  
1
2
3
4
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
e
SD  
E1  
E
SE  
e
D
D1  
Φb  
Dimensions  
Symbol  
Unit  
A
A1  
A2  
b
D
D1  
E
E1  
e
SE  
SD  
Min  
0.25  
0.30  
0.35  
0.70  
0.80  
0.85  
0.35  
0.40  
0.45  
5.90  
6.00  
7.90  
8.00  
3.00  
BSC  
5.00  
BSC  
1.00  
BSC  
0.50  
TYP  
0.50  
TYP  
mm  
Nom  
Max  
Min  
1.20  
6.10  
8.10  
0.010 0.028 0.014  
0.012 0.031 0.016  
0.232  
0.236  
0.240  
0.311  
0.315  
0.319  
0.118  
BSC  
0.197  
BSC  
0.039  
BSC  
0.020  
TYP  
0.020  
TYP  
Inch Nom  
Max  
0.047 0.014 0.034 0.018  
Note: Both the package length and width do not include the mold flash.  
55  
SPI(x1/x2/x4) NAND Flash  
1G  
Figure22-4. LGA8 GD Type1 (6*8 mm)  
D2  
A
D
L
2
A2  
A
Lead Type design Gap  
c
Soldermask  
LAND PAD  
A1  
Dimensions  
Symbol  
A
A2  
A1  
c
b
D
D2  
E
E2  
e
L
Unit  
GD  
GD  
Type1  
Type1  
Min  
0.70  
0.15  
0.18  
0.21  
0.35  
0.40  
0.45  
7.90  
8.00  
3.30  
3.40  
5.90  
6.00  
4.20  
4.30  
0.45  
0.50  
mm  
Nom  
Max  
Min  
0.02  
0.53  
1.27  
0.05  
0.80  
8.10  
3.50  
6.10  
4.40  
0.55  
0.028  
0.006 0.014  
0.311  
0.315  
0.319  
0.130  
0.134  
0.138  
0.232  
0.165  
0.018  
0,020  
0.022  
Inch  
Nom  
Max  
0.001  
0.021  
0.007  
0.008  
0.016  
0.018  
0.236 0.169  
0.240 0.173  
0.031  
56  
SPI(x1/x2/x4) NAND Flash  
23 REVISION HISTORY  
1G  
Version No  
Description  
Date  
Page  
1. Initial Release  
2. Add RESET function description with ch13.2  
3. Add RESET# pin on Connection Diagram ch3.2  
4. Update read ID/UID/CID/parameter page on ch10.  
Add parameter page CRC value  
AGE  
2017-06-14  
1.1  
1.2  
2017-07-14  
2017-07-20  
Modify Package WSON8 (6*8mm)  
Modify the Number of Figure and Table  
Modify Package ‘R’ description  
Reduce the size of parameter page device model table  
Modify Read CID command sequence description  
1.3  
2017-09-01  
Add automatically read first page of fist block to cache after  
RESET (FFH)  
1.4  
1.5  
Add the Note article 4 of Page Program  
2017-10-23  
2017-11-03  
Add the chapter of Valid Part Numbers  
Add the description of 1Gb SLC NAND Flash  
Add the description of Reliability  
1.6  
Delete Valid Part Number of GD5F1GQ4UF9IG  
Modify the Figure of Program Load Sequence Diagram typo  
Modify the package of LGA8  
2017-12-11  
Modify the package of WSON8,SOP16 300mil,TFBGA24  
Modify the typo of LGA8  
1.7  
1.8  
Dec.27.2017  
2018-1-16  
Add LGA8 package description for hardware reset section  
Modify some typo  
Add Temperature Range J:Industrial(-40℃ to 105℃) and related  
description  
Change Memory Mapping CA from<12:0> to <11:0>  
Add byte1 and byte2 for two Device ID in Read Sequence Diagram  
Add page size 2048bytes + 64bytes with ECC enabled  
Modify figures11-1,11-2,11-4,11-5,11-6 from Byte 2175 to  
2175/2111 and add a note to explain  
1.9  
2018-2-13  
Change Parameter page table Byte 105-106 and 108-109,and  
change CRC Value  
Merge chapters 2.1 and 21.1  
Change the description of protection with WP# Pin  
Add Temperature Range F:Industrial+ (-40to 85℃)  
2.0  
2.1  
2.2  
2018-3-12  
2018-7-25  
2018-10-22  
Modify the Value of Applied Input/ Output Voltage and VCC in  
Chapter16  
Modify the description of LGA8 6*8mm package  
Update Ordering Information  
Modify the file name  
57  
SPI(x1/x2/x4) NAND Flash  
1G  
Update the Ordering Information  
Add Note describe the spare size with Internal ECC ON.  
Add the Array Organization with Internal ECC ON.  
Add Note of Address with Internal ECC ON.  
Add “Power Off Timing” in Device Operation.  
Update the Important Notice. “Customers shall discard the device  
according to the local environmental law.”  
Correct ABSOLUTE MAXIMUM RATINGS” Applied Input/ Output  
Voltage  
4/9  
9
45  
12  
60  
2.3  
2019-3-22  
47  
25  
Remove CID function  
58  
SPI(x1/x2/x4) NAND Flash  
1G  
Important Notice  
This document is the property of GigaDevice Semiconductor (Beijing) Inc. and its subsidiaries (the "Company"). This  
document, including any product of the Company described in this document (the “Product”), is owned by the Company  
under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The  
Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights,  
trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the  
property of their respective owner and referred to for identification purposes only.  
The Company makes no warranty of any kind, express or implied, with regard to this document or any Product,  
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company  
does not assume any liability arising out of the application or use of any Product described in this document. Any information  
provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to  
properly design, program, and test the functionality and safety of any application made of this information and any resulting  
product. Except for customized products which has been expressly identified in the applicable agreement, the Products  
are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications  
only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for  
the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control  
instruments, airplane or spaceship instruments, traffic signal instruments, life-support devices or systems, other medical  
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances  
management, or other uses where the failure of the device or Product could cause personal injury, death, property or  
environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the  
Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and  
customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage,  
or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the  
Company as well as it’s suppliers and/or distributors harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.  
Customers shall discard the device according to the local environmental law.  
Information in this document is provided solely in connection with the Products. The Company reserves the right to  
make changes, corrections, modifications or improvements to this document and the Products and services described  
herein at any time, without notice.  
59  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY