GS8182Q09GBD-250IT [GSI]

DDR SRAM, 2MX9, 0.45ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FBGA-165;
GS8182Q09GBD-250IT
型号: GS8182Q09GBD-250IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

DDR SRAM, 2MX9, 0.45ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FBGA-165

双倍数据速率 静态存储器 内存集成电路
文件: 总33页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
300 MHz–167 MHz  
165-Bump BGA  
Commercial Temp  
Industrial Temp  
18Mb SigmaQuad-II  
Burst of 2 SRAM  
1.8 V V  
DD  
1.8 V and 1.5 V I/O  
Features  
• Simultaneous Read and Write SigmaQuad™ Interface  
• JEDEC-standard pinout and package  
• Dual Double Data Rate interface  
• Byte Write controls sampled at data-in time  
• Burst of 2 Read and Write  
• 1.8 V +100/–100 mV core power supply  
• 1.5 V or 1.8 V HSTL Interface  
• Pipelined read operation  
• Fully coherent read and write pipelines  
• ZQ pin for programmable output drive strength  
• IEEE 1149.1 JTAG-compliant Boundary Scan  
• Pin-compatible with present 9Mb and future 36Mb and  
144Mb devices  
• 165-bump, 13 mm x 15 mm, 1 mm bump pitch BGA package  
• RoHS-compliant 165-bump BGA package available  
Bottom View  
165-Bump, 13 mm x 15 mm BGA  
1 mm Bump Pitch, 11 x 15 Bump Array  
SigmaQuadFamily Overview  
The GS8182Q09/18/36BD are built in compliance with the  
SigmaQuad-II SRAM pinout standard for Separate I/O  
synchronous SRAMs. They are 16,777,216-bit (18Mb)  
SRAMs. The GS8182Q09/18/36BD SigmaQuad SRAMs are  
just one element in a family of low power, low voltage HSTL  
I/O SRAMs designed to operate at the speeds needed to  
implement economical high performance networking systems.  
C clock inputs. C and C are also independent single-ended  
clock inputs, not differential inputs. If the C clocks are tied  
high, the K clocks are routed internally to fire the output  
registers instead.  
Because Separate I/O SigmaQuad-II B2 RAMs always transfer  
data in two packets, A0 is internally set to 0 for the first read or  
write transfer, and automatically incremented by 1 for the next  
transfer. Because the LSB is tied off internally, the address  
field of a SigmaQuad-II B2 RAM is always one address pin  
less than the advertised index depth (e.g., the 1M x 18 has a  
512K addressable index).  
Clocking and Addressing Schemes  
The GS8182Q09/18/36BD SigmaQuad-II SRAMs are  
synchronous devices. They employ two input register clock  
inputs, K and K. K and K are independent single-ended clock  
inputs, not differential inputs to a single differential clock input  
buffer. The device also allows the user to manipulate the  
output register clock inputs quasi independently with the C and  
Parameter Synopsis  
-300  
3.3 ns  
0.45 ns  
-250  
4.0 ns  
0.45 ns  
-200  
5.0 ns  
0.45 ns  
-167  
6.0 ns  
0.5 ns  
-133  
tKHKH  
tKHQV  
7.5 ns  
0.5 ns  
.
Rev: 1.00a 6/2007  
1/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
512K x 36 SigmaQuad-II SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
NC/SA  
(288Mb) (72Mb)  
NC/SA  
NC/SA  
(36Mb) (144Mb)  
NC/SA  
A
CQ  
W
BW2  
K
BW1  
R
CQ  
B
C
D
E
F
Q27  
D27  
D28  
Q29  
Q30  
D30  
Doff  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
Q18  
Q28  
D20  
D29  
Q21  
D22  
D18  
D19  
Q19  
Q20  
D21  
Q22  
SA  
BW3  
SA  
K
BW0  
SA  
SA  
D17  
D16  
Q16  
Q15  
D14  
Q13  
Q17  
Q7  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
V
SA  
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
D15  
D6  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
Q14  
D13  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
Q31  
D23  
Q23  
D24  
D25  
Q25  
Q26  
SA  
D12  
Q12  
D11  
D10  
Q10  
Q9  
Q4  
K
L
D32  
Q24  
Q34  
D26  
D35  
TCK  
V
D3  
Q11  
Q1  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
D9  
SA  
SA  
SA  
SA  
D0  
C
SA  
TMS  
2
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch  
Note:  
BW0 controls writes to D0:D8; BW1 controls writes to D9:D17; BW2 controls writes to D18:D26; BW3 controls writes to D27:D35  
Rev: 1.00a 6/2007  
2/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
1M x 18 SigmaQuad-II SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
NC/SA  
(144Mb) (36Mb)  
NC/SA  
NC/SA  
(288Mb)  
NC/SA  
(72Mb)  
A
CQ  
W
BW1  
K
R
SA  
CQ  
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
Q9  
NC  
D9  
SA  
NC  
SA  
K
BW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
NC  
D6  
NC  
NC  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
D10  
Q10  
Q11  
D12  
Q13  
V
SA  
V
SS  
SS  
SS  
SS  
D11  
NC  
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
Q12  
D13  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
D14  
Q14  
D15  
D16  
Q16  
Q17  
SA  
NC  
Q4  
D3  
K
L
NC  
Q15  
NC  
V
NC  
NC  
NC  
NC  
NC  
SA  
V
V
V
V
V
NC  
Q1  
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
SS  
D17  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
D0  
SA  
SA  
SA  
SA  
TCK  
C
TMS  
2
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch  
Note:  
BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.  
Rev: 1.00a 6/2007  
3/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
2M x 9 SigmaQuad-II SRAM — Top View  
1
2
3
4
5
6
7
8
9
10  
11  
NC/SA  
(72Mb)  
NC/SA  
(144Mb)  
NC/SA  
(36Mb)  
A
B
CQ  
SA  
W
NC  
K
R
SA  
CQ  
NC/SA  
(288Mb)  
NC  
NC  
NC  
SA  
K
BW  
SA  
SA  
NC  
NC  
Q4  
C
D
E
F
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
NC  
D5  
NC  
NC  
D6  
NC  
NC  
Q5  
NC  
Q6  
V
SA  
SA  
V
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D3  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
Q7  
NC  
NC  
Q2  
NC  
NC  
NC  
NC  
D0  
K
L
NC  
D7  
NC  
NC  
Q8  
SA  
V
NC  
NC  
NC  
NC  
NC  
SA  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
D8  
V
V
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
TCK  
SA  
SA  
SA  
SA  
C
TMS  
2
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch  
Rev: 1.00a 6/2007  
4/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Pin Description Table  
Symbol  
Description  
Synchronous Address Inputs  
No Connect  
Type  
Input  
Comments  
SA  
NC  
R
Synchronous Read  
Synchronous Write  
Input  
Input  
Active Low  
Active Low  
W
Active Low  
x9 only  
BW  
Synchronous Byte Write  
Synchronous Byte Writes  
Input  
Input  
Active Low  
x18/x36 only  
BW0–BW3  
K
K
Input Clock  
Input Clock  
Input  
Input  
Active High  
Active Low  
C
Output Clock  
Input  
Active High  
C
Output Clock  
Input  
Active Low  
TMS  
TDI  
TCK  
TDO  
Test Mode Select  
Input  
Test Data Input  
Input  
Test Clock Input  
Input  
Test Data Output  
Output  
Input  
V
HSTL Input Reference Voltage  
Output Impedance Matching Input  
Synchronous Data Outputs  
Synchronous Data Inputs  
Disable DLL when low  
Output Echo Clock  
Output Echo Clock  
Power Supply  
REF  
ZQ  
Qn  
Dn  
Input  
Output  
Input  
D
Input  
Active Low  
off  
CQ  
CQ  
Output  
Output  
Supply  
V
1.8 V Nominal  
DD  
V
Isolated Output Buffer Supply  
Power Supply: Ground  
Supply  
Supply  
1.5 or 1.8 V Nominal  
DDQ  
V
SS  
Notes:  
1. NC = Not Connected to die or any other pin  
2. When ZQ pin is directly connected to V , output impedance is set to minimum value and it cannot be connected to ground or left  
DD  
unconnected.  
Rev: 1.00a 6/2007  
5/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Background  
Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are  
needed. Therefore, the SigmaQuad-II SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O  
SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from  
Separate I/O SRAMs can cut the RAM’s bandwidth in half.  
Alternating Read-Write Operations  
SigmaQuad-II SRAMs follow a few simple rules of operation.  
- Read or Write commands issued on one port are never allowed to interrupt an operation in progress on the other port.  
- Read or Write data transfers in progress may not be interrupted and re-started.  
- R and W high always deselects the RAM.  
- All address, data, and control inputs are sampled on clock edges.  
In order to enforce these rules, each RAM combines present state information with command inputs. See the Truth Table for  
details.  
SigmaQuad-II B2 SRAM DDR Read  
The read port samples the status of the Address Input and R pins at each rising edge of K. A low on the Read Enable-bar pin, R,  
begins a read cycle. Data can be clocked out after the next rising edge of K with a rising edge of C (or by K if C and C are tied  
high), and after the following rising edge of K with a rising edge of C (or by K if C and C are tied high). Clocking in a high on the  
Read Enable-bar pin, R, begins a read port deselect cycle.  
SigmaQuad-II B2 Double Data Rate SRAM Read First  
Read A  
NOP  
Write B  
Read C Write D  
Read E Write F  
Read G Write H  
K
K
Address  
A
B
C
D
E
F
G
H
R
W
BWx  
D
B
B
B+1  
B+1  
D
D+1  
F
F+1  
H
H
H+1  
D
D+1  
F
F+1  
H+1  
C
C
Q
A
A+1  
C
C+1  
E
CQ  
CQ  
Rev: 1.00a 6/2007  
6/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
SigmaQuad-II B2 SRAM DDR Write  
The write port samples the status of the W pin at each rising edge of K and the Address Input pins on the following rising edge of  
K. A low on the Write Enable-bar pin, W, begins a write cycle. The first of the data-in pairs associated with the write command is  
clocked in with the same rising edge of K used to capture the write command. The second of the two data in transfers is captured on  
the rising edge of K along with the write address. Clocking in a high on W causes a write port deselect cycle.  
SigmaQuad-II B2 Double Data Rate SRAM Write First  
Write A  
Read B  
Read C Write D  
NOP  
Read E Write F  
Read G Write H  
NOP  
K
K
Address  
A
B
C
D
E
F
G
H
R
W
BWx  
D
A
A
A+1  
A+1  
D
D
D+1  
D+1  
F
F
F+1  
F+1  
H
H
H+1  
H+1  
C
C
Q
B
B+1  
C
C+1  
E
E+1  
CQ  
CQ  
Rev: 1.00a 6/2007  
7/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Power-Up Sequence for SigmaQuad-II SRAMs  
SigmaQuad-II SRAMs must be powered-up in a specific sequence in order to avoid undefined operations.  
Power-Up Sequence  
1. Power-up and maintain Doff at low state.  
1a. Apply VDD  
.
1b. Apply VDDQ  
.
1c. Apply VREF (may also be applied at the same time as VDDQ).  
2. After power is achieved and clocks (K, K, C, C) are stablized, change Doff to high.  
3. An additional 1024 clock cycles are required to lock the DLL after it has been enabled.  
Note:  
If you want to tie Doff high with an unstable clock, you must stop the clock for a minimum of 30 ns to reset the DLL after the clocks become stablized.  
DLL Constraints  
• The DLL synchronizes to either K or C clock. These clocks should have low phase jitter (tKCVar on page 21).  
• The DLL cannot operate at a frequency lower than that specified by the tKHKH maximum specification for the desired operating clock frequency.  
• If the incoming clock is not stablized when DLL is enabled, the DLL may lock on the wrong frequency and cause undefined errors or failures during  
the initial stage.  
Power-Up Sequence (Doff controlled)  
Power UP Interval  
Unstable Clocking Interval  
DLL Locking Interval (1024 Cycles)  
Normal Operation  
K
K
V
DD  
V
DDQ  
V
REF  
Doff  
Power-Up Sequence (Doff tied High)  
Power UP Interval  
Unstable Clocking Interval  
Stop Clock Interval  
30ns Min  
DLL Locking Interval (1024 Cycles)  
Normal Operation  
K
K
V
DD  
V
DDQ  
V
REF  
Doff  
Note:  
If the frequency is changed, DLL reset is required. After reset, a minimum of 1024 cycles is required for DLL lock.  
Rev: 1.00a 6/2007  
8/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Special Functions  
Byte Write and Nybble Write Control  
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with  
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be  
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low  
during the data in sample times in a write sequence.  
Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18  
version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any  
write sequence.  
Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble  
Write Enable” and “NBx” may be substituted in all the discussion above.  
Example x18 RAM Write Sequence using Byte Write Enables  
Data In Sample  
BW0  
BW1  
D0–D8  
D9–D17  
Time  
Beat 1  
Beat 2  
0
1
1
0
Data In  
Don’t Care  
Data In  
Don’t Care  
Resulting Write Operation  
Byte 1  
D0–D8  
Byte 2  
D9–D17  
Byte 3  
D0–D8  
Byte 4  
D9–D17  
Written  
Unchanged  
Unchanged  
Written  
Beat 1  
Beat 2  
Output Register Control  
SigmaQuad-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output  
Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the  
output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K  
and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to  
function as a conventional pipelined read SRAM.  
Rev: 1.00a 6/2007  
9/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Example Four Bank Depth Expansion Schematic  
R
3
W
3
R
2
W
2
1
0
R
1
W
R
0
W
A –A  
0
n
K
D –D  
1
n
Bank 3  
Bank 1  
Bank 2  
Bank 0  
A
A
A
A
W
R
W
W
W
R
R
R
CQ  
K
CQ  
K
CQ  
CQ  
K
D
C
K
D
C
D
C
Q
D
C
Q
Q
Q
C
Q –Q  
1
n
CQ  
0
CQ  
1
CQ  
CQ  
2
3
Note:  
For simplicity BWn, NWn, K, and C are not shown.  
Rev: 1.00a 6/2007  
10/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Rev: 1.00a 6/2007  
11/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
FLXDrive-II Output Driver Impedance Control  
HSTL I/O SigmaQuad-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to  
via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be  
V
SS  
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is  
between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts  
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and  
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance  
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is  
implemented with discrete binary weighted impedance steps. Updates of pull-down drive impedance occur whenever a driver is  
producing a “1” or is High-Z. Pull-up drive impedance is updated when a driver is producing a “0” or is High-Z.  
SigmaQuad-II B2 Coherency and Pass Through Functions  
Because the SigmaQuad-II B2 read and write commands are loaded at the same time, there may be some confusion over what  
constitutes “coherent” operation. Normally, one would expect a RAM to produce the just-written data when it is read immediately  
after a write. This is true of the SigmaQuad-II B2 except in one case, as is illustrated in the following diagram. If the user holds the  
same address value in a given K clock cycle, loading the same address as a read address and then as a matching write address, the  
SigmaQuad-II B2 will read or “Pass-thru” the latest data input, rather than the data from the previously completed write operation.  
SigmaQuad-II B2 Coherency and Pass Through Functions  
Read  
Write  
Read  
Write  
Read  
Write  
Read  
Write  
Dwg Rev. G  
K
/K  
A
B
C
D
E
F
G
H
I
OO  
OI  
OI  
OO  
OO  
OO  
OI  
IO  
OO  
Address  
/R  
/W  
/BWx  
DB0  
5
DB1  
6
DD0  
8
DD1  
2
DF0  
7
DF1  
1
DH0  
9
DH1  
3
DI0  
4
D
C
PASS-THRU  
COHERENT  
/C  
QA0  
QA1  
?
QC0  
QC1  
6
QE0  
7
QE1  
1
?
5
Q
Rev: 1.00a 6/2007  
12/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Read Truth Table  
A
R
Output Next State  
Q
Q
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
(t )  
(t )  
(t )  
(t  
)
(t  
)
n
n
n
n+1  
n+1½  
X
V
1
0
Deselect  
Read  
Hi-Z  
Q0  
Hi-Z  
Q1  
Notes:  
1. X = Don’t Care, 1 = High, 0 = Low, V = Valid.  
2. R is evaluated on the rising edge of K.  
3. Q0 and Q1 are the first and second data output transfers in a read.  
Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Write Truth Table  
A
W
BWn  
BWn  
Input Next State  
D
D
K ↑  
n + ½  
K ↑  
n
K ↑  
n
K ↑  
n + ½  
K ↑  
n
K ↑  
K ↑, K ↑  
n
(t  
)
(t )  
(t )  
(t  
)
(t ), (t  
)
n + ½  
(t )  
(t  
)
n + ½  
D1  
X
V
V
V
X
X
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Write Byte Dx0, Write Byte Dx1  
Write Byte Dx0, Write Abort Byte Dx1  
Write Abort Byte Dx0, Write Byte Dx1  
Write Abort Byte Dx0, Write Abort Byte Dx1  
Deselect  
D0  
D0  
X
D1  
X
X
X
X
Notes:  
1. X = Don’t Care, H = High, L = Low, V = Valid.  
2. W is evaluated on the rising edge of K.  
3. D0 and D1 are the first and second data input transfers in a write.  
4. BWn represents any of the Byte Write Enable inputs (BW0, BW1, etc.).  
Rev: 1.00a 6/2007  
13/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
x36 Byte Write Enable (BWn) Truth Table  
BW0 BW1 BW2 BW3  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
D18–D26  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
D27–D35  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Data In  
Data In  
x18 Byte Write Enable (BWn) Truth Table  
BW0 BW1  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
x8 Nybble Write Enable (NWn) Truth Table  
NW0 NW1  
D0–D3  
Don’t Care  
Data In  
D4–D7  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
Rev: 1.00a 6/2007  
14/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
State Diagram  
Power-Up  
Read NOP  
Write NOP  
READ  
WRITE  
READ  
WRITE  
READ  
Load New  
Read Address  
Load New  
Write Address  
WRITE  
Always  
(Fixed)  
Always  
(Fixed)  
READ  
WRITE  
DDR Read  
DDR Write  
Notes:  
1. Internal burst counter is fixed as 1-bit linear (i.e., when first address is A0+), next internal burst address is A0+1.  
2. “READ” refers to read active status with R = Low, “READ” refers to read inactive status with R = High. The same is  
true for “WRITE” and “WRITE”.  
3. Read and write state machine can be active simultaneously.  
4. State machine control timing sequence is controlled by K.  
Rev: 1.00a 6/2007  
15/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
Voltage on V Pins  
DD  
–0.5 to 2.9  
V
DD  
V
Voltage in V  
Voltage in V  
Pins  
Pins  
–0.5 to V  
V
V
DDQ  
DDQ  
REF  
DD  
V
–0.5 to V  
REF  
DDQ  
V
–0.5 to V  
–0.5 to V  
+0.5 (2.9 V max.)  
Voltage on I/O Pins  
V
I/O  
DDQ  
DDQ  
V
+0.5 (2.9 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
V
IN  
I
+/–100  
+/–100  
125  
mA dc  
mA dc  
IN  
I
Output Current on Any I/O Pin  
Maximum Junction Temperature  
Storage Temperature  
OUT  
o
T
C
J
o
T
–55 to 125  
C
STG  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
Unit  
V
V
V
V
DD  
V
I/O Supply Voltage  
Reference Voltage  
1.4  
1.9  
DDQ  
V
0.68  
0.95  
REF  
Notes:  
1. The power supplies need to be powered up simultaneously or in the following sequence: V , V , V , followed by signal  
DD DDQ REF  
inputs. The power down sequence must be the reverse. V  
must not exceed V .  
DD  
DDQ  
2. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The  
part number of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance  
specifications quoted are evaluated for worst case in the temperature range marked on the device.  
Operating Temperature  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Ambient Temperature  
(Commercial Range Versions)  
T
0
25  
70  
°C  
A
Ambient Temperature  
(Industrial Range Versions)  
T
–40  
25  
85  
°C  
A
Rev: 1.00a 6/2007  
16/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
HSTL I/O DC Input Characteristics  
Parameter  
DC Input Logic High  
Symbol  
Min  
Max  
Units  
Notes  
V
(dc)  
V
+ 0.1  
V
+ 0.3  
DD  
V
V
1
1
IH  
REF  
V (dc)  
V
– 0.1  
REF  
DC Input Logic Low  
–0.3  
IL  
Notes:  
1. Compatible with both 1.8 V and 1.5 V I/O drivers  
2. These are DC test criteria. DC design criteria is V  
± 50 mV. The AC V /V levels are defined separately for measuring timing param-  
REF  
IH IL  
eters.  
3. V (Min)DC = –0.3 V, V (Min)AC = –1.5 V (pulse width 3 ns).  
IL  
IL  
4.  
V
(Max)DC = V  
+ 0.3 V, V (Max)AC = V  
+ 0.85 V (pulse width 3 ns).  
DDQ  
IH  
DDQ  
IH  
HSTL I/O AC Input Characteristics  
Parameter  
AC Input Logic High  
Symbol  
Min  
Max  
Units  
mV  
Notes  
3,4  
V
(ac)  
V
+ 200  
REF  
IH  
V (ac)  
V
– 200  
REF  
AC Input Logic Low  
mV  
3,4  
IL  
V
Peak to Peak AC Voltage  
V
(ac)  
5% V  
(DC)  
REF  
mV  
1
REF  
REF  
Notes:  
1. The peak to peak AC component superimposed on V  
may not exceed 5% of the DC component of V  
.
REF  
REF  
2. To guarantee AC characteristics, V ,V , Trise, and Tfall of inputs and clocks must be within 10% of each other.  
IH IL  
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKHKH  
V
+ 1.0 V  
DD  
V
SS  
50%  
50%  
V
DD  
V
– 1.0 V  
SS  
20% tKHKH  
V
IL  
Rev: 1.00a 6/2007  
17/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 1.8 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V
= 0 V  
Input Capacitance  
Output Capacitance  
Clock Capacitance  
4
6
5
5
7
6
IN  
IN  
C
V
OUT  
= 0 V  
pF  
OUT  
C
V = 0 V  
IN  
pF  
CLK  
Note:  
This parameter is sample tested.  
AC Test Conditions  
Parameter  
Conditions  
1.25 V  
Input high level  
Input low level  
0.25 V  
Max. input slew rate  
Input reference level  
Output reference level  
2 V/ns  
0.75 V  
V
/2  
DDQ  
Note:  
Test conditions as specified with output loading as shown unless otherwise noted.  
AC Test Load Diagram  
DQ  
RQ = 250 Ω (HSTL I/O)  
V
= 0.75 V  
REF  
50Ω  
VT = V /2  
DDQ  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Notes  
Input Leakage Current  
(except mode pins)  
I
V = 0 to V  
IN DD  
–2 uA  
2 uA  
IL  
V
V V  
IN  
–2 uA  
–2 uA  
2 uA  
2 uA  
DD  
IL  
IL  
I
Doff  
INDOFF  
0 V V V  
IN  
Output Disable,  
= 0 to V  
I
Output Leakage Current  
–2 uA  
2 uA  
OL  
V
OUT  
DDQ  
Rev: 1.00a 6/2007  
18/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Programmable Impedance HSTL Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
Min.  
Max.  
Units Notes  
V
V
V
/2 – 0.12  
V
V
/2 + 0.12  
DDQ  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
V
V
V
V
1, 3  
2, 3  
4, 5  
4, 6  
OH1  
DDQ  
V
/2 – 0.12  
– 0.2  
/2 + 0.12  
DDQ  
OL1  
DDQ  
V
V
V
DDQ  
OH2  
DDQ  
V
Output Low Voltage  
Vss  
0.2  
OL2  
Notes:  
1.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
DDQ OH DDQ  
OH  
2.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
OL  
DDQ  
OL  
DDQ  
3. Parameter tested with RQ = 250Ω and V  
4. 0Ω ≤ RQ ≤ ∞Ω  
= 1.5 V or 1.8 V  
DDQ  
5.  
I
= –1.0 mA  
OH  
6.  
I
= 1.0 mA  
OL  
Operating Currents  
-300  
-250  
-200  
-167  
Parameter  
Symbol  
Test Conditions  
Notes  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
70°C  
85°C  
70°C  
85°C  
70°C  
85°C  
70°C  
85°C  
VDD = Max, IOUT = 0 mA  
IDD  
IDD  
IDD  
IDD  
Operating Current (x36): DDR  
Operating Current (x18): DDR  
Operating Current (x9): DDR  
Operating Current (x8): DDR  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2, 3  
2, 3  
2, 3  
2, 3  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Cycle Time tKHKH Min  
Device deselected,  
IOUT = 0 mA, f = Max,  
ISB1  
Standby Current (NOP): DDR  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2, 4  
All Inputs 0.2 V or VDD – 0.2 V  
Notes:  
1.  
2.  
Power measured with output pins floating.  
Minimum cycle, IOUT = 0 mA  
Operating current is calculated with 50% read cycles and 50% write cycles.  
Standby Current is only after all pending read and write burst operations are completed.  
3.  
4.  
Rev: 1.00a 6/2007  
19/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
AC Electrical Characteristics  
-300  
-250  
-200  
-167  
-133  
Parameter  
Symbol  
Units Notes  
Min Max Min Max Min Max  
Min  
Max  
Min  
Max  
Clock  
tKHKH  
tCHCH  
K, K Clock Cycle Time  
C, C Clock Cycle Time  
3.3  
5.0  
0.2  
4.0  
5.0  
0.2  
5.0  
8.4  
0.2  
6.0  
8.4  
0.2  
7.5  
8.4  
0.2  
ns  
tKCVar  
tKC Variable  
ns  
ns  
5
tKHKL  
tCHCL  
K, K Clock High Pulse Width  
C, C Clock High Pulse Width  
1.32  
1.6  
2.0  
2.4  
3.0  
tKLKH  
tCLCH  
K, K Clock Low Pulse Width  
C, C Clock Low Pulse Width  
1.32  
1.49  
1.49  
1.6  
1.8  
1.8  
2.0  
2.2  
2.2  
2.4  
2.7  
2.7  
3.0  
3.2  
3.2  
ns  
ns  
ns  
tKHKH  
tCHCH  
K to K High  
C to C High  
tKHKH  
tCHCH  
K to K High  
C to C High  
tKHCH  
tKCLock  
tKCReset  
K, K Clock High to C, C Clock High  
DLL Lock Time  
0
1.45  
0
1.8  
0
2.3  
0
2.8  
0
2.8  
ns  
cycle  
ns  
1024  
30  
1024  
30  
1024  
30  
1024  
30  
1024  
30  
6
K Static to DLL reset  
Output Times  
tKHQV  
tCHQV  
K, K Clock High to Data Output Valid  
C, C Clock High to Data Output Valid  
0.45  
0.45  
0.45  
–0.5  
0.5  
–0.5  
0.5  
ns  
ns  
ns  
ns  
3
3
tKHQX  
tCHQX  
K, K Clock High to Data Output Hold  
C, C Clock High to Data Output Hold  
–0.45  
–0.45  
–0.45  
tKHCQV  
tCHCQV  
K, K Clock High to Echo Clock Valid  
C, C Clock High to Echo Clock Valid  
0.45  
0.45  
0.45  
0.5  
0.5  
tKHCQX  
tCHCQX  
K, K Clock High to Echo Clock Hold  
C, C Clock High to Echo Clock Hold  
–0.45  
–0.45  
–0.45  
–0.5  
–0.5  
tCQHQV  
tCQHQX  
tCQHCQH  
tCQHCQH  
tKHQZ  
tCHQZ  
tKHQX1  
tCHQX1  
CQ, CQ High Output Valid  
CQ, CQ High Output Hold  
0.27  
0.30  
0.35  
0.40  
0.40  
ns  
ns  
7
7
–0.27  
–0.30  
–0.35  
–0.40  
2.45  
–0.40  
2.45  
CQ Phase Distortion  
1.24  
0.45  
1.55  
0.45  
1.95  
0.45  
0.5  
0.5  
ns  
ns  
ns  
K Clock High to Data Output High-Z  
C Clock High to Data Output High-Z  
3
3
K Clock High to Data Output Low-Z  
C Clock High to Data Output Low-Z  
–0.45  
–0.45  
–0.45  
–0.5  
–0.5  
Setup Times  
tAVKH  
tIVKH  
tDVKH  
Address Input Setup Time  
0.3  
0.3  
0.3  
0.35  
0.35  
0.35  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
Control Input Setup Time  
Data Input Setup Time  
2
Rev: 1.00a 6/2007  
20/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
AC Electrical Characteristics (Continued)  
-300  
-250  
-200  
-167  
-133  
Parameter  
Symbol  
Units Notes  
Min Max Min Max Min Max  
Min  
Max  
Min  
Max  
Hold Times  
tKHAX  
tKHIX  
Address Input Hold Time  
0.3  
0.3  
0.3  
0.35  
0.35  
0.35  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
Control Input Hold Time  
tKHDX  
Data Input Hold Time  
Notes:  
1.  
2.  
3.  
4.  
All Address inputs must meet the specified setup and hold times for all latching clock edges.  
Control singles are R, W, BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).  
If C, C are tied high, K, K become the references for C, C timing parameters  
To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN  
parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7 V). It is not possible for two SRAMs  
on the same board to be at such different voltages and temperatures.  
5.  
6.  
Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
V
DD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.  
7.  
Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet parameters reflect tester guard bands  
and test setup variations.  
Rev: 1.00a 6/2007  
21/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Rev: 1.00a 6/2007  
22/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Rev: 1.00a 6/2007  
23/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DDQ  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Rev: 1.00a 6/2007  
24/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
Rev: 1.00a 6/2007  
25/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
ID Register Contents  
GSI Technology  
JEDEC Vendor  
ID Code  
Not Used  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0 1 1 0 1 1 0 0 1  
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 1.00a 6/2007  
26/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
still determined by its input pins.  
Rev: 1.00a 6/2007  
27/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
RFU  
010  
011  
TDO.  
1
1
Forces all RAM output drivers to High-Z except CQ.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
100  
101  
110  
111  
1
1
1
1
GSI  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.00a 6/2007  
28/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
0.3  
Max.  
Unit Notes  
V
0.3 * V  
Test Port Input Low Voltage  
V
V
1
1
ILJ  
DD  
V
0.6 * V  
V
+0.3  
DD  
Test Port Input High Voltage  
IHJ  
DD  
I
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
Test Port Output CMOS High  
Test Port Output CMOS Low  
300  
1  
1
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
V
V
– 200 mV  
0.4  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
DD  
V
V
OLJ  
V
– 100 mV  
V
OHJC  
DD  
V
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 1 V < Vi < V  
+1 V not to exceed 2.9 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
ILJn  
3. 0 V V V  
IN  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V supply.  
DD  
6.  
7.  
8.  
9.  
I
I
I
I
= 2 mA  
OHJ  
= + 2 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OLJC  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
DQ  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
*
50Ω  
30pF  
Input slew rate  
V
V
/2  
Input reference level  
DDQ  
V
/2  
DDQ  
/2  
Output reference level  
* Distributed Test Jig Capacitance  
DDQ  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
Rev: 1.00a 6/2007  
29/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
TDI  
tTH  
tTH  
tTS  
tTS  
TMS  
TDO  
tTKQ  
tTH  
tTS  
Parallel SRAM input  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
Max  
Unit  
ns  
TCK Cycle Time  
50  
20  
20  
10  
10  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
ns  
ns  
ns  
ns  
tTH  
ns  
Rev: 1.00a 6/2007  
30/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Package Dimensions—165-Bump FPBGA (Package D)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.60 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
13±0.05  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.00a 6/2007  
31/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Ordering Information—GSI SigmaQuad-II SRAM  
Speed  
(MHz)  
3
1
Org  
Type  
Package  
T
Part Number  
A
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
2M x 9  
GS8182Q36BD-300  
GS8182Q36BD-250  
GS8182Q36BD-200  
GS8182Q36BD-167  
GS8182Q36BD-300I  
GS8182Q36BD-250I  
GS8182Q36BD-200I  
GS8182Q36BD-167I  
GS8182Q18BD-300  
GS8182Q18BD-250  
GS8182Q18BD-200  
GS8182Q18BD-167  
GS8182Q18BD-300I  
GS8182Q18BD-250I  
GS8182Q18BD-200I  
GS8182Q18BD-167I  
GS8182Q09BD-300  
GS8182Q09BD-250  
GS8182Q09BD-200  
GS8182Q09BD-167  
GS8182Q09BD-300I  
GS8182Q09BD-250I  
GS8182Q09BD-200I  
GS8182Q09BD-167I  
GS8182Q36GBD-300  
GS8182Q36GBD-250  
GS8182Q36GBD-200  
GS8182Q36GBD-167  
GS8182Q36GBD-300I  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
165-bump BGA  
165-bump BGA  
300  
250  
200  
167  
300  
250  
200  
167  
300  
250  
200  
167  
300  
250  
200  
167  
300  
250  
200  
167  
300  
250  
200  
167  
300  
250  
200  
167  
300  
C
C
C
C
I
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
C
C
C
C
I
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
C
C
C
C
I
2M x 9  
165-bump BGA  
2M x 9  
165-bump BGA  
2M x 9  
165-bump BGA  
2M x 9  
165-bump BGA  
2M x 9  
165-bump BGA  
I
2M x 9  
165-bump BGA  
I
2M x 9  
165-bump BGA  
I
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
C
C
C
C
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8182x36BD-200T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.00a 6/2007  
32/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8182Q09/18/36BD-300/250/200/167/133  
Ordering Information—GSI SigmaQuad-II SRAM  
Speed  
(MHz)  
3
1
Org  
Type  
Package  
T
Part Number  
A
512K x 36  
512K x 36  
512K x 36  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
2M x 9  
GS8182Q36GBD-250I  
GS8182Q36GBD-200I  
GS8182Q36GBD-167I  
GS8182Q18GBD-300  
GS8182Q18GBD-250  
GS8182Q18GBD-200  
GS8182Q18GBD-167  
GS8182Q18GBD-300I  
GS8182Q18GBD-250I  
GS8182Q18GBD-200I  
GS8182Q18GBD-167I  
GS8182Q09GBD-300  
GS8182Q09GBD-250  
GS8182Q09GBD-200  
GS8182Q09GBD-167  
GS8182Q09GBD-300I  
GS8182Q09GBD-250I  
GS8182Q09GBD-200I  
GS8182Q09GBD-167I  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
250  
200  
167  
300  
250  
200  
167  
300  
250  
200  
167  
300  
250  
200  
167  
300  
250  
200  
167  
I
I
I
C
C
C
C
I
I
I
I
C
C
C
C
I
2M x 9  
2M x 9  
2M x 9  
2M x 9  
2M x 9  
I
2M x 9  
I
2M x 9  
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8182x36BD-200T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
SigmaSIO-II Revision History  
File Name  
Format/Content  
Description of changes  
8182QxxB_r1  
Creation of datasheet  
Rev: 1.00a 6/2007  
33/33  
© 2007, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY