GS82582T19 [GSI]

288Mb SigmaDDR-IITM Burst of 2 SRAM;
GS82582T19
型号: GS82582T19
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

288Mb SigmaDDR-IITM Burst of 2 SRAM

双倍数据速率 静态存储器
文件: 总27页 (文件大小:477K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS82582T19/37GE-450/400/375/333  
288Mb SigmaDDR-II+TM  
Burst of 2 SRAM  
450 MHz–333 MHz  
165-Bump BGA  
Commercial Temp  
Industrial Temp  
1.8 V V  
DD  
1.8 V or 1.5 V I/O  
SRAMs. The GS82582T19/37GE SigmaDDR-II+ SRAMs are  
just one element in a family of low power, low voltage HSTL  
I/O SRAMs designed to operate at the speeds needed to  
implement economical high performance networking systems.  
Features  
• 2.0 Clock Latency  
• Simultaneous Read and Write SigmaDDR™ Interface  
• Common I/O bus  
• JEDEC-standard pinout and package  
• Double Data Rate interface  
• Byte Write controls sampled at data-in time  
• Burst of 2 Read and Write  
• On-Die Termination (ODT) on Data (D), Byte Write (BW),  
and Clock (K, K) inputs  
• 1.8 V +100/–100 mV core power supply  
• 1.5 V or 1.8 V HSTL Interface  
Clocking and Addressing Schemes  
The GS82582T19/37GE SigmaDDR-II+ SRAMs are  
synchronous devices. They employ two input register clock  
inputs, K and K. K and K are independent single-ended clock  
inputs, not differential inputs to a single differential clock input  
buffer.  
• Pipelined read operation with self-timed Late Write  
• Fully coherent read and write pipelines  
• ZQ pin for programmable output drive strength  
• Data Valid pin (QVLD) Support  
• IEEE 1149.1 JTAG-compliant Boundary Scan  
• RoHS-compliant 165-bump BGA package  
Each internal read and write operation in a SigmaDDR-II+ B2  
RAM is two times wider than the device I/O bus. An input data  
bus de-multiplexer is used to accumulate incoming data before  
it is simultaneously written to the memory array. An output  
data multiplexer is used to capture the data produced from a  
single memory array read and then route it to the appropriate  
output drivers as needed. Therefore, the address field of a  
SigmaDDR-II+ B2 RAM is always one address pin less than  
the advertised index depth (e.g., the 16M x 18 has an 8M  
addressable index).  
SigmaDDRFamily Overview  
The GS82582T19/37GE are built in compliance with the  
SigmaDDR-II+ SRAM pinout standard for Common I/O  
synchronous SRAMs. They are 301,989,888-bit (288Mb)  
Parameter Synopsis  
-450  
2.2 ns  
0.45 ns  
-400  
2.5 ns  
0.45 ns  
-375  
-333  
3.0 ns  
0.45 ns  
tKHKH  
tKHQV  
2.66 ns  
0.45 ns  
Rev: 1.04 4/2016  
1/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
16M x 18 SigmaDDR-II+ SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
SA  
SA  
R/W  
BW1  
K
SA  
LD  
SA  
SA  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
DQ9  
NC  
NC  
NC  
SA  
SA  
SA  
K
BW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ7  
NC  
DQ8  
NC  
V
V
NC  
V
SS  
SS  
SS  
SS  
NC  
DQ10  
DQ11  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
NC  
V
V
V
V
V
V
V
V
NC  
DQ6  
DQ5  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQ12  
NC  
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
DQ13  
V
V
V
NC  
V
V
V
V
REF  
ZQ  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
DQ14  
NC  
NC  
DQ4  
NC  
NC  
K
L
V
NC  
NC  
NC  
NC  
NC  
SA  
DQ3  
DQ2  
NC  
DQ15  
NC  
V
V
V
V
V
NC  
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
V
V
DQ1  
NC  
SS  
SS  
SS  
SS  
NC  
DQ16  
DQ17  
SA  
V
SA  
SA  
SA  
SA  
SA  
SA  
SA  
V
NC  
NC  
SA  
SA  
QVLD  
ODT  
SA  
SA  
NC  
DQ0  
TDI  
TCK  
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Note:  
BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17.  
Rev: 1.04 4/2016  
2/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
8M x 36 SigmaDDR-II+ SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
SA  
SA  
R/W  
BW2  
K
BW1  
LD  
SA  
SA  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
DQ27  
NC  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
SA  
BW3  
SA  
K
BW0  
SA  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
DQ17  
NC  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
V
V
NC  
V
SS  
SS  
SS  
SS  
DQ29  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
DQ15  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQ30  
DQ31  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
NC  
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
SA  
NC  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
V
NC  
NC  
NC  
NC  
NC  
SA  
DQ33  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
DQ11  
NC  
SS  
SS  
SS  
SS  
DQ35  
NC  
V
SA  
SA  
SA  
SA  
SA  
SA  
SA  
V
SA  
SA  
QVLD  
ODT  
SA  
SA  
DQ9  
TMS  
TCK  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Note:  
BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17; BW2 controls writes to DQ18:DQ26; BW3 controls writes to DQ27:DQ35.  
Rev: 1.04 4/2016  
3/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Pin Description Table  
Symbol  
Description  
Type  
Comments  
SA  
Synchronous Address Inputs  
Input  
High: Read  
Low: Write  
R/W  
Synchronous Read  
Input  
BW0–BW3  
LD  
Synchronous Byte Writes  
Synchronous Load Pin  
Input Clock  
Input  
Input  
Active Low  
Active Low  
K
Input  
Active High  
K
Input Clock  
Input  
Active Low  
TMS  
TDI  
Test Mode Select  
Input  
Test Data Input  
Input  
TCK  
TDO  
VREF  
Test Clock Input  
Input  
Test Data Output  
Output  
Input  
HSTL Input Reference Voltage  
Output Impedance Matching Input  
Must Connect Low  
Data I/O  
ZQ  
MCL  
DQ  
Input  
Input/Output  
Input  
Three State  
Active Low  
Disable DLL when low  
Output Echo Clock  
Output Echo Clock  
Power Supply  
Doff  
CQ  
Output  
Output  
Supply  
CQ  
VDD  
1.8 V Nominal  
VDDQ  
VSS  
Isolated Output Buffer Supply  
Supply  
1.8 V or 1.5 V Nominal  
Power Supply: Ground  
Q Valid Output  
Supply  
Output  
Input  
QVLD  
ODT  
Active High  
On-Die Termination  
No Connect  
NC  
Notes:  
1. NC = Not Connected to die or any other pin  
2. When ZQ pin is directly connected to V , output impedance is set to minimum value and it cannot be connected to ground or left  
DDQ  
unconnected.  
3. K and K cannot be set to V  
voltage.  
REF  
Rev: 1.04 4/2016  
4/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Background  
Common I/O SRAMs, from a system architecture point of view, are attractive in read dominated or block transfer applications.  
Therefore, the SigmaDDR-II+ SRAM interface and truth table are optimized for burst reads and writes. Common I/O SRAMs are  
unpopular in applications where alternating reads and writes are needed because bus turnaround delays can cut high speed  
Common I/O SRAM data bandwidth in half.  
Burst Operations  
Read and write operations are "Burst" operations. In every case where a read or write command is accepted by the SRAM, it will  
respond by issuing or accepting two beats of data, executing a data transfer on subsequent rising edges of K and K, as illustrated in  
the timing diagrams.This means that it is possible to load new addresses every K clock cycle. Addresses can be loaded less often, if  
intervening deselect cycles are inserted.  
Deselect Cycles  
Chip Deselect commands are pipelined to the same degree as read commands. This means that if a deselect command is applied to  
the SRAM on the next cycle after a read command captured by the SRAM, the device will complete the two beat read data transfer  
and then execute the deselect command, returning the output drivers to High-Z. A high on the LD pin prevents the RAM from  
loading read or write command inputs and puts the RAM into deselect mode as soon as it completes all outstanding burst transfer  
operations.  
SigmaDDR-II+ Burst of 2 SRAM Read Cycles  
The SRAM executes pipelined reads. The status of the Address, LD and R/W pins are evaluated on the rising edge of K. The read  
command (LD low and R/W high) is clocked into the SRAM by a rising edge of K.  
SigmaDDR-II+ Burst of 2 SRAM Write Cycles  
The status of the Address, LD and R/W pins are evaluated on the rising edge of K. The SRAM executes "late write" data transfers.  
Data in is due at the device inputs on the rising edge of K following the rising edge of K clock used to clock in the write command  
(LD and R/W low) and the write address. To complete the remaining beat of the burst of two write transfer, the SRAM captures  
data in on the next rising edge of K, for a total of two transfers per address load.  
Special Functions  
Byte Write Control  
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with  
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be  
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven High or Low  
during the data in sample times in a write sequence.  
Each write enable command and write address loaded into the RAM provides the base address for a 2-beat data transfer. The x18  
version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any  
write sequence.  
Rev: 1.04 4/2016  
5/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Resulting Write Operation  
Byte 1  
D0–D8  
Byte 2  
D9–D17  
Byte 3  
D0–D8  
Byte 4  
D9–D17  
Written  
Unchanged  
Unchanged  
Written  
Beat 1  
Beat 2  
Example x18 RAM Write Sequence using Byte Write Enables  
Data In Sample Time  
BW0  
BW1  
D0–D8  
D9–D17  
Don’t Care  
Data In  
Beat 1  
Beat 2  
0
1
1
0
Data In  
Don’t Care  
Rev: 1.04 4/2016  
6/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
FLXDrive-II Output Driver Impedance Control  
HSTL I/O SigmaDDR-II+ SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to  
via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be  
V
SS  
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is  
between 175and 350. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts  
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and  
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance  
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is  
implemented with discrete binary weighted impedance steps.  
Input Termination Impedance Control  
These SigmaDDR-II+ SRAMs are supplied with programmable input termination on Data (DQ), Byte Write (BW), and Clock (K,  
K) input receivers. Input termination can be enabled or disabled via the ODT pin (6R). When the ODT pin is tied Low (or left  
floating–the pin has a small pull-down resistor), input termination is disabled. When the ODT pin is tied High, input termination is  
enabled. Termination impedance is programmed via the same RQ resistor (connected between the ZQ pin and V ) used to  
SS  
program output driver impedance, and is nominally RQ*0.6 Thevenin-equivalent when RQ is between 175and 250. Periodic  
readjustment of the termination impedance occurs to compensate for drifts in supply voltage and temperature, in the same manner  
as for driver impedance (see above).  
Notes:  
1. When ODT = 1, Byte Write (BW), and Clock (K, K) input termination is always enabled. Consequently, BW, K, K inputs  
should always be driven High or Low; they should never be tri-stated (i.e., in a High-Z state). If the inputs are tri-stated, the  
input termination will pull the signal to V  
/2 (i.e., to the switch point of the diff-amp receiver), which could cause the  
DDQ  
receiver to enter a meta-stable state, resulting in the receiver consuming more power than it normally would. This could result  
in the device’s operating currents being higher.  
2. When ODT = 1, DQ input termination is enabled during Write and NOP operations, and disabled during Read operations.  
Specifically, DQ input termination is disabled 0.5 cycles before the SRAM enables its DQ drivers and starts driving valid Read  
Data, and remains disabled until 0.5 cycles after the SRAM stops driving valid Read Data and disables its DQ drivers; DQ  
input termination is enabled at all other times. Consequently, the SRAM Controller should disable its DQ input termination,  
enable its DQ drivers, and drive DQ inputs (High or Low) during Write and NOP operations. And, it should enable its DQ  
input termination and disable its DQ drivers during Read operations. Care should be taken during Write or NOP -> Read  
transitions, and during Read -> NOP transitions, to minimize the time during which one device (SRAM or SRAM Controller)  
has enabled its DQ input termination while the other device has not yet enabled its DQ driver. Otherwise, the input termination  
will pull the signal to VDDQ/2 (i.e., to the switch point of the diff-amp receiver), which could cause the receiver to enter a meta-  
stable state, resulting in the receiver consuming more power than it normally would. This could result in the device’s operating  
currents being higher.  
Rev: 1.04 4/2016  
7/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Power-Up Initialization  
After power-up, stable input clocks must be applied to the device for 20 s prior to issuing read and write commands. See the t  
timing parameter in the AC Electrical Characteristics section.  
KInit  
Note:  
The t  
requirement is independent of the tLock requirement, which specifies how many cycles of stable input clocks (2048)  
KInit  
must be applied after the Doff pin has been driven High in order to ensure that the DLL locks properly (and the DLL must lock  
properly before issuing read and write commands). However, t is greater than t , even at the slowest permitted cycle time  
KInit  
KLock  
of 8.4 ns (2048*8.4 ns = 17.2 s). Consequently, the 20 s associated with t  
is sufficient to cover the t  
requirement at  
KInit  
KLock  
power-up if the Doff pin is driven High prior to the start of the 20 s period.  
Also, t only needs to be met once, immediately after power-up, whereas t  
must be met any time the DLL is disabled/reset  
KLock  
KInit  
(whether by toggling Doff Low or by stopping K clocks for > 30 ns).  
Rev: 1.04 4/2016  
8/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Common I/O SigmaDDR-II+ Burst of 2 SRAM Truth Table  
DQ  
K
LD  
R/W  
Operation  
n
A + 0  
Hi-Z / *  
A + 1  
1
0
0
X
0
1
Hi-Z / *  
D@Kn+1  
Q@Kn+2  
Deselect  
Write  
D@Kn+1  
Q@Kn+2  
Read  
Notes:  
1. “1” = input “high”; “0” = input “low”; “V” = input “valid”; “X” = input “don’t care”.  
2. D1 and D2 indicate the first and second pieces of Write Data transferred during Write operations.  
3. Q1 and Q2 indicate the first and second pieces of Read Data transferred during Read operations.  
4. When On-Die Termination is disabled (ODT = 0), DQ drivers are disabled (i.e., DQ pins are tri-stated) for one cycle in response to NOP  
and Write commands, 2.0 cycles after the command is sampled.  
5. When On-Die Termination is enabled (ODT = 1), DQ drivers are disabled for one cycle in response to NOP and Write commands, 2.0  
cycles after the command is sampled. The state of the DQ pins during that time (denoted by “*” in the table above) is determined by the  
state of the DQ input termination. See the Input Termination Impedance Control section for more information.  
Burst of 2 Byte Write Clock Truth Table  
BW  
BW  
Current Operation  
D
D
K   
K   
K   
K   
K   
(t  
)
(t  
)
(t )  
(t  
)
(t  
)
n + 1  
n + 1½  
n
n +1  
n + 1½  
Write  
T
T
F
T
F
D1  
D2  
X
Dx stored if BWn = 0 in both data transfers  
Write  
T
F
F
D1  
X
Dx stored if BWn = 0 in 1st data transfer only  
Write  
D2  
X
Dx stored if BWn = 0 in 2nd data transfer only  
Write Abort  
No Dx stored in either data transfer  
X
Notes:  
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
2. If one or more BWn = 0, then BW = “T”, else BW = “F”.  
Rev: 1.04 4/2016  
9/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
x36 Byte Write Enable (BWn) Truth Table  
BW0  
BW1  
BW2  
BW3  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
D18–D26  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
D27–D35  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Data In  
Data In  
x18 Byte Write Enable (BWn) Truth Table  
BW0  
BW1  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
Rev: 1.04 4/2016  
10/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
VDD  
Description  
Value  
Unit  
Voltage on VDD Pins  
Voltage in VDDQ Pins  
Voltage in VREF Pins  
–0.5 to 2.9  
V
VDDQ  
VREF  
VI/O  
–0.5 to VDD  
V
–0.5 to VDDQ  
V
V
–0.5 to VDDQ +0.5 (2.9 V max.)  
–0.5 to VDDQ +0.5 (2.9 V max.)  
–0.5 to VDDQ +0.5 (2.9 V max.)  
Voltage on I/O Pins  
VIN  
Voltage on Other Input Pins  
Input Voltage (TCK, TMS, TDI)  
Input Current on Any Pin  
V
VTIN  
IIN  
V
+/–100  
+/–100  
125  
mA dc  
mA dc  
IOUT  
Output Current on Any I/O Pin  
Maximum Junction Temperature  
Storage Temperature  
oC  
oC  
TJ  
TSTG  
–55 to 125  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
VDD  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
Unit  
V
VDDQ  
VREF  
VDD  
I/O Supply Voltage  
Reference Voltage  
1.4  
V
VDDQ/2 – 0.05  
VDDQ/2 + 0.05  
V
Note:.  
The power supplies need to be powered up simultaneously or in the following sequence: V , V , V , followed by signal inputs. The power  
DD DDQ REF  
down sequence must be the reverse. V  
must not exceed V . For more information, read AN1021 SigmaQuad and SigmaDDR Power-Up.  
DD  
DDQ  
Operating Temperature  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Junction Temperature  
(Commercial Range Versions)  
TJ  
0
25  
85  
C  
Junction Temperature  
(Industrial Range Versions)*  
TJ  
–40  
25  
100  
C  
Note:  
* The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications  
quoted are evaluated for worst case in the temperature range marked on the device.  
Rev: 1.04 4/2016  
11/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Thermal Impedance  
Test PCB  
Substrate  
JA (C°/W)  
Airflow = 0 m/s  
JA (C°/W)  
Airflow = 1 m/s  
JA (C°/W)  
Airflow = 2 m/s  
JB (C°/W)  
JC (C°/W)  
Package  
165 BGA  
4-layer  
16.10  
13.69  
12.73  
6.54  
2.08  
Notes:  
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.  
2. Please refer to JEDEC standard JESD51-6.  
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to  
the PCB can result in cooling or heating of the RAM depending on PCB temperature.  
HSTL I/O DC Input Characteristics  
Parameter  
Input Reference Voltage  
Symbol  
VREF  
VIH1  
Min  
Max  
Units  
Notes  
VDDQ /2 – 0.05  
VREF + 0.1  
VDDQ /2 + 0.05  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.3 * VDDQ  
V
V
V
V
V
1
Input High Voltage  
Input Low Voltage  
Input High Voltage  
VIL1  
–0.3  
1
VIH2  
0.7 * VDDQ  
2,3  
2,3  
VIL2  
–0.3  
Input Low Voltage  
Notes:  
1. Parameters apply to K, K, SA, DQ, R/W, LD, BW during normal operation and JTAG boundary scan testing.  
2. Parameters apply to Doff, ODT during normal operation and JTAG boundary scan testing.  
3. Parameters apply to ZQ during JTAG boundary scan testing only.  
HSTL I/O AC Input Characteristics  
Parameter  
Input Reference Voltage  
Symbol  
VREF  
VIH1  
Min  
Max  
Units  
Notes  
VDDQ /2 – 0.08  
VREF + 0.2  
VDDQ /2 + 0.08  
VDDQ + 0.5  
V
V
V
V
V
1,2,3  
1,2,3  
4,5  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
VIL1  
VREF – 0.2  
–0.5  
VIH2  
VDDQ – 0.2  
VDDQ + 0.5  
0.2  
VIL2  
Input Low Voltage  
–0.5  
4,5  
Notes:  
1.  
V
and V  
apply for pulse widths less than one-quarter of the cycle time.  
IL(MIN)  
IH(MAX)  
2. Input rise and fall times myust be a minimum of 1 V/ns, and within 10% of each other.  
3. Parameters apply to K, K, SA, DQ, R/W, LD, BW during normal operation and JTAG boundary scan testing.  
4. Parameters apply to Doff, ODT during normal operation and JTAG boundary scan testing.  
5. Parameters apply to ZQ during JTAG boundary scan testing only.  
Rev: 1.04 4/2016  
12/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 1.8 V)  
A
DD  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
Typ.  
Max.  
Unit  
pF  
Input Capacitance  
Output Capacitance  
Clock Capacitance  
4
6
5
5
7
6
COUT  
CCLK  
VOUT = 0 V  
pF  
pF  
Note:  
This parameter is sample tested.  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
1.25  
0.25 V  
2 V/ns  
.75  
Max. input slew rate  
Input reference level  
Output reference level  
0.75 V  
Note:  
Test conditions as specified with output loading as shown unless otherwise noted.  
AC Test Load Diagram  
DQ  
RQ = 250 (HSTL I/O)  
= 0.75 V  
V
REF  
50  
VT = 0.75 V  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
–2 uA  
2 uA  
IILDOFF  
IILODT  
VIN = 0 to VDD  
VIN = 0 to VDD  
Doff  
–20 uA  
–2 uA  
2 uA  
ODT  
20 uA  
Output Disable,  
VOUT = 0 to VDDQ  
IOL  
Output Leakage Current  
–2 uA  
2 uA  
Rev: 1.04 4/2016  
13/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Programmable Impedance HSTL Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
VOH1  
Min.  
Max.  
Units  
Notes  
1, 3  
VDDQ/2 – 0.12 VDDQ/2 + 0.12  
VDDQ/2 – 0.12 VDDQ/2 + 0.12  
V
V
V
V
Output High Voltage  
Output Low Voltage  
Output High Voltage  
VOL1  
2, 3  
VOH2  
VDDQ – 0.2  
Vss  
VDDQ  
0.2  
4, 5  
VOL2  
4, 6  
Output Low Voltage  
Notes:  
1.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175 RQ 350  
DDQ OH DDQ  
OH  
2.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175  RQ 350.  
OL  
DDQ  
OL  
DDQ  
3. Parameter tested with RQ = 250and V  
= 1.5 V  
DDQ  
4. 0RQ    
5.  
6.  
I
I
= –1.0 mA  
= 1.0 mA  
OH  
OL  
Rev: 1.04 4/2016  
14/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Rev: 1.04 4/2016  
15/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
AC Electrical Characteristics  
-450  
-400  
-375  
-333  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Clock  
tKHKH  
tKVar  
K, K Clock Cycle Time  
2.2  
8.4  
0.15  
2.5  
8.4  
0.2  
2.66  
8.4  
0.2  
3.0  
8.4  
0.2  
ns  
ns  
tK Variable  
4
tKHKL  
tKLKH  
tKHKH  
tKHKH  
tKLock  
tKReset  
tKInit  
K, K Clock High Pulse Width  
K, K Clock Low Pulse Width  
K to K High  
0.4  
0.4  
0.4  
0.4  
cycle  
cycle  
ns  
0.4  
0.4  
0.4  
0.4  
0.94  
0.94  
2048  
30  
1.06  
1.06  
2048  
30  
1.13  
1.13  
2048  
30  
1.28  
1.28  
2048  
30  
K to K High  
ns  
DLL Lock Time  
cycle  
ns  
5
6
K Static to DLL reset  
s  
K, K Clock Initialization  
Output Times  
20  
20  
20  
20  
tKHQV  
tKHQX  
K, K Clock High to Data Output Valid  
0.45  
–0.45  
0.45  
–0.45  
0.45  
0.45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
K, K Clock High to Data Output Hold  
K, K Clock High to Echo Clock Valid  
K, K Clock High to Echo Clock Hold  
CQ, CQ High Output Valid  
–0.45  
–0.45  
tKHCQV  
tKHCQX  
tCQHQV  
tCQHQX  
tQVLD  
0.37  
0.45  
0.45  
0.45  
–0.37  
–0.45  
–0.45  
–0.45  
0.15  
0.2  
0.2  
0.25  
CQ, CQ High Output Hold  
–0.15  
–0.15  
–0.2  
–0.2  
–0.2  
-0.2  
–0.25  
–0.25  
CQ, CQ High to QLVD  
0.15  
0.2  
0.2  
0.25  
tCQHCQH  
tCQHCQH  
CQ Phase Distortion  
0.85  
1.0  
1.08  
1.25  
ns  
tKHQZ  
K Clock High to Data Output High-Z  
0.45  
0.45  
0.45  
0.45  
ns  
ns  
tKHQX1  
K Clock High to Data Output Low-Z  
Setup Times  
–0.45  
–0.45  
–0.45  
–0.45  
tAVKH  
tIVKH  
Address Input Setup Time  
0.275  
0.275  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
ns  
ns  
1
2
Control Input Setup Time  
(R/W, LD)  
Control Input Setup Time  
(BWX)  
tIVKH  
0.22  
0.22  
0.28  
0.28  
0.28  
0.28  
0.28  
0.28  
ns  
ns  
3
tDVKH  
Data Input Setup Time  
Hold Times  
tKHAX  
Address Input Hold Time  
0.275  
0.4  
0.4  
0.4  
ns  
1
Notes:  
1. All Address inputs must meet the specified setup and hold times for all latching clock edges.  
2. Control signals are R/W, LD.  
3. Control signals are BW0, BW1 and (BW2, BW3 for x36).  
4. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
5.  
V
slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once V and input clock are stable.  
D
D
D
D
6. After device power-up, 20s of stable input clocks (as specified by t ) must be supplied before reads and writes are issued.  
KInit  
Rev: 1.04 4/2016  
16/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
AC Electrical Characteristics (Continued)  
-450  
-400  
-375  
-333  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Control Input Hold Time  
(R/W, LD)  
Control Input Hold Time  
(BWX)  
tKHIX  
0.275  
0.4  
0.4  
0.4  
ns  
2
3
tKHIX  
0.22  
0.22  
0.28  
0.28  
0.28  
0.28  
0.28  
0.28  
ns  
ns  
tKHDX  
Data Input Hold Time  
Notes:  
1. All Address inputs must meet the specified setup and hold times for all latching clock edges.  
2. Control signals are R/W, LD.  
3. Control signals are BW0, BW1 and (BW2, BW3 for x36).  
4. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
5.  
V
slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once V and input clock are stable.  
D
D
D
D
6. After device power-up, 20s of stable input clocks (as specified by t ) must be supplied before reads and writes are issued.  
KInit  
Rev: 1.04 4/2016  
17/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Read-Write K-Based Timing Diagram  
NOOP  
Read  
NOOP  
NOOP  
Write  
Read  
Read  
NOOP  
NOOP  
Write  
Write  
K
K
tAVKH  
tKHAX  
ADDR  
LD  
A1  
A2  
A3  
A4  
A5  
A6  
tIVKH  
tKHIX  
tIVKH  
tKHIX  
R/ W  
QVLD  
tKHQX  
tKHQX  
tKHZ  
tDVKH  
tKHQV  
tKHDX  
D
tKLZ  
tKHDX  
tKHQX  
tKHQV  
tDVKH  
DQ  
CQ  
D
D
D
tQVLD  
tQVLD  
CQ  
Rev: 1.04 4/2016  
18/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Read-Write CQ-Based Timing Diagram  
NOOP  
Read  
NOOP  
NOOP  
Write  
Read  
Read  
NOOP  
NOOP  
Write  
Write  
K
K
tAVKH  
tKHAX  
ADDR  
LD  
A1  
A2  
A3  
A4  
A5  
A6  
tIVKH  
tKHIX  
tIVKH  
tKHIX  
R/ W  
QVLD  
tDVKH  
tKHDX  
tKHDX  
tDVKH  
DQ  
CQ  
Q1  
Q1+1  
D2  
D2+1  
Q3  
Q3+1  
Q4  
Q4+1  
D5  
D5+1 D6  
tCQHQV  
tCQHQX  
tCQLQX  
tCQLQX  
tCQLQV  
tCQHQV  
tCQLQV  
tQVLD  
tCQHQX  
tQVLD  
CQ  
Rev: 1.04 4/2016  
19/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DD  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the  
falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state  
machine. An undriven TMS input will produce the same result as a logic one input level.  
TMS  
TDI  
Test Mode Select  
Test Data In  
In  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed  
between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP  
In Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to  
the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input  
level.  
Output that is active depending on the state of the TAP state machine. Output changes in response to the  
falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.  
TDO  
Test Data Out  
Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Rev: 1.04 4/2016  
20/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
GSI Technology  
See BSDL Model  
JEDEC Vendor  
ID Code  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
0
8
1
7
1
6
0
5
1
4
1
3
0
2
0
1
1
0
1
Bit #  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
Rev: 1.04 4/2016  
21/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
Rev: 1.04 4/2016  
22/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
still determined by its input pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
Rev: 1.04 4/2016  
23/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
1
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all RAM output drivers to High-Z.  
SAMPLE-Z  
010  
1
GSI  
SAMPLE/PRELOAD  
GSI  
011  
100  
101  
110  
111  
GSI private instruction.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
GSI private instruction.  
1
1
1
1
1
GSI  
GSI private instruction.  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
VILJ  
Min.  
0.3  
Max.  
Unit Notes  
0.3 * VDD  
VDD +0.3  
Test Port Input Low Voltage  
V
V
1
1
VIHJ  
0.7 * VDD  
Test Port Input High Voltage  
IINHJ  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
Test Port Output CMOS High  
Test Port Output CMOS Low  
300  
1  
1
100  
1
uA  
uA  
uA  
V
2
IINLJ  
3
IOLJ  
1  
4
VOHJ  
VOLJ  
VOHJC  
VOLJC  
VDD – 0.2  
0.2  
0.1  
5, 6  
5, 7  
5, 8  
5, 9  
V
VDD – 0.1  
V
V
Notes:  
1. Input Under/overshoot voltage must be 1 V < Vi < V  
+1 V not to exceed 2.9 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
ILJn  
3. 0 V V V  
IN  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V supply.  
DD  
6.  
7.  
8.  
9.  
I
I
I
I
= 2 mA  
OHJ  
= + 2 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OLJC  
Rev: 1.04 4/2016  
24/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
JTAG Port AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
JTAG Port AC Test Load  
TDO  
VDD – 0.2 V  
0.2 V  
1 V/ns  
VDD/2  
*
50  
30pF  
Input slew rate  
V
/2  
Input reference level  
DD  
* Distributed Test Jig Capacitance  
V
DD/2  
Output reference level  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
tTH  
tTH  
tTS  
tTS  
TDI  
TMS  
tTKQ  
TDO  
tTH  
tTS  
Parallel SRAM input  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
Max  
Unit  
TCK Cycle Time  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
20  
20  
10  
10  
tTH  
Rev: 1.04 4/2016  
25/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Package Dimensions—165-Bump FPBGA (Package GE)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.60 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
15±0.05  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.04 4/2016  
26/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82582T19/37GE-450/400/375/333  
Ordering Information—GSI SigmaDDR-II+ SRAM  
Speed  
(MHz)  
2
1
Org  
Type  
Package  
T
Part Number  
J
16M x 18  
16M x 18  
16M x 18  
16M x 18  
16M x 18  
16M x 18  
16M x 18  
16M x 18  
8M x 36  
8M x 36  
8M x 36  
8M x 36  
8M x 36  
8M x 36  
8M x 36  
8M x 36  
GS82582T19GE-450  
GS82582T19GE-400  
GS82582T19GE-375  
GS82582T19GE-333  
GS82582T19GE-450I  
GS82582T19GE-400I  
GS82582T19GE-375I  
GS82582T19GE-333I  
GS82582T37GE-450  
GS82582T37GE-400  
GS82582T37GE-375  
GS82582T37GE-333  
GS82582T37GE-450I  
GS82582T37GE-400I  
GS82582T37GE-375I  
GS82582T37GE-333I  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
SigmaDDR-II+ B2 SRAM  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
450  
400  
375  
333  
450  
400  
375  
333  
450  
400  
375  
333  
450  
400  
375  
333  
C
C
C
C
I
I
I
I
C
C
C
C
I
I
I
I
Notes:  
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS82582TxxGE-300T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Revision History  
Types of Changes  
Format or Content  
File Name  
Revisions  
• Creation of new datasheet  
GS82582T1937_r1  
GS82582T1937_r1_01  
GS82582T1937_r1_02  
Format  
• Updated speed bin offerings  
• Removed x8 and x9 configurations  
• Removed leaded part numbers  
Content  
Content  
GS82582T1937_r1_03  
GS82582T1937_r1_04  
Content  
Content  
• Added Power-Up Initialization section on page 10  
• Added tKInit specification  
• Removed Preliminary banner  
• Added Op Current CZ data  
Rev: 1.04 4/2016  
27/27  
© 2012, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY