GS82583EQ18 [GSI]

288Mb SigmaQuad-IIIe™ Burst of 2 SRAM;
GS82583EQ18
型号: GS82583EQ18
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

288Mb SigmaQuad-IIIe™ Burst of 2 SRAM

静态存储器
文件: 总26页 (文件大小:358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS82583EQ18/36GK-500/450/400  
Up to 500 MHz  
260-Pin BGA  
Commercial Temp  
Industrial Temp  
288Mb SigmaQuad-IIIe™  
Burst of 2 SRAM  
1.3V V  
DD  
1.2V, 1.3V, or 1.5V V  
DDQ  
Features  
Clocking and Addressing Schemes  
• 8Mb x 36 and 16Mb x 18 organizations available  
• 500 MHz maximum operating frequency  
• 1.0 BT/s peak transaction rate (in billions per second)  
• 72 Gb/s peak data bandwidth (in x36 devices)  
• Separate I/O DDR Data Buses  
The GS82583EQ18/36GK SigmaQuad-IIIe SRAMs are  
synchronous devices. They employ three pairs of positive and  
negative input clocks; one pair of master clocks, CK and CK,  
and two pairs of write data clocks, KD[1:0] and KD[1:0]. All  
six input clocks are single-ended; that is, each is received by a  
dedicated input buffer.  
• Non-multiplexed DDR Address Bus  
• Two operations - Read and Write - per clock cycle  
• Burst of 2 Read and Write operations  
• 3 cycle Read Latency  
CK and CK are used to latch address and control inputs, and to  
control all output timing. KD[1:0] and KD[1:0] are used solely  
to latch data inputs.  
• 1.3V nominal core voltage  
• 1.2V, 1.3V, or 1.5V HSTL I/O interface  
• Configurable ODT (on-die termination)  
• ZQ pin for programmable driver impedance  
• ZT pin for programmable ODT impedance  
• IEEE 1149.1 JTAG-compliant Boundary Scan  
• 260-pin, 14 mm x 22 mm, 1 mm ball pitch, 6/6 RoHS-  
compliant BGA package  
Each internal read and write operation in a SigmaQuad-IIIe B2  
SRAM is two times wider than the device I/O bus. An input  
data bus de-multiplexer is used to accumulate incoming data  
before it is simultaneously written to the memory array. An  
output data multiplexer is used to capture the data produced  
from a single memory array read and then route it to the  
appropriate output drivers as needed. Therefore, the address  
field of a SigmaQuad-IIIe B2 SRAM is always one address pin  
less than the advertised index depth (e.g. the 16M x 18 has 8M  
addressable index).  
SigmaQuad-IIIeFamily Overview  
SigmaQuad-IIIe SRAMs are the Separate I/O half of the  
SigmaQuad-IIIe/SigmaDDR-IIIe family of high performance  
SRAMs. Although very similar to GSI's second generation of  
networking SRAMs (the SigmaQuad-II/SigmaDDR-II family),  
these third generation devices offer several new features that  
help enable significantly higher performance.  
Parameter Synopsis  
V
Speed Grade  
Max Operating Frequency  
Read Latency  
DD  
-500  
-450  
-400  
500 MHz  
450 MHz  
400 MHz  
3 cycles  
3 cycles  
3 cycles  
1.25V to 1.35V  
1.25V to 1.35V  
1.25V to 1.35V  
Rev: 1.05 8/2016  
1/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
16M x 18 Pinout (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
NC  
(RSVD)  
MCH  
(CFG)  
MCL  
V
V
V
V
V
V
V
V
V
V
DD  
ZQ  
PZT1  
PZT0  
A
B
C
D
E
F
DD  
DDQ  
DD  
DDQ  
DDQ  
DD  
DDQ  
MCL  
(B4M)  
NC  
(RSVD)  
MCH  
(SIOM)  
V
NU  
V
NU  
V
V
SS  
MVQ  
D0  
Q0  
SS  
O
SS  
I
SS  
V
V
V
V
V
NU  
V
NU  
Q17  
D17  
SA  
SA  
DDQ  
DDQ  
SS  
DD  
SS  
DDQ  
I
DDQ  
O
V
NU  
V
NU  
V
V
V
V
SA  
SA  
SA  
D1  
Q1  
SS  
O
SS  
I
DDQ  
DDQ  
SS  
SS  
V
V
V
V
V
NU  
V
NU  
V
Q16  
D16  
SA  
SA  
DDQ  
DD  
SS  
SS  
SS  
DD  
I
DDQ  
O
V
NU  
V
NU  
V
V
V
V
SA  
SA  
D2  
Q2  
SS  
O
O
SS  
I
DD  
DDQ  
DD  
SS  
SS  
NU  
NU  
V
V
NU  
NU  
NU  
V
Q15  
Q14  
D15  
D14  
SA  
MZT1  
W
SA  
D3  
Q3  
G
H
J
I
SS  
SS  
I
O
O
V
V
V
V
V
NU  
V
DDQ  
SA  
SA  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
I
V
NU  
V
NU  
V
V
V
V
SA  
SA  
D4  
Q4  
SS  
O
SS  
I
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
DDQ  
CQ1  
CQ1  
KD1  
KD1  
CK  
CK  
KD0  
KD0  
CQ0  
CQ0  
K
L
DDQ  
REF  
DD  
DD  
DD  
DD  
REF  
V
V
V
V
V
V
SS  
QVLD1  
QVLD0  
SS  
ss  
DDQ  
DDQ  
SS  
V
V
V
V
V
NU  
V
NU  
V
Q13  
D13  
SA  
SA  
M
N
P
R
T
SS  
SS  
SS  
SS  
SS  
I
SS  
O
SS  
NU  
V
NU  
V
V
V
V
V
DDQ  
DLL  
R
MCH  
D5  
D6  
Q5  
Q6  
O
DDQ  
I
DDQ  
DDQ  
DDQ  
DDQ  
NU  
NU  
V
V
NU  
NU  
Q12  
D12  
SA  
MZT0  
SA  
O
I
SS  
SS  
I
O
O
V
V
V
V
V
NU  
V
NU  
V
Q11  
D11  
MCH  
RST  
SS  
SS  
DD  
DDQ  
DD  
I
SS  
SS  
NU  
V
NU  
V
V
V
V
V
V
V
V
SA  
SA  
D7  
Q7  
O
DDQ  
I
DD  
SS  
SS  
SS  
DD  
DDQ  
NC  
(576 Mb)  
NC  
(RSVD)  
NC  
(1152 Mb)  
V
V
V
V
NU  
V
NU  
V
Q10  
D10  
U
V
W
Y
SS  
SS  
DDQ  
DDQ  
I
SS  
O
SS  
SA  
(x18)  
SA  
(B2)  
NU  
V
NU  
V
V
V
V
V
DDQ  
D8  
Q8  
O
DDQ  
I
DDQ  
SS  
DD  
SS  
DDQ  
NC  
(RSVD)  
V
V
NU  
V
NU  
V
Q9  
D9  
TCK  
TDO  
MCL  
ZT  
MCL  
MCL  
TMS  
TDI  
SS  
SS  
I
SS  
O
SS  
NC  
(RSVD)  
V
V
V
V
V
V
V
DD  
DDQ  
DD  
DDQ  
DDQ  
DD  
DDQ  
DD  
Notes:  
1. Pins 6W, 7A, 8W, and 8Y must be tied Low in this device.  
2. Pins 5R and 9N must be tied High in this device.  
3. Pin 6A is defined as mode pin CFG in the pinout standard. It must be tied High in this device to select x18 configuration.  
4. Pin 8B is defined as mode pin SIOM in the pinout standard. It must be tied High in this device to select Separate I/O configuration.  
5. Pin 6B is defined as mode pin B4M in the pinout standard. It must be tied Low in this device to select Burst-of-2 configuration.  
6. Pin 6V is defined as address pin SA for x18 devices. It is used in this device.  
7. Pin 8V is defined as address pin SA for B2 devices. It is used in this device.  
8. Pin 5U is reserved as address pin SA for 576 Mb devices. It is a true no connect in this device.  
9. Pin 9U is reserved as address pin SA for 1152 Mb devices. It is a true no connect in this device.  
Rev: 1.05 8/2016  
2/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
8M x 36 Pinout (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
NC  
(RSVD)  
MCL  
(CFG)  
MCL  
V
V
V
V
V
V
V
V
DD  
ZQ  
PZT1  
PZT0  
A
B
C
D
E
F
DD  
DDQ  
DD  
DDQ  
DDQ  
DD  
DDQ  
MCL  
(B4M)  
NC  
(RSVD)  
MCH  
(SIOM)  
V
V
V
V
SS  
Q35  
D35  
MVQ  
D0  
Q0  
SS  
SS  
SS  
V
V
V
V
V
V
V
DDQ  
Q26  
D26  
SA  
SA  
D9  
Q9  
DDQ  
DDQ  
SS  
DD  
SS  
DDQ  
V
V
V
V
V
V
SS  
Q34  
D34  
SA  
SA  
SA  
D1  
Q1  
SS  
SS  
DDQ  
DDQ  
SS  
V
V
V
V
V
V
V
DDQ  
Q25  
D25  
SA  
SA  
D10  
Q10  
DDQ  
DD  
SS  
SS  
SS  
DD  
V
V
V
V
V
V
V
Q33  
D33  
D32  
SA  
SA  
D2  
Q2  
SS  
SS  
DD  
DDQ  
DD  
SS  
SS  
V
V
Q24  
Q23  
Q32  
D24  
D23  
SA  
MZT1  
W
SA  
D3  
D11  
D12  
Q3  
Q11  
Q12  
G
H
J
SS  
SS  
V
V
V
V
V
V
DDQ  
SA  
SA  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
Q31  
D31  
SA  
SA  
D4  
Q4  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
DDQ  
CQ1  
CQ1  
KD1  
KD1  
CK  
CK  
KD0  
KD0  
CQ0  
CQ0  
K
L
DDQ  
REF  
DD  
DD  
DD  
DD  
REF  
V
V
V
V
V
V
SS  
QVLD1  
QVLD0  
SS  
SS  
DDQ  
DDQ  
SS  
V
V
V
V
V
V
V
Q22  
D22  
SA  
SA  
D13  
Q13  
M
N
P
R
T
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
DDQ  
Q30  
Q29  
D30  
D29  
DLL  
R
MCH  
D5  
D6  
Q5  
Q6  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
Q21  
D21  
SA  
MZT0  
SA  
D14  
Q14  
SS  
SS  
V
V
V
V
V
V
V
Q20  
D20  
MCH  
RST  
D15  
Q15  
SS  
SS  
DD  
DDQ  
DD  
SS  
SS  
V
V
V
V
V
V
V
DDQ  
Q28  
D28  
SA  
SA  
D7  
Q7  
DDQ  
DD  
SS  
SS  
SS  
DD  
NC  
(576 Mb)  
NC  
(RSVD)  
NC  
(1152 Mb)  
V
V
V
V
V
V
Q19  
D19  
D16  
Q16  
U
V
W
Y
SS  
SS  
DDQ  
DDQ  
SS  
SS  
NU  
(x18)  
SA  
I
V
V
V
V
V
V
V
DDQ  
Q27  
D27  
D8  
Q8  
DDQ  
DDQ  
SS  
DD  
SS  
DDQ  
(B2)  
NC  
(RSVD)  
V
V
V
V
Q18  
D18  
TCK  
TDO  
MCL  
MCL  
MCL  
TMS  
TDI  
D17  
Q17  
SS  
SS  
SS  
SS  
NC  
(RSVD)  
V
V
V
V
V
V
V
V
ZT  
DD  
DDQ  
DD  
DDQ  
DDQ  
DD  
DDQ  
DD  
Notes:  
1. Pins 6W, 7A, 8W, and 8Y must be tied Low in this device.  
2. Pins 5R and 9N must be tied High in this device.  
3. Pin 6A is defined as mode pin CFG in the pinout standard. It must be tied Low in this device to select x36 configuration.  
4. Pin 8B is defined as mode pin SIOM in the pinout standard. It must be tied High in this device to select Separate I/O configuration.  
5. Pin 6B is defined as mode pin B4M in the pinout standard. It must be tied Low in this device to select Burst-of-2 configuration.  
6. Pin 6V is defined as address pin SA for x18 devices. It is unused in this device, and must be left unconnected or driven Low.  
7. Pin 8V is defined as address pin SA for B2 devices. It is used in this device.  
8. Pin 5U is reserved as address pin SA for 576 Mb devices. It is a true no connect in this device.  
9. Pin 9U is reserved as address pin SA for 1152 Mb devices. It is a true no connect in this device.  
Rev: 1.05 8/2016  
3/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Pin Description  
Symbol  
Description  
Type  
SA  
Address — Read Address is registered on CK and Write Address is registered on CK.  
Input  
Write Data — Registered on KD and KD during Write operations.  
D[17:0] - x18 and x36.  
D[35:0]  
Q[35:0]  
Input  
D[35:18] - x36 only.  
Read Data — Aligned with CQ and CQ during Read operations.  
Q[17:0] - x18 and x36.  
Output  
Q[35:18] - x36 only.  
QVLD[1:0]  
CK, CK  
Read Data Valid — Driven high one half cycle before valid Read Data.  
Output  
Input  
Primary Input Clocks — Dual single-ended. Used for latching address and control inputs, for internal timing  
control, and for output timing control.  
Write Data Input Clocks — Dual single-ended. Used for latching write data inputs.  
KD0, KD0: latch Write Data (D[17:0] in x36, D[8:0] in x18).  
KD[1:0],  
KD[1:0]  
Input  
KD1, KD1: latch Write Data (D[35:18] in x36, D[17:9] in x18).  
CQ[1:0],  
CQ[1:0]  
Read Data Output Clocks — Free-running output (echo) clocks, tightly aligned with read data outputs.  
Facilitate source-synchronous operation.  
Output  
R
Read Enable — Registered on CK. R = 0 initiates a Read operation.  
Write Enable — Registered on CK. W = 0 initiates a Write operation.  
Input  
Input  
W
DLL Enable — Weakly pulled High internally.  
DLL = 0: disables internal DLL.  
DLL  
Input  
DLL = 1: enables internal DLL.  
Reset — Holds the device inactive and resets the device to its initial power-on state when asserted High.  
Weakly pulled Low internally.  
RST  
ZQ  
Input  
Input  
Input  
Driver Impedance Control Resistor Input — Must be connected to V through an external resistor RQ to  
SS  
program driver impedance.  
ODT Impedance Control Resistor Input — Must be connected to V through an external resistor RT to  
SS  
ZT  
program ODT impedance.  
ODT Mode Select — Set the ODT state globally for all input groups. Must be tied High or Low.  
MZT[1:0] = 00: disables ODT on all input groups, regardless of PZT[1:0].  
MZT[1:0] = 01: enables strong ODT on select input groups, as specified by PZT[1:0].  
MZT[1:0] = 10: enables weak ODT on select input groups, as specified by PZT[1:0].  
MZT[1:0] = 11: reserved.  
MZT[1:0]  
PZT[1:0]  
Input  
Input  
ODT Configuration Select — Set the ODT state for various combinations of input groups when MZT[1:0] =  
01 or 10. Must be tied High or Low.  
PZT[1:0] = 00: enables ODT on write data only.  
PZT[1:0] = 01: enables ODT on write data and input clocks.  
PZT[1:0] = 10: enables ODT on write data, address, and control.  
PZT[1:0] = 11: enables ODT on write data, input clocks, address, and control.  
Rev: 1.05 8/2016  
4/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Symbol  
Description  
Type  
I/O Voltage Select — Indicates what voltage is supplied to the V  
pins. Must be tied High or Low.  
Input  
DDQ  
MVQ = 0: Configure for 1.2V or 1.3V nominal V  
.
MVQ  
DDQ  
MVQ = 1: Configure for 1.5V nominal V  
.
DDQ  
V
Core Power Supply  
DD  
V
I/O Power Supply  
DDQ  
V
Input Reference Voltage — Input buffer reference voltage.  
REF  
V
Ground  
SS  
TCK  
TMS  
TDI  
JTAG Clock — Weakly pulled Low internally.  
JTAG Mode Select — Weakly pulled High internally.  
JTAG Data Input — Weakly pulled High internally.  
JTAG Data Output  
Input  
Input  
Input  
Output  
TDO  
MCH  
Must Connect High — May be tied to V  
directly or via a 1kresistor.  
Input  
Input  
DDQ  
Must Connect Low — May be tied to V directly or via a 1kresistor.  
MCL  
NC  
SS  
No Connect — There is no internal chip connection to these pins. They may be left unconnected, or tied/  
driven High or Low.  
Not Used Input — There is an internal chip connection to these input pins, but they are unused by the  
device. They are pulled Low internally. They may be left unconnected or tied/driven Low. They should not be  
tied/driven High.  
NU  
Input  
Output  
I
Not Used Output — There is an internal chip connection to these output pins, but they are unused by the  
device. The drivers are tri-stated internally. They should be left unconnected.  
NU  
O
Rev: 1.05 8/2016  
5/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Power-Up and Reset Requirements  
For reliability purposes, power supplies must power up simultaneously, or in the following sequence:  
, V , V , V and inputs.  
V
SS  
DD  
DDQ  
REF  
Power supplies must power down simultaneously, or in the reverse sequence.  
After power supplies power up, the following start-up sequence must be followed.  
Step 1 (Recommended, but not required): Assert RST High for at least 1ms.  
While RST is asserted high:  
• The DLL is disabled.  
• The states of R, and W control inputs are ignored.  
Note: If possible, RST should be asserted High before input clocks begin toggling, and remain asserted High until input clocks are  
stable and toggling within specification, in order to prevent unstable, out-of-spec input clocks from causing trouble in the SRAM.  
Step 2: Begin toggling input clocks.  
After input clocks begin toggling, but not necessarily within specification:  
• Q are placed in the non-Read state, and remain so until the first Read operation.  
• QVLD are driven Low, and remain so until the first Read operation.  
• CQ, CQ begin toggling, but not necessarily within specification.  
Step 3: Wait until input clocks are stable and toggling within specification.  
Step 4: De-assert RST Low (if asserted High).  
Step 5: Wait at least 160K (163,840) cycles.  
During this time:  
• Driver and ODT impedances are calibrated. Can take up to 160K cycles.  
Note: The DLL pin may be asserted High or de-asserted Low during this time. If asserted High, DLL synchronization begins  
immediately after the driver and ODT impedances are calibrated. If de-asserted Low, DLL synchronization begins after the DLL  
pin is asserted High (see Step 6). In either case, Step 7 must follow thereafter.  
Step 6: Assert DLL pin High (if de-asserted Low).  
Step 7: Wait at least 64K (65,536) cycles for the DLL to lock.  
After the DLL has locked:  
• CQ, CQ begin toggling within specification.  
Step 8: Begin initiating Read and Write operations.  
Reset Usage  
Although not generally recommended, RST may be asserted High at any time after completion of the initial power-up sequence  
described above, to reset the SRAM control logic to its initial power-on state. However, whenever RST is subsequently de-asserted  
Low (as in Step 4 above), Steps 5~7 above must be followed before Read and Write operations are initiated.  
Note: Memory array content may be perturbed/corrupted when RST is asserted High.  
Rev: 1.05 8/2016  
6/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
DLL Operation  
A DLL is implemented in these devices to control all output timing. It uses the CK input clock as a source, and is enabled when all  
of the following conditions are met:  
1. RST is de-asserted Low, and  
2. The DLL pin is asserted High, and  
3. CK cycle time t  
(max), as specified in the AC Timing Specifications section.  
KHKH  
Once enabled, the DLL requires 64K stable clock cycles in order to lock/synchronize properly.  
When the DLL is enabled, it aligns output clocks and read data to input clocks, and it generates all mid-cycle output timing. See the  
Output Timing section for more information.  
The DLL can tolerate changes in input clock frequency due to clock jitter (i.e. such jitter will not cause the DLL to lose lock/  
synchronization), provided the cycle-to-cycle jitter does not exceed 200ps (see “t  
” in the AC Timing Specifications section  
KJITcc  
for more information). However, the DLL must be resynchronized (i.e. disabled and then re-enabled) whenever the nominal input  
clock frequency is changed.  
The DLL is disabled when any of the following conditions are met:  
1. RST is asserted High, or  
2. The DLL pin is de-asserted Low, or  
3. CK is stopped for at least 30ns, or CK cycle time 30ns.  
Clock Truth Table  
SA  
R
W
Current Operation  
D
Q
CK  
CK  
CK  
CK  
KD  
KD  
CQ  
(t  
CQ  
(t )  
(t  
)
(t )  
(t )  
(t )  
(t )  
(t  
)
)
(t  
)
n
n+½  
n
n
n
n
n+½  
n+3  
n+3½  
X
X
V
V
X
1
1
0
0
1
0
1
0
NOP  
X
D1  
X
X
0 / High-Z  
0 / High-Z  
V
Write Only  
Read Only  
Read + Write  
D2  
X
X
Q1  
Q1  
Q2  
Q2  
V
D1  
D2  
Notes:  
1. 1 = High; 0 = Low; V = Valid; X = don’t care.  
2. D1 and D2 indicate the first and second pieces of Write Data transferred during Write operations.  
3. Q1 and Q2 indicate the first and second pieces of Read Data transferred during Read operations.  
4. When D ODT in enabled, Q pins are driven Low for one cycle in response to NOP and Write Only commands, 3 cycles after the command  
is sampled. When D ODT in disabled, Q pins are tri-stated for one cycle in response to NOP and Write Only commands, 3 cycles after the  
command is sampled.  
Rev: 1.05 8/2016  
7/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Input Timing  
These devices utilize three pairs of positive and negative input clocks, CK & CK and KD[1:0] & KD[1:0], to latch the various  
synchronous inputs. Specifically:  
CK and CK latch all address (SA) inputs.  
CK latches all control (R, W) inputs.  
KD[1:0] and KD[1:0] latch particular write data (D) inputs, as follows:  
KD0 and KD0 latch D[17:0] in x36, and D[8:0] in x18.  
KD1 and KD1 latch D[35:18] in x36, and D[17:9] in x18.  
Output Timing  
These devices provide two pairs of positive and negative output clocks (aka “echo clocks”), CQ[1:0] & CQ[1:0], whose timing is  
tightly aligned with read data in order to enable reliable source-synchronous data transmission.  
These devices utilize a DLL to control output timing. When the DLL is enabled, it generates 0and 180phase clocks from CK  
that control read data output clock (CQ, CQ), read data (Q), and read data valid (QVLD) output timing, as follows:  
CK+0generates CQ[1:0], CQ[1:0], Q1 active, and Q2 inactive.  
• .CK+180generates CQ[1:0], CQ[1:0], Q1 inactive, Q2 active, and QVLD active/inactive.  
Note: Q1 and Q2 indicate the first and second pieces of read data transferred in any given clock cycle during Read operations.  
When the DLL is enabled, CQ is aligned to CK. See the AC Timing Specifications for more information.  
CQ[1:0] and CQ[1:0] align with particular Q and QVLD outputs, as follows:  
CQ0 and CQ0 align with Q[17:0], QVLD0 in x36 devices, and Q[8:0], QVLD0 in x18 devices.  
CQ1 and CQ1 align with Q[35:18], QVLD1 in x36 devices, and Q[17:9], QVLD0 in x18 devices.  
Rev: 1.05 8/2016  
8/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Driver Impedance Control  
Programmable Driver Impedance is implemented on the following output signals:  
• CQ, CQ, Q, QVLD.  
Driver impedance is programmed by connecting an external resistor RQ between the ZQ pin and V  
.
SS  
Driver impedance is set to the programmed value within 160K cycles after input clocks are operating within specification and RST  
is de-asserted Low. It is updated periodically thereafter to compensate for temperature and voltage fluctuations in the system.  
Output Signal  
Pull-Down Impedance (R  
)
Pull-Up Impedance (R  
)
OUTL  
OUTH  
CQ, CQ, Q, QVLD  
RQ*0.2 15%  
RQ*0.2 15%  
Notes:  
1.  
2. The mismatch between R  
R
and R  
apply when 175 RQ 225.  
OUTL  
OUTH  
and R  
is less than 10%, guaranteed by design.  
OUTL  
OUTH  
ODT Impedance Control  
Programmable ODT Impedance is implemented on the following input signals:  
• CK, CK, KD, KD, SA, R, W, D.  
ODT impedance is programmed by connecting an external resistor RT between the ZT pin and V  
.
SS  
ODT impedance is set to the programmed value within 160K cycles after input clocks are operating within specification and RST  
is de-asserted Low. It is updated periodically thereafter to compensate for temperature and voltage fluctuations in the system  
Input Signal  
PZT[1:0] MZT[1:0] Pull-Down Impedance (R  
)
Pull-Up Impedance (R  
)
INL  
INH  
X0  
X1  
0X  
1X  
XX  
01  
10  
XX  
01  
10  
01  
10  
disabled  
RT 15%  
RT*2 20%  
disabled  
disabled  
RT 15%  
RT*2 20%  
disabled  
CK, CK, KD, KD  
SA, R, W  
D
RT 15%  
RT*2 20%  
RT 15%  
RT*2 20%  
RT 15%  
RT*2 20%  
RT 15%  
RT*2 20%  
XX  
Notes:  
1. When MZT[1:0] = 00, ODT is disabled on all inputs. MZT[1:0] = 11 is reserved for future use.  
2. and R apply when 105 RT 135  
3. The mismatch between R and R is less than 10%, guaranteed by design.  
R
INL  
INH  
INL  
INH  
4. All ODT is disabled during JTAG EXTEST and SAMPLE-Z instructions.  
Note: When ODT impedance is enabled on a particular input, that input should always be driven High or Low; it should never be  
tri-stated (i.e., in a High- Z state). If the input is tri-stated, the ODT will pull the signal to V / 2 (i.e., to the switch point of the  
DDQ  
diff-amp receiver), which could cause the receiver to enter a meta-stable state and consume more power than it normally would.  
This could result in the device’s operating currents being higher.  
Rev: 1.05 8/2016  
9/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Units Notes  
V
Core Supply Voltage  
I/O Supply Voltage when MVQ = 0  
I/O Supply Voltage when MVQ = 1  
Input Voltage  
-0.3 to +1.4  
V
V
DD  
V
-0.3 to V  
DDQ  
DD  
V
-0.3 to +1.8  
DDQ  
V
-0.3 to V  
+ 0.3  
DDQ  
V
IN  
T
Junction Temperature  
0 to 125  
C  
C  
J
T
Storage Temperature  
-55 to 125  
STG  
Note: Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recom-  
mended Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions for an extended period of time may  
affect reliability of this component.  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Notes  
V
Core Supply Voltage  
1.25  
1.15  
1.45  
0
1.3  
1.2 or 1.3  
1.5  
1.35  
V
V
DD  
V
V
I/O Supply Voltage when MVQ = 0  
I/O Supply Voltage when MVQ = 1  
Commercial Junction Temperature  
Industrial Junction Temperature  
DDQ  
DD  
V
1.55  
85  
V
DDQ  
T
C  
C  
JC  
T
-40  
100  
JI  
Note: For reliability purposes, power supplies must power up simultaneously, or in the following sequence:  
, V , V , V , and Inputs.  
V
SS DD DDQ REF  
Power supplies must power down simultaneously, or in the reverse sequence.  
Thermal Impedances  
JA (C°/W)  
JA (C°/W)  
JA (C°/W)  
Package  
JB (C°/W)  
JC (C°/W)  
Airflow = 0 m/s Airflow = 1 m/s Airflow = 2 m/s  
FBGA  
12.94  
10.47  
9.51  
2.93  
0.33  
Rev: 1.05 8/2016  
10/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
I/O Capacitance  
Parameter  
Symbol  
Min  
Max  
Units Notes  
C
Input Capacitance  
Output Capacitance  
5.0  
5.5  
pF  
pF  
1, 3  
2, 3  
IN  
C
OUT  
Notes:  
1.  
V
= V /2.  
DDQ  
IN  
2.  
V
= V /2.  
OUT  
DDQ  
3. T = 25C, f = 1 MHz.  
A
Input Electrical Characteristics - 1.2V or 1.3V I/O (MVQ = 0)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Notes  
V
0.48 * V  
0.52 * V  
DDQ  
DC Input Reference Voltage  
DC Input High Voltage (HS)  
DC Input Low Voltage (HS)  
DC Input High Voltage (LS)  
DC Input Low Voltage (LS)  
AC Input Reference Voltage  
AC Input High Voltage (HS)  
AC Input Low Voltage (HS)  
AC Input High Voltage (LS)  
AC Input Low Voltage (LS)  
0.50 * V  
V
V
V
V
V
V
V
V
V
V
1, 6  
2, 6  
7
REFdc  
DDQ  
DDQ  
V
V
+ 0.08  
V
+ 0.15  
- 0.08  
+ 0.15  
0.80 * V  
0.20 * V  
V
IH1dc  
REF  
DDQ  
DDQ  
DDQ  
V
V
-0.15  
0.75 * V  
IL1dc  
REF  
V
V
IH2dc  
DDQ  
DDQ  
DDQ  
V
0.25 * V  
0.53 * V  
-0.15  
0
7
IL2dc  
DDQ  
DDQ  
V
0.47 * V  
0.50 * V  
3
REFac  
DDQ  
DDQ  
V
V
+ 0.15  
V
+ 0.25  
- 0.15  
+ 0.25  
0.80 * V  
0.20 * V  
V
1, 4~6  
2, 4~6  
4, 7  
4, 7  
IH1ac  
REF  
DDQ  
DDQ  
DDQ  
V
V
-0.25  
- 0.2  
IL1ac  
REF  
V
V
V
IH2ac  
DDQ  
DDQ  
DDQ  
V
-0.25  
0
0.2  
IL2ac  
Notes:  
1. “Typ” parameter applies when Controller R  
= 40and SRAM R = R = 120.  
INH INL  
OUTH  
OUTL  
2. “Typ” parameter applies when Controller R  
= 40and SRAM R = R = 120.  
INH  
INL  
3.  
4.  
V
V
is equal to V  
plus noise.  
REFdc  
REFac  
max and V min apply for pulse widths less than one-quarter of the cycle time.  
IH  
IL  
5. Input rise and fall times must be a minimum of 1V/ns, and within 10% of each other.  
6. Parameters apply to High Speed Inputs: CK, CK, KD, KD, SA, D, R, W.  
7. Parameters apply to Low Speed Inputs: RST, DLL, MZT, PZT, MVQ.  
Rev: 1.05 8/2016  
11/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Input Electrical Characteristics - 1.5V I/O (MVQ = 1)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Notes  
V
0.48 * V  
0.52 * V  
DDQ  
DC Input Reference Voltage  
DC Input High Voltage (HS)  
DC Input Low Voltage (HS)  
DC Input High Voltage (LS)  
DC Input Low Voltage (LS)  
AC Input Reference Voltage  
AC Input High Voltage (HS)  
AC Input Low Voltage (HS)  
AC Input High Voltage (LS)  
AC Input Low Voltage (LS)  
0.50 * V  
V
V
V
V
V
V
V
V
V
V
1, 6  
2, 6  
7
REFdc  
DDQ  
DDQ  
V
V
+ 0.1  
V
+ 0.15  
- 0.1  
0.80 * V  
0.20 * V  
V
IH1dc  
REF  
DDQ  
DDQ  
DDQ  
V
V
-0.15  
0.75 * V  
IL1dc  
REF  
V
V
+ 0.15  
IH2dc  
DDQ  
DDQ  
DDQ  
V
0.25 * V  
0.53 * V  
-0.15  
0
7
IL2dc  
DDQ  
DDQ  
V
0.47 * V  
0.50 * V  
3
REFac  
DDQ  
DDQ  
V
V
+ 0.2  
V
+ 0.25  
- 0.2  
0.80 * V  
0.20 * V  
V
1, 4~6  
2, 4~6  
4, 7  
4, 7  
IH1ac  
REF  
DDQ  
DDQ  
DDQ  
V
V
-0.25  
IL1ac  
REF  
V
V
- 0.2  
V
+ 0.25  
IH2ac  
DDQ  
DDQ  
DDQ  
V
-0.25  
0
0.2  
IL2ac  
Notes:  
1. “Typ” parameter applies when Controller R  
= 40and SRAM R = R = 120.  
INH INL  
OUTH  
OUTL  
2. “Typ” parameter applies when Controller R  
= 40and SRAM R = R = 120.  
INH  
INL  
3.  
4.  
V
V
is equal to V  
plus noise.  
REFdc  
REFac  
max and V min apply for pulse widths less than one-quarter of the cycle time.  
IH  
IL  
5. Input rise and fall times must be a minimum of 1V/ns, and within 10% of each other.  
6. Parameters apply to High Speed Inputs: CK, CK, KD, KD, SA, D, R, W.  
7. Parameters apply to Low Speed Inputs: RST, DLL, MZT, PZT, MVQ.  
Output Electrical Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units Notes  
V
V
V
+ 0.15  
DDQ  
DC Output High Voltage  
DC Output Low Voltage  
AC Output High Voltage  
AC Output Low Voltage  
-0.15  
0.80 * V  
V
V
V
V
1, 3  
2, 3  
1, 3  
2, 3  
OHdc  
DDQ  
V
0.20 * V  
0.80 * V  
0.20 * V  
OLdc  
DDQ  
DDQ  
DDQ  
V
+ 0.25  
DDQ  
OHac  
V
-0.25  
OLac  
Note:  
1. “Typ” parameter applies when SRAM R  
= 40and Controller R = R = 120.  
INH INL  
OUTH  
OUTL  
2. “Typ” parameter applies when SRAM R  
= 40and Controller R = R = 120.  
INH  
INL  
3. Parameters apply to: CQ, CQ, Q, QVLD.  
Rev: 1.05 8/2016  
12/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Leakage Currents  
Parameter  
Symbol  
Min  
Max  
Units Notes  
I
-2  
-20  
-2  
2
2
uA  
uA  
uA  
uA  
1, 2  
1, 3  
1, 4  
5, 6  
LI1  
I
Input Leakage Current  
Output Leakage Current  
LI2  
I
20  
2
LI3  
I
-2  
LO  
Notes:  
1.  
V
= V to V  
.
DDQ  
IN  
SS  
2. Parameters apply to CK, CK, KD, KD, SA, D, R, W when ODT is disabled.  
Parameters apply to MZT, PZT, MVQ.  
3. Parameters apply to DLL, TMS, TDI (weakly pulled up).  
4. Parameters apply to RST, TCK (weakly pulled down).  
5.  
V
= V to V  
.
DDQ  
OUT  
SS  
6. Parameters apply to CQ, CQ, Q, QVLD, TDO.  
Operating Currents  
V
(nom)  
Parameter  
Symbol  
400 MHz  
450 MHz  
500 MHz  
Units  
DD  
1.3V  
1.3V  
I
x18 Operating Current  
x36 Operating Current  
1350  
1600  
1500  
1770  
1650  
1940  
mA  
mA  
DD  
I
DD  
Notes:  
1.  
2. Applies at 100% Reads + Writes.  
I
= 0 mA; V = V or V .  
IN IH IL  
OUT  
Rev: 1.05 8/2016  
13/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
AC Test Conditions - 1.2V I/O (MVQ = 0)  
Parameter  
Symbol  
Conditions  
Units  
V
Core Supply Voltage  
I/O Supply Voltage  
Input Reference Voltage  
Input High Level  
1.25 to 1.35  
1.15 to 1.25  
0.6  
V
V
V
V
DD  
V
DDQ  
V
REF  
V
0.9  
IH  
V
Input Low Level  
Input Rise and Fall Time  
0.3  
2.0  
0.6  
V
V/ns  
V
IL  
Input and Output Reference Level  
Note: Output Load Conditions RQ = 200. Refer to figure below.  
AC Test Conditions - 1.5V I/O (MVQ = 1)  
Parameter  
Symbol  
Conditions  
Units  
V
Core Supply Voltage  
I/O Supply Voltage  
Input Reference Voltage  
Input High Level  
1.25 to 1.35  
1.45 to 1.55  
0.75  
V
V
V
V
DD  
V
DDQ  
V
REF  
V
1.25  
IH  
V
Input Low Level  
Input Rise and Fall Time  
0.25  
2.0  
V
V/ns  
V
IL  
Input and Output Reference Level  
0.75  
Note: Output Load Conditions RQ = 200. Refer to figure below.  
AC Test Output Load  
50  
Output  
50  
V
/2  
DDQ  
5 pF  
Rev: 1.05 8/2016  
14/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
AC Timing Specifications (independent of device speed grade)  
Parameter  
Symbol  
Min  
Max  
Units Notes  
Input Clock Timing  
t
Clk High Pulse Width  
Clk Low Pulse Width  
0.45  
cycles  
cycles  
cycles  
ps  
1
1
KHKL  
t
0.45  
KLKH  
t
Clk High to Clk High  
0.45  
0.55  
+200  
60  
2
KHKH  
t
Clk High to Write Data Clk High  
Clk Cycle-to-Cycle Jitter  
DLL Lock Time  
-200  
3
KHKDH  
t
ps  
1,4,5  
6
KJITcc  
t
65,536  
cycles  
ns  
Klock  
t
Clk Static to DLL Reset  
30  
Output Timing  
-0.4  
7,12  
Kreset  
t
Clk High to Output Valid / Hold  
Clk High to Echo Clock High  
+0.4  
ns  
ns  
ps  
ps  
8
9
KHQV/X  
t
-0.4  
+0.4  
KHCQH  
t
Echo Clk High to Output Valid / Hold  
Echo Clk High to Echo Clock High  
-150  
+150  
10,12  
11,12  
CQHQV/X  
t
t
(min) - 100  
t (max) + 100  
KHKH  
CQHCQH  
KHKH  
Notes:  
All parameters are measured from the mid-point of the object signal to the mid-point of the reference signal.  
1. Parameters apply to CK, CK, KD, KD.  
2. Parameter specifiesCK CK and KD KD requirements.  
3. Parameter specifies CK KD and CK KD requirements.  
4. Parameter specifies Cycle-to-Cycle (C2C) Jitter (i.e. the maximum variation from clock rising edge to the next clock rising edge).   
As such, it limits Period Jitter (i.e. the maximum variation in clock cycle time from nominal) to 30ps.   
And as such, it limits Absolute Jitter (i.e. the maximum variation in clock rising edge from its nominal position) to 15ps.  
5. The device can tolerated C2C Jitter greater than 60ps, up to a maximum of 200ps. However, when using a device from a particular speed  
grade, t (min) of that speed grade must be derated (increased) by half the difference between the actual C2C Jitter and 60ps. For  
KHKH  
example, if the actual C2C Jitter is 100ps, then t  
(min) for the -500 speed grade is derated to 2.02ns (2.0ns + 0.5*(100ps - 60ps)).  
KHKH  
6.  
V
slew rate must be < 0.1V DC per 50ns for DLL lock retention. DLL lock time begins once V and input clock are stable.  
DD DD  
7. Parameter applies to CK.  
8. Parameters apply to Q, and are referenced to CK.  
9. Parameter specifies CK CQ timing.  
10. Parameters apply to Q, QVLD and are referenced to CQ & CQ.  
11. Parameter specifies CQ CQ timing.  
12. Parameters are not tested. They are guaranteed by design, and verified through extensive corner-lot characterization.  
Rev: 1.05 8/2016  
15/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
AC Timing Specifications (variable with device speed grade)  
–500  
–450  
–400  
Parameter  
Symbol  
Units Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Input Clock Timing  
2.0 6.0  
t
Clk Cycle Time  
2.2  
6.0  
2.5  
6.0  
ns  
1
2
KHKH  
Input Setup & Hold Timing  
t
Input Valid to Clk High  
Clk High to Input Hold  
200  
200  
220  
220  
250  
250  
ps  
ps  
IVKH  
t
KHIX  
Notes:  
All parameters are measured from the mid-point of the object signal to the mid-point of the reference signal.  
1. Parameters apply to CK, CK, KD, KD.  
2. Parameters apply to SA, and are referenced to CK & CK.  
Parameters apply to R, W, and are referenced to CK.  
Parameters apply to D, and are referenced to KD & KD.  
Rev: 1.05 8/2016  
16/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Read and Write Timing Diagram  
Rd + Wr  
Rd Only  
Wr Only  
Rd + Wr  
Wr Only  
Rd Only  
NOP  
Rd + Wr  
Rd + Wr  
NOP  
Rd Only  
KD  
KD  
D
tKHKH  
tKHKL tKLKH tKHKH  
tIVKH  
tKHIX  
tIVKH  
tKHIX  
D21 D22  
D41 D42 D61 D62 D71 D72  
DA1 DA2 DC1 DC2  
tKHKDH  
tKHKDH  
CK  
tKHKH  
tKHKL tKLKH tKHKH  
CK  
tIVKH  
tKHIX  
tIVKH  
tKHIX  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
SA  
tIVKH tKHIX  
R
W
tKHQV  
tKHQX  
Q11 Q12 Q31 Q32  
Q51 Q52  
Q81 Q82  
Q
QVLD  
tCQHQX  
tCQHQV  
tCQHQX  
tCQHQX  
tKHCQH  
tCQHQV  
tCQHQV  
CQ  
CQ  
tCQHCQH  
Rev: 1.05 8/2016  
17/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
JTAG Test Mode Description  
These devices provide a JTAG Test Access Port (TAP) and Boundary Scan interface using a limited set of IEEE std. 1149.1  
functions. This test mode is intended to provide a mechanism for testing the interconnect between master (processor, controller,  
etc.), ECCRAM, other components, and the printed circuit board. In conformance with a subset of IEEE std. 1149.1, these devices  
contain a TAP Controller and multiple TAP Registers. The TAP Registers consist of one Instruction Register and multiple Data  
Registers.  
The TAP consists of the following four signals:  
Pin  
Pin Name  
I/O  
Description  
TCK  
Test Clock  
I
Induces (clocks) TAP Controller state transitions.  
Inputs commands to the TAP Controller.  
Sampled on the rising edge of TCK.  
TMS  
TDI  
Test Mode Select  
Test Data In  
I
I
Inputs data serially to the TAP Registers.  
Sampled on the rising edge of TCK.  
Outputs data serially from the TAP Registers.  
Driven from the falling edge of TCK.  
TDO  
Test Data Out  
O
Concurrent TAP and Normal ECCRAM Operation  
According to IEEE std. 1149.1, most public TAP Instructions do not disrupt normal device operation. In these devices, the only  
exceptions are EXTEST and SAMPLE-Z. See the Tap Registers section for more information.  
Disabling the TAP  
When JTAG is not used, TCK should be tied Low to prevent clocking the ECCRAM. TMS and TDI should either be tied High  
through a pull-up resistor or left unconnected. TDO should be left unconnected.  
JTAG DC Operating Conditions  
Parameter  
Symbol  
Min  
Max  
Units Notes  
V
0.75 * V  
V
+ 0.15  
DDQ  
JTAG Input High Voltage  
JTAG Input Low Voltage  
JTAG Output High Voltage  
JTAG Output Low Voltage  
V
V
V
V
1
TIH  
DDQ  
V
0.25 * V  
–0.15  
– 0.2  
1
TIL  
DDQ  
V
V
2, 3  
2, 4  
TOH  
DDQ  
V
0.2  
TOL  
Notes:  
1. Parameters apply to TCK, TMS, and TDI.  
2. Parameters apply to TDO.  
3.  
I
= –2.0 mA.  
TOH  
TOL  
4.  
I
= 2.0 mA.  
Rev: 1.05 8/2016  
18/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
JTAG AC Timing Specifications  
Parameter  
Symbol  
Min  
Max  
Units  
t
TCK Cycle Time  
TCK High Pulse Width  
50  
20  
20  
10  
10  
10  
10  
10  
10  
0
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
THTH  
t
THTL  
t
TCK Low Pulse Width  
TLTH  
t
TMS Setup Time  
MVTH  
t
TMS Hold Time  
THMX  
t
TDI Setup Time  
DVTH  
t
TDI Hold Time  
THDX  
t
Capture Setup Time (Address, Control, Data, Clock)  
Capture Hold Time (Address, Control, Data, Clock)  
TCK Low to TDO Valid  
CS  
t
CH  
t
TLQV  
t
TCK Low to TDO Hold  
TLQX  
JTAG Timing Diagram  
tTHTL  
tTLTH  
tTHTH  
TCK  
TMS  
TDI  
tMVTH tTHMX  
tDVTH tTHDX  
tTLQV  
tTLQX  
TDO  
Rev: 1.05 8/2016  
19/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
TAP Controller  
The TAP Controller is a 16-state state machine that controls access to the various TAP Registers and executes the operations  
associated with each TAP Instruction. State transitions are controlled by TMS and occur on the rising edge of TCK.  
The TAP Controller enters the Test-Logic Reset state in one of two ways:  
1. At power up.  
2. When a logic 1 is applied to TMS for at least 5 consecutive rising edges of TCK.  
The TDI input receiver is sampled only when the TAP Controller is in either the Shift-IR state or the Shift-DR state.  
The TDO output driver is enabled only when the TAP Controller is in either the Shift-IR state or the Shift-DR state.  
TAP Controller State Diagram  
1
0
Test-Logic Reset  
0
1
1
1
Run-Test / Idle  
Select DR-Scan  
Select IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
Shift-DR  
0
Shift-IR  
0
1
Exit1-DR  
0
1
Exit1-IR  
0
1
1
Pause-DR  
1
0
Pause-IR  
1
0
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Rev: 1.05 8/2016  
20/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
TAP Registers  
TAP Registers are serial shift registers that capture serial input data (from TDI) on the rising edge of TCK, and drive serial output  
data (to TDO) on the subsequent falling edge of TCK. They are divided into two groups: Instruction Registers (IR), which are  
manipulated via the IR states in the TAP Controller, and Data Registers (DR), which are manipulated via the DR states in the TAP  
Controller.  
Instruction Register (IR - 3 bits)  
The Instruction Register stores the various TAP Instructions supported by ECCRAM. It is loaded with the IDCODE instruction  
(logic 001) at power-up, and when the TAP Controller is in the Test-Logic Reset and Capture-IR states. It is inserted between TDI  
and TDO when the TAP Controller is in the Shift-IR state, at which time it can be loaded with a new instruction. However, newly  
loaded instructions are not executed until the TAP Controller has reached the Update-IR state.  
The Instruction Register is 3 bits wide, and is encoded as follows:  
Code  
(2:0)  
Instruction  
Description  
Loads the logic states of all signals composing the ECCRAM I/O ring into the Boundary Scan Register  
when the TAP Controller is in the Capture-DR state, and inserts the Boundary Scan Register between  
TDI and TDO when the TAP Controller is in the Shift-DR state.  
Also transfers the contents of the Boundary Scan Register associated with output signals (Q, QVLD,  
CQ, CQ) directly to their corresponding output pins. However, newly loaded Boundary Scan Register  
contents do not appear at the output pins until the TAP Controller has reached the Update-DR state.  
Also disables all ODT.  
000  
EXTEST  
See the Boundary Scan Register description for more information.  
Loads a predefined device- and manufacturer-specific identification code into the ID Register when the  
TAP Controller is in the Capture-DR state, and inserts the ID Register between TDI and TDO when the  
TAP Controller is in the Shift-DR state.  
001  
010  
IDCODE  
See the ID Register description for more information.  
Loads the logic states of all signals composing the ECCRAM I/O ring into the Boundary Scan Register  
when the TAP Controller is in the Capture-DR state, and inserts the Boundary Scan Register between  
TDI and TDO when the TAP Controller is in the Shift-DR state.  
Also disables all ODT.  
SAMPLE-Z  
Also forces Q output drivers to a High-Z state.  
See the Boundary Scan Register description for more information.  
011  
100  
PRIVATE  
SAMPLE  
Reserved for manufacturer use only.  
Loads the logic states of all signals composing the ECCRAM I/O ring into the Boundary Scan Register  
when the TAP Controller is in the Capture-DR state, and inserts the Boundary Scan Register between  
TDI and TDO when the TAP Controller is in the Shift-DR state.  
See the Boundary Scan Register description for more information.  
101  
110  
PRIVATE  
PRIVATE  
Reserved for manufacturer use only.  
Reserved for manufacturer use only.  
Loads a logic 0 into the Bypass Register when the TAP Controller is in the Capture-DR state, and  
inserts the Bypass Register between TDI and TDO when the TAP Controller is in the Shift-DR state.  
See the Bypass Register description for more information.  
111  
BYPASS  
Rev: 1.05 8/2016  
21/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Bypass Register (DR - 1 bit)  
The Bypass Register is one bit wide, and provides the minimum length serial path between TDI and TDO. It is loaded with a logic  
0 when the BYPASS instruction has been loaded in the Instruction Register and the TAP Controller is in the Capture-DR state. It is  
inserted between TDI and TDO when the BYPASS instruction has been loaded into the Instruction Register and the TAP  
Controller is in the Shift-DR state.  
ID Register (DR - 32 bits)  
The ID Register is loaded with a predetermined device- and manufacturer-specific identification code when the IDCODE  
instruction has been loaded into the Instruction Register and the TAP Controller is in the Capture-DR state. It is inserted between  
TDI and TDO when the IDCODE instruction has been loaded into the Instruction Register and the TAP Controller is in the  
Shift-DR state.  
The ID Register is 32 bits wide, and is encoded as follows:  
See BSDL Model  
(31:12)  
GSI ID  
(11:1)  
Start Bit  
(0)  
XXXX XXXX XXXX XXXX XXXX  
0001 1011 001  
1
Bit 0 is the LSB of the ID Register, and Bit 31 is the MSB. When the ID Register is selected, TDI serially shifts data into the MSB,  
and the LSB serially shifts data out through TDO.  
Boundary Scan Register (DR - 129 bits)  
The Boundary Scan Register is equal in length to the number of active signal connections to the ECCRAM (excluding the TAP  
pins) plus a number of place holder locations reserved for functional and/or density upgrades. It is loaded with the logic states of all  
signals composing the ECCRAM’s I/O ring when the EXTEST, SAMPLE, or SAMPLE-Z instruction has been loaded into the  
Instruction Register and the TAP Controller is in the Capture-DR state. It is inserted between TDI and TDO when the EXTEST,  
SAMPLE, or SAMPLE-Z instruction has been loaded into the Instruction Register and the TAP Controller is in the Shift-DR state.  
Additionally, the contents of the Boundary Scan Register associated with the ECCRAM outputs (Q, QVLD, CQ, CQ) are driven  
directly to the corresponding ECCRAM output pins when the EXTEST instruction is selected. However, after the EXTEST  
instruction has been selected, any new data loaded into Boundary Scan Register when the TAP Controller is in the Shift-DR state  
does not appear at the output pins until the TAP Controller has reached the Update-DR state.  
The value captured in the boundary scan register for NU pins is determined by the external pin state. The value captured in the  
boundary scan register for NC pins is 0 regardless of the external pin state. The value captured in the Internal Cell (Bit 129) is 1.  
Output Driver State During EXTEST  
EXTEST allows the Internal Cell (Bit 129) in the Boundary Scan Register to control the state of Q drivers. That is, when Bit 129 =  
1, Q drivers are enabled (i.e., driving High or Low), and when Bit 129 = 0, Q drivers are disabled (i.e., forced to High-Z state). See  
the Boundary Scan Register section for more information.  
ODT State During EXTEST and SAMPLE-Z  
ODT on all inputs is disabled during EXTEST and SAMPLE-Z.  
Rev: 1.05 8/2016  
22/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Boundary Scan Register Bit Order Assignment  
The table below depicts the order in which the bits are arranged in the Boundary Scan Register. Bit 1 is the LSB and Bit 129 is the  
MSB. When the Boundary Scan Register is selected, TDI serially shifts data into the MSB, and the LSB serially shifts data out  
through TDO.  
Bit  
1
Pad  
7L  
Bit  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
Pad  
12F  
11G  
13G  
10G  
12G  
11H  
13H  
10J  
Bit  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
Pad  
12W  
10W  
8V  
Bit  
85  
Pad  
1T  
4R  
2R  
3P  
1P  
4P  
2P  
3N  
1N  
4M  
2M  
3L  
Bit  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
Pad  
1C  
2
7K  
86  
3C  
3
9L  
87  
2B  
4
9K  
9U  
8T  
88  
4B  
5
8J  
89  
5A  
6
7H  
9R  
8P  
90  
6A  
7
9H  
91  
6B  
8
7G  
8G  
9F  
9N  
8M  
6M  
7N  
5N  
7P  
92  
6C  
9
12J  
93  
5D  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
13K  
13L  
11L  
94  
6E  
8E  
95  
5F  
7D  
96  
6G  
5H  
9D  
12M  
10M  
13N  
11N  
12P  
10P  
13P  
11P  
12R  
10R  
13T  
11T  
12U  
10U  
13V  
11V  
97  
1L  
8C  
6P  
98  
1K  
2J  
6J  
7B  
5R  
6T  
99  
5K  
8B  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
4J  
5L  
9B  
7U  
5U  
6V  
1H  
3H  
2G  
4G  
1G  
3G  
2F  
4F  
1E  
3E  
2D  
4D  
Internal  
7A  
9A  
10B  
12B  
11C  
13C  
10D  
12D  
11E  
13E  
10F  
6W  
7Y  
4W  
2W  
3V  
1V  
4U  
2U  
3T  
Rev: 1.05 8/2016  
23/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
260-Pin BGA Package Drawing (Package GK)  
C
Ø0.08 S  
Ø0.22 S C  
B S  
A S  
Ø0.50~Ø0.70(260x)  
PIN #1 CORNER  
13 12 11 10  
9 8 7 6 5 4 3  
2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
13.20 0.05  
14.00 0.05  
B
1.00  
A
12.00  
0.05(4X)  
HEAT SPREADER  
4–R0.5 (MAX)  
C
SEATING PLANE  
Ball Pitch:  
1.00 Substrate Thickness: 0.51  
0.60 Mold Thickness:  
Ball Diameter:  
Rev: 1.05 8/2016  
24/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Ordering Information — GSI SigmaQuad-IIIe ECCRAM  
Speed  
(MHz)  
T
Org  
Part Number  
Type  
Package  
A
16M x 18  
16M x 18  
16M x 18  
16M x 18  
16M x 18  
16M x 18  
8M x 36  
8M x 36  
8M x 36  
8M x 36  
8M x 36  
8M x 36  
GS82583EQ18GK-500  
GS82583EQ18GK-450  
GS82583EQ18GK-400  
GS82583EQ18GK-500I  
GS82583EQ18GK-450I  
GS82583EQ18GK-400I  
GS82583EQ36GK-500  
GS82583EQ36GK-450  
GS82583EQ36GK-400  
GS82583EQ36GK-500I  
GS82583EQ36GK-450I  
GS82583EQ36GK-400I  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
SigmaQuad-IIIe B2  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
ROHS-Compliant 260-Pin BGA  
500  
450  
400  
500  
450  
400  
500  
450  
400  
500  
450  
400  
C
C
C
I
I
I
C
C
C
I
I
I
Note: C = Commercial Temperature Range. I = Industrial Temperature Range.  
Rev: 1.05 8/2016  
25/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS82583EQ18/36GK-500/450/400  
Revision History  
Rev. Code  
Types of Changes  
Format or Content  
Revisions  
GS82583EQ1836GK_r1_01  
GS82583EQ1836GK_r1_02  
GS82583EQ1836GK_r1_03  
• Initial public release.  
Content  
Content  
• Removed leaded BGA package support.  
• Miscellaneous cleanup.  
• Changed V spec to 1.3V 50mV.  
DD  
GS82583EQ1836GK_r1_04  
GS82583EQ1836GK_r1_05  
Content  
Content  
• Added package thermal impedances.  
• Revised t  
specs.  
CQHCQH  
• Removed Preliminary banner.  
• Added I specs.  
DD  
Rev: 1.05 8/2016  
26/26  
© 2014, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY