GS8662Q36GE-200IT [GSI]

Standard SRAM, 2MX36, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165;
GS8662Q36GE-200IT
型号: GS8662Q36GE-200IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

Standard SRAM, 2MX36, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165

静态存储器
文件: 总34页 (文件大小:1516K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS8662Q08/09/18/36E-278/250/200/167  
165-Bump BGA  
Commercial Temp  
Industrial Temp  
278 MHz–167 MHz  
72Mb SigmaQuad-II  
Burst of 2 SRAM  
1.8 V V  
DD  
1.8 V and 1.5 V I/O  
Features  
Clocking and Addressing Schemes  
• Simultaneous Read and Write SigmaQuad™ Interface  
• JEDEC-standard pinout and package  
• Dual Double Data Rate interface  
• Byte Write controls sampled at data-in time  
• Burst of 2 Read and Write  
• 1.8 V +100/–100 mV core power supply  
• 1.5 V or 1.8 V HSTL Interface  
The GSQ8662Q08/09/18/36E SigmaQuad-II SRAMs are  
synchronous devices. They employ two input register clock  
inputs, K and K. K and K are indeendent single-ended clock  
inputs, not differential inputs to a single differential clock input  
buffer. The device also allos the user to manipulate the  
output register clock inputs quasi independently with the C and  
C clock inputs. C and C are also independent single-ended  
clock inputs, not differential inputs. If the C clocks are tied  
high, the K clocks are routed internally to fire the output  
registers instead.  
• Pipelined read operation  
• Fully coherent read and write pipelines  
• ZQ pin for programmable output drive strength  
• IEEE 1149.1 JTAG-compliant Boundary Scan  
• Pin-compatible with present 9Mb, 18Mb, and 36Mb and  
future 144Mb devices  
Each internal rad and write operation in a SigmaQuad-II B2  
RAM is two times wider than the device I/O bus. An input data  
bus de-multiplexer is used to accumulate incoming data before  
it is simuaneously written to the memory array. An output  
data multiplexer is used to capture the data produced from a  
single memory array read and then route it to the appropriate  
output drivers as needed. Therefore the address field of a  
SigmaQuad-II B2 RAM is always one address pin less than the  
advertised index depth (e.g., the 8M x 8 has an 4M addressable  
index).  
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package  
• RoHS-compliant 165-bump BGA package available  
SigmaQuadFamily Overview  
The GSQ8662Q08/09/18/36E are built in compliance with  
the SigmaQuad-II SRAM pinout standard for Separate I/O  
synchronous SRAMs. They are 75,497,472-bit (72Mb)  
SRAMs. The GSQ8662Q08/09/18/36E SigmaQuad SRAMs  
are just one element in a family of low power, low voltage  
HSTL I/O SRAMs designed to operate at the speeds needed to  
implement economical high performance networking systems.  
Parameter Synopsis  
-278  
3.6 ns  
0.45 ns  
-250  
4.0 ns  
0.45 ns  
-200  
5.0 ns  
0.45 ns  
-167  
tKHKH  
tKHQV  
6.0 ns  
0.5 ns  
.
Rev: 1.09a 11/2011  
1/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
2M x 36 SigmaQuad-II SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
MCL/SA  
(288Mb)  
MCL/SA  
(144Mb)  
A
CQ  
SA  
W
BW2  
K
BW1  
R
SA  
CQ  
B
C
D
E
F
Q27  
D27  
D28  
Q29  
Q30  
D30  
Doff  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
Q18  
Q28  
D20  
D29  
Q21  
D22  
D18  
D19  
Q19  
Q20  
D21  
Q22  
SA  
BW3  
SA  
K
BW0  
SA  
SA  
D17  
D16  
Q16  
Q15  
D14  
Q13  
Q17  
Q7  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
V
SA  
V
SS  
SS  
SS  
S
V
V
V
V
V
V
V
D15  
D6  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
Q14  
D13  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D23  
Q23  
D24  
D25  
Q25  
Q26  
SA  
D12  
Q12  
D11  
D10  
Q10  
Q9  
Q4  
D3  
K
L
V
V
V
V
V
V
Q11  
Q1  
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
D9  
SA  
SA  
SA  
SA  
D0  
C
SA  
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. BW0 controls writes to D0:D8; BW1 controls writes to D9:D17; BW2 controls writes to D18:D26; BW3 controls writes to D27:D35.  
2. MCL = Must Connect Low  
Rev: 1.09a 11/2011  
2/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
4M x 18 SigmaQuad-II SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
MCL/SA  
(144Mb)  
A
CQ  
SA  
W
BW1  
K
NC  
R
SA  
SA  
CQ  
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
Q9  
NC  
D9  
SA  
NC  
SA  
K
BW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
NC  
D6  
NC  
NC  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
D10  
Q10  
Q11  
D12  
Q13  
V
SA  
V
SS  
SS  
SS  
S
D11  
NC  
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
Q12  
D13  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
D14  
Q14  
D15  
D16  
Q16  
Q17  
SA  
NC  
Q4  
K
L
V
NC  
NC  
NC  
NC  
NC  
SA  
D3  
NC  
Q1  
Q15  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
SS  
D17  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
D0  
SA  
SA  
SA  
SA  
TCK  
C
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.  
2. MCL = Must Connect Low  
Rev: 1.09a 11/2011  
3/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
8M x 8 SigmaQuad-II SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
SA  
SA  
W
NW1  
K
NC  
R
SA  
SA  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
NC  
NC  
D4  
NC  
NC  
D5  
NC  
NC  
NC  
Q4  
NC  
Q5  
SA  
NC  
SA  
K
NW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D2  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
V
SA  
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
Q1  
K
L
NC  
Q6  
NC  
D6  
NC  
NC  
Q7  
SA  
V
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
D7  
V
V
NC  
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
NC  
TCK  
SA  
A  
SA  
SA  
NC  
C
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7.  
2. MCL = Must Connect Low  
Rev: 1.09a 11/2011  
4/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
8M x 9 SigmaQuad-II SRAM — Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
SA  
SA  
W
NC  
K
NC  
R
SA  
SA  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
NC  
NC  
D5  
NC  
NC  
D6  
NC  
NC  
NC  
Q5  
NC  
Q6  
SA  
NC  
SA  
K
BW  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D3  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
V
SA  
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
Q2  
K
L
NC  
Q7  
NC  
D7  
NC  
NC  
Q8  
SA  
V
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
NC  
D0  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
D8  
V
V
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
TCK  
SA  
A  
SA  
SA  
C
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Note: MCL = Must Connect Low  
Rev: 1.09a 11/2011  
5/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Pin Description Table  
Symbol  
Description  
Synchronous Address Inputs  
No Connect  
Type  
Input  
Comments  
SA  
NC  
R
Synchronous Read  
Synchronous Write  
Input  
Input  
Active Low  
Active Low  
W
Active Low  
x9 only  
BW  
Synchronous Byte Write  
Synchronous Byte Writes  
Nybble Write Control Pin  
Input  
Input  
Input  
Active Low  
x18/x36 only  
BW0–BW3  
NW0–NW1  
Active Low  
x8 only  
K
K
Input Clock  
Input Clock  
Input  
Input  
Active High  
Active Low  
C
Output Clock  
Input  
Active High  
C
Output Clock  
Input  
Active Low  
TMS  
TDI  
TCK  
TDO  
VREF  
Test Mode Select  
Input  
Test Data Input  
Input  
Test Clock Input  
Input  
Test Data Output  
Output  
Input  
HSTL Input Reference Voltage  
Output Impedance Matching Input  
Synchronous Data Outputs  
Synchronous Data Inputs  
Disable DLL when low  
Outpt Echo Clock  
Output Echo Clock  
Power Supply  
ZQ  
Qn  
Dn  
Input  
Output  
Input  
Input  
Active Low  
D
off  
CQ  
CQ  
Output  
Output  
Supply  
VDD  
1.8 V Nominal  
VDDQ  
VSS  
Isolated Output Buffer Supply  
Power Supply: Ground  
Supply  
Supply  
1.5 or 1.8 V Nominal  
Notes:  
1. NC = Not Connected to die or any other pin.  
2. C, C, K, or K cannot be set to V voltage.  
REF  
Rev: 1.09a 11/2011  
6/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Background  
Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are  
needed. Therefore, the SigmaQuad-II SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O  
SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from  
Separate I/O SRAMs can cut the RAM’s bandwidth in half.  
SigmaQuad-II B2 SRAM DDR Read  
The read port samples the status of the Address Input and R pins at each rising edge of K. A low on the Read Enable-bar pin, R,  
begins a read cycle. Data can be clocked out after the next rising edge of K with a rising edge of C (or by K if C and C are tied  
high), and after the following rising edge of K with a rising edge of C (or by K if C and C are tied high). Clocking in a high on the  
Read Enable-bar pin, R, begins a read port deselect cycle.  
SigmaQuad-II B2 Double Data Rate SRAM Read First  
Read A  
NOP  
Write B  
Read C Write D  
Read E Write F  
Read G Write H  
K
K
Address  
A
B
D
E
F
G
H
R
W
BWx  
D
B
B
B+1  
B+1  
D
D+1  
F
F+1  
H
H
H+1  
D
D+1  
F
F+1  
H+1  
C
C
Q
A
A+1  
C
C+1  
E
CQ  
CQ  
Rev: 1.09a 11/2011  
7/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
SigmaQuad-II B2 SRAM DDR Write  
The write port samples the status of the W pin at each rising edge of K and the Address Input pins on the following rising edge of  
K. A low on the Write Enable-bar pin, W, begins a write cycle. The first of the data-in pairs associated with the write command is  
clocked in with the same rising edge of K used to capture the write command. The second of the two data in transfers is captured on  
the rising edge of K along with the write address. Clocking in a high on W causes a write port deselect cycle.  
SigmaQuad-II B2 Double Data Rate SRAM Write First  
Write A  
Read B  
Read C Write D  
NOP  
Read E Write F  
Read G Write H  
NOP  
K
K
Address  
A
B
C
D
E
F
G
H
R
W
BWx  
D
A
A
A+1  
A+1  
D
D
D+1  
D+1  
F
F
F+1  
F+1  
H
H
H+1  
H+1  
C
C
Q
B
B+1  
C
C+1  
E
E+1  
CQ  
CQ  
Special Functions  
Byte Write and Nybble Write Control  
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with  
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be  
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low  
during the data in sample times in a write sequence.  
Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18  
version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any  
write sequence.  
Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble  
Write Enable” and “NBx” may be substituted in all the discussion above.  
Rev: 1.09a 11/2011  
8/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Example x18 RAM Write Sequence using Byte Write Enables  
Data In Sample Time  
BW0  
BW1  
D0–D8  
D9–D17  
Don’t Care  
Data In  
Beat 1  
Beat 2  
0
1
1
0
Data In  
Don’t Care  
Resulting Write Operation  
Byte 1  
D0–D8  
Byte 2  
D9–D17  
Byte 3  
D0–D8  
Byte 4  
D9–D17  
Written  
Unchanged  
Unchanged  
Written  
Beat 1  
Beat 2  
Output Register Control  
SigmaQuad-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output  
Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the  
output registers by allowing the user to delay driving data out as much as a w nanoseconds beyond the next rising edges of the K  
and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to  
function as a conventional pipelined read SRAM.  
Rev: 1.09a 11/2011  
9/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Example Four Bank Depth Expansion Schematic  
R
3
W
3
R
2
W
2
1
0
R
1
W
R
0
W
A –A  
0
n
K
D –D  
1
n
Bank 3  
Bank 1  
Bank 2  
Bank 0  
A
A
A
A
W
R
W
W
W
R
R
R
CQ  
K
CQ  
K
CQ  
CQ  
K
D
C
K
D
C
D
C
Q
D
C
Q
Q
Q
C
Q –Q  
1
n
CQ  
0
CQ  
1
CQ  
CQ  
2
3
Note:  
For simplicity BWn, NWn, K, and C are not shown.  
Rev: 1.09a 11/2011  
10/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Rev: 1.09a 11/2011  
11/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
FLXDrive-II Output Driver Impedance Control  
HSTL I/O SigmaQuad-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to  
VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be  
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is  
between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts  
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and  
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance  
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is  
implemented with discrete binary weighted impedance steps.  
SigmaQuad-II B2 Coherency and Pass Through Functions  
Because the SigmaQuad-II B2 read and write commands are loaded at the same time, there may be some confusion over what  
constitutes “coherent” operation. Normally, one would expect a RAM to produce the just-written data when it is read immediately  
after a write. This is true of the SigmaQuad-II B2 except in one case, as is illustrated in the following diagram. If the user holds the  
same address value in a given K clock cycle, loading the same address as a read address and then as a matching write address, the  
SigmaQuad-II B2 will read or “Pass-thru” the latest data input, rather than the data from the previously completed write operation.  
SigmaQuad-II B2 Coherency and Pass Through Functions  
Rev: 1.09a 11/2011  
12/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Read Truth Table  
A
R
Output Next State  
Q
Q
K ↑  
n
K ↑  
n
K ↑  
n
K ↑  
n+1  
K ↑  
n+1½  
(t )  
(t )  
(t )  
(t  
)
(t  
)
X
V
1
0
Deselect  
Read  
Hi-Z  
Q0  
Hi-Z  
Q1  
Notes:  
1. X = Don’t Care, 1 = High, 0 = Low, V = Valid.  
2. R is evaluated on the rising edge of K.  
3. Q0 and Q1 are the first and second data output transfers in a read.  
Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Write Truth Tale  
A
W
BWn  
BWn  
Input Next State  
D
D
K ↑  
n + ½  
K ↑  
n
K ↑  
n
K ↑  
n + ½  
K ↑  
n
K ↑  
n + ½  
K ↑, K ↑  
(t  
)
(t )  
(t )  
(t  
)
(tn), (tn + ½  
)
(t )  
(t  
)
V
V
V
X
X
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Write Bye Dx0, Write Byte Dx1  
Write Byte Dx0, Write Abort Byte Dx1  
Write Abort Byte Dx0, Write Byte Dx1  
Write Abort Byte Dx0, Write Abort Byte Dx1  
Deselect  
D0  
D0  
X
D1  
X
D1  
X
X
X
X
Notes:  
1. X = Don’t Care, H = High, L = Low, V = Vali
2. W is evaluated on the rising edge of K.  
3. D0 and D1 are the first and second data input transfers in a write.  
4. BWn represents any of the Byte Write Enable inputs (BW0, BW1, etc.).  
Rev: 1.09a 11/2011  
13/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
x36 Byte Write Enable (BWn) Truth Table  
BW0  
BW1  
BW2  
BW3  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
D18–D26  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Daa In  
D27–D35  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Data In  
Data In  
x18 Byte Write Enable (BWn) Truth Table  
BW0  
BW1  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
x8 Nybble Write Enable (NWn) Truth Table  
NW0  
NW1  
D0–D3  
Don’t Care  
Data In  
D4–D7  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
0
0
Don’t Care  
Data In  
Data In  
Rev: 1.09a 11/2011  
14/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
VDD  
Description  
Value  
–0.5 to 2.9  
Unit  
Voltage on VDD Pins  
Voltage in VDDQ Pins  
Voltage in VREF Pins  
V
VDDQ  
VREF  
VI/O  
–0.5 to VDD  
V
V
–0.5 to VDDQ  
–0.5 to VDDQ +0.5 (2.9 V max.)  
–0.5 to VDDQ +0.5 (2.9 V max.)  
Voltage on I/O Pins  
V
VIN  
Voltage on Other Input Pins  
Input Current on Any Pin  
V
IIN  
+/–100  
+/–100  
125  
mA dc  
mA dc  
IOUT  
Output Current on Any I/O Pin  
Maximum Junction Temperature  
Storage Temperature  
oC  
oC  
TJ  
TSTG  
–55 to 125  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are eceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
VDD  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
Unit  
V
VDDQ  
VREF  
I/O Supply Voltage  
Reference Voltage  
1.4  
1.9  
V
0.68  
0.95  
V
Note:  
The power supplies need to be powered up simultaneously or in the following sequence: V , V , V , followed by signal inputs. The power  
DD DDQ REF  
down sequence must be the reverse. V  
must not exceed V . For more information, read AN1021 SigmaQuad and SigmaDDR Power-  
DD  
DDQ  
Up.  
Operating Temperature  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Ambient Temperature  
(Commercial RangVersions)  
TA  
0
25  
70  
°C  
Ambient Temperature  
(Industrial Range Versions)  
TA  
–40  
25  
85  
°C  
Rev: 1.09a 11/2011  
15/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Thermal Impedance  
Test PCB  
Substrate  
θ JA (C°/W)  
Airflow = 0 m/s  
θ JA (C°/W)  
Airflow = 1 m/s  
θ JA (C°/W)  
Airflow = 2 m/s  
θ JB (C°/W)  
θ JC (C°/W)  
Package  
165 BGA  
4-layer  
16.3  
13.4  
12.4  
6.2  
1.5  
Notes:  
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.  
2. Please refer to JEDEC standard JESD51-6.  
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to  
the PCB can result in cooling or heating of the RAM depending on PCB temperature.  
HSTL I/O DC Input Characteristics  
Parameter  
Symbol  
VIH (dc)  
VIL (dc)  
Min  
Max  
Units  
Notes  
VREF + 0.1  
VDDQ + 0.3  
VREF – 0.1  
DC Input Logic High  
V
V
1
1
–0.3  
DC Input Logic Low  
Notes:  
1. Compatible with both 1.8 V and 1.5 V I/O drivers.  
2. These are DC test criteria. DC design criteria is V  
± 50 mV. The AC V /V levels are defined separately for measuring timing  
REF  
IH IL  
parameters.  
3. V (Min)DC = –0.3 V, V (Min)AC = –1.5 V (pulse width 3 ns).  
IL  
IL  
4.  
V
(Max)DC = V  
+ 0.3 V, V (Max)AC = V  
+ 0.85 V (pulse width 3 ns).  
IH  
DDQ  
IH  
DDQ  
HSTL I/O AC Input Characteristics  
Parameter  
AC Input Logic High  
Symbol  
VIH (ac)  
VIL (ac)  
Min  
Max  
Units  
mV  
Notes  
2,3  
VREF + 200  
VREF – 200  
5% VREF (DC)  
AC Input Logic Low  
mV  
2,3  
V
Peak-to-Peak AC Voltage  
VREF (ac)  
mV  
1
REF  
Notes:  
1. The peak-to-peak AC component superimposed on V  
may not exceed 5% of the DC component of V  
.
REF  
REF  
2. To guarantee AC characteristics, V ,V , Trise, and Tfall of inputs and clocks must be within 10% of each other.  
IH IL  
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.  
Rev: 1.09a 11/2011  
16/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKHKH  
V
+ 1.0 V  
DD  
V
SS  
50%  
50%  
V
DD  
V
– 1.0 V  
SS  
20% tKHKH  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 1.8 V)  
A
DD  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
Typ.  
Max.  
Unit  
pF  
Input Capacitance  
Output Capacitance  
Clock Capacitance  
4
6
5
5
7
6
COUT  
CCLK  
VOUT = 0 V  
VIN = 0 V  
pF  
pF  
Note:  
This parameter is sample tested.  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
1.25 V  
0.25 V  
Max. input slew rate  
Input reference level  
Output reference level  
2 V/ns  
0.75 V  
VDDQ/2  
Note:  
Test conditions as specified with output loading as shown unless otherwise noted.  
AC Test Load Diagram  
DQ  
RQ = 250 Ω (HSTL I/O)  
= 0.75 V  
V
REF  
50Ω  
VT = V /2  
DDQ  
Rev: 1.09a 11/2011  
17/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
IINDOFF  
IOL  
VIN = 0 to VDD  
–2 uA  
2 uA  
VDD VIN VIL  
0 V VIN VIL  
–2 uA  
–2 uA  
2 uA  
2 uA  
Doff  
Output Disable,  
OUT = 0 to VDDQ  
Output Leakage Current  
–2 uA  
2 uA  
V
Programmable Impedance HSTL Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
VOH1  
Min.  
Max.  
Units  
Notes  
1, 3  
VDDQ/2 – 0.12  
VDDQ/2 – 0.12  
VDDQ – 0.2  
VDDQ/2 + 0.12  
VDDQ/2 + 0.12  
VDDQ  
V
V
V
V
Output High Voltage  
Output Low Voltage  
Output High Voltage  
VOL1  
2, 3  
VOH2  
4, 5  
VOL2  
Vss  
0.2  
4, 6  
Output Low Voltage  
Notes:  
1.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
DDQ OH DDQ  
OH  
2.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
OL  
DDQ  
OL  
DDQ  
3. Parameter tested with RQ = 250Ω and V  
4. 0Ω ≤ RQ ≤ ∞Ω  
= 1.5 V or 1.8 V.  
DDQ  
5.  
I
= –1.0 mA  
OH  
OL  
6.  
I
= 1.0 mA  
Rev: 1.09a 11/2011  
18/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Operating Currents  
-278  
-250  
-200  
-167  
Parameter  
Symbol  
Test Conditions  
Notes  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
0
to 70°C  
85°C  
70°C  
85°C  
70°C  
85°C  
70°C  
85°C  
VDD = Max, IOUT = 0 mA  
IDD  
IDD  
IDD  
IDD  
Operating Current (x36): DDR  
Operating Current (x18): DDR  
Operating Current (x9): DDR  
Operating Current (x8): DDR  
1050 mA 1075 mA 950 mA 975 mA 900 mA 925 mA 800 mA 825 mA  
1000 mA 1025 mA 900 mA 925 mA 800 mA 825 mA 750 mA 775 mA  
2, 3  
2, 3  
2, 3  
2, 3  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
950 mA  
950 mA  
975 mA 850 mA 875 mA 750 mA 775 mA 700 mA 725 mA  
975 mA 850 mA 875 mA 750 mA 775 mA 700 mA 725 mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Cycle Time tKHKH Min  
Device deselected,  
IOUT = 0 mA, f = Max,  
ISB1  
Standby Current (NOP): DDR  
315 mA  
325 mA 305 mA 315 mA 285 mA 295 mA 270 mA 280 mA  
2, 4  
All Inputs 0.2 V or VDD – 0.2 V  
Notes:  
1.  
2.  
Power measured with output pins floating.  
Minimum cycle, IOUT = 0 mA  
Operating current is calculated with 50% read cycles and 50% write cycles.  
Standby Current is only after all pending read and write burst operations are completed.  
3.  
4.  
Rev: 1.09a 11/2011  
19/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
AC Electrical Characteristics  
-278  
-250  
-200  
-167  
Parameter  
Symbol  
Units  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Clock  
tKHKH  
tCHCH  
K, K Clock Cycle Time  
C, C Clock Cycle Time  
3.6  
8.4  
0.2  
4.0  
8.4  
0.2  
5.0  
8.4  
0.2  
6.0  
8.4  
0.2  
ns  
ns  
ns  
tKCVar  
tKC Variable  
5
tKHKL  
tCHCL  
K, K Clock High Pulse Width  
C, C Clock High Pulse Width  
1.32  
1.6  
2.0  
2.4  
tKLKH  
tCLCH  
K, K Clock Low Pulse Width  
C, C Clock Low Pulse Width  
1.32  
1.49  
1.49  
1.6  
1.8  
1.8  
2.0  
2.2  
2  
2.4  
2.7  
2.7  
ns  
ns  
ns  
tKHKH  
tCHCH  
K to K High  
C to C High  
tKHKH  
tCHCH  
K to K High  
C to C High  
tKHCH  
tKCLock  
tKCReset  
K, K Clock High to C, C Clock High  
DLL Lock Time  
0
1.45  
0
1.8  
0
2.3  
0
2.8  
ns  
cycle  
ns  
1024  
30  
1024  
30  
1024  
30  
1024  
30  
6
K Static to DLL reset  
Output Times  
tKHQV  
tCHQV  
K, K Clock High to Data Output Valid  
C, C Clock High to Data Output Valid  
0.45  
0.45  
0.45  
–0.5  
0.5  
ns  
ns  
ns  
ns  
3
3
tKHQX  
tCHQX  
K, K Clock High to Data Output Hold  
C, C Clock High to Data Output Hold  
–0.45  
–0.45  
–0.45  
tKHCQV  
tCHCQV  
K, K Clock High to Echo Clock Valid  
C, C Clock High to Echo Clock Valid  
0.45  
0.45  
0.45  
0.5  
tKHCQX  
tCHCQX  
K, K Clock High to Echo Clock Hold  
C, C Clock High to Echo Clock Hold  
–0.45  
–0.45  
–0.45  
–0.5  
tCQHQV  
tCQHQX  
tCQHCQH  
tCQHCQH  
tKHQZ  
tCHQZ  
tKHQX1  
tCHQX1  
CQ, CQ High Output Valid  
CQ, CQ High Output Hold  
0.27  
0.30  
0.35  
0.40  
ns  
ns  
7
7
–0.27  
–0.30  
–0.35  
–0.40  
CQ Phase Distortion  
1.24  
0.45  
1.55  
0.45  
1.95  
0.45  
2.45  
0.5  
ns  
ns  
ns  
K Clock High to Data Output High-Z  
C Clock High to Data Output High-Z  
3
3
K Clock High to Data Output Low-Z  
C Clock High to Data Output Low-Z  
–0.45  
–0.45  
–0.45  
–0.5  
Setup Times  
tAVKH  
tIVKH  
Address Input Setup Time  
0.3  
0.3  
0.3  
0.35  
0.35  
0.35  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
ns  
ns  
ns  
Control Input Setup Time  
Data Input Setup Time  
2
tDVKH  
Rev: 1.09a 11/2011  
20/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
AC Electrical Characteristics (Continued)  
-278  
-250  
-200  
-167  
Parameter  
Symbol  
Units  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Hold Times  
tKHAX  
tKHIX  
Address Input Hold Time  
0.3  
0.3  
0.3  
0.35  
0.35  
0.35  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
ns  
ns  
ns  
Control Input Hold Time  
tKHDX  
Data Input Hold Time  
Notes:  
1.  
2.  
3.  
4.  
All Address inputs must meet the specified setup and hold times for all latching clock edges.  
Control singles are R, W, BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).  
If C, C are tied high, K, K become the references for C, C timing parameters  
To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN  
parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7 V). It is not possible for two  
SRAMs on the same board to be at such different voltages and temperatures.  
5.  
6.  
Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.  
7.  
Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet parameters reflect tester guard  
bands and test setup variations.  
Rev: 1.09a 11/2011  
21/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Rev: 1.09a 11/2011  
22/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Rev: 1.09a 11/2011  
23/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DD  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation f the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be eft unconnected.  
DD  
SS  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active dependig on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controllis also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register stes. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Tst-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Rev: 1.09a 11/2011  
24/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit registr that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributs of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
Rev: 1.09a 11/2011  
25/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
ID Register Contents  
GSI Technology  
JEDEC Vendor  
ID Code  
Not Used  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0 1 1 0 1 1 0 0 1  
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 1.09a 11/2011  
26/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers re in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data cature set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
still determined by its input pins.  
Rev: 1.09a 11/2011  
27/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with whch each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all RAM output drivers to High-Z except CQ.  
SAMPLE-Z  
RFU  
010  
011  
1
1
Do not use this instruction; Reserved for Future Use.  
ReplicateBYPASS instruction. Places Bypass Register between TDI and TDO.  
SAMPLE/PRELOAD  
GSI  
100  
101  
Captures /O ring contents. Places the Boundary Scan Register between TDI and TDO.  
GSI private instruction.  
1
1
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
110  
111  
1
1
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.09a 11/2011  
28/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
0.3  
Max.  
Unit Notes  
V
0.3 * V  
Test Port Input Low Voltage  
V
V
1
1
ILJ  
DD  
V
0.6 * V  
V
+0.3  
DD  
Test Port Input High Voltage  
IHJ  
DD  
I
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
Test Port Output CMOS High  
Test Port Output CMOS Low  
300  
1  
1
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
V
V
– 200 mV  
0.4  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
DD  
V
V
OLJ  
V
– 100 mV  
V
OHJC  
DD  
V
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 1 V < Vi < V  
+1 V not to exceed 2.9 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
3. 0 V V V  
IN  
ILJn  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V supply.  
DD  
6.  
7.  
8.  
9.  
I
I
I
I
= 2 mA  
OHJ  
= + 2 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OLJC  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
TDO  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
*
50Ω  
30pF  
Input slew rate  
V
/2  
DDQ  
V
V
/2  
Input reference level  
DD  
* Distributed Test Jig Capacitance  
/2  
Output reference level  
DD  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
Rev: 1.09a 11/2011  
29/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
TDI  
tTH  
tTH  
tTS  
tTS  
TMS  
TDO  
tTKQ  
tTH  
tTS  
Parallel SRAM input  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
Max  
Unit  
TCK Cycle Time  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
20  
20  
10  
10  
tTH  
Rev: 1.09a 11/2011  
30/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Package Dimensions—165-Bump FPBGA (Package E)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.60 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
15±0.05  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.09a 11/2011  
31/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Ordering Information—GSI SigmaQuad-II SRAM  
Speed  
(MHz)  
3
1
Org  
Type  
Package  
T
Part Number  
A
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
GS8662Q36E-278  
GS8662Q36E-250  
GS8662Q36E-200  
GS8662Q36E-167  
GS8662Q36E-278I  
GS8662Q36E-250I  
GS8662Q36E-200I  
GS8662Q36E-167I  
GS8662Q18E-278  
GS8662Q18E-250  
GS8662Q18E-200  
GS8662Q18E-167  
GS8662Q18E-278I  
GS8662Q18E-250I  
GS8662Q18E-200I  
GS8662Q18E-167I  
GS8662Q09E-278  
GS8662Q09E-250  
GS8662Q09E-200  
GS8662Q09E-167  
GS8662Q09E-278I  
GS8662Q09E-250I  
GS8662Q09E-200I  
GS8662Q09E-167I  
GS8662Q08E-278  
GS8662Q08E-250  
GS8662Q08E-200  
GS8662Q08E-167  
G662Q08E-278I  
GS8662Q08E-250I  
GS8662Q08E-200I  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
C
C
C
C
I
I
I
I
C
C
C
C
I
I
I
I
C
C
C
C
I
I
I
I
C
C
C
C
I
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662x36E-200T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.09a 11/2011  
32/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Ordering Information—GSI SigmaQuad-II SRAM  
Speed  
(MHz)  
3
1
Org  
Type  
Package  
T
Part Number  
A
8M x 8  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
GS8662Q08E-167I  
GS8662Q36GE-278  
GS8662Q36GE-250  
GS8662Q36GE-200  
GS8662Q36GE-167  
GS8662Q36GE-278I  
GS8662Q36GE-250I  
GS8662Q36GE-200I  
GS8662Q36GE-167I  
GS8662Q18GE-278  
GS8662Q18GE-250  
GS8662Q18GE-200  
GS8662Q18GE-167  
GS8662Q18GE-278I  
GS8662Q18GE-250I  
GS8662Q18GE-200I  
GS8662Q18GE-167I  
GS8662Q09GE-278  
GS8662Q09GE-250  
GS8662Q09GE-200  
GS8662Q09GE-167  
GS8662Q09GE-278I  
GS8662Q09GE-250I  
GS8662Q09GE-200I  
GS8662Q09GE-167I  
GS8662Q08GE-278  
GS8662Q08GE-250  
GS8662Q08GE-200  
GS8662Q08GE-167  
GS662Q08GE-278I  
GS8662Q08GE-250I  
GS8662Q08GE-200I  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
SigmaQuad-II SRAM  
165-bump BGA  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
167  
278  
250  
200  
I
C
C
C
C
I
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
oHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
I
I
I
C
C
C
C
I
I
I
I
C
C
C
C
I
I
I
I
C
C
C
C
I
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662x36E-200T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.09a 11/2011  
33/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662Q08/09/18/36E-278/250/200/167  
Ordering Information—GSI SigmaQuad-II SRAM  
Speed  
(MHz)  
3
1
Org  
Type  
SigmaQuad-II SRAM  
Package  
T
Part Number  
A
8M x 8  
GS8662Q08GE-167I  
RoHS-compliant 165-bump BGA  
167  
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662x36E-200T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
SigmaQuad-II Revision History  
File Name  
8662Qxx_r1  
Format/Content  
Description of changes  
Creation of datasheet  
8662Qxx_r1; 8662Qxx_r1_01  
8662Qxx_r1_01; 8662Qxx_r1_02  
Content  
Content  
Added RoHS-compliant package information  
Updated MAX tKHKH  
• Updated tKHKH, tKHCH in AC Char table  
• Added HKH and CQ Phase Distortion to AC Char table  
8662Qxx_r1_02; 8662Qxx_r1_03  
8662Qxx_r1_03; 8662Qxx_r1_04  
8662Qxx_r1_05  
Content  
Content  
Content  
• Added CZ data  
• Updated I/O supply voltage data  
• Updated power-up sequence information  
• Removed 300 MHz (Q)  
• Updated to PQ  
• Removed status from ordering information  
• Added 278 MHz (Q)  
8662Qxx_r1_06  
8662Qxx_r1_07  
Content  
Content  
• Added V  
note to Pin Description table  
REF  
8662Qxx_r1_08  
Content  
• Updated FLXDrive-II Output Driver Impedance Control section  
• Removed Preliminary banner due to production status  
• Updated AC Electrical Characteristics table  
• Updated 165-BGA Mechanical drawing  
• Revised Power-up Sequence and Truth Tables  
• Removed Status column from Ordering Information table  
• (Rev1.09a: Editorial updates)  
8662Qxx_r1_09  
Content  
Rev: 1.09a 11/2011  
34/34  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS8662Q36GE-200T

Standard SRAM, 2MX36, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS8662Q36GE-250

72Mb SigmaQuad-II Burst of 2 SRAM
GSI

GS8662Q36GE-250I

72Mb SigmaQuad-II Burst of 2 SRAM
GSI

GS8662Q36GE-250T

Standard SRAM, 2MX36, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS8662Q36GE-278T

Standard SRAM, 2MX36, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS8662Q36GE-300

72Mb SigmaQuad-II Burst of 2 SRAM
GSI

GS8662Q36GE-300I

72Mb SigmaQuad-II Burst of 2 SRAM
GSI

GS8662Q37BD-200I

72Mb SigmaQuad-IITM Burst of 2 SRAM
GSI

GS8662Q37BD-250

2.0 Clock Latency
GSI

GS8662Q37BD-300

Dual Double Data Rate interface
GSI

GS8662Q37BD-300I

72Mb SigmaQuad-IITM Burst of 2 SRAM
GSI

GS8662Q37BD-300IT

DDR SRAM, 2MX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, FPBGA-165
GSI