HD66710BXXFS [HITACHI]

暂无描述;
HD66710BXXFS
型号: HD66710BXXFS
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

暂无描述

驱动器 显示控制器 微控制器和处理器 外围集成电路 CD 时钟
文件: 总73页 (文件大小:506K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD66710  
(Dot Matrix Liquid Crystal Display Controller/Driver)  
Description  
The HD66710 dot-matrix liquid crystal display controller and driver LSI displays alphanumerics,  
numbers, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control  
of a 4- or 8-bit microprocessor. Since all the functions such as display RAM, character generator, and  
liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one  
chip, a minimum system can be interfaced with this controller/driver.  
A single HD66710 is capable of displaying a single16-character line, two 16-character lines, or up to four  
8-character lines.  
The HD66710 software is upwardly compatible with the LCD-II (HD44780) which allows the user to  
easily replace an LCD-II with an HD66710. In addition, the HD66710 is equipped with functions such as  
segment displays for icon marks, a 4-line display mode, and a horizontal smooth scroll, and thus supports  
various display forms. This achieves various display forms. The HD66710 character generator ROM is  
extended to generate 240 5 × 8 dot characters.  
The low voltage version (2.7V) of the HD66710, combined with a low power mode, is suitable for any  
portable battery-driven product requiring low power dissipation.  
Features  
5 × 8 dot matrix possible  
Low power operation support:  
2.7V to 5.5V (low voltage)  
Booster for liquid crystal voltage  
Two/three times (13V max.)  
Wide range of liquid crystal display driver voltage  
3.0V to 13V  
Extension driver interface  
High-speed MPU bus interface (2 MHz at 5-V operation)  
4-bit or 8-bit MPU interface capability  
80 × 8-bit display RAM (80 characters max.)  
291  
HD66710  
9,600-bit character generator ROM  
240 characters (5 × 8 dot)  
64 × 8-bit character generator RAM  
8 characters (5 × 8 dot)  
8 × 8-bit segment RAM  
40-segment icon mark  
33-common × 40-segment liquid crystal display driver  
Programmable duty cycle (See List 1)  
Wide range of instruction functions:  
Functions compatible with LCD-II: Display clear, cursor home, display on/off, cursor on/off,  
display character blink, cursor shift, display shift  
Additional functions: Icon mark control, 4-line display, horizontal smooth scroll, 6-dot character  
width control, white-black inverting blinking cursor  
Software upwardly compatible with HD44780  
Automatic reset circuit that initializes the controller/driver after power on  
Internal oscillator with an external resistor  
Low power consumption  
QFP1420-100 pin, TQFP1414-100 pin bare-chip  
List 1 Programmable Duty Cycles  
Maximum Number of Displayed Characters  
Single-Chip Operation  
Number of  
Lines  
Displayed  
Duty Ratio  
1/17  
Character  
5 × 8-dot  
5 × 8-dot  
5 × 8-dot  
1
2
4
One 16-character line + 40 segments  
Two 16-character lines + 40 segments  
Four 8-character lines + 40 segments  
1/33  
1/33  
Ordering Information  
Type No.  
Package  
QFP1420-100 (FP-100A)  
CGROM  
HD66710A00FS  
HD66710A00TF  
HCD66710A00  
Japanese standard  
TQFP1414-100 (TFP-100B)  
Chip  
292  
HD66710  
LCD-II Family Comparison  
LCD-II  
Item  
(HD44780U)  
HD66702R  
HD66710  
HD66712U  
Power supply voltage 2.7V to 5.5V  
5V ±10%  
2.7V to 5.5V  
2.7V to 5.5V  
(standard)  
2.7V to 5.5V  
(low voltage)  
Liquid crystal drive  
voltage  
3.0V to 11V  
3.0V to 8.3V  
3.0V to 13.0V  
2.7V to 11.0V  
Maximum display  
digits per chip  
8 characters  
× 2 lines  
20 characters  
× 2 lines  
16 characters ×  
2 lines/  
24 characters ×  
2 lines/  
8 characters ×  
4 lines  
12 characters ×  
4 lines  
Segment display  
Display duty cycle  
CGROM  
None  
None  
40 segments  
60 segments  
1/17 and 1/33  
1/8, 1/11, and 1/16 1/8, 1/11, and 1/16 1/17 and 1/33  
9,920 bits  
7,200 bits  
9,600 bits  
9,600 bits  
(208 5 × 8 dot  
characters and  
32 5 × 10 dot  
characters)  
(160 5 × 7 dot  
characters and  
32 5 × 10 dot  
characters)  
(240 5 × 8 dot  
characters)  
(240 5 × 8 dot  
characters)  
CGRAM  
64 bytes  
80 bytes  
None  
40  
64 bytes  
80 bytes  
None  
100  
64 bytes  
80 bytes  
8 bytes  
40  
64 bytes  
80 bytes  
16 bytes  
60  
DDRAM  
SEGRAM  
Segment signals  
Common signals  
16  
16  
33  
34  
Liquid crystal drive  
waveform  
A
B
B
B
Bleeder resistor for  
LCD power supply  
External  
(adjustable)  
External  
(adjustable)  
External  
(adjustable)  
External  
(adjustable)  
Clock source  
Extenal resistor or External resistor or External resistor or External resistor or  
external clock  
external clock  
external clock  
external clock  
Rf oscillation  
frequency (frame  
frequency)  
270 kHz ±30%  
(59 to 110 Hz for  
1/8 and 1/16 duty  
320 kHz ±30%  
(70 to 130 Hz for  
1/8 and 1/16 duty  
270 kHz ±30%  
(56 to 103 Hz for  
1/17 duty cycle; 57 1/17 duty cycle; 57  
270 kHz ±30%  
(56 to 103 Hz for  
cycle; 43 to 80 Hz cycle; 51 to 95 Hz to 106 Hz for 1/33 to 106 Hz for 1/33  
for 1/11 duty cycle) for 1/11 duty cycle) duty cycle)  
duty cycle)  
Rf resistance  
91 k: 5-V  
operation;  
75 k: 3-V  
operation  
68 k: 5-V  
operation;  
56 k: (3-V  
operation)  
91 k: 5-V  
operation;  
75 k: 3-V  
operation)  
130 k: 5-V  
operation;  
110 k: 3-V  
operation  
Liquid crystal voltage None  
booster circuit  
None  
2-3 times step-  
up circuit  
2-3 times step-  
up circuit  
293  
HD66710  
LCD-II  
Item  
(HD44780U)  
HD66702R  
HD66710  
HD66712U  
Extension driver  
control signal  
Independent  
control signal  
Independent  
control signal  
Used in common  
with a driver  
output pin  
Independent  
control signal  
Reset function  
Instructions  
Power on  
automatic reset  
Power on  
automatic reset  
Power on  
automatic reset  
Power on  
automatic reset  
or reset input  
LCD-II  
(HD44780)  
Fully compatible  
with the LCD-II  
Upper compatible  
with the LCD-II  
Upper compatible  
with the LCD-II  
Number of displayed 1 or 2  
lines  
1 or 2  
1, 2, or 4  
1, 2, or 4  
Low power mode  
Horizontal scroll  
Bus interface  
None  
None  
Available  
Dot unit  
Available  
Dot unit  
Character unit  
4 bits/8 bits  
Character unit  
4 bits/8 bits  
4 bits/8 bits  
Serial;  
4 bits/8 bits  
CPU bus timing  
2 MHz: 5-V  
operation;  
1 MHz: 3-V  
operation  
1 MHz  
2 MHz: 5-V  
operation;  
1 MHz: 3-V  
operation  
2 MHz: 5-V  
operation;  
1 MHz: 3-V  
operation  
Package  
QFP-1420-80  
80-pin bare chip  
LQFP-2020-144  
144-pin bare chip  
QFP-1420-100  
100-pin bare chip  
TQFP1414-100  
TCP-128  
128-pin bare chip  
294  
HD66710  
HD66710 Block Diagram  
OSC1  
OSC2  
EXT  
CPG  
Reset circuit  
ACL  
Timing generator  
7
Instruction register  
(I R)  
Instruction  
decoder  
COM1–  
COM33  
Display data RAM  
(DDRAM)  
80 × 8 bits  
Common  
signal  
33-bit  
shift  
8
driver  
register  
Address counter  
7
RS  
R/W  
E
MPU  
interface  
7
8
SEG1–  
SEG36  
40-bit  
shift  
register  
40-bit  
latch  
circuit  
8
8
Data  
register  
(DR)  
Segment  
signal  
driver  
DB4–DB7  
DB3–DB0  
SEG37/CL1  
SEG38/CL2  
SEG39/D  
Input/  
output  
buffer  
8
8
8
SEG40/M  
3
7
Busy  
flag  
LCD drive  
voltage  
selector  
Cursor and  
bling  
controller  
Segment  
RAM  
(SGRAM)  
8 bytes  
Character  
generator RAM  
(CGRAM)  
Character  
generator ROM  
(CGROM)  
64 bytes  
9,600 bytes  
Vci  
C1  
C2  
Booster  
5
5/6  
V5OUT2  
V5OUT3  
Parallel/serial  
converter  
and attribute circuit  
VCC  
GND  
V1  
V2  
V3  
V4  
V5  
295  
HD66710  
HD66710 Pin Arrangement  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
SEG27  
SEG28  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
VCC  
2
SEG29  
3
SEG30  
4
SEG31  
5
SEG32  
6
SEG33  
7
SEG34  
8
TEST  
EXT  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
E
SEG35  
9
SEG36  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SEG37/CL1  
SEG38/CL2  
SEG39/D  
SEG40/M  
COM9  
HD66710  
(FP-100A)  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
R/W  
RS  
OSC2  
OSC1  
Vci  
C2  
C1  
GND  
V5OUT2  
V5OUT3  
V5  
V4  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
(Top view)  
296  
HD66710  
HD66710 Pin Arrangement (TQFP1414-100 Pin)  
80 79 78 77 76  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
SEG29  
SEG30  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SEG3  
SEG2  
SEG1  
VCC  
2
SEG31  
3
SEG32  
4
SEG33  
5
TEST  
EXT  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
E
SEG34  
6
SEG35  
7
SEG36  
8
SEG37/CL1  
SEG38/CL2  
SEG39/D  
SEG40/M  
COM9  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
HD66710  
(TFP-100B)  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
R/W  
RS  
OSC2  
OSC1  
Vci  
C2  
C1  
GND  
V5OUT2  
V5OUT3  
26 27 28 29 30  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
(Top view)  
297  
HD66710  
HD66710 Pad Arrangement  
Chip size (X ×Y): 5.36 mm × 6.06 mm  
Coordinate  
Origin  
: Pad center  
: Chip center  
Pad size (X×Y) : 100 µm × 100 µm  
1
100  
81 80  
2
79  
HD66710  
Type code  
Y
29  
52  
50 51  
30 31  
X
298  
HD66710  
HD66710 Pad Location Coordinates  
Pin No.  
1
2
3
4
5
6
7
8
Pad Name  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM24  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
X
Y
2910  
2730  
2499  
2300  
2100  
1901  
1698  
1498  
Pin No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Pad Name  
V4  
V5  
V5OUT3  
V5OUT2  
GND  
C1  
C2  
Vci  
OSC1  
OSC2  
RS  
R/  
E
DB0  
DB1  
DB2  
DB3  
X
2458  
Y
–2495  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2695  
–2495  
–2051  
–1701  
–1498  
–1302  
–1102  
–899  
–2910  
–2731  
–2500  
–2300  
–2090  
–1887  
–1702  
–1502  
–1303  
–1103  
–900  
–701  
–501  
–302  
–99  
2660  
2660  
2660  
2640  
2650  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2675  
2695  
2695  
2695  
2695  
2695  
2695  
2495  
2049  
1699  
1499  
1300  
1100  
901  
9
1295  
1099  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
900  
700  
501  
301  
98  
–113  
–302  
–501  
–701  
98  
301  
501  
700  
DB4  
DB5  
DB6  
DB7  
EXT  
TEST  
VCC  
–900  
900  
–1100  
–1303  
–1502  
–1702  
–1901  
–2101  
–2300  
–2500  
–2731  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
–2910  
1099  
1299  
1502  
1698  
1901  
2104  
2300  
2503  
2730  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
2910  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
–700  
–500  
–301  
–101  
701  
502  
299  
99  
99  
302  
502  
698  
–101  
–301  
–500  
–700  
–899  
–1099  
–1302  
–1501  
–1701  
–2051  
887  
1077  
1266  
1488  
1710  
COM33  
V1  
V2  
V3  
2063  
299  
HD66710  
Pin Functions  
Table 1  
Pin Functional Description  
Device  
Signal  
I/O  
Interfaced with Function  
RS  
I
MPU  
MPU  
Selects registers  
0: Instruction register (for write)  
Busy flag: address counter (for read)  
1: Data register (for write and read)  
R/  
I
Selects read or write  
0: Write  
1: Read  
E
I
MPU  
MPU  
Starts data read/write  
DB4 to DB7  
I/O  
Four high order bidirectional tristate data bus pins. Used for  
data transfer between the MPU and the HD66710. DB7 can  
be used as a busy flag.  
DB0 to DB3  
I/O  
O
MPU  
LCD  
Four low order bidirectional tristate data bus pins. Used for  
data transfer between the MPU and the HD66710. These  
pins are not used during 4-bit operation.  
COM1 to COM33  
Common signals; those are not used become non-selected  
waveforms. At 1/17 duty rate, COM1 to COM16 are used for  
character display, COM17 for icon display, and COM18 to  
COM33 become non-selected waveforms. At 1/33 duty rate,  
COM1 to COM32 are used for character display, and  
COM33 for icon display.  
SEG1 to SEG35  
SEG36  
O
O
LCD  
LCD  
Segment signals  
Segment signal. When EXT = high, the same data as that of  
the first dot of the extension driver is output.  
SEG37/CL1  
SEG38/CL2  
SEG39/D  
SEG40/M  
EXT  
O
O
O
O
I
LCD/  
Segment signal when EXT = low. When EXT = high, outputs  
Extension driver the extension driver latch pulse.  
LCD/  
Segment signal when EXT = low. When EXT = high, outputs  
Extension driver the extension driver shift clock.  
LCD/  
Segment signal at EXT = low. At EXT = high, the extension  
Extension driver driver data. Data on and after the 36th dot is output.  
LCD/  
Segment signal when EXT = low. When EXT = high, outputs  
Extension driver the extension driver AC signal.  
Extension driver enable signal. When EXT = high, SEG37 to  
SEG40 become extension driver interface signals. At this  
time, make sure that V5 level is lower than GND level (0 V).  
V5 (low) GND (high).  
V1 to V5  
Power supply  
Power supply for LCD drive  
VCC – V5 = 13V (max)  
300  
HD66710  
Table 1  
Pin Functional Description (cont)  
Device  
Signal  
I/O  
Interfaced with Function  
VCC, GND  
OSC1, OSC2  
Power supply  
VCC: +2.7V to 5.5V, GND: 0V  
Oscillation  
When CR oscillation is performed, a resistor must be  
resistor clock  
connected externally. When the pin input is an external  
clock, it must be input to OSC1.  
Vci  
I
Input voltage to the booster, from which the liquid crystal  
display drive voltage is generated.  
Vci is reference voltage and power supply for the booster.  
Vci = 1.0V to 5.0V VCC  
V5OUT2  
O
V5 pin/  
Booster  
capacitance  
Voltage input to the Vci pin is boosted twice and output  
When the voltage is boosted three times, the same capacity  
as that of C1–C2 should be connected.  
V5OUT3  
C1/C2  
TEST  
O
I
V5 pin  
Voltage input to the Vci pin is boosted three times and  
output.  
Booster  
capacitance  
External capacitance should be connected when using the  
booster.  
Test pin. Should be wired to ground.  
301  
HD66710  
Function Description  
Registers  
The HD66710 has two 8-bit registers, an instruction register (IR) and a data register (DR).  
The IR stores instruction codes, such as display clear and cursor shift, and address information for the  
display data RAM (DDRAM), the character generator RAM (CGRAM), and the segment RAM  
(SEGRAM). The MPU can only write to IR, and cannot be read from.  
The DR temporarily stores data to be written into DDRAM, CGRAM, or SEGRAM. Data written into the  
DR from the MPU is automatically written into DDRAM, CGRAM, or SEGRAM by an internal  
operation. The DR is also used for data storage when reading data from DDRAM, CGRAM, or  
SEGRAM. When address infor-mation is written into the IR, data is read and then stored into the DR  
from DDRAM, CGRAM, or SEGRAM by an internal operation. Data transfer between the MPU is then  
completed when the MPU reads the DR. After the read, data in DDRAM, CGRAM, or SEGRAM at the  
next address is sent to the DR for the next read from the MPU. By the register selector (RS) signal, these  
two registers can be selected (Table 2).  
Busy Flag (BF)  
When the busy flag is 1, the HD66710 is in the internal operation mode, and the next instruction will not  
be accepted. When RS = 0 and R/ = 1 (Table 2), the busy flag is output from DB7. The next instruction  
must be written after ensuring that the busy flag is 0.  
Address Counter (AC)  
The address counter (AC) assigns addresses to DDRAM, CGRAM, or SEGRAM. When an address of an  
instruction is written into the IR, the address information is sent from the IR to the AC. Selection of  
DDRAM, CGRAM, and SEGRAM is also determined concurrently by the instruction.  
After writing into (reading from) DDRAM, CGRAM, or SEGRAM, the AC is automatically incremented  
by 1 (decremented by 1). The AC contents are then output to DB0 to DB6 when RS = 0 and R/ = 1  
(Table 2).  
Table 2  
Register Selection  
RS  
0
R/  
0
Operation  
IR write as an internal operation (display clear, etc.)  
Read busy flag (DB7) and address counter (DB0 to DB6)  
DR write as an internal operation (DR to DDRAM, CGRAM, or SEGRAM)  
DR read as an internal operation (DDRAM, CGRAM, or SEGRAM to DR)  
0
1
1
0
1
1
302  
HD66710  
Display Data RAM (DDRAM)  
Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its capacity is 80 ×  
8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used  
as general data RAM. See Figure 1 for the relationships between DDRAM addresses and positions on the  
liquid crystal display.  
The DDRAM address (ADD) is set in the address counter (AC) as hexadecimal.  
1-line display (N = 0) (Figure 2)  
When there are fewer than 80 display characters, the display begins at the head position. For  
example, if using only the HD66710, 16 characters are displayed. See Figure 3.  
When the display shift operation is performed, the DDRAM address shifts. See Figure 3.  
High order  
bits  
Low order  
bits  
Example: DDRAM address 4E  
AC  
1
0
0
1
1
1
0
AC6AC5 AC4 AC3AC2 AC1AC0  
(hexadecimal)  
Figure 1 DDRAM Address  
Display position  
(digit)  
1
2
3
4
5
79  
80  
DDRAM  
address  
. . . . . . . . . . . . . . . . . .  
00 01 02 03 04  
4E 4F  
(hexadecimal)  
Figure 2 1-Line Display  
1
2
3
4
5
6
7
8
9 10111213141516  
Display position  
COM9 to 16  
DRAM address  
00 01 02 03 04 05 06 07  
08 09 0A 0B 0C 0D 0E 0F  
COM1 to 8  
1
2
3
4
5
6
7
8
9 10111213141516  
01 02 03 04 05 06 07 08  
09 0A 0B 0C 0D 0E 0F 10  
COM1 to 8  
COM1 to 8  
COM9 to 16 (Left shift display)  
COM9 to 16 (Right shift display)  
4F 00 01 02 03 04 05 06  
07 08 09 0A 0B 0C 0D 0E  
Figure 3 1-line by 16-Character Display Example  
303  
HD66710  
2-line display (N = 1, and NW = 0)  
Case 1: The first line is displayed from COM1 to COM16, and the second line is displayed from  
COM17 to COM32. Care is required because the end address of the first line and the start address  
of the second line are not consecutive. For example, the case is shown in Figure 5 where 16 × 2-  
line display is performed using the HD66710. When a display shift operation is performed, the  
DDRAM address shifts. See Figure 4.  
1
2
3
4
5
6
7
8
9 10111213141516  
Display position  
COM9 to 16  
00 01 02 03 04 05 06 07  
08 09 0A 0B 0C 0D 0E 0F  
COM1 to 8  
40 41 42 43 44 45 46 47  
48 49 4A 4B 4C 4D 4E 4F  
COM17 to 24  
COM25 to 32  
DDRAM address  
01 02 03 04 05 06 07 08  
41 42 43 44 45 46 47 48  
09 0A 0B 0C 0D 0E 0F 10  
49 4A 4B 4C 4D 4E 4F 50  
COM1 to 8  
COM9 to 16  
(Left shift display)  
(Right shift display)  
COM17 to 24  
COM25 to 32  
27 00 01 02 03 04 05 06  
67 40 41 42 43 44 45 46  
07 08 09 0A 0B 0C 0D 0E  
47 48 49 4A 4B 4C 4D 4E  
COM1 to 8  
COM9 to 16  
COM17 to 24  
COM25 to 32  
Figure 4 2-line by 16-Character Display Example  
Case 2: Figure 5 shows the case where the EXT pin is fixed to high, the HD66710 and the 40-  
output extension driver are used to extend the number of display characters.  
In this case, the start address from COM9 to COM16 of the HD66710 is 0AH, and that from  
COM25 to COM32 of the HD66710 is 4AH. To display 24 characters, the addresses starting at  
SEG11 should be used.  
When a display shift operation is performed, the DDRAM address shifts. See Figure 5.  
Display position  
COM9 to COM16  
DDRAM address  
1
2
3
4
5
6
7
8 9 101112 1314151617 18192021222324  
COM1 to  
COM8  
00 01 02 03 04 05 06  
07 08 09 0A 0B  
0C 0D 0E 0F 10  
11 12 13 14 15 16 17  
HD66710  
Extension  
HD66710  
Extension  
SEG1 to SEG35 driver (1)  
SEG11 to SEG35 driver (1)  
Seg1 to Seg25 (SEG1 to SEG10: Seg1 to Seg35  
skip)  
1
2
3
4
5
6
7
8 9 101112 131415 1617 18192021222324  
COM1 to  
COM8  
COM17 to  
COM9 to  
COM16  
COM25 to  
01 02 03 04 05 06 07  
08 09 0A 0B 0C  
0D 0E 0F 10 11  
12 13 14 15 16 17 18  
(Left shift display)  
(Right shift display)  
41 42 43 44 45 46 47  
48 49 4A 4B 4C  
4D 4E 4F 50 51  
52 53 54 55 56 57 58  
COM24  
COM32  
COM1 to  
COM8  
COM17 to  
COM9 to  
COM16  
COM25 to  
27 00 01 02 03 04 05  
67 40 41 42 43 44 45  
06 07 08 09 0A  
46 47 48 49 4A  
0B 0C 0D 0E 0F  
4B 4C 4D 4E 4F  
10 11 12 13 14 15 16  
50 51 52 53 54 55 56  
COM32  
COM24  
Figure 5 2-Line by 24 Character Display Example  
304  
HD66710  
4-line display (NW = 1)  
Case 1: The first line is displayed from COM1 to COM8, the second line is displayed from COM9  
to COM16, the third line is displayed from COM17 to COM24, and the fourth line is displayed  
from COM25 to COM32. Care is required because the DDRAM addresses of each line are not  
consecutive. For example, the case is shown in Figure 6 where 8 × 4-line display is performed  
using the HD66710.  
When a display shift operation is performed, the DDRAM address shifts. See Figure 6.  
1
2 3 4 5 6 7 8  
Display position  
DDRAM address  
00 01 02 03 04 05 06 07  
COM1 to 8  
COM9 to 16  
COM17 to 24  
20 21 22 23 24 25 26 27  
40 41 42 43 44 45 46 47  
60 61 62 63 64 65 66 67  
COM25 to 32  
1
2
3
4
5
6
7
8
1 2 3 4 5 6 7 8  
01 02 03 04 05 06 07 08  
13 00 01 02 03 04 05 06  
COM1 to 8  
COM9 to 16  
COM17 to 24  
21 22 23 24 25 26 27 28  
33  
20 21 22 23 24 25 26  
(Left shift display)  
(Right shift display)  
41 42 43 44 45 46 47 48  
61 62 63 64 65 66 67 68  
53 40 41 42 43 44 45 46  
73 60 61 62 63 64 65 66  
COM25 to 32  
Figure 6 4-Line Display  
305  
HD66710  
Case 2: The case is shown in figure where the EXT pin is fixed high, and the HD66710 and the  
40-output extension driver are used to extend the number of display characters.  
When a display shift operation is performed, the DDRAM address shifts. See Figure 7.  
1
2
3
4
5
6
7
8 9 10 111213141516 17 1819 20  
Display position  
DDRAM address  
COM1 to 8  
COM9 to 16  
COM17 to 24  
COM25 to 32  
00 01 02 03 04 05 06  
07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13  
20 21 22 23 24 25 26  
27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33  
40 41 42 43 44 45 46  
60 61 62 63 64 65 66  
47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53  
67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73  
HD66710  
Extension driver (1)  
Extension driver (2)  
1
2
3
4
5
6
7
8
9 1011 12131415 1617181920  
1 2 3 4 5 6 7 8 9 1011121314151617181920  
01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 00  
21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 20  
41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 40  
13 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12  
33 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32  
53 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52  
73 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72  
(Display shift right)  
61 62 63 64 65  
67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 60  
66  
(Display shift left)  
Figure 7 4-Line by 20-Character Display Example  
306  
HD66710  
Character Generator ROM (CGROM)  
The character generator ROM generates 5 × 8 dot character patterns from 8-bit character codes (Table 3).  
It can generate 240 5 × 8 dot character patterns. User-defined character patterns are also available using a  
mask-programmed ROM.  
Character Generator RAM (CGRAM)  
The character generator RAM allows the user to redefine the character patterns. In the case of 5 × 8  
characters, up to eight may be redefined.  
Write the character codes at the addresses shown as the left column of Table 3 to show the character  
patterns stored in CGRAM.  
See Table 5 for the relationship between CGRAM addresses and data and display patterns.  
Segment RAM (SEGRAM)  
The segment RAM (SEGRAM) is used to enable control of segments such as an icon and a mark by the  
user program.  
For a 1-line display, SEGRAM is read from the COM17 output, and as for 2- or 4-line displays, it is from  
the COM33 output, to performs 40-segment display.  
As shown in Table 6, bits in SEGRAM corresponding to segments to be displayed are directly set by the  
MPU, regardless of the contents of DDRAM and CGRAM.  
SEGRAM data is stored in eight bits. The lower six bits control the display of each segment, and the  
upper two bits control segment blinking.  
Modifying Character Patterns  
Character pattern development procedure  
The following operations correspond to the numbers listed in Figure 8:  
1. Determine the correspondence between character codes and character patterns.  
2. Create a listing indicating the correspondence between EPROM addresses and data.  
3. Program the character patterns into an EPROM.  
4. Send the EPROM to Hitachi.  
5. Computer processing of the EPROM is performed at Hitachi to create a character pattern listing,  
which is sent to the user.  
6. If there are no problems within the character pattern listing, a trial LSI is created at Hitachi and  
samples are sent to the user for evaluation. When it is confirmed by the user that the character  
patterns are correctly written, mass production of the LSI will proceed at Hitachi.  
307  
HD66710  
Hitachi  
User  
Start  
Computer  
processing  
Determine  
character patterns  
1
2
3
4
Create character  
pattern listing  
Create EPROM  
address data listing  
5
Evaluate  
character  
patterns  
Write EPROM  
EPROM Hitachi  
No  
OK?  
Yes  
Art work  
M/T  
Masking  
Trial  
Sample  
Sample  
evaluation  
6
No  
OK?  
Yes  
Mass  
production  
Note: For a description of the numbers used in this figure, refer to the preceding page.  
Figure 8 Character Pattern Development Procedure  
308  
HD66710  
Table 3  
Correspondence between Character Codes and Character Patterns (Hitachi Standard  
HD66710)  
Upper 4  
Bits  
Lower  
4 Bits  
0001  
0000  
0010 0011 0100 0101 0110 0111 1000 1001  
1010 1011 1100 1101 1110 1111  
CG  
RAM  
(1)  
xxxx0000  
xxxx0001  
xxxx0010  
xxxx0011  
xxxx0100  
xxxx0101  
xxxx0110  
xxxx0111  
xxxx1000  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
(1)  
xxxx1001 (2)  
(3)  
xxxx1010  
xxxx1011  
xxxx1100  
xxxx1101  
xxxx1110  
(4)  
(5)  
(6)  
(7)  
xxxx1111 (8)  
Note: The user can specify any pattern in the character-generator RAM.  
309  
HD66710  
Programming character patterns  
This section explains the correspondence between addresses and data used to program character  
patterns in EPROM. The HD66710 character generator ROM can generate 240 5 × 8 dot character  
patterns.  
Character patterns  
EPROM address data and character pattern data correspond with each other to form a 5 × 8 dot  
character pattern (Table 4).  
Table 4  
Example of Correspondence between EPROM Address Data and Character Pattern  
(5 × 8 Dots)  
EPROM Address  
Data  
O4 O3 O2 O1 O0  
MSB  
LSB  
A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
1
0
1
0
1
Character code  
Line position  
“0”  
Notes: 1. EPROM addresses A11 to A4 correspond to a character code.  
2. EPROM addresses A2 to A0 specify a line position of the character pattern. EPROM address  
A3 should be set to 0.  
3. EPROM data O4 to O0 correspond to character pattern data.  
4. Area which are lit (indicated by shading) are stored as 1, and unlit are as 0.  
5. The eighth line is also stored in the CGROM, and should also be programmed. If the eighth line  
is used for a cursor, this data should all be set to zero.  
6. EPROM data bits O7 to O5 are invalid. 0 should be written in all bits.  
310  
HD66710  
Handling unused character patterns  
1. EPROM data outside the character pattern area: This is ignored by the character generator ROM  
for display operation so any data is acceptable.  
2. EPROM data in CGRAM area: Always fill with zeros. (EPROM addresses 00H to FFH.)  
3. Treatment of unused user patterns in the HD66710 EPROM: According to the user application,  
these are handled in either of two ways:  
a. When unused character patterns are not programmed: If an unused character code is written  
into DDRAM, all its dots are lit, because the EPROM is filled with 1s after it is erased.  
b. When unused character patterns are programmed as 0s: Nothing is displayed even if unused  
character codes are written into DDRAM. (This is equivalent to a space.)  
Table 5  
Example of Correspondence between Character Code and Character Pattern (5 × 8  
Dots) in CGRAM  
a) When Character Pattern in 5  
× 8 Dots  
Character code (DDRAM data)  
CGRAM address  
CGRAM data  
MSB  
LSB  
D7 D6 D5 D4 D3 D2 D1 D0 A5 A4 A3 A2 A1 A0 O7 O6 O5 O4 O3 O2 O1 O0  
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
*
*
*
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
0
Character  
pattern  
(1)  
0
0
0
0
*
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
*
*
*
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
0
Character  
pattern  
(8)  
311  
HD66710  
Table 5  
Example of Correspondence between Character Code and Character Pattern (5 × 8  
Dots) in CGRAM (cont)  
b) When Character Pattern in 6  
× 8 Dots  
Character code (DDRAM data)  
CGRAM address  
CGRAM data  
MSB  
LSB  
D7 D6 D5 D4 D3 D2 D1 D0 A5 A4 A3 A2 A1 A0 O7 O6 O5 O4 O3 O2 O1 O0  
*
*
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
0
Character  
pattern  
(1)  
0
0
0
0
*
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
*
*
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
0
Character  
pattern  
(8)  
Notes: 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).  
2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the  
cursor position and its display is formed by a logical OR with the cursor.  
3. The character data is stored with the rightmost character element in bit 0, as shown in Table 5.  
Characters with 5 dots in width (FW = 0) are stored in bits 0 to 4, and characters with 6 dots in  
width (FW = 1) are stored in bits 0 to 5.  
4. When the upper four bits (bits 7 to 4) of the character code are 0, CGRAM is selected.  
Bit 3 of the character code is invalid (*). Therefore, for example, the character codes 00  
(hexadecimal) and 08 (hexadecimal) correspond to the same CGRAM address.  
5. A set bit in the CGRAM data corresponds to display selection, and 0 to non-selection.  
6. When the BE bit of the function set register is 1, pattern blinking control of the lower six bits is  
controlled using the upper two bits (bits 7 and 6) in CGRAM.  
When bit 7 is 1, of the lower six bits, only those which are set are blinked on the display.  
When bit 6 is 1, a bit 4 pattern can be blinked as for a 5-dot font width, and a bit 5 pattern can  
be blinked as for a 6-dot font width.  
*
Indicates no effect.  
312  
HD66710  
Table 6  
Relationships between SEGRAM Addresses and Display Patterns  
SEGRAM data  
SEGRAM  
address  
a) 5-dot font width  
D7 D6 D5 D4 D3 D2 D1 D0  
b) 6-dot font width  
A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
B1 B0 S1 S2 S3 S4 S5 S6  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
*
*
*
*
*
*
*
*
S1 S2 S3 S4 S5  
S6 S7 S8 S9 S10 B1 B0 S7 S8 S9 S10S11S12  
S11S12S13S14S15 B1 B0 S13S14S15S16S17S18  
S16S17S18S19S20 B1 B0 S19S20S21S22S23S24  
S21S22S23S24S25 B1 B0 S25S26S27S28S29S30  
S26S27S28S29S30 B1 B0 S31S32S33S34S35S36  
S31S32S33S34S35 B1 B0 S37S38S39S40S41S42  
S36S37S38S39S40 B1 B0 S43S44S45S46S47S48  
Pattern on/off  
Pattern on/off  
Blinking control  
Blinking control  
Notes: 1. Data set to SEGRAM is output when COM17 is selected, as for a 1-line display, and output  
when COM33 is selected, as for a 2-line or a 4-line display.  
2. S1 to S48 are pin numbers of the segment output driver.  
S1 is positioned to the left of the monitor.  
S37 to S48 are extension driver outputs for a 6-dot character width.  
3. After S40 output at 5-dot font and S48 output at 6-dot font, S1 output is repeated again.  
4. As for a 5-dot font width, lower five bits (D4 to D0) are display on.off information of each  
segment. For a 6-dot character width, the lower six bits (D5 to D0) are the display information  
for each segment.  
5. When the BE bit of the function set register is 1, pattern blinking of the lower six bits is  
controlled using the upper two bits (bits 7 and 6) in SEGRAM.  
When bit 7 is 1, only a bit set to “1” of the lower six bits is blinked on the display.  
When bit 6 is 1, only a bit 4 pattern can be blinked as for a 5-dot font width, and only a bit 5  
pattern can be blinked as for 6-dot font width.  
6. Bit 5 (D5) is invalid for a 5-dot font width.  
7. Set bits in the CGRAM data correspond to display selection, and zeros to non-selection.  
313  
HD66710  
i) 5-dot font width (FW = 0)  
S40  
S10  
S5  
S5  
S1  
S2  
S3  
S6  
S7  
S8  
S36 S37 S38  
S1  
S2  
S3  
S9  
S4  
S4  
S39  
ii) 6-dot font width (FW = 1)  
S47  
S5  
S11  
S5  
S1  
S2  
S3  
S6  
S7  
S8  
S9  
S12  
S43 S44 S45  
S48 S1  
S2  
S3  
S6  
S4  
S10  
S46  
S4  
<< Extension driver >>  
Figure 9 Relationships between SEGRAM Data and Display  
314  
HD66710  
Timing Generation Circuit  
The timing generation circuit generates timing signals for the operation of internal circuits such as  
DDRAM, CGROM, CGRAM, and SEGRAM. RAM read timing for display and internal operation timing  
by MPU access are generated separately to avoid interfering with each other. Therefore, when writing  
data to DDRAM, for example, there will be no undesirable interferences, such as flickering, in areas  
other than the display area.  
Liquid Crystal Display Driver Circuit  
The liquid crystal display driver circuit consists of 33 common signal drivers and 40 segment signal  
drivers. When the character font and number of lines are selected by a program, the required common  
signal drivers automatically output drive waveforms, while the other common signal drivers continue to  
output non-selection waveforms.  
Character pattern data is sent serially through a 40-bit shift register and latched when all needed data has  
arrived. The latched data then enables the driver to generate drive waveform outputs.  
Sending serial data always starts at the display data character pattern corresponding to the last address of  
the display data RAM (DDRAM).  
Since serial data is latched when the display data character pattern corresponding to the starting address  
enters the internal shift register, the HD66710 drives from the head display.  
Cursor/Blink Control Circuit  
The cursor/blink (or white-black inversion) control is used to produce a cursor or a flashing area on the  
display at a position corresponding to the location in stored in the address counter (AC).  
For example (Figure 10), when the address counter is 08H, a cursor is displayed at a position  
corresponding to DDRAM address 08H.  
315  
HD66710  
AC6 AC5 AC4 AC3 AC2 AC1 AC0  
AC  
0
0
0
1
0
0
0
For a 1-line display  
Display position  
1
2
3
4
5
6
7
8
9
10  
09  
11  
0A  
DDRAM address  
(hexadecimal)  
00  
01  
02  
03  
04  
05  
06  
07  
08  
Cursor position  
For a 2-line display  
Display position  
1
2
3
4
5
6
7
8
9
10  
09  
49  
11  
0A  
4A  
00  
40  
01  
41  
02  
42  
03  
43  
04  
44  
05  
45  
06  
46  
07  
47  
08  
48  
DDRAM address  
(hexadecimal)  
Cursor position  
Note: Even if the address counter (AC) points to an address in the character generator RAM (CGRAM) or  
segment RAM (SEGRAM), cursor/blink black-white inversion will still occur, although it will produce  
meaningless results.  
Figure 10 Cursor/Blink Display Example  
316  
HD66710  
Interfacing to the MPU  
The HD66710 can send data in either two 4-bit operations or one 8-bit operation, thus allowing  
interfacing with 4- or 8-bit MPUs.  
For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3  
are disabled. The data transfer between the HD66710 and the MPU is completed after the 4-bit data  
has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit  
operation, DB4 to DB7) are transfered before the four low order bits (for 8-bit operation, DB0 to  
DB3).  
The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two  
more 4-bit operations then transfer the busy flag and address counter data.  
For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.  
RS  
R/W  
E
DB7  
DB6  
DB5  
DB4  
IR7  
IR6  
IR5  
IR4  
IR3  
IR2  
IR1  
IR0  
BF  
AC3  
AC2  
AC1  
AC0  
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
AC6  
AC5  
AC4  
Instruction register (IR)  
write  
Busy flag (BF) and  
address counter (AC)  
read  
Data register (DR)  
read  
Figure 11 4-Bit Transfer Example  
317  
HD66710  
Reset Function  
Initializing by Internal Reset Circuit  
An internal reset circuit automatically initializes the HD66710 when the power is turned on. The  
following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state  
until the initialization ends (BF = 1). The busy state lasts for 15 ms after VCC rises to 4.5V or 40 ms after  
the VCC rises to 2.7V.  
1. Display clear  
2. Function set:  
DL = 1; 8-bit interface data  
N = 0; 1-line display  
RE = 0; Extension register write disable  
3. Display on/off control:  
D = 0; Display off  
C = 0; Cursor off  
B = 0; Blinking off  
BE = 0; CGRAM/SEGRAM blinking off  
LP = 0; Not in low power mode  
4. Entry mode set:  
I/D = 1; Increment by 1  
S = 0; No shift  
5. Extension function set:  
FW = 0; 5-dot character width  
B/W = 0; Normal cursor (eighth line)  
NW = 0; 1- or 2-line display (depending on N)  
6. SEGRAM address set:  
HDS = 000; No scroll  
Note: If the electrical characteristics conditions listed under the table Power Supply Conditions Using  
Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail  
to initialize the HD66710. For such a case, initialization must be performed by the MPU as  
explained in the section, Initializing by Instruction.  
318  
HD66710  
Instructions  
Outline  
Only the instruction register (IR) and the data register (DR) of the HD66710 can be controlled by the  
MPU. Before starting internal operation of the HD66710, control information is temporarily stored in  
these registers to allow interfacing with various MPUs, which operate at different speeds, or various  
peripheral control devices. The internal operation of the HD66710 is determined by signals sent from the  
MPU. These signals, which include register selection (RS), read/write (R/ ), and the data bus (DB0 to  
DB7), make up the HD66710 instructions (Table 7). There are four categories of instructions that:  
Designate HD66710 functions, such as display format, data length, etc.  
Set internal RAM addresses  
Perform data transfer with internal RAM  
Perform miscellaneous functions  
Normally, instructions that perform data transfer with internal RAM are used the most. However, auto-  
incrementation by 1 (or auto-decrementation by 1) of internal HD66710 RAM addresses after each data  
write can lighten the program load of the MPU. Since the display shift instruction (Table 7) can perform  
concurrently with display data write, the user can minimize system development time with maximum  
programming efficiency.  
When an instruction is being executed for internal operation, no instruction other than the busy  
flag/address read instruction can be executed.  
Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0  
before sending another instruction from the MPU.  
Note: Be sure the HD66710 is not in the busy state (BF = 1) before sending an instruction from the  
MPU to the HD66710. If an instruction is sent without checking the busy flag, the time between  
the first instruction and next instruction will take much longer than the instruction time itself.  
Refer to Table 7 for the list of each instruction execution time.  
319  
HD66710  
Table 7  
Instructions  
Execution Time  
Code  
(Max) (when fcp or  
Instruction RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description  
fOSC is 270 kHz)  
Clear  
display  
0
0
0
0
0
0
0
0
0
0
1
Clears entire display and  
sets DDRAM address 0 in  
address counter.  
1.52 ms  
1.52 ms  
Return  
home  
0
0
0
0
0
0
0
1
Sets DDRAM address 0 in  
address counter. Also  
returns display from being  
shifted to original position.  
DDRAM contents remain  
unchanged.  
Entry mode 0  
set  
0
0
0
0
0
0
1
I/D  
C
S
B
Sets cursor move direction 37 µs  
and specifies display shift.  
These operations are  
performed during data write  
and read.  
Display  
on/off  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
D
Sets entire display (D) on/off, 37 µs  
cursor on/off (C), and  
blinking of cursor position  
character (B).  
control  
(RE = 0)  
Extension  
function set  
(RE = 1)  
FW B/W NW Sets a font width, a black-  
white inverting cursor (B/W),  
a 6-dot font width (FW), and  
a 4-line display (NW).  
37 µs  
Cursor or  
display  
shift  
0
0
0
0
0
0
0
0
0
1
1
S/C R/L  
Moves cursor and shifts  
display without changing  
DDRAM contents.  
37 µs  
37 µs  
Function  
set  
(RE = 0)  
DL  
N
N
RE  
Sets interface data length  
(DL), number of display lines  
(N), and extension register  
write enable (RE).  
(RE = 1)  
0
0
0
0
1
1
DL  
RE BE LP Sets CGRAM/SEGRAM  
blinking enable (BE), and low  
power mode (LP). LP is  
available when the EXT pin  
is low.  
37 µs  
Set  
0
0
0
0
0
0
0
1
1
ACG ACG ACG ACG ACG ACG Sets CGRAM address.  
CGRAM data is sent and  
37 µs  
37 µs  
37 µs  
CGRAM  
address  
(RE = 0)  
received after this setting.  
Set  
ADD ADD ADD ADD ADD ADD ADD Sets DDRAM address.  
DDRAM data is sent and  
DDRAM  
address  
(RE = 0)  
received after this setting.  
Set  
HDS HDS HDS *— ASG ASG ASG Sets SEGRAM address.  
DDRAM data is sent and  
SEGRAM  
address  
(RE = 1)  
received after this setting.  
Also sets a horizontal dot  
scroll quantity (HDS).  
320  
HD66710  
Table 7  
Instructions (cont)  
Execution Time  
Code  
(max) (when fcp or  
Instruction RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description  
fOSC is 270 kHz)  
Read busy  
flag &  
0
1
BF AC AC AC AC AC AC AC Reads busy flag (BF)  
indicating internal operation  
0 µs  
address  
is being performed and reads  
address counter contents.  
Write data  
to RAM  
(RE = 0/1)  
1
0
Write data  
Read data  
Writes data into DDRAM,  
CGRAM, or SEGRAM. To  
write data to DDRAM  
CGRAM, clear RE to 0; or to  
write data to SEGRAM, set  
RE to 1.  
37 µs  
tADD = 5.5 µs*  
Read data  
from RAM  
(RE = 0/1)  
1
1
Reads data from DDRAM,  
CGRAM, or SEGRAM. To  
read data from DDRAM or  
CGRAM, clear RE to 0; to  
read data from SEGRAM,  
set RE to 1.  
37 µs  
tADD = 5.5 µs*  
I/D = 1: Increment  
I/D = 0: Decrement  
DDRAM: Display data  
RAM  
S
D
C
B
= 1: Accompanies display shift  
= 1: Display on  
= 1: Cursor on  
CGRAM: Character  
generator RAM  
SEGRAM: Segment RAM  
= 1: Blink on  
FW = 1: 6-dot font width  
B/W = 1: Black-white inverting cursor on  
NW = 1: Four lines  
NW = 0: One or two lines  
S/C = 1: Display shift  
ACG: CGRAM address  
S/C = 0: Cursor move  
R/L = 1: Shift to the right  
R/L = 0: Shift to the left  
DL = 1: 8 bits, DL = 0: 4 bits  
ADD: DDRAM address  
(corresponds to  
cursor address)  
ASEG:Segment RAM  
address  
N
= 1: 2 lines, N = 0: 1 line  
RE = 1: Extension register access enable  
BE = 1: CGRAM/SEGRAM blinking enable  
LP = 1: Low power mode  
HDS: Horizontal dot scroll  
quantity  
BF = 1: Internally operating  
BF = 0: Instructions acceptable  
AC:  
Address counter  
used for both DD,  
CG, and SEGRAM  
addresses.  
Notes: 1. — indicates no effect.  
*
After execution of the CGRAM/DDRAM/SEGRAM data write or read instruction, the RAM  
address counter is incremented or decremented by 1. The RAM address counter is updated  
after the busy flag turns off.  
In Figure 12, tADD is the time elapsed after the busy flag turns off until the address counter is  
updated.  
2. Extension time changes as frequency changes. For example, when f is 300 kHz, the execution  
time is: 37 µs × 270/300 = 33 µs.  
3. Execution time in a low power mode (LP = 1 & EXT = low) becomes four times as long as for a  
1-line mode, and twice as long as for a 2- or 4-line mode.  
321  
HD66710  
Busy state  
(DB7 pin)  
Busy state  
Address counter  
(DB0 to DB6 pins)  
A
A + 1  
tADD  
Note: t ADD depends on the operation frequency  
t ADD = 1.5/(fcp or fOSC ) seconds  
Figure 12 Address Counter Update  
322  
HD66710  
Instruction Description  
Clear Display  
Clear display writes space code (20)H (character pattern for character code (20)H must be a blank  
pattern) into all DDRAM addresses. It then sets DDRAM address 0 into the address counter, and returns  
the display to its original status if it was shifted. In other words, the display disappears and the cursor or  
blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1  
(increment mode) in entry mode. S of entry mode does not change. It resets the extended register enable  
bit (RE) to 0 in function set.  
Return Home  
Return home sets DDRAM address 0 into the address counter, and returns the display to its original status  
if it was shifted. The DDRAM contents do not change.  
The cursor or blinking go to the left edge of the display (in the first line if 2 lines are displayed). It resets  
the extended register enable bit (RE) to 0 in function set. In addition, flicker may occur in a moment at  
the time of this instruction issue.  
Entry Mode Set  
I/D: Increments (I/D = 1) or decrements (I/D = 0) the DDRAM address by 1 when a character code is  
written into or read from DDRAM.  
The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1.  
The same applies to writing and reading of CGRAM and SEGRAM.  
S: Shifts the entire display either to the right (I/D = 0) or to the left (I/D = 1) when S is 1 during DDRAM  
write. The display does not shift if S is 0.  
If S is 1, it will seem as if the cursor does not move but the display does. The display does not shift when  
reading from DDRAM. Also, writing into or reading out from CGRAM and SEGRAM does not shift the  
display. In a low power mode (LP = 1), do not set S = 1 because the whole display does not normally  
shift.  
Display On/Off Control  
When extension register enable bit (RE) is 0, bits D, C, and B are accessed.  
D: The display is on when D is 1 and off when D is 0. When off, the display data remains in DDRAM,  
but can be displayed instantly by setting D to 1.  
C: The cursor is displayed when C is 1 and not displayed when C is 0. Even if the cursor disappears, the  
function of I/D or other specifications will not change during display data write. The cursor is displayed  
using 5 dots in the 8th line for 5 × 8 dot character font.  
323  
HD66710  
B: The character indicated by the cursor blinks when B is 1 (Figure 13). The blinking is displayed as  
switching between all blank dots and displayed characters at a speed of 370-ms intervals when fcp or fOSC is  
270 kHz. The cursor and blinking can be set to display simultaneously. (The blinking frequency changes  
according to fOSC or the reciprocal of fcp. For example, when fcp is 300 kHz, 370 × 270/300 = 333 ms.)  
Extended Function Set  
When the extended register enable bit (RE) is 1, FW, B/W, and NW bit shown below are accessed. Once  
these registers are accessed, the set values are held even if the RE bit is set to zero.  
FW: When FW is 1, each displayed character is controlled with a 6-dot width. The user font in CGRAM  
is displayed with a 6-bit character width from bits 5 to 0. As for fonts stored in CGROM, no display area  
is assigned to the leftmost bit, and the font is displayed with a 5-bit character width. If the FW bit is  
changed, data in DDRAM and CGRAM SEGRAM is destroyed. Therefore, set FW before data is written  
to RAM. When font width is set to 6 dots, the frame frequency decreases to 5/6 compared to 5-dot time.  
See “Oscillator Circuit” for details.  
B/W: When B/W is 1, the character at the cursor position is cyclically displayed with black-white  
invertion. At this time, bits C and B in display on/off control register are “Don’t care”. When fCP or fOSC is  
270 kHz, display is changed by switching every 370 ms.  
NW: When NW is 1, 4-line display is performed. At this time, bit N in the function set register is “Don’t  
care”.  
Note: After changing the N or NW or LP bit, please issue the return home or clear display instructions  
to cancel to shift display.  
Alternating  
display  
i) Cursor display example  
ii) Blink display example  
Alternating  
display  
iii) White-black inverting  
display example  
Figure 13 Cursor Blink Width Control  
324  
HD66710  
i) 5-dot character width  
ii) 6-dot character width  
Figure 14 Character Width Control  
Cursor or Display Shift  
Cursor or display shift shifts the cursor position or display to the right or left without writing or reading  
display data (Table 8). This function is used to correct or search the display. In a 2-line display, the  
cursor moves to the second line when it passes the 40th digit of the first line. In a 4-line display, the  
cursor moves to the second line when it passes the 20th character of the line. Note that, all line displays  
will shift at the same time. When the displayed data is shifted repeatedly each line moves only  
horizontally. The second line display does not shift into the first line position.  
These instruction reset the extended register enable bit (RE) to 0 in function set.  
The address counter (AC) contents will not change if the only action performed is a display shift.  
In low power mode (LP = 1), whole-display shift cannot be normally performed.  
Function Set  
Only when the extended register enable bit (RE) is 1, the BE bit shown below can be accessed. Bits DL  
and N can be accessed regardless of RE.  
DL: Sets the interface data length. Data is sent or received in 8-bit lengths (DB7 to DB0) when DL is 1,  
and in 4-bit lengths (DB7 to DB4) when DL is 0.  
When 4-bit length is selected, data must be sent or received twice.  
Table 8  
Shift Function  
S/C  
0
R/L  
0
Shifts the cursor position to the left. (AC is decremented by one.)  
0
1
Shifts the cursor position to the right. (AC is incremented by one.)  
Shifts the entire display to the left. The cursor follows the display shift.  
Shifts the entire display to the right. The cursor follows the display shift.  
1
0
1
1
325  
HD66710  
N: When bit NW in the extended function set is 0, a 1- or a 2-line display is set. When N is 0, 1-line  
display is selected; when N is 1, 2-line display is selected. When NW is 1, a 4-line display is set. At this  
time, N is “Don’t care”.  
RE: When the RE bit is 1, bit BE and LP in the extended function set registe, the SEGRAM address set  
register, and the extended function set register can be accessed. When bit RE is 0, the registers described  
above cannot be accessed, and the data in these registers is held.  
To maintain compatibility with the HD44780, the RE bit should be fixed to 0.  
Clear display, return home and cursor or display shift instruction a reset the RE bit to 0.  
BE: When the RE bit is 1, this bit can be rewritten. When this bit is 1, the user font in CGRAM and the  
segment in SEGRAM can be blinked according to the upper two bits of CGRAM and SEGRAM.  
LP: When the RE bit is 1, this bit can be rewritten. When LP is set to 1 and the EXT pin is low (without  
an extended driver), the HD66710 operates in low power mode. In 1-line display mode, the HD66710  
operates on a 4-division clock, and in a 2-line or a 4-line display mode, the HD66710 operates on a 2-  
division clock. According to these operations, instruction execution takes four times or twice as long.  
Notice that in a low power mode, display shift cannot be performed.  
Note: Perform the DL, N, NW, FW functions at the head of the program before executing any  
instructions (except for the read busy flag and address instruction). From this point, if bit N, NW,  
or FW is changed after other instructions are executed, RAM contents may be lost.  
After changing the N or NW or LP bit, please issue the return home or clear display instruction  
cancel to shift display.  
Set CGRAM Address  
A CGRAM address can be set while the RE bit is cleared to 0. Set CGRAM address sets the CGRAM  
address binary AAAAAA into the address counter.  
Data is then written to or read from the MPU for CGRAM.  
Table 9  
Display Line Set  
No. of  
Display  
Lines  
Character  
Font  
Duty  
Factor  
Maximum Number of Characters/1  
Line with Extended Drivers  
N
0
1
*
NW  
0
1
2
4
5 × 8 dots  
5 × 8 dots  
5 × 8 dots  
1/17  
1/33  
1/33  
50 characters  
30 characters  
20 characters  
0
1
Note:  
*
Indicates don’t care.  
326  
HD66710  
Set DDRAM Address  
Set DDRAM address sets the DDRAM address binary AAAAAAA into the address counter while the RE  
bit is cleared to 0.  
Data is then written to or read from the MPU for DDRAM.  
However, when N and NW is 0 (1-line display), AAAAAAA can be 00H to 4FH. When N is 1 and NW is  
0 (2-line display), AAAAAAA is (00)H to (27)H for the first line, and (40)H to (67)H for the second line.  
When NW is 1 (4-line display), AAAAAAA is (00)H to (13)H for the first line, (20)H to (33)H for the  
second line, (40)H to (53)H for the third line, and (60)H to (73)H for the fourth line.  
Set SEGRAM Address  
Only when the extended register enable bit (RE) is 1, HS2 to HS0 and the SEGRAM address can be set.  
The SEGRAM address in the binary form AAA is set to the address counter. SEGRAM can then be  
written to or read from by the MPU.  
Note: When performing a horizontal scroll is described above by connecting an extended driver, the  
maximum number of characters per line decreases by one. In other words, 49 characters, 29  
characters, and 19 characters are displayed in 1-line, 2-line, and 4-line modes, respectively.  
Notice that in low power mode (LP = 1), the display shift and scroll cannot be performed.  
Read Busy Flag and Address  
Read busy flag and address reads the busy flag (BF) indicating that the system is now internally operating  
on a previously received instruction. If BF is 1, the internal operation is in progress. The next instruction  
will not be accepted until BF is reset to 0. Check the BF status before the next write operation. At the  
same time, the value of the address counter in binary AAAAAAA is read out. This address counter is  
used by all CG, DD, and SEGRAM addresses, and its value is determined by the previous instruction.  
The address contents are the same as for CGRAM, DDRAM, and SEGRAM address set instructions.  
Table 10  
HS2 to HS0 Settings  
HS2  
0
HS1  
0
HS0  
Description  
0
No shift.  
0
0
1
Shift the display position to the left by one dot.  
Shift the display position to the left by two dots.  
Shift the display position to the left by three dots.  
Shift the display position to the left by four dots.  
Shift the display position to the left by five dots.  
No shift.  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0 or 1  
327  
HD66710  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Clear  
display  
Code  
Code  
Code  
Code  
0
0
0
0
0
0
0
0
0
1
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Return  
home  
Note: * Don’t care.  
0
0
0
0
0
0
0
0
1
*
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
I/D  
Entry  
mode set  
0
0
0
0
0
0
0
1
S
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Display  
on/off control  
0
0
0
0
0
0
1
D
C
B
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
FW B/W NW  
RE = 1  
Code  
Extended  
function set  
0
0
0
0
0
0
1
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
3/C R/L  
Cursor or  
display shift  
Code  
Code  
0
0
0
0
0
1
*
*
Note: * Don’t care.  
Note: * BE and LP  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DL RE BE* LP*  
0
0
0
0
0
N
Function set  
can be rewritten  
while RE = 1.  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Set CGRAM  
address  
0
0
0
1
A
A
A
A
A
A
RE = 0  
Code  
Highest  
order bit  
Lowest  
order bit  
Figure 15 Character Width Control  
328  
HD66710  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
1
A
A
A
A
A
A
A
Set DDRAM  
address  
RE = 0  
Highest  
order bit  
Lowest  
order bit  
DB6 DB5  
DB3  
DB2 DB1 DB0  
RS R/W DB7  
DB4  
HS0  
RE = 1  
Code  
Set SEGRAM  
address  
0
0
1
A
A
A
HS2 HS1  
*
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Read busy flag  
and address  
0
1
BF  
A
A
A
A
A
A
A
Highest  
order bit  
Lowest  
order bit  
Figure 15 Character Width Control (cont)  
329  
HD66710  
Write Data to CG, DD, or SEGRAM  
This instruction writes 8-bit binary data DDDDDDDD to CG, DD or SEGRAM. If the RE bit is cleared,  
CG or DDRAM is selected, as determined by the previous specification of the address set instruction; if  
the RE bit is set, SEGRAM is selected. After a write, the address is automatically incremented or  
decremented by 1 according to the entry mode. The entry mode also determines the display shift  
direction.  
Read Data from CG, DD, or SEGRAM  
This instruction reads 8-bit binary data DDDDDDDD from CG, DD, or SEGRAM. If the RE bit is  
cleared, CG or DDRAM is selected, as determined by the previous specification of the address set  
instruction; if the RE bit is set, SEGRAM is selected. If no address is specified, the first data read will be  
invalid. When executing serial read instructions, the next address is normally read from the next address.  
An address set instruction need not be executed just before this read instruction when shifting the cursor  
by a cursor shift instruction (when reading from DDRAM). A cursor shift instruction is the same as a set  
DDRAM address instruction.  
After a read, the entry mode automatically increases or decreases the address by 1. However, a display  
shift is not executed regardless of the entry mode.  
Note: The address counter (AC) is automatically incremented or decremented after write instructions to  
CG, DD or SEGRAM. The RAM data selected by the AC cannot be read out at this time even if  
read instructions are executed. Therefore, to read data correctly, execute either an address set  
instruction or a cursor shift instruction (only with DDRAM), or alternatively, execute a  
preliminary read instruction to ensure the address is correctly set up before accessing the data.  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Write data to  
CG, DD, or SEGRAM  
1
0
D
D
D
D
D
D
D
D
RE = 0/1  
Code  
Higher  
Lower  
order bits  
order bits  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RE = 0/1  
Code  
Read data from  
CG, DD, or SEGRAM  
1
0
D
D
D
D
D
D
D
D
Higher  
Lower  
order bits  
order bits  
Figure 15 Character Width Control (cont)  
330  
HD66710  
Interfacing the HD66710  
1) Interface to 8-Bit MPUs  
HD66710 can interface to 8-bit MPU directly with E clock, or to 8-bit MCU through I/O port. When  
number of I/O port in MCU, or interfacing bus width, 4-bit interface function is useful.  
RS  
R/W  
E
Internal  
signal  
Internal operation  
Busy  
Not  
Busy  
DB7  
Data  
Data  
Busy  
Instruction  
write  
Instruction  
write  
Busy flag check Busy flag check Busy flag check  
Figure 16 Example of 8-Bit Data Transfer Timing Sequence  
Connection to H8/325 with port (when single chip mode)  
C0  
C1  
C2  
E
H8/325  
HD66710  
RS  
R/W  
8
A0–A7  
DB0–DB7  
Figure 17 8-Bit MPU Interface  
331  
HD66710  
2) Interface to 4-Bit MPUs  
HD66710 can interface to 4-bit MCU through I/O port. 4-bit data for high and low order must be  
transferred twice continuously. The DL bit in function set selects the interface data length.  
RS  
R/W  
E
Internal  
signal  
Internal operation  
Not  
Busy  
Busy AC3  
AC3  
D7  
D3  
DB7  
IR7 IR3  
Instruction  
write  
Instruction  
write  
Busy flag check  
Busy flag check  
Figure 18 Example of 4-Bit Data Transfer Timing Sequence  
HMCS4019R  
HD66710  
COM1–  
16  
40  
D15  
D14  
D13  
RS  
R/W  
E
COM16  
Connected to  
the LCD  
SEG1–  
SEG40  
4
R10–R13  
DB4 –DB7  
Figure 19 Interface to HMCS4019R  
332  
HD66710  
Oscillator Circuit  
Relationship between Oscillation frequency and Liquid Crystal Display Frame Frequency  
The liquid crystal display frame frequencies of Figure 21 apply only when the oscillation frequency is  
270 kHz (one clock period: 3.7 µs).  
1) When an external clock is used  
2) When an internal oscillator is used  
The oscillator frequency can be  
adjusted by oscillator resistance  
(Rf). If Rf is increased or power  
supply voltage is decreased, the  
oscillator frequency decreases.  
The recommended oscillator  
resistor is as follows.  
Clock  
OSC1  
OSC1  
Rf  
OSC2  
HD66710  
HD66710  
• Rf = 91 k± 2% (VCC = 5V)  
• Rf = 75 k± 2% (VCC = 3V)  
Figure 20 Oscillator Circuit  
(1) 1 /17 duty cycle  
200 clocks (6-dot font width: 240 clocks)  
1
2
3
4
16 17  
1
2
3
16 17  
VCC  
V1  
COM1  
V4  
V5  
1 frame  
1 frame  
Normal Display Mode (LP = 0)  
5-Dot Font Width 6-Dot Font Width  
Low Power Mode (LP = 1)  
5-Dot Font Width 6-Dot Font Width  
Item  
Line selection period 200 clocks  
Frame frequency  
240 clocks  
66.2 Hz  
50 clocks  
79.4 Hz  
60 clocks  
66.2 Hz  
79.4 Hz  
(2) 1 /33 duty cycle  
100 clocks (6-dot font width: 120 clocks)  
1
2
3
4
32 33  
1
2
3
32 33  
VCC  
V1  
COM1  
V4  
V5  
1 frame  
1 frame  
Normal Display Mode (LP = 0)  
5-Dot Font Width 6-Dot Font Width  
Low Power Mode (LP = 1)  
5-Dot Font Width 6-Dot Font Width  
Item  
Line selection period 100 clocks  
Frame frequency  
120 clocks  
68.2 Hz  
50 clocks  
81.8 Hz  
60 clocks  
68.2 Hz  
81.8 Hz  
Figure 21 Frame Frequency  
333  
HD66710  
Power Supply for Liquid Crystal Display Drive  
1) When an external power supply is used  
VCC  
R
VCC  
V1  
V2  
V3  
V4  
V5  
R
R0  
R
R
VR  
VEE  
2) When an internal booster is used  
(Boosting twice)  
(Boosting three times)  
VCC  
VCC  
VCC  
VCC  
Vci  
NTC-type  
Vci  
NTC-type  
R
R
R
R
V1  
V2  
V3  
V4  
V5  
V1  
GND  
GND  
thermistor  
GND  
thermistor  
GND  
V2  
R0  
R
R0  
R
C1  
C2  
C1  
V3  
C2  
1µF  
1µF  
1µF  
+
+
V4  
V5OUT2  
V5OUT3  
V5OUT2  
R
R
V5  
1µF  
V5OUT3  
+
1µF  
+
+
GND  
GND  
Notes: 1. Boosting output voltage should not exceed the power supply voltage (2) (13V max.)  
in the absolute maximum ratings. Especially, voltage of over 4.3V should not be input  
to the reference voltage (Vci) when boosting three times.  
2. Vci input terminal is used for reference voltage and power supply for the internal booster.  
Input current into the Vci pin needs three times or more of load current through the  
bleeder resistor for LCD. So, when it adjusts LCD driving voltage (Vlcd), input voltage  
should be controlled with transistor to supply LCD load current.  
3. Please notice connection (+/–) when it uses capacitors with poler.  
334  
HD66710  
Table 11  
Duty Factor and Power Supply for Liquid Crystal Display Drive  
Item  
Data  
Number of Lines  
Duty factor  
1
2/4  
1/17  
1/5  
R
1/33  
1/6.7  
R
Bias  
Divided resistance  
R
R0  
R
2.7R  
Note: R changes depending on the size of liquid crystal penel. Normally, R must be 4.7 kto 20 k.  
335  
HD66710  
Extension Driver LSI Interface  
By bringing the EXT pin high, segment driver pins (SEG37 to SEG40) functions as the extended driver  
interface outputs. From these pins, a latch pulse (CL1), a shift clock (CL2), data (D), and an AC signal  
(M) are output. The same data is output from the SEG36 pin of the HD66710 and the start segment pin  
(Seg1) of the extension driver. Due to the character baundary, the Seg1 output is used for the 5-dot font  
width. For the 6-dot font width, the SEG36 output is used, and the Seg1 output of the extension driver  
must not be used. When the extension driver LSI interface is used, ground level (GND) must be higher  
than the V5 level.  
Table 12  
Required Number of 40-Output Extension Driver  
Controller  
Display Line  
16 × 2 lines  
20 × 2 lines  
24 × 2 lines  
40 × 2 lines  
12 × 4 lines  
16 × 4 lines  
20 × 4 lines  
HD66710*  
HD44780  
HD66702  
5-Dot Width  
Not required  
Not required  
1
5-Dot Width  
6-Dot Width  
5-Dot Width  
Not required  
1
1
1
1
2
1
2
2
Disabled  
Disabled  
4
3
1
2
2
1
2
3
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Note:  
*
The number of display lines can be extended to 30 × 2 lines or 20 × 4 lines.  
1) 1-chip operation  
(EXT = Low, 5-dot font width)  
2) When using the extension driver  
(EXT = High, 5-dot font width)  
VCC  
EXT  
HD66710  
GND  
EXT  
COM1–  
COM33  
24 × 2-line display  
SEG1–  
SEG35  
COM1–  
COM33  
HD66710  
16 × 2-line display  
SEG1–  
SEG40  
M
D
Seg1–  
Seg35  
SEG1–SEG40  
CL2  
CL1  
Extension driver  
Figure 22 HD66710 and the Extension Driver Connection  
336  
HD66710  
When using one HD66710, the start address of COM9–COM16/COM25–COM33 is calculated by adding  
8 to the start address of COM9–COM16 COM25–COM32. When extending the address, the start address  
is calculated by adding A(10) to COM9–COM16/COM25 to COM32. The relationship betweenmodes  
and display start addresses is shown below.  
Table 13  
Display Start Address in Each Mode  
Number of Lines  
2-Line Mode  
1-Line Mode  
4-Line Mode  
EXT Low/High  
D00±1  
Output  
EXT Low  
D00±1  
D08±1  
EXT High  
D00±1  
D0A±1  
EXT Low  
D00±1  
D08±1  
D40±1  
D48±1  
EXT High  
D00±1  
D0A±1  
D40±1  
D4A±1  
COM1–COM8  
COM9–COM16  
COM17–COM24  
COM25–COM32  
COM17  
D20±1  
D40±1  
D60±1  
S00  
S00  
COM33  
S00  
S00  
S00  
Notes: 1. When an EXT pin is low, the extension driver is not used; otherwise, the extension driver is  
used.  
2. D— is the start address of display data RAM (DDRAM) for each display line.  
3. S— is the start address of segment RAM (SEGRAM).  
4. ±1 following D— indicates increment or decrement at display shift.  
337  
HD66710  
Interface to Liquid Crystal Display  
Example of 5-dot font width connection  
1
8
9
16  
HD66710  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM17  
±
+ – x ÷ = ≠  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG40  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
EXT  
a) 16 × 1-line + 40-segment display (5-dot font, 1/17 duty)  
1
8
9
16  
HD66710  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM33  
± + – x ÷ = ≠  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG40  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
EXT  
b) 16 × 2-line + 40-segment display (5-dot font, 1/33 duty)  
Figure 23 Liquid Crystal Display and HD66710 Connections (Single-Chip Operation)  
338  
HD66710  
Example of 6-dot font width connection  
1
2
6
7
8
12  
HD66710  
Note: The DDRAM address between  
6th and 7th digits is not contiguous.  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
±
+
x
÷
= ≠  
COM33  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG36  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
EXT  
a) 12 × 2-line + 36-segment display (6-dot font, 1/33 duty)  
Figure 24 Liquid Crystal Display and HD66710 Connections (6-Dot Font Width)  
339  
HD66710  
Instruction and Display Correspondence  
8-bit operation, 16-digit × 1-line display with internal reset  
Refer to Table 14 for an example of an 16-digit × 1-line display in 8-bit operation. The HD66710  
functions must be set by the function set instruction prior to the display. Since the display data RAM  
can store data for 80 characters, a character unit scroll can be performed by a display shift instruction.  
A dot unit smooth scroll can also be performed by a horizontal scroll instruction. Since data of display  
RAM (DDRAM) is not changed by a display shift instruction, the display can be returned to the first  
set display when the return home operation is performed.  
4-bit operation, 16-digit × 1-line display with internal reset  
The program must set all functions prior to the 4-bit operation (Table 15). When the power is turned  
on, 8-bit operation is automatically selected and the first write is performed as an 8-bit operation.  
Since DB0 to DB3 are not connected, a rewrite is then required. However, since one operation is  
completed in two accesses for 4-bit operation, a rewrite is needed to set the functions (see Table 15).  
Thus, DB4 to DB7 of the function set instruction is written twice.  
8-bit operation, 16-digit × 2-line display with internal reset  
For a 2-line display, the cursor automatically moves from the first to the second line after the 40th  
digit of the first line has been written. Thus, if there are only 16 characters in the first line, the  
DDRAM address must be again set after the 16th character is completed (See Table 16).  
The display shift is performed for the first and second lines. If the shift is repeated, the display of the  
second line will not move to the first line. The same display will only shift within its own line for the  
number of times the shift is repeated.  
8-bit operation, 8-digit × 4-line display with internal reset  
The RE bit must be set by the function set instruction and then the NW bit must be set by an  
extension function set instruction. In this case, 4-line display is always performed regardless of the N  
bit setting (Table 17).  
In a 4-line display, the cursor automatically moves from the first to the second line after the 20th digit  
of the first line has been written. Thus, if there are only 8 characters in the first line, the DDRAM  
address must be set again after the 8th character is completed. Display shifts are performed on all  
lines simultaneously.  
Note: When using the internal reset, the electrical characteristics in the Power Supply Conditions Using  
Internal Reset Circuit table must be satisfied. If not, the HD66710 must be initialized by  
instructions. See the section, Initializing by Instruction.  
340  
HD66710  
Table 14  
8-Bit Operation, 16-Digit × 1-Line Display Example with Internal Reset  
Instruction  
Step  
No. RS R/  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Display  
Operation  
1
Power supply on (the HD66710 is initialized by the internal reset  
circuit)  
Initialized. No display.  
2
Function set  
Sets to 8-bit operation and  
selects 1-line display.  
0
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
*
*
Bit 2 must always be cleared.  
3
4
Display on/off control  
Turns on display and cursor.  
Entire display is in space mode  
because of initialization.  
_
_
0
0
0
0
0
1
1
0
0
Entry mode set  
Sets mode to increment the  
address by one and to shift the  
cursor to the right at the time of  
write to the RAM.  
0
0
0
Display is not shifted.  
5
Write data to CGRAM/DDRAM  
Writes H. DDRAM has already  
been selected by initialization  
when the power was turned on.  
H_  
1
0
0
1
0
0
0
1
1
0
0
0
0
0
1
6
7
Write data to CGRAM/DDRAM  
Writes I.  
HI_  
1
0
0
1
0
·
·
·
·
·
·
·
·
·
·
8
Write data to CGRAM/DDRAM  
Writes I.  
HITACHI_  
HITACHI_  
1
0
0
1
0
0
0
0
1
0
0
0
1
0
0
1
0
1
1
0
9
Entry mode set  
Sets mode to shift display at the  
time of write.  
0
0
0
0
0
10  
Write data to CGRAM/DDRAM  
Writes a space.  
ITACHI  
_
1
0
0
0
1
341  
HD66710  
Table 14  
8-Bit Operation, 16-Digit × 1-Line Display Example with Internal Reset (cont)  
Instruction  
Step  
No. RS R/  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Display  
Operation  
11  
Write data to CGRAM/DDRAM  
Writes M.  
TACHI M_  
1
0
0
1
0
0
1
1
0
1
12  
·
·
·
·
·
·
·
·
·
·
13  
14  
15  
16  
17  
18  
19  
20  
Write data to CGRAM/DDRAM  
Writes O.  
MICROKO_  
MICROKO_  
MICROK_O  
ICROCO_  
1
0
0
1
0
0
0
0
1
1
0
1
1
0
1
0
0
0
1
0
1
1
0
0
0
1
1
1
1
*
1
*
Cursor or display shift  
Shifts only the cursor position to  
the left.  
0
0
0
0
Cursor or display shift  
Shifts only the cursor position to  
the left.  
0
0
0
0
*
*
Write data to CGRAM/DDRAM  
Writes C over K.  
1
0
0
1
0
0
0
1
*
1
*
The display moves to the left.  
Cursor or display shift  
Shifts the display and cursor  
position to the right.  
MICROCO_  
MICROCO_  
ICROCOM_  
0
0
0
0
Cursor or display shift  
Shifts the display and cursor  
position to the right.  
0
0
0
0
*
*
Write data to CGRAM/DDRAM  
0 1 0  
Writes M.  
1
0
0
1
·
·
·
·
·
·
·
·
·
·
21  
Return home  
Returns both display and cursor  
to the original position (address  
0).  
H_ITACHI  
0
0
0
0
0
0
0
0
1
0
342  
HD66710  
Table 15  
4-Bit Operation, 16-Digit × 1-Line Display Example with Internal Reset  
Instruction  
Step  
No. RS R/  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Display  
Operation  
1
Power supply on (the HD66710 is initialized by the internal reset  
circuit)  
Initialized. No display.  
2
Function set  
Sets to 4-bit operation.  
Clear bit 2. In this case,  
operation is handled as 8 bits by  
initialization. *  
0
0
0
0
1
0
3
Function set  
Sets 4-bit operation and  
selects1-line display. Clear BE,  
LP bits. 4-bit operation starts  
from this step.  
0
0
0
0
0
0
0
1
1
0
0
0
4
5
6
7
Function set  
Sets 4-bit operation and  
selects1-line display. Clear RE  
bit.  
0
0
0
0
0
0
0
0
1
*
0
*
Return home  
Returns both display and cursor  
to the original position (address  
0).  
0
0
0
0
0
0
0
0
0
1
0
0
Display on/off control  
Turns on display and cursor.  
Entire display is in space mode  
because of initialization.  
_
_
0
0
0
0
0
1
0
1
0
1
0
0
Entry mode set  
Sets mode to increment the  
address by one and to shift the  
cursor to the right at the time of  
write to the DD/CGRAM.  
Display is not shifted.  
0
0
0
0
0
0
0
1
0
1
0
0
8
Write data to CGRAM/DDRAM  
Writes H.  
H_  
1
1
0
0
0
1
1
0
0
0
0
0
DDRAM has already been  
selected by initialization.  
Note: 1. The control is the same as for 8-bit operation beyond step #8.  
2. When DB3 to DB0 pins are open in 4-bit mode, the RE, BE, LP bits are set to “1” at step #2.  
So, these bits are clear to “0” at step #3.  
343  
HD66710  
Table 16  
8-Bit Operation, 16-Digit × 2-Line Display Example with Internal Reset  
Instruction  
Step  
No. RS R/  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Display  
Operation  
1
2
Power supply on (the HD66710 is initialized by the internal reset  
circuit)  
Initialized. No display.  
Function set  
Sets to 8-bit operation and  
selects 1-line display.  
Clear bit 2.  
0
0
0
0
1
0
0
1
0
0
1
1
0
0
1
1
*
*
3
4
Display on/off control  
Turns on display and cursor. All  
display is in space mode  
because of initialization.  
_
_
0
0
0
0
0
1
1
0
0
Entry mode set  
Sets mode to increment the  
address by one and to shift the  
cursor to the right at the time of  
write to the RAM.  
0
0
0
Display is not shifted.  
5
6
Write data to CGRAM/DDRAM  
Writes H. DDRAM has already  
been selected by initialization  
when the power was turned on.  
H_  
1
0
0
1
0
0
1
0
0
0
·
·
·
·
·
·
·
·
·
·
7
8
Write data to CGRAM/DDRAM  
Writes I.  
HITACHI_  
1
0
0
1
0
0
0
1
0
0
0
0
0
1
0
Set DDRAM address  
Sets RAM address so that the  
cursor is positioned at the head  
of the second line.  
HITACHI  
_
0
0
1
1
0
344  
HD66710  
Table 16  
8-Bit Operation, 16-Digit × 2-Line Display Example with Internal Reset (cont)  
Instruction  
Step  
No. RS R/  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Display  
Operation  
9
Write data to CGRAM/DDRAM  
Writes a space.  
HITACHI  
M_  
1
0
0
1
0
0
1
1
0
1
10  
·
·
·
·
·
·
·
·
·
·
11  
12  
13  
14  
Write data to CGRAM/DDRAM  
Writes O.  
HITACHI  
1
0
0
1
0
0
0
0
1
0
1
1
1
1
1
1
0
1
1
1
MICROCO_  
Entry mode set  
Sets mode to shift display at the  
time of write.  
HITACHI  
0
0
0
0
0
MICROCO_  
Write data to CGRAM/DDRAM  
0 1 0  
Writes M.  
ITACHI  
1
0
ICROCOM_  
·
·
·
·
·
·
·
·
·
·
15  
Return home  
Returns both display and cursor  
to the original position (address  
0).  
H_ITACHI  
0
0
0
0
0
0
0
0
1
0
MICROCOM  
345  
HD66710  
Table 17  
8-Bit Operation, 8-Digit × 4-Line Display Example with Internal Reset  
Instruction  
Step  
No. RS R/  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Display  
Operation  
1
2
3
4
5
6
Power supply on (the HD66710 is initialized by the internal reset  
circuit)  
Initialized. No display.  
Function set  
Sets to 8 bit operation and the  
extended register enable bit.  
0
0
0
0
0
1
0
1
0
0
1
1
0
*
*
4-line mode set  
Sets 4-line display.  
0
0
0
0
1
Function set  
Clear extended register enable bit  
Clears the extended register  
enable bit. Setting the N bit is  
“don’t care”.  
0
0
0
0
1
1
0
1
0
1
*
*
Display on/off control  
Turns on display and cursor.  
Entire display is in space mode  
because of initialization.  
_
_
0
0
0
0
0
0
1
0
Entry mode set  
Sets mode to increment the  
address by one and to shift the  
cursor to the right at the time of  
write to the RAM. Display is not  
shifted.  
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
7
Write data to CGRAM/DDRAM  
Writes H. DDRAM has already  
been selected by initialization  
when the power was turned on.  
H_  
1
0
0
1
0
8
346  
HD66710  
Table 17  
8-Bit Operation, 8-Digit × 4-Line Display Example with Internal Reset (cont)  
Instruction  
Step  
No. RS R/  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Display  
Operation  
9
Write data to CGRAM/DDRAM  
Writes I.  
HITACHI_  
1
0
0
1
0
1
0
1
0
0
1
10  
Set DDRAM address  
Sets RAM address so that the  
cursor is positioned at the head  
of the second line.  
HITACHI  
_
0
0
1
0
0
1
0
0
0
0
0
0
0
0
11 Write data to CGRAM/DDRAM  
Writes 0.  
HITACHI  
0_  
1
0
0
0
1
347  
HD66710  
Initializing by Instruction  
If the power supply conditions for correctly operating the internal reset circuit are not met, initialization  
by instructions becomes necessary.  
Power on  
• Wait for more than 15 ms  
after VCC rises to 4.5V  
(VCC = 5V)  
• Wait for more than 40 ms  
after VCC rises to 2.7V  
(VCC = 3V)  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long.)  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
1
*
*
*
*
Wait for more than 4.1 ms  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long.)  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
1
*
*
*
*
Wait for more than 100 µs  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long.)  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
1
*
*
*
*
BF can be checked after the following instructions.  
When BF is not checked, the waiting time between  
instructions is longer than the execution instuction  
time. (See Table 7.)  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Function set  
0
0
0
0
1
1
N
0
*
0
*
0
1
S
Display off  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
Display clear  
Entry mode set  
I/D  
Initialization ends  
Figure 25 8-Bit Interface  
348  
HD66710  
Power on  
Important Notice  
Notes: 1. When DB3 to DB0 pins are open in 4-bit mode,  
the N, RE, BE, LP bits are set to “1”. In this case,  
instruction time becomes four times in a low  
power mode (LP = “1”).  
• Wait for more than 15 ms  
after VCC rises to 4.5V  
(VCC = 5V)  
• Wait for more than 40 ms  
after VCC rises to 2.7V  
(VCC = 3V)  
2. The low power mode is available in this step, so  
instruction time takes four times.  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long.)  
RS R/W DB7 DB6 DB5 DB4  
0
0
0
0
1
1
Wait for more than 4.1 ms  
RS R/W DB7 DB6 DB5 DB4  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long.)  
0
0
0
0
1
1
Wait for more than 100 µs  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long.)  
RS R/W DB7 DB6 DB5 DB4  
*1  
0
0
0
0
1
1
BF can be checked after the following instructions.  
When BF is not checked, the waiting time between  
instructions is longer than the execution instuction  
time. (See Table 7.)  
RS R/W DB7 DB6 DB5 DB4  
*1  
*2  
0
0
0
0
1
0
Function set (4-bit mode).  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
N
0
N
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
*
Function set (4-bit mode, N specification).  
BE, LP are clear to “0”  
1
Function set (4-bit mode, N specification).  
*
0
0
0
0
1
0
S
Display off  
0
0
Display clear  
0
0
Entry mode set (I/D, S specification)  
I/D  
Initialization ends  
Figure 26 4-Bit Interface  
349  
HD66710  
Horizontal Dot Scroll  
Dot unit shifts are performed by setting the horizontal dot scroll bit (HDS) when the extension register is  
enabled (RE = 1). By combining this with character unit display shift instructions, smooth horizontal  
scrolling can be performed on a 6-dot font width display as shown below.  
6-dot font width (FW = 1)  
5-dot font width (FW = 0)  
No shift performed  
No shift performed  
Shift to the left by one dot  
Shift to the left by two dots  
Shift to the left by three dots  
Shift to the left by four dots  
Shift to the left by one dot  
Shift to the left by two dots  
Shift to the left by three dots  
Shift to the left by four dots  
Shift to the left by five dots  
Figure 27 Shift in 5- and 6-Dot Font Width  
(1) Method of smooth scroll to the left  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Enable the extension register  
1
2
0
0
0
0
1
DL  
N
1
*
*
0
0
1
0
0
1
Shift the whole display to the left by one dot  
*
*
*
*
CPU Wait  
Shift the whole display to the left by two dots  
Shift the whole display to the left by three dots  
Shift the whole display to the left by four dots  
Shift the whole display to the left by five dots*1  
3
4
5
6
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CPU Wait  
1
1
CPU Wait  
0
0
CPU Wait  
0
1
CPU Wait  
7
8
0
0
0
0
1
0
0
0
0
Perform no shift  
*
*
*
*
*
*
Shift the whole display to the left by one character*2  
0
0
1
1
0
CPU Wait  
Notes: 1. When the font width is five (FW = 0), this step is skipped.  
2. The extended register enable bit (RE) is cleared.  
Figure 28 Smooth Scroll to the Left  
350  
HD66710  
(2) Method of smooth scroll to the right  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Shift the whole display to the right by one  
character *2  
1
2
0
0
0
0
0
1
1
1
*
*
0
0
0
0
1
DL  
N
1
Enable the extension register  
*
*
CPU Wait  
Shift the whole display to the left by five dots*1  
Shift the whole display to the left by four dots  
3
4
5
6
7
8
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CPU Wait  
0
0
CPU Wait  
1
1
Shift the whole display to the left by three dots  
Shift the whole display to the left by two dots  
CPU Wait  
1
0
CPU Wait  
0
1
Shift the whole display to the left by one dot  
Perform no shift  
CPU Wait  
0
0
Notes: 1.  
2.  
When the font width is five (FW = 0), this step is skipped.  
The extended register enable bit (RE) is cleared.  
Figure 28 Smooth Scroll to the Left (cont)  
351  
HD66710  
Low Power Mode  
When LP bit is 1 and the EXT pin is low (without an extended driver), the HD66710 operates in low  
power mode. In 1-line display mode, the HD66710 operates on a 4-division clock, and in 2-line or 4-line  
display mode, it operates on 2-division clock. So, instruction execution takes four times or twice as long.  
Notice that in this mode, display shift and scroll cannot be performed. Clear display shift with the return  
home instruction, and the horizontal scroll quantity.  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Extended register enable  
0
0
0
0
1
DL  
N
BE  
0
1
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AS2 AS1 AS0  
Clear horizontal scroll quantity  
HDS = “000”  
0
0
1
0
0
0
0
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DL BE  
Set a low power mode  
Return home  
0
0
0
0
1
N
1
1
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
1
Note: In this operation, instruction execution time  
takes four times or twice as long.  
Low power operation  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Reset a power mode  
Return home  
0
0
0
0
1
DL  
N
BE  
1
0
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
1
Figure 29 Low Power Mode Operation  
352  
HD66710  
Absolute Maximum Ratings  
Item  
Symbol  
Value  
Unit  
V
Notes*  
Power supply voltage (1)  
Power supply voltage (2)  
Input voltage  
VCC  
–0.3 to +7.0  
–0.3 to +15.0  
–0.3 to VCC +0.3  
–20 to +75  
–55 to +125  
1
VCC–V5  
Vt  
V
1, 2  
1
V
Operating temperature  
Storage temperature  
Topr  
°C  
°C  
Tstg  
4
Notes: If the LSI is used above these absolute maximum ratings, it may become permanently damaged.  
Using the LSI within the following electrical characteristic limits is strongly recommended for normal  
operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction  
and cause poor reliability.  
* Refer to the Electrical Characteristics Notes section following these tables.  
353  
HD66710  
DC Characteristics (VCC = 2.7V to 5.5V, Ta = –20°C to +75°C*3)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Notes*  
Input high voltage (1) VIH1  
(except OSC1)  
0.7VCC  
VCC  
V
6
Input low voltage (1)  
(except OSC1)  
VIL1  
–0.3  
0.2VCC  
0.6  
V
6
–0.3  
Input high voltage (2) VIH2  
(OSC1)  
0.7VCC  
VCC  
V
15  
15  
7
Input low voltage (2)  
(OSC1)  
VIL2  
2
0.2VCC  
V
Output high voltage (1) VOH1 0.75VCC  
(D0–D7)  
V
–IOH = 0.1 mA  
IOL = 0.1 mA  
Output low voltage (1) VOL1  
(D0–D7)  
0.2VCC  
V
7
Output high voltage (2) VOH2 0.8VCC  
(except D0–D7)  
V
–IOH = 0.04 mA  
IOL = 0.04 mA  
8
Output low voltage (2) VOL2  
(except D0–D7)  
0.2VCC  
20  
V
8
Driver on resistance  
(COM)  
RCOM  
kΩ  
kΩ  
±Id = 0.05 mA (COM)  
VLCD = 4V  
13  
13  
9
Driver on resistance  
(SEG)  
RSEG  
2
30  
±Id = 0.05 mA (SEG)  
VLCD = 4V  
I/O leakage current  
Pull-up MOS current  
ILI  
–1  
5
1
µA  
µA  
VIN = 0 to VCC  
–Ip  
50  
120  
V
= 3V  
(D0–D7, RS, R/  
)
VCINC = 0V  
Power supply current  
ICC  
150  
80  
300  
µA  
µA  
µA  
Rf oscillation, external clock 10, 14  
VCC = 3V, fOSC = 270 kHz  
ILP1  
ILP2  
LP mode, 1/17 duty  
VCC = 3V, fOSC = 270 kHz  
100  
LP mode, 1/33 duty  
VCC = 3V, fOSC = 270 kHz  
LCD voltage  
VLCD1 3.0  
VLCD2 3.0  
13.0  
13.0  
V
V
VCC–V5, 1/5 bias  
16  
VCC–V5, 1/6.7 bias  
Note:  
*
Refer to the Electrical Characteristics Notes section following these tables.  
Booster Characteristics  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Notes*  
Output voltage  
(V5OUT2 pin)  
VUP2 7.5  
8.7  
V
Vci = 4.5V, I0 = 0.25 mA,  
C = 1 µF, fOSC = 270 kHz,  
Ta = 25°C  
18, 19  
Output  
VUP3 7.0  
7.7  
V
V
Vci = 2.7V, I0 = 0.25 mA,  
C = 1 µF, fOSC = 270 kHz,  
Ta = 25°C  
18, 19  
voltage(V5OUT3 pin)  
Input voltage  
Note:  
VCi  
1.0  
5.0  
18, 19,  
20  
*
Refer to the Electrical Characteristics Notes section following these tables.  
354  
HD66710  
AC Characteristics (VCC = 2.7V to 5.5V, Ta = –20°C to +75°C*3)  
Clock Characteristics  
Item  
Symbol Min  
Typ  
270  
50  
Max Unit Test Condition Notes*  
External  
clock  
operation  
External clock frequency  
External clock duty  
fcp  
125  
45  
350  
55  
kHz  
%
11  
Duty  
trcp  
External clock rise time  
External clock fall time  
0.2  
0.2  
350  
µs  
tfcp  
µs  
Rf  
Clock oscillation frequency fOSC  
190  
270  
kHz  
Rf = 91 k,  
12  
oscillation  
VCC = 5V  
Note:  
*
Refer to the Electrical Characteristics Notes section following these tables.  
Bus Timing Characteristics (1) (VCC = 2.7V to 4.5V, Ta = –20°C to +75°C*3)  
Write Operation  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Enable cycle time  
Enable pulse width (high level)  
Enable rise/fall time  
tcycE  
1000  
450  
ns  
Figure 30  
PWEH  
tEr, tEf  
25  
Address set-up time (RS, R/ to E) tAS  
60  
Address hold time  
Data set-up time  
Data hold time  
tAH  
tDSW  
tH  
20  
195  
10  
Read Operation  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Enable cycle time  
Enable pulse width (high level)  
Enable rise/fall time  
tcycE  
1000  
450  
ns  
Figure 31  
PWEH  
tEr, tEf  
25  
Address set-up time (RS, R/ to E) tAS  
60  
Address hold time  
Data delay time  
Data hold time  
tAH  
20  
tDDR  
tDHR  
360  
5
355  
HD66710  
Bus Timing Characteristics (2) (VCC = 4.5V to 5.5V, Ta = –20°C to +75°C*3)  
Write Operation  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Enable cycle time  
Enable pulse width (high level)  
Enable rise/fall time  
tcycE  
500  
230  
ns  
Figure 30  
PWEH  
tEr, tEf  
20  
Address set-up time (RS, R/ to E) tAS  
40  
Address hold time  
Data set-up time  
Data hold time  
tAH  
tDSW  
tH  
10  
80  
10  
Read Operation  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Enable cycle time  
Enable pulse width (high level)  
Enable rise/fall time  
tcycE  
500  
230  
ns  
Figure 31  
PWEH  
tEr, tEf  
20  
Address set-up time (RS, R/ to E) tAS  
40  
10  
Address hold time  
Data delay time  
Data hold time  
tAH  
tDDR  
tDHR  
160  
5
Segment Extension Signal Timing (VCC = 2.7V to 5.5V, Ta = –20°C to +75°C*3)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Clock pulse width  
High level  
Low level  
tCWH  
tCWL  
tCSU  
tSU  
500  
500  
500  
300  
300  
–1000  
ns  
Figure 32  
Clock set-up time  
Data set-up time  
Data hold time  
M delay time  
tDH  
tDM  
tct  
1000  
600  
Clock rise/fall time  
356  
HD66710  
Power Supply Conditions Using Internal Reset Circuit  
Item  
Symbol Min  
Typ  
Max  
10  
Unit  
Test Condition  
Power supply rise time  
Power supply off time  
trCC  
0.1  
1
ms  
Figure 33  
tOFF  
Electrical Characteristics Notes  
1. All voltage values are referred to GND = 0V. If the LSI is used above these absolute maximum  
ratings, it may become permanently damaged. Using the LSI within the following electrical  
characteristic limits is strongly recommended for normal operation. If these electrical characteristic  
conditions are also exceeded, the LSI will malfunction and cause poor reliability.  
2. VCC V5 must be maintained. In addition, if the SEG37/CL1, SEG38/CL2, SEG39/D, and SEG40/M  
are used as extension driver interface signals (EXT = high), GND V5 must be maintained.  
3. For die products, specified up to 75°C.  
4. For die products, specified by the die shipment specification.  
5. The following four circuits are I/O pin configurations except for liquid crystal display output.  
Input pin  
Pin: E (MOS without pull-up)  
Pins: RS, R/W (MOS with pull-up)  
VCC  
VCC VCC  
PMOS  
PMOS  
PMOS  
NMOS  
(pull up MOS)  
NMOS  
I/O pin  
Pins: DB0 –DB7  
VCC  
VCC  
(MOS with pull-up)  
(pull-up MOS)  
(input circuit)  
PMOS  
PMOS  
Input enable  
NMOS  
VCC  
NMOS  
PMOS  
Output enable  
data  
NMOS  
(output circuit)  
(tristate)  
357  
HD66710  
6. Applies to input pins and I/O pins, excluding the OSC1 pin.  
7. Applies to I/O pins.  
8. Applies to output pins.  
9. Current flowing through pull-up MOSs, excluding output drive MOSs.  
10. Input/output current is excluded. When input is at an intermediate level with CMOS, the excessive  
current flows through the input circuit to the power supply. To avoid this from happening, the input  
level must be fixed high or low.  
11. Applies only to external clock operation.  
Th  
Tl  
Oscillator  
Open  
OSC1  
OSC2  
0.7 VCC  
0.5 VCC  
0.3 VCC  
trcp  
× 100%  
tfcp  
Th  
h + Tl  
Duty =  
T
12. Applies only to the internal oscillator operation using oscillation resistor Rf.  
Rf : 75 k± 2% (when VCC = 3 V to 4V)  
OSC1  
Rf : 91 k± 2% (when VCC = 4 V to 5V)  
Rf  
Since the oscillation frequency varies depending on the OSC1 and  
OSC2 pin capacitance, the wiring length to these pins should be minimized.  
OSC2  
VCC = 5V  
VCC = 3V  
500  
400  
300  
500  
400  
300  
max.  
typ.  
(270)  
(270)  
max.  
200  
100  
200  
100  
typ.  
min.  
150  
min.  
150  
(75)  
(91)  
100  
100  
50  
50  
Rf (k)  
Rf (k)  
358  
HD66710  
13. RCOM is the resistance between the power supply pins (VCC, V1, V4, V5) and each common signal  
pin (COM1 to COM33).  
RSEG is the resistance between the power supply pins (VCC, V2, V3, V5) and each segment signal pin  
(SEG1 to SEG40).  
14. The following graphs show the relationship between operation frequency and current consumption.  
V
CC = 5V  
V
CC = 3V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
max.  
typ.  
max.  
typ.  
typ. (LP mode)  
0
100 200 300 400 500  
fOSC or fcp (kHz)  
0
100 200 300 400 500  
fOSC or fcp (kHz)  
15. Applies to the OSC1 pin.  
16. Each COM and SEG output voltage is within ±0.15V of the LCD voltage (VCC, V1, V2, V3, V4, V5)  
when there is no load.  
17. The TEST pin must be fixed to the ground, and the EXT or VCC pin must also be connected to the  
ground.  
18. Booster characteristics test circuits are shown below.  
Boosting twice  
VCC  
Boosting three times  
VCC  
Vci  
C1  
C2  
Rload  
IO  
Vci  
C1  
C2  
Rload  
IO  
1 µF  
1 µF  
+
+
V5OUT2  
V5OUT2  
1 µF  
1 µF  
1 µF  
+
+
+
V5OUT3  
V5OUT3  
GND  
GND  
359  
HD66710  
19. Reference data  
The following graphs show the liquid crystal voltage booster characteristics.  
VUP2 = VCC–V5OUT2  
VUP3 = VCC–V5OUT3  
(1) VUP2, VUP3 vs Vci  
Boosting twice  
Boosting three times  
11  
10  
9
15  
14  
13  
12  
11  
10  
9
typ.  
typ.  
8
7
6
8
7
5
4
6
2.0  
3.0  
4.0  
5.0  
2.0  
3.0  
4.0  
5.0  
Vci (V)  
Vci (V)  
Test condition: Vci = VCC, fcp = 270 kHz  
Test condition: Vci = VCC, fcp = 270 kHz  
Ta = 25°C, Rload = 25 kΩ  
Ta = 25°C, Rload = 25 kΩ  
(2) VUP2, VUP3 vs Io  
Boosting twice  
9.0  
Boosting three times  
8.0  
8.5  
7.5  
7.0  
typ.  
min.  
8.0  
7.5  
7.0  
6.5  
6.0  
6.5  
typ.  
min.  
6.0  
5.5  
5.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Io (mA)  
Io (mA)  
Test condition: Vci = VCC = 4.5V  
Rf = 91 k, Ta = 25°C  
Test condition: Vci = VCC = 2.7V  
Rf = 75 k, Ta = 25°C  
(3) VUP2, VUP3 vs Ta  
Boosting twice  
Boosting three times  
9.0  
8.5  
8.0  
7.5  
7.0  
8.0  
7.5  
7.0  
6.5  
6.0  
typ.  
typ.  
min.  
min.  
–60 –20  
0
20  
60  
100  
–60 –20  
0
20  
60 100  
Ta (°C)  
Ta (°C)  
Test condition: Vci = VCC = 4.5V  
Rf = 91 k, Io = 0.25 mA  
Test condition: Vci = VCC = 2.7V  
Rf = 75 k, Io = 0.25 mA  
360  
HD66710  
(4) VUP2, VUP3 vs Capacitance  
Boosting twice  
9.0  
Boosting three times  
typ.  
min.  
8.0  
7.5  
7.0  
6.5  
6.0  
typ.  
min.  
8.5  
8.0  
7.5  
7.0  
0.5  
1.0  
1.5  
0.5  
1.0  
1.5  
C (µF)  
C (µF)  
Test condition: Vci = VCC = 4.5V  
Rf = 91 k, Io = 0.25 mA  
Test condition: Vci = VCC = 2.7V  
Rf = 75 k, Io = 0.25 mA  
20. Vci VCC must be maintained.  
Load Circuits  
AC Characteristics Test Load Circuits  
Data bus: DB0–DB7  
Segment extension signals: CL1, CL2, D, M  
Test  
point  
Test  
point  
30 pF  
50 pF  
361  
HD66710  
Timing Characteristics  
VIH1  
VIL1  
VIH1  
VIL1  
RS  
R/W  
E
tAS  
tAH  
VIL1  
VIL1  
PWEH  
tAH  
tEf  
VIH1  
VIL1  
VIH1  
VIL1  
VIL1  
tEr  
tDSW  
tH  
VIH1  
VIL1  
VIH1  
VIL1  
Valid data  
tcycE  
DB0 to DB7  
Figure 30 Write Operation  
VIH1  
VIL1  
VIH1  
VIL1  
RS  
R/W  
E
tAS  
tAH  
VIH1  
VIH1  
PWEH  
tAH  
tEf  
VIH1  
VIL1  
VIH1  
VIL1  
VIL1  
tEr  
tDDR  
tDHR  
VOH1  
VOH1  
*VOL1  
Valid data  
tcycE  
DB0 to DB7  
*
VOL1  
Note: VOL1 is assumed to be 0.8V at 2 MHz operation.  
Figure 31 Read Operation  
362  
HD66710  
tct  
VOH2  
VOH2  
tCWH  
CL1  
CL2  
D
VOL2  
tCWH  
VOH2  
VOL2  
tCSU  
tCWL  
tct  
VOH2  
VOL2  
tDH  
tSU  
M
VOL2  
tDM  
Figure 32 Interface Timing with External Driver  
*2  
2.7V/4.5V  
VCC  
0.2V  
0.2V  
0.2V  
trcc  
tOFF*1  
tOFF 1 ms  
0.1 ms trcc 10 ms  
Notes: 1. tOFF compensates for the power oscillation period caused by momentary power  
supply oscillations.  
2. Specified at 4.5V for standard voltage operation, and at 2.7V for low voltage operation.  
3. If the above electrical conditions are not satisfied, the internal reset circuit will not  
operate normally. In this case, the LSI must be initialized by software. (Refer to the  
Initializing by Instruction section.)  
Figure 33 Power Supply Sequemce  
363  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY