PF08107B [HITACHI]

Narrow Band High Power Amplifier, 880MHz Min, 915MHz Max, RF-K-8, 10 PIN;
PF08107B
型号: PF08107B
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Narrow Band High Power Amplifier, 880MHz Min, 915MHz Max, RF-K-8, 10 PIN

高功率电源 射频 微波
文件: 总44页 (文件大小:171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PF08107B  
MOS FET Power Amplifier Module  
for E-GSM and DCS1800 Dual Band Handy Phone  
ADE-208-787F (Z)  
7th Edition  
Feb. 2001  
Application  
Dual band amplifier for E-GSM (880 MHz to 915 MHz) and DCS1800 (1710 MHz to 1785 MHz).  
For 3.5 V nominal operation  
Features  
2 in / 2 out dual band amplifier  
Simple external circuit including output matching circuit  
One power control pin with one band switch  
High gain 3stage amplifier : 0 dBm input Typ  
Lead less thin & Small package : 8 × 13.75 × 1.6 mm Typ  
High efficiency : 50 % Typ at 35.0 dBm for E-GSM  
43 % Typ at 32.0 dBm for DCS1800  
Pin Arrangement  
RF-K-8  
1: Pin GSM  
2: Vapc  
3: Vdd1  
5
6
G
G
4
4: Pout GSM  
5: Pout DCS  
6: Vdd2  
7: Vctl  
8: Pin DCS  
G: GND  
7
8
3
G
G
2
1
PF08107B  
Absolute Maximum Ratings (Tc = 25°C)  
Item  
Symbol  
Vdd  
Rating  
Unit  
V
Supply voltage  
Supply current  
8
Idd GSM  
Idd DCS  
Vctl  
3.5  
A
2
A
Vctl voltage  
4
V
Vapc voltage  
Vapc  
4
V
Input power  
Pin  
10  
dBm  
°C  
°C  
W
Operating case temperature  
Storage temperature  
Output power  
Tc (op)  
Tstg  
30 to +100  
30 to +100  
Pout GSM  
Pout DCS  
5
3
W
Note: The maximum ratings shall be valid over both the E-GSM-band (880 to 915 MHz),  
and the DCS1800-band (1710 to 1785 MHz).  
Electrical Characteristics for DC (Tc = 25°C)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Drain cutoff current  
Ids  
20  
µA  
Vdd = 4.7 V, Vapc = 0 V,  
Vctl = 0.2 V  
300  
µA  
Vdd = 8 V, Vapc = 0 V,  
Vctl = 0.2 V,  
Tc = 20 to +70°C  
Vapc control current Iapc  
Vctl control current Ictl  
3
2
mA  
Vapc = 2.2 V  
Vctl = 3 V  
µA  
2
PF08107B  
Electrical Characteristics for E-GSM mode (Tc = 25°C)  
Test conditions unless otherwise noted:  
f = 880 to 915 MHz, Vdd1 = Vdd2 = 3.5 V, Pin = 0 dBm, Vctl = 2.0 V, Rg = Rl = 50 , Tc = 25°C,  
Pulse operation with pulse width 577 µs and duty cycle 1:8 shall be used.  
Item  
Symbol  
F
Min  
880  
2.0  
–2  
Typ  
Max  
915  
2.8  
2
Unit  
MHz  
V
Test Condition  
Frequency range  
Band select (GSM active)  
Input power  
Vctl  
Pin  
0
dBm  
V
Control voltage range  
Supply voltage  
Vapc  
Vdd  
0.2  
3.0  
43  
2.2  
4.5  
3.5  
50  
V
Total efficiency  
ηT  
%
Pout GSM = 35 dBm,  
Vapc = controlled  
2nd harmonic distortion  
3rd harmonic distortion  
2nd H.D.  
3rd H.D.  
45  
45  
35  
35  
35  
3
dBc  
dBc  
dBc  
4th~8th harmonic distortion 4th~8th H.D.  
Input VSWR  
VSWR (in)  
Pout (1)  
1.5  
Output power (1)  
Output power (2)  
35.0  
33.5  
36.0  
34.5  
dBm  
dBm  
Vapc = 2.2 V  
Pout (2)  
Vdd = 3.1 V, Vapc = 2.2 V,  
Tc = +70°C  
Isolation  
42  
30  
37  
20  
dBm  
dBm  
Vapc = 0.2 V, Pin = 2 dBm  
Isolation at  
Pout GSM = 35 dBm,  
DCS RF-output  
when GSM is active  
Measured at f = 1760 to 1830 MHz  
Switching time  
Stability  
tr, tf  
1
2
µs  
Pout GSM = 0 to 35.0 dBm  
No parasitic oscillation  
Vdd = 3.1 to 4.5 V, Pout 35.0 dBm,  
Vapc GSM 2.2 V,  
Rg = 50 , Tc = 25°C,  
Output VSWR = 6 : 1 All phases  
Load VSWR tolerance  
No degradation  
Vdd = 3.1 to 4.5 V,  
Pout GSM 35.0 dBm,  
Vapc GSM 2.2 V,  
Rg = 50 , t = 20 sec., Tc = 25°C,  
Output VSWR = 10 : 1 All phases  
Noise power  
Pnoise1  
Pnoise2  
80  
84  
dBm  
dBm  
f0 = 915 MHz, frx = f0 +10 MHz,  
Pout GSM = 35 dBm,  
RES BW = 100 kHz  
f0 = 915 MHz, frx = f0 +20 MHz,  
Pout GSM = 35 dBm,  
RES BW = 100 kHz  
3
PF08107B  
Electrical Characteristics for E-GSM mode (cont)  
Item  
Symbol  
Min  
Typ  
Max  
200  
20  
Unit  
Test Condition  
Slope Pout/Vapc  
Phase shift  
dB/V Pout GSM = 5 to 35 dBm  
deg  
dB  
Pout GSM = 33.5 to 34.5 dBm  
Total conversion gain1  
5  
f0 = 915 MHz,  
Other sig. = 895 MHz (40 dBm)  
Pout GSM = 33.5 dBm  
Total conversion gain2  
AM output  
5  
dB  
%
f0 = 915 MHz,  
Other sig. = 905 MHz (40 dBm)  
Pout GSM = 33.5 dBm  
40  
Pout GSM = +5 dBm,  
4%AM modulation at input  
50 kHz modulation frequency  
4
PF08107B  
Electrical Characteristics for DCS1800 mode (Tc = 25°C)  
Test conditions unless otherwise noted:  
f = 1710 to 1785 MHz, Vdd1 = Vdd2 = 3.5 V, Pin = 0 dBm, Vctl = 0 V, Rg = Rl = 50 , Tc = 25°C,  
Pulse operation with pulse width 577 µs and duty cycle 1:8 shall be used.  
Item  
Symbol  
F
Min  
1710  
0
Typ  
Max  
1785  
0.1  
2
Unit  
Test Condition  
Frequency range  
Band select (DCS active)  
Input power  
MHz DCS1800 (1710 to 1785)  
Vctl  
V
Pin  
–2  
0
dBm  
V
Control voltage range  
Supply voltage  
Vapc  
Vdd  
0.2  
3.0  
37  
2.2  
4.5  
3.5  
43  
V
Total efficiency  
ηT  
%
Pout DCS = 32.0 dBm,  
Vapc = controlled  
2nd harmonic distortion  
3rd harmonic distortion  
2nd H.D.  
3rd H.D.  
45  
45  
35  
35  
–35  
3
dBc  
dBc  
dBc  
4th~8th harmonic distortion 4th~8th H.D.  
Input VSWR  
VSWR (in)  
Pout (1)  
1.5  
33  
Output power (1)  
Output power (2)  
32.0  
30.5  
dBm Vapc = 2.2 V  
Pout (2)  
31.5  
dBm Vdd = 3.1 V, Vapc = 2.2 V,  
Tc = +70°C  
Isolation  
42  
37  
dBm Vapc = 0.2 V, Pin DCS = 2 dBm  
Switching time  
Stability  
tr, tf  
1
2
µs  
Pout DCS = 0 to 32.0 dBm  
No parasitic oscillation  
No degradation  
77  
Vdd = 3.1 to 4.5 V, Pout DCS 32.0 dBm,  
Vapc 2.2 V, Rg = 50 ,  
Output VSWR = 6 : 1 All phases  
Load VSWR tolerance  
Noise power  
Vdd = 3.1 to 4.5 V, Pout DCS 32.0 dBm,  
Vapc 2.2 V, Rg = 50 , t = 20 sec.,  
Output VSWR = 10 : 1 All phases  
Pnoise  
dBm f0 = 1785 MHz, frx = f0 +20 MHz,  
Pout DCS = 32.0 dBm,  
RES BW = 100 kHz  
Slope Pout/Vapc  
Phase shift  
200  
20  
dB/V Pout DCS = 0 to 32.0 dBm  
deg  
dB  
Pout DCS = 30.5 to 31.5 dBm  
Total conversion gain1  
5  
f0 = 1785 MHz, Pout DCS = 30.5 dBm,  
Other sig. = 1765 MHz (40 dBm)  
AM output  
40  
%
Pout DCS = 0 dBm,  
4%AM modulation at input  
50 kHz modulation frequency  
5
PF08107B  
Internal Diagram and External Circuit  
PIN8  
Pin DCS  
PIN5  
Pout DCS  
PIN1  
Pin GSM  
PIN4  
Pout GSM  
Z1 Z2  
Z3  
Z4  
Bias circuit  
PIN2  
Vapc  
PIN7  
Vctl  
PIN3  
Vdd1  
PIN6  
Vdd2  
C1  
C2  
C5  
FB  
C3  
FB  
C4  
FB  
C6  
FB  
FB  
Pin Pin  
Vapc  
Vctl  
Vdd1  
Vdd2  
Pout GSM Pout DCS  
Note: C1 to C4 = 0.01 µF CERAMIC CHIP  
C5 = C6 = 4.7 F TANTALUM ELECTROLYTE  
FB = FERRITE BEAD BLO1RN1-A62-001 (MURATA) or equivalent  
Z1 = Z2 = Z3 = Z4 = 50 MICRO STRIP LINE  
6
PF08107B  
Characteristic Curves  
Vapc vs Pout – Vdd Dependence  
880 MHz Pout vs. Vapc  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
28  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
915 MHz Pout vs. Vapc  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
28  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
7
PF08107B  
Vapc vs Efficiency – Vdd Dependence  
880 MHz Efficiency vs. Vapc  
60  
Po = 35 dBm,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
50  
40  
30  
20  
10  
0
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
915 MHz Efficiency vs. Vapc  
60  
50  
40  
30  
20  
10  
0
Po = 35 dBm,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
8
PF08107B  
Vapc vs Pout – Temperature Dependence  
880 MHz Pout vs. Vapc  
40  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
20°C  
35  
30  
25  
20  
15  
10  
5
25°C  
75°C  
0
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
915 MHz Pout vs. Vapc  
40  
35  
30  
25  
20  
15  
10  
5
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
20°C  
25°C  
75°C  
0
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
9
PF08107B  
Vapc vs Efficiency – Temperature Dependence  
880 MHz Efficiency vs. Vapc  
60  
50  
40  
30  
20  
10  
0
Po = 35 dBm,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
20°C  
25°C  
75°C  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
915 MHz Efficiency vs. Vapc  
60  
50  
40  
30  
20  
10  
0
Po = 35 dBm,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
20°C  
25°C  
75°C  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
10  
PF08107B  
Pin vs Pout – Vdd Dependence  
880 MHz Pout vs. Pin  
40  
35  
30  
25  
20  
15  
10  
5
Vapc = 2.2 V,  
Tc = 25°C,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
915 MHz Pout vs. Pin  
40  
35  
30  
25  
20  
15  
10  
5
Vapc = 2.2 V,  
Tc = 25°C,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
11  
PF08107B  
Pin vs Efficiency – Vdd Dependence  
880 MHz Efficiency vs. Pin  
60  
50  
40  
30  
20  
10  
Vapc = 2.2 V,  
Tc = 25°C,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
915 MHz Efficiency vs. Pin  
60  
50  
40  
30  
20  
10  
Vapc = 2.2 V,  
Tc = 25°C,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
12  
PF08107B  
Pin vs Pout – Temperature Dependence  
880 MHz Pout vs. Pin  
40  
35  
30  
25  
20  
15  
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Zg = Zl = 50 Ω  
10  
5
20°C  
25°C  
75°C  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
915 MHz Pout vs. Pin  
40  
35  
30  
25  
20  
15  
10  
5
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Zg = Zl = 50 Ω  
20°C  
25°C  
75°C  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
13  
PF08107B  
Pin vs Efficiency – Temperature Dependence  
880 MHz Efficiency vs. Pin  
60  
50  
40  
30  
20  
10  
0
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Zg = Zl = 50 Ω  
20°C  
25°C  
75°C  
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
915 MHz Efficiency vs. Pin  
60  
50  
40  
30  
20  
10  
0
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Zg = Zl = 50 Ω  
20°C  
25°C  
75°C  
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
14  
PF08107B  
Pout vs Efficiency – Vdd Dependence  
880 MHz Efficiency vs. Pout  
60  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
50  
40  
30  
20  
10  
0
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
915 MHz Efficiency vs. Pout  
60  
50  
40  
30  
20  
10  
0
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
15  
PF08107B  
Pout vs Idd – Vdd Dependence  
880 MHz Idd, Iapc vs. Pout  
3
2.5  
2
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
Iapc (3.5 V)  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
915 MHz Idd, Iapc vs. Pout  
3
2.5  
2
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
Iapc (3.5 V)  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
16  
PF08107B  
Pout vs Harmonic Distortion – Vdd Dependence  
880 MHz 2fo vs. Pout  
35  
40  
45  
50  
55  
60  
65  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
915 MHz 2fo vs. Pout  
35  
40  
45  
50  
55  
60  
65  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
17  
PF08107B  
Pout vs Harmonic Distortion – Vdd Dependence (cont)  
880 MHz 3fo vs. Pout  
35  
40  
45  
50  
55  
60  
65  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
915 MHz 3fo vs. Pout  
35  
40  
45  
50  
55  
60  
65  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
18  
PF08107B  
Pout vs Slope, AM-AM conversion  
880 MHz AM/AM, Slope vs. Pout  
100  
80  
60  
40  
20  
500  
400  
300  
200  
100  
0
Vdd = 3.5 V,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
AM (%)  
SLP (dB/V)  
0
60  
40  
20  
0
20  
40  
Pout (dBm)  
915 MHz AM/AM, Slope vs. Pout  
100  
80  
60  
40  
20  
500  
400  
300  
200  
100  
0
Vdd = 3.5 V,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
AM (%)  
SLP (dB/V)  
0
60  
40  
20  
0
20  
40  
Pout (dBm)  
19  
PF08107B  
Pout vs Input VSWR  
880 MHz VSWR in vs. Pout  
4
3.5  
3
Vdd = 3.5 V,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
VSWR in  
2.5  
2
1.5  
1
60  
40  
20  
0
20  
40  
Pout (dBm)  
915 MHz VSWR in vs. Pout  
4
3.5  
3
Vdd = 3.5 V,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
VSWR in  
2.5  
2
1.5  
1
60  
40  
20  
0
20  
40  
Pout (dBm)  
20  
PF08107B  
Frequency vs Pout, Efficiency – Vdd Dependence  
GSM Pout vs. Frequency  
37.5  
37  
36.5  
36  
35.5  
35  
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
34.5  
34  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
33.5  
33  
880  
890  
900  
910  
920  
Frequency (MHz)  
GSM Efficiency vs. Frequency  
60  
55  
50  
45  
40  
35  
30  
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
880  
890  
900  
910  
920  
Frequency (MHz)  
21  
PF08107B  
Pout – Temperature Dependence  
GSM Pout vs. Tc  
37.0  
36.5  
36.0  
35.5  
35.0  
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
f = 880 MHz  
f = 915 MHz  
34.5  
25  
0
25  
50  
75  
Tc (°C)  
22  
PF08107B  
Vapc vs Pout – Vdd Dependence  
1710 MHz Pout vs. Vapc  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
26  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
1785 MHz Pout vs. Vapc  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
26  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
23  
PF08107B  
Vapc vs Efficiency – Vdd Dependence  
1710 MHz Efficiency vs. Vapc  
60  
Po = 32 dBm,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
50  
40  
30  
20  
10  
0
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
1785 MHz Efficiency vs. Vapc  
60  
50  
40  
30  
20  
10  
0
Po = 32 dBm,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
24  
PF08107B  
Vapc vs Pout – Temperature Dependence  
1710 MHz Pout vs. Vapc  
40  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
20°C  
35  
30  
25  
20  
15  
10  
5
25°C  
75°C  
0
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
1785 MHz Pout vs. Vapc  
40  
35  
30  
25  
20  
15  
10  
5
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
20°C  
25°C  
75°C  
0
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
25  
PF08107B  
Vapc vs Efficiency – Temperature Dependence  
1710 MHz Efficiency vs. Vapc  
60  
50  
40  
30  
20  
10  
0
Po = 32 dBm,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
20°C  
25°C  
75°C  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
1785 MHz Efficiency vs. Vapc  
60  
50  
40  
30  
20  
10  
0
Po = 32 dBm,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
20°C  
25°C  
75°C  
0
0.5  
1
1.5  
2
2.5  
3
Vapc (V)  
26  
PF08107B  
Pin vs Pout – Vdd Dependence  
1710 MHz Pout vs. Pin  
40  
35  
30  
25  
20  
15  
10  
5
Vapc = 2.2 V,  
Tc = 25°C,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
1785 MHz Pout vs. Pin  
40  
35  
30  
25  
20  
15  
10  
5
Vapc = 2.2 V,  
Tc = 25°C,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
27  
PF08107B  
Pin vs Efficiency – Vdd Dependence  
1710 MHz Efficiency vs. Pin  
60  
Vapc = 2.2 V,  
Tc = 25°C,  
Zg = Zl = 50 Ω  
50  
40  
30  
20  
10  
0
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
1785 MHz Efficiency vs. Pin  
60  
50  
40  
30  
20  
10  
0
Vapc = 2.2 V,  
Tc = 25°C,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
28  
PF08107B  
Pin vs Pout – Temperature Dependence  
1710 MHz Pout vs. Pin  
40  
35  
30  
25  
20  
15  
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Zg = Zl = 50 Ω  
10  
5
20°C  
25°C  
75°C  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
1785 MHz Pout vs. Pin  
40  
35  
30  
25  
20  
15  
10  
5
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Zg = Zl = 50 Ω  
20°C  
25°C  
75°C  
0
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
29  
PF08107B  
Pin vs Efficiency – Temperature Dependence  
1710 MHz Efficiency vs. Pin  
60  
50  
40  
30  
20  
10  
0
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Zg = Zl = 50 Ω  
20°C  
25°C  
75°C  
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
1785 MHz Efficiency vs. Pin  
60  
50  
40  
30  
20  
10  
0
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Zg = Zl = 50 Ω  
20°C  
25°C  
75°C  
20  
15  
10  
5  
0
5
10  
Pin (dBm)  
30  
PF08107B  
Pout vs Efficiency – Vdd Dependence  
1710 MHz Efficiency vs. Pout  
60  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
50  
40  
30  
20  
10  
0
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
1785 MHz Efficiency vs. Pout  
60  
50  
40  
30  
20  
10  
0
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
31  
PF08107B  
Pout vs Idd – Vdd Dependence  
1710 MHz Idd, Iapc vs. Pout  
3
2.5  
2
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
Iapc (3.5 V)  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
1785 MHz Idd, Iapc vs. Pout  
3
2.5  
2
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
Iapc (3.5 V)  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
32  
PF08107B  
Pout vs Harmonic Distortion – Vdd Dependence  
1710 MHz 2fo vs. Pout  
35  
40  
45  
50  
55  
60  
65  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
1785 MHz 2fo vs. Pout  
35  
40  
45  
50  
55  
60  
65  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
33  
PF08107B  
Pout vs Harmonic Distortion – Vdd Dependence  
1710 MHz 3fo vs. Pout  
35  
40  
45  
50  
55  
60  
65  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
1785 MHz 3fo vs. Pout  
35  
40  
45  
50  
55  
60  
65  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
0
5
10  
15  
20  
25  
30  
35  
40  
Pout (dBm)  
34  
PF08107B  
Pout vs Slope, AM-AM conversion  
1710 MHz AM/AM, Slope vs. Pout  
100  
500  
400  
300  
200  
100  
0
Vdd = 3.5 V,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
80  
60  
40  
20  
0
AM (%)  
SLP (dB/V)  
60  
40  
20  
0
20  
40  
Pout (dBm)  
1785 MHz AM/AM, Slope vs. Pout  
100  
80  
60  
40  
20  
0
500  
400  
300  
200  
100  
0
Vdd = 3.5 V,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 Ω  
AM (%)  
SLP (dB/V)  
60  
40  
20  
0
20  
40  
Pout (dBm)  
35  
PF08107B  
Pout vs Input VSWR  
1710 MHz VSWR in vs. Pout  
4
3.5  
3
Vdd = 3.5 V,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
VSWR in  
2.5  
2
1.5  
1
60  
40  
20  
0
20  
40  
Pout (dBm)  
1785 MHz VSWR in vs. Pout  
4
3.5  
3
Vdd = 3.5 V,  
Tc = 25°C,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
VSWR in  
2.5  
2
1.5  
1
60  
40  
20  
0
20  
40  
Pout (dBm)  
36  
PF08107B  
Frequency vs Pout, Efficiency – Vdd Dependence  
DCS Pout vs. Frequency  
34  
33.5  
33  
32.5  
32  
31.5  
31  
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
30.5  
30  
1710 1720 1730 1740 1750 1760 1770 1780 1790  
Frequency (MHz)  
DCS Efficiency vs. Frequency  
60  
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
55  
50  
45  
40  
35  
30  
Vdd = 3.5 V  
Vdd = 3.2 V  
Vdd = 3.0 V  
1710 1720 1730 1740 1750 1760 1770 1780 1790  
Frequency (MHz)  
37  
PF08107B  
Pout – Temperature Dependence  
DCS Pout vs. Tc  
34.0  
33.5  
33.0  
32.5  
32.0  
Vapc = 2.2 V,  
Vdd = 3.5 V,  
Pin = 0 dBm,  
Zg = Zl = 50 ,  
31.5  
f = 1710 MHz  
f = 1785 MHz  
31.0  
25  
0
25  
50  
75  
Tc (°C)  
38  
PF08107B  
Pout, Eff vs Load inpedance for PF08107B (f = 880 MHz)  
f = 880 MHz  
Pin = 0 dBm  
Vdd = 3.5 V  
36.5 dBm  
37 dBm  
Vapc = 2.2 V  
Tc = 25°C  
36 dBm  
35.5 dBm  
35.8 dBm  
short  
open  
35 dBm  
50 Ω  
1.2 : 1  
1.5 : 1  
1.86 : 1  
2.33 : 1  
VSWR  
SMTH CHART  
Pout vs. Load impedance (f = 880 MHz)  
f = 880 MHz  
Pin = 0 dBm  
Vdd = 3.5 V  
Pout = 35 dbm  
Tc = 25°C  
35%  
short  
open  
50 Ω  
40%  
1.2 : 1  
50%  
45%  
1.5 : 1  
1.86 : 1  
2.33 : 1  
SMTH CHART  
VSWR  
Eff vs. Load impedance (f = 880 MHz)  
39  
PF08107B  
Pout, Eff vs Load inpedance for PF08107B (f = 915 MHz)  
36 dBm  
35.5 dBm  
36.5 dBm  
f = 915 MHz  
Pin = 0 dBm  
Vdd = 3.5 V  
Vapc = 2.2 V  
Tc = 25°C  
35 dBm  
34.5 dBm  
34 dBm  
33.5 dBm  
short  
open  
50 Ω  
1.2 : 1  
1.5 : 1  
1.86 : 1  
2.33 : 1  
VSWR  
SMTH CHART  
Pout vs. Load impedance (f = 915 MHz)  
f = 915 MHz  
Pin = 0 dBm  
Vdd = 3.5 V  
Pout = 35 dBm  
Tc = 25°C  
45%  
47%  
50%  
52%  
short  
open  
50 Ω  
1.2 : 1  
1.5 : 1  
1.86 : 1  
2.33 : 1  
SMTH CHART  
VSWR  
Eff vs. Load impedance (f = 915 MHz)  
40  
PF08107B  
Pout, Eff vs Load inpedance for PF08107B (f = 1710 MHz)  
33.5 dBm  
f = 1710 MHz  
Pin = 0 dBm  
Vdd = 3.5 V  
Vapc = 2.2 V  
Tc = 25°C  
33 dBm  
32.5 dBm  
32 dBm  
short  
open  
50 Ω  
1.2 : 1  
1.5 : 1  
1.86 : 1  
2.33 : 1  
VSWR  
SMTH CHART  
Pout vs. Load impedance (f = 1710 MHz)  
f = 1710 MHz  
Pin = 0 dBm  
Vdd = 3.5 V  
Pout = 32 dBm  
Tc = 25°C  
35%  
37%  
40%  
42%  
short  
open  
50 Ω  
1.2 : 1  
1.5 : 1  
45%  
1.86 : 1  
2.33 : 1  
VSWR  
SMTH CHART  
Eff vs. Load impedance (f = 1710 MHz)  
41  
PF08107B  
Pout, Eff vs Load inpedance for PF08107B (f = 1785 MHz)  
33 dBm  
33.5 dBm  
f = 1785 MHz  
Pin = 0 dBm  
Vdd = 3.5 V  
Vapc = 2.2 V  
Tc = 25°C  
32.5 dBm  
32 dBm  
31.5 dBm  
31 dBm  
short  
open  
50 Ω  
1.2 : 1  
1.5 : 1  
1.86 : 1  
2.33 : 1  
VSWR  
SMTH CHART  
Pout vs. Load impedance (f = 1785 MHz)  
f = 1785 MHz  
Pin = 0 dBm  
Vdd = 3.5 V  
Pout = 32 dBm  
Tc = 25°C  
45%  
44%  
43%  
42%  
41%  
open  
50 Ω  
40%  
1.2 : 1  
1.5 : 1  
1.86 : 1  
2.33 : 1  
SMTH CHART  
VSWR  
Eff vs. Load impedance (f = 1785 MHz)  
42  
PF08107B  
Package Dimensions  
Unit: mm  
1.6 ± 0.2  
8
1
7
2
G
G
6
3
5
4
G
G
(Upper side)  
5
6
G
G
4
7
8
3
G
G
2
1
13.75 ± 0.3  
1: Pin GSM  
2: Vapc  
3: Vdd1  
4: Pout GSM  
5: Pout DCS  
6: Vdd2  
(5.375)  
(5.375)  
(3.275) (3.275)  
(1.6) (1.6)  
(3.7)  
(1.3)  
(1.6) (1.6)  
7: Vctl  
8: Pin DCS  
G: GND  
(0.7)  
(3.7)  
(1.4) (2.4)  
(2.4)  
Remark:  
(3.7)  
(3.7)  
Coplanarity of bottom side of terminals  
are less than 0 ± 0.1mm.  
(Bottom side)  
Hitachi Code  
JEDEC  
RF-K-8  
EIAJ  
Mass (reference value)  
43  
PF08107B  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
Asia  
: http://semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
: http://sicapac.hitachi-asia.com  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
179 East Tasman Drive, Dornacher Stra§e 3  
Hitachi Europe GmbH  
Electronic Components Group  
Hitachi Asia Ltd.  
Hitachi Tower  
16 Collyer Quay #20-00,  
Singapore 049318  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower,  
San Jose,CA 95134  
D-85622 Feldkirchen, Munich  
World Finance Centre,  
Tel: <1> (408) 433-1990 Germany  
Fax: <1>(408) 433-0223 Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
Tel : <65>-538-6533/538-8577  
Fax : <65>-538-6933/538-3877  
URL : http://www.hitachi.com.sg  
Harbour City, Canton Road  
Tsim Sha Tsui, Kowloon,  
Hong Kong  
Tel : <852>-(2)-735-9218  
Fax : <852>-(2)-730-0281  
URL : http://www.hitachi.com.hk  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Hitachi Asia Ltd.  
(Taipei Branch Office)  
4/F, No. 167, Tun Hwa North Road,  
Hung-Kuo Building,  
Taipei (105), Taiwan  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 585160  
Tel : <886>-(2)-2718-3666  
Fax : <886>-(2)-2718-8180  
Telex : 23222 HAS-TP  
URL : http://www.hitachi.com.tw  
Copyright Hitachi, Ltd., 2001. All rights reserved. Printed in Japan.  
Colophon 2.0  
44  

相关型号:

PF08107BP

Narrow Band High Power Amplifier, 880MHz Min, 915MHz Max, RF-K-8, 10 PIN
HITACHI

PF08109B

MOS FET Power Amplifier Module for E-GSM and DCS1800 Dual Band Handy Phone
RENESAS

PF08109B-TB

Microwave/Millimeter Wave Amplifier
ETC

PF08127B

MOS FET Power Amplifier Module for E-GSM and DCS1800/1900 Triple Band Handy Phone
RENESAS

PF08127B-TB

暂无描述
RENESAS

PF08134B

MOS FET Power Amplifier Module for GSM850 and DCS1800/1900 Triple Band Handy Phone
RENESAS

PF083A

General-purpose Relays and Power Relays Sockets
OMRON

PF083A-D

Relay Socket,
OMRON

PF083A-E

GENERAL PURPOSE RELAY
OMRON