HM2012 [HMSEMI]

2.1W/ch Stereo Filter-free Class-D Audio Power Amplifier;
HM2012
型号: HM2012
厂家: H&M Semiconductor    H&M Semiconductor
描述:

2.1W/ch Stereo Filter-free Class-D Audio Power Amplifier

文件: 总7页 (文件大小:548K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HM2012  
2.1W/ch Stereo Filter-free Class-D Audio Power Amplifier  
General Description  
ƒ Personal Digital Assistant(PDA)  
ƒ Portable gaming device  
ƒ Powered speakers  
The HM2012 is a 2.1W/ch stereo high efficiency  
filter-free class-D audio power amplifier. The HM2012  
can operate from 2.7 to 5.5V supply. When powered  
with 5V voltage, the HM2012 can deliver 2.1W per  
channel to dual 4load at 10% THD+N, and also  
capable of driving 1.5W/ch to dual 8load. The  
HM2012 is thermally limited in WCSP and may not  
achieve 2.1W/ch for 4.  
ƒ Notebook computer  
Features  
ƒ Output power  
2.1W/ch into 4at 5V  
1.5W/ch into 8at 5V  
As a Class D audio power amplifier, the HM2012  
supports 90% high efficiency and -75dB PSRR at  
217Hz which make the device ideal for  
battery-supplied, high quality audio applications.  
The HM2012 features independent shutdown controls  
for each channel. The gain can be selected to 6, 12,  
18, or 24 dB utilizing the G0 and G1 gain select pins.  
The HM2012 also features the minimized  
click-and-pop noise during the turn-on and  
shutdown.  
750mW/ch into 8at 3.6V  
ƒ PSRR: -75dB (typical)  
ƒ CMRR: -70dB (typical)  
ƒ Efficiency up to 90%  
ƒ Only two external components required  
ƒ Independent shutdown control for each channel  
ƒ Short-circuit and thermal protection  
ƒ Shutdown current: 1.0μA (typical)  
ƒ Power supply range: 2.7V to 5.5V)  
ƒ Packaging  
The HM2012 is manufactured in space-saving QFN-20  
(4mm x 4mm) and WCSP-16 (2mm x 2mm) package  
Applications  
-
-
QFN-20 (4mm x 4mm)  
WCSP-16 (2mm x 2mm)  
Applications  
ƒ Mobile phone  
Pin Out Diagram  
Figure1. QFN 20 Top View  
Figure2. WCSP 16 Top View  
1
HM2012  
Ordering Information  
P/N  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 pin QFN  
HM2012Q  
HM2012W  
16 ball WCSP  
Note: The HM2012 is thermally limited in WCSP and may not achieve 2.1W/ch for 4.  
Absolute Maximum Ratings  
Supply Voltage (VDD) in active mode  
Supply Voltage (VDD) in shutdown mode  
Input Voltage (VI)  
-0.3 V to 5.5V  
-0.3 V to 6.0V  
-0.3V to VDD+0.3V  
-40°C to 85°C  
Operating Free-air Temperature range (TA)  
Operating Junction Temperature range (TJ) -40°C to +125°C  
Storage Temperature (TSTG) range  
-65°C to +150°C  
Operation Ratings  
Supply Voltage (VDD)  
2.7V to 5.5V  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
Operating Temperature (TA)  
1.3V to VDD  
0 to 0.35V  
-40°C to +85°C  
Electrical Characteristics  
TA=25°C  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
5
Max  
25  
Unit  
mV  
dB  
Output offset voltage (measured Inputs ac grounded, AV=6dB,  
VOO  
differentially)  
VDD=2.7V to 5.5V  
PSRR  
CMRR  
Power supply rejection ratio  
Common mode rejection ratio  
VDD=2.7V to 5.5V  
-75  
-70  
-55  
-50  
Inputs shouted together,  
dB  
V
V
V
DD=2.7V to 5.5V  
DD=5.5V, VI= VDD  
DD=5.5V, VI=-0V  
IIH∣  
IIL∣  
High-level input current  
Low-level input current  
50  
5
μA  
μA  
VDD=5.5V, no load or output filter  
DD=3.6V, no load or output filter  
On-state VDD=5.5V  
DD=3.6V  
Output impedance in SHUTDOWN V(SHOUTDOWN)=0.35V  
7.5  
5.5  
420  
520  
2
10  
8
IDD  
Supply current  
mA  
V
Static  
Drain-source  
rDS(ON)  
mΩ  
Resistance  
V
kΩ  
f(SW)  
Switching frequency  
VDD=2.7V to 5.5V  
G0, G1=0.35V  
250  
5.5  
300  
6
350  
6.5  
kHZ  
G0= VDD, G1=0.35V  
G0=0.35V, G1= VDD  
G0, G1= VDD  
11.5  
17.5  
23.5  
12  
12.5  
18.5  
24.5  
Closed-loop voltage gain  
dB  
18  
24  
2
HM2012  
Operating Characteristics  
TA=25°C, RL=8  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
2.1  
Max  
Unit  
THD+N=10%, f=1kHz, RL=4Ω  
VDD=5V  
Output  
channel)  
power  
(per  
PO  
W
VDD=5V  
1.5  
THD+N=10%, f=1kHz, RL=8Ω  
VDD=3.6V  
0.75  
0.14%  
0.10%  
-85  
Total harmonic distortion VDD=5V, PO=1W, AV=6dB, f=1kHz  
THD+N  
plus noise  
V
DD=5V, PO=0.5W, AV=6dB, f=1kHz  
Channel crosstalk  
f=1KHz  
dB  
dB  
μV  
Supply ripple rejection VDD=5V, AV=6dB, f=217Hz  
-75  
kSVR  
Vn  
ratio  
V
DD=3.6V, AV=6dB, f=217Hz  
DD=3.6V, f=20 to 20KHz, No weighting  
-70  
V
35  
Output voltage noise  
Inputs ac-grounded, AV=6dB  
A weighting  
27  
Common mode rejection  
ratio  
CMRR  
VDD=3.6V, VIC=1Vpp  
f=217Hz  
-70  
dB  
AV=6dB  
28.1  
17.3  
9.8  
kΩ  
AV=12dB  
AV=18dB  
AV=24dB  
ZI  
Input impedance  
5.2  
Start-up  
time  
from  
VDD=3.6V  
3.5  
ms  
shutdown  
Block Diagram  
Figure3. Block Diagram  
3
HM2012  
Terminal Functions  
Terminal  
I/O  
Description  
Name  
INR+  
QFN  
16  
17  
20  
19  
8
WCSP  
D1  
C1  
A1  
I
I
Right channel positive input  
Right channel negative input  
Left channel positive input  
Left channel negative input  
INR-  
INL+  
I
INL-  
B1  
I
SDR  
B3  
I
Right channel shutdown terminal (active low)  
Left channel shutdown terminal (active low)  
Gain select (LSB)  
SDL  
7
B4  
I
G0  
15  
1
C2  
B2  
I
G1  
I
Gain select (MSB)  
PVDD  
3,13  
9
A2  
I
Power supply (Must be same voltage as AVDD)  
AVDD  
D2  
C4  
C3  
D3  
D4  
A3  
I
Analog supply (Must be same voltage as PVDD  
)
PGND  
AGND  
OUTR+  
OUTR-  
OUTL+  
OUTL-  
NC  
4,12  
18  
14  
11  
2
I
Power ground  
I
Power ground  
O
O
O
O
Right channel positive differential output  
Right channel negative differential output  
Left channel positive differential output  
Left channel negative differential output  
No internal connection  
5
A4  
6,10  
N/A  
Thermal Pad  
Connect the thermal pad of QFN or PWP package to PCB GND  
Application Information  
4
HM2012  
If the corner frequency is within the audio band, the  
capacitors should have a tolerance of ±10% or  
better, because any mismatch in capacitance  
causes an impedance mismatch at the corner  
frequency and below.  
Decoupling Capacitor (CS)  
The HM2012 is a high-performance Class-D audio  
amplifier that requires adequate power supply  
decoupling to ensure the efficiency is high and total  
harmonic distortion (THD) is low. For higher  
frequency transients, spikes, or digital hash on the  
line a good low equivalent-series-resistance (ESR)  
ceramic capacitor, typically 1µF, placed as close as  
possible to the device PVDD lead works best. Placing  
this decoupling capacitor close to the HM2012 is  
important for the efficiency of the Class-D amplifier,  
because any resistance or inductance in the trace  
between the device and the capacitor can cause a  
loss in efficiency. For filtering lower-frequency noise  
signals, a 4.7µF or greater capacitor placed near the  
audio power amplifier would also help, but it is not  
required in most applications because of the high  
PSRR of this device.  
Operation with DACs and CODECs  
In using Class-D amplifiers with CODECs and DACs,  
sometimes there is an increase in the output noise  
floor from the audio amplifier. This occurs when  
mixing of the output frequencies of the CODEC/DAC  
mix with the switching frequencies of the audio  
amplifier input stage. The noise increase can be  
solved by placing a low-pass filter between the  
CODEC/DAC and audio amplifier. This filters off the  
high frequencies that cause the problem and allow  
proper performance.  
Filter Free Operation and Ferrite Bead  
Filters  
Audio Amplifier Gain Setting  
The HM2012 features four internally configured gain  
settings. The device gain is selected through the two  
gain select pins, G0 and G1. The gain settings are  
shown in the following table.  
A ferrite bead filter can often be used if the design is  
failing radiated emissions without an LC filter and  
the frequency sensitive circuit is greater than 1MHz.  
This filter functions well for circuits that just have to  
pass FCC and CE because FCC and CE only test  
radiated emissions greater than 30MHz. When  
choosing a ferrite bead, choose one with high  
impedance at high frequencies, and very low  
impedance at low frequencies. In addition, select a  
ferrite bead with adequate current rating to prevent  
distortion of the output signal.  
G1  
0
G2  
0
Gain (V/V)  
Gain (dB)  
RI (K)  
28.1  
17.3  
9.8  
2
4
6
0
1
12  
18  
24  
1
0
8
1
1
16  
5.2  
Gain Setting Table  
Input Capacitors (CI)  
Use an LC output filter if there are low frequency  
(<1MHz) EMI sensitive circuits and/or there are long  
leads from amplifier to speaker.  
The input capacitors and input resistors form a  
high-pass filter with the corner frequency, fC,  
determined in Equation 1.  
Figure 6 shows typical ferrite bead and LC output  
filters.  
1
fc  
=
(1)  
(2πR  
I
C )  
I
The value of the input capacitor is important to  
consider as it directly affects the bass (low  
frequency) performance of the circuit. Speakers in  
wireless phones cannot usually respond well to low  
frequencies, so the corner frequency can be set to  
block low frequencies in this application. Not using  
input capacitors can increase output offset.  
Figure6. Typical ferrite chip bead filter  
Equation 2 is used to solve for the input coupling  
capacitance.  
1
CI  
=
(2)  
(2πR f )  
I
C
5
HM2012  
Mechanical Data  
WCSP-16  
6
HM2012  
QFN-20  
7

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY