HT66FU60(44LQFP-A) [HOLTEK]

Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PQFP44;
HT66FU60(44LQFP-A)
型号: HT66FU60(44LQFP-A)
厂家: HOLTEK SEMICONDUCTOR INC    HOLTEK SEMICONDUCTOR INC
描述:

Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PQFP44

时钟 微控制器
文件: 总259页 (文件大小:2955K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Enhanced A/D Flash Type MCU 8-Bit MCU with EEPROM  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Revision: 1.60 Date: September 9, 2011  
Contents  
Table of Contents  
Technical Document ...........................................................................9  
Features ...............................................................................................9  
CPU Features ........................................................................................................9  
Peripheral Features................................................................................................9  
General Description ............................................................................9  
Selection Table ..................................................................................10  
Block Diagram ...................................................................................10  
Pin Assignment .................................................................................11  
Pin Description..................................................................................15  
HT66F20 ..............................................................................................................15  
HT66F30 ..............................................................................................................16  
HT66F40 ..............................................................................................................17  
HT66F50 ..............................................................................................................19  
HT66F60 ..............................................................................................................20  
Absolute Maximum Ratings .............................................................22  
D.C. Characteristics ..........................................................................22  
A.C. Characteristics ..........................................................................24  
A/D Converter Characteristics .........................................................25  
Comparator Electrical Characteristics............................................26  
Power-on Reset Characteristics ......................................................26  
System Architecture .........................................................................27  
Clocking and Pipelining ........................................................................................27  
Program Counter..................................................................................................28  
Stack....................................................................................................................28  
Arithmetic and Logic Unit - ALU............................................................................28  
Flash Program Memory ....................................................................29  
Structure...............................................................................................................29  
Special Vectors.....................................................................................................29  
Look-up Table.......................................................................................................29  
Table Program Example .......................................................................................29  
In Circuit Programming.........................................................................................30  
RAM Data Memory.............................................................................31  
Structure...............................................................................................................31  
Rev. 1.60  
2
September 9, 2011  
Contents  
Special Function Register Description ...........................................34  
Indirect Addressing Registers - IAR0, IAR1....................................34  
Memory Pointers - MP0, MP1...............................................................................34  
Bank Pointer - BP.................................................................................................35  
Accumulator - ACC...............................................................................................36  
Program Counter Low Register - PCL ..................................................................36  
Look-up Table Registers - TBLP, TBHP, TBLH......................................................36  
Status Register - STATUS ....................................................................................36  
EEPROM Data Memory .....................................................................38  
EEPROM Data Memory Structure ........................................................................38  
EEPROM Registers..............................................................................................38  
Reading Data from the EEPROM .........................................................................40  
Writing Data to the EEPROM ...............................................................................40  
Write Protection....................................................................................................41  
EEPROM Interrupt ...............................................................................................41  
Programming Considerations ...............................................................................41  
Oscillator............................................................................................42  
Oscillator Overview...............................................................................................42  
System Clock Configurations................................................................................42  
External Crystal/ Ceramic Oscillator - HXT ...........................................................43  
External RC Oscillator - ERC................................................................................43  
Internal RC Oscillator - HIRC................................................................................43  
External 32.768kHz Crystal Oscillator - LXT.........................................................43  
LXT Oscillator Low Power Function......................................................................44  
Internal 32kHz Oscillator - LIRC ...........................................................................44  
Supplementary Oscillators....................................................................................44  
Operating Modes and System Clocks.............................................45  
System Clocks......................................................................................................45  
System Operation Modes .....................................................................................46  
Control Register ...................................................................................................47  
Fast Wake-up.......................................................................................................48  
Operating Mode Switching and Wake-up..............................................................49  
NORMAL Mode to SLOW Mode Switching...........................................................49  
SLOW Mode to NORMAL Mode Switching...........................................................50  
Entering the SLEEP0 Mode..................................................................................50  
Entering the SLEEP1 Mode..................................................................................51  
Entering the IDLE0 Mode .....................................................................................51  
Entering the IDLE1 Mode .....................................................................................51  
Standby Current Considerations...........................................................................51  
Wake-up...............................................................................................................52  
Programming Considerations ...............................................................................52  
Rev. 1.60  
3
September 9, 2011  
Contents  
Watchdog Timer ................................................................................53  
Watchdog Timer Clock Source .............................................................................53  
Watchdog Timer Control Register.........................................................................53  
Watchdog Timer Operation...................................................................................54  
Reset and Initialisation .....................................................................55  
Reset Functions ...................................................................................................55  
Reset Initial Conditions.........................................................................................56  
Input/Output Ports.............................................................................69  
Pull-high Resistors................................................................................................72  
Port A Wake-up ....................................................................................................74  
I/O Port Control Registers.....................................................................................74  
Pin-remapping Functions......................................................................................77  
Pin-remapping Registers ......................................................................................77  
I/O Pin Structures .................................................................................................81  
Programming Considerations ...............................................................................81  
Timer Modules - TM...........................................................................84  
Introduction ..........................................................................................................84  
TM Operation .......................................................................................................85  
TM Clock Source..................................................................................................85  
TM Interrupts........................................................................................................85  
TM External Pins..................................................................................................85  
TM Input/Output Pin Control Registers .................................................................86  
Programming Considerations ...............................................................................94  
Compact Type TM - CTM...................................................................95  
Compact TM Operation ........................................................................................95  
Compact Type TM Register Description ...............................................................96  
Compact Type TM Operating Modes....................................................................99  
Compare Match Output Mode ..............................................................................99  
Timer/Counter Mode.............................................................................................99  
PWM Output Mode.............................................................................................102  
Standard Type TM - STM.................................................................104  
Standard TM Operation ......................................................................................104  
Standard Type TM Register Description .............................................................104  
Standard Type TM Operating Modes ..................................................................112  
Compare Output Mode .......................................................................................112  
Timer/Counter Mode...........................................................................................115  
PWM Output Mode .............................................................................................115  
Single Pulse Mode..............................................................................................118  
Capture Input Mode............................................................................................119  
Rev. 1.60  
4
September 9, 2011  
Contents  
Enhanced Type TM - ETM...............................................................120  
Enhanced TM Operation ....................................................................................120  
Enhanced Type TM Register Description............................................................121  
Enhanced Type TM Operating Modes ................................................................126  
Compare Output Mode.......................................................................................126  
Timer/Counter Mode...........................................................................................131  
PWM Output Mode.............................................................................................131  
Single Pulse Output Mode..................................................................................136  
Capture Input Mode............................................................................................138  
Analog to Digital Converter............................................................140  
A/D Overview .....................................................................................................140  
A/D Converter Register Description....................................................................140  
A/D Converter Data Registers - ADRL, ADRH....................................................141  
A/D Converter Control Registers - ADCR0, ADCR1, ACERL, ACERH ...............141  
A/D Operation.....................................................................................................146  
A/D Input Pins ....................................................................................................146  
Summary of A/D Conversion Steps ....................................................................147  
Programming Considerations .............................................................................148  
A/D Transfer Function.........................................................................................148  
A/D Programming Example ................................................................................148  
Comparators....................................................................................150  
Comparator Operation........................................................................................150  
Comparator Registers ........................................................................................150  
Comparator Interrupt ..........................................................................................150  
Programming Considerations .............................................................................150  
Serial Interface Module - SIM .........................................................153  
SPI Interface.......................................................................................................153  
SPI Registers .....................................................................................................154  
SPI Communication............................................................................................157  
I2C Interface .......................................................................................................159  
I2C Bus Communication......................................................................................163  
I2C Bus Start Signal............................................................................................163  
Slave Address ....................................................................................................163  
I2C Bus Read/Write Signal..................................................................................163  
I2C Bus Slave Address Acknowledge Signal.......................................................163  
I2C Bus Data and Acknowledge Signal ...............................................................164  
Peripheral Clock Output .................................................................166  
Peripheral Clock Operation.................................................................................166  
Rev. 1.60  
5
September 9, 2011  
Contents  
Interrupts..........................................................................................167  
Interrupt Registers..............................................................................................167  
Interrupt Operation .............................................................................................179  
External Interrupt................................................................................................183  
Comparator Interrupt ..........................................................................................183  
Multi-function Interrupt........................................................................................183  
A/D Converter Interrupt.......................................................................................183  
Time Base Interrupts ..........................................................................................183  
Serial Interface Module Interrupt.........................................................................185  
External Peripheral Interrupt...............................................................................185  
EEPROM Interrupt .............................................................................................185  
LVD Interrupt ......................................................................................................185  
TM Interrupts......................................................................................................186  
Interrupt Wake-up Function ................................................................................186  
Programming Considerations .............................................................................186  
Power Down Mode and Wake-up ...................................................187  
Entering the IDLE or SLEEP Mode.....................................................................187  
Standby Current Considerations.........................................................................187  
Wake-up.............................................................................................................187  
Low Voltage Detector - LVD............................................................188  
LVD Register ......................................................................................................188  
LVD Operation....................................................................................................189  
SCOM Function for LCD .................................................................189  
LCD Operation ...................................................................................................189  
LCD Bias Control................................................................................................189  
Configuration Options ....................................................................192  
Application Circuits ........................................................................193  
UART Module Serial Interface........................................................194  
UART Module Features......................................................................................194  
UART Module Overview..................................................................194  
UART Module Block Diagram.........................................................194  
Pin Assignment ...............................................................................195  
UART Module Pin Description .......................................................197  
UART Module D.C. Characteristics................................................197  
UART Module A.C. Characteristics................................................198  
UART Module Functional Description...........................................199  
UART Module Internal Signal .............................................................................199  
Rev. 1.60  
6
September 9, 2011  
Contents  
UART Module SPI Interface............................................................199  
SPI Timing..........................................................................................................199  
UART Module External Pin Interfacing..........................................200  
UART Data Transfer Scheme .............................................................................200  
UART Commands ..............................................................................................201  
UART Status and Control Registers ...................................................................201  
Baud Rate Generator .........................................................................................206  
UART Module Setup and Control...................................................208  
Managing Receiver Errors ..................................................................................211  
UART Module Interrupt Structure ..................................................211  
UART Module Power-down and Wake-up .....................................212  
Using the UART Function...............................................................213  
Application Circuit with UART Module..........................................214  
Instruction Set .................................................................................215  
Introduction.........................................................................................................215  
Instruction Timing ...............................................................................................215  
Moving and Transferring Data ............................................................................215  
Arithmetic Operations .........................................................................................215  
Logical and Rotate Operations ...........................................................................215  
Branches and Control Transfer...........................................................................215  
Bit Operations.....................................................................................................216  
Table Read Operations.......................................................................................216  
Other Operations................................................................................................216  
Instruction Set Summary ....................................................................................216  
Instruction Definition ......................................................................218  
Package Information.......................................................................228  
16-pin DIP (300mil) Outline Dimensions .............................................................228  
16-pin NSOP (150mil) Outline Dimensions.........................................................231  
16-pin SSOP (150mil) Outline Dimensions .........................................................232  
20-pin DIP (300mil) Outline Dimensions .............................................................233  
20-pin SOP (300mil) Outline Dimensions............................................................235  
20-pin SSOP (150mil) Outline Dimensions .........................................................236  
24-pin SKDIP (300mil) Outline Dimensions ........................................................237  
24-pin SOP (300mil) Outline Dimensions............................................................240  
24-pin SSOP (150mil) Outline Dimensions .........................................................241  
28-pin SKDIP (300mil) Outline Dimensions ........................................................242  
28-pin SOP (300mil) Outline Dimensions............................................................243  
28-pin SSOP (150mil) Outline Dimensions .........................................................244  
SAW Type 32-pin (5mm´5mm) QFN Outline Dimensions...................................245  
SAW Type 40-pin (6mm´6mm for 0.75mm) QFN Outline Dimensions...............246  
44-pin QFP (10mm´10mm) Outline Dimensions ................................................247  
48-pin SSOP (300mil) Outline Dimensions .........................................................248  
Rev. 1.60  
7
September 9, 2011  
Contents  
SAW Type 48-pin (7mm´7mm) QFN Outline Dimensions...................................249  
52-pin QFP (14mm´14mm) Outline Dimensions ................................................250  
44-pin LQFP (10mm´10mm) (FP3.2mm) Outline Dimensions............................251  
Product Tape and Reel Specifications ..........................................252  
Reel Dimensions ................................................................................................252  
Carrier Tape Dimensions ....................................................................................254  
Rev. 1.60  
8
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Enhanced A/D Flash Type MCU 8-Bit MCU with EEPROM  
Technical Document  
·
Application Note  
-
HA0075E MCU Reset and Oscillator Circuits Application Note  
Features  
·
CPU Features  
RAM Data Memory: 64´8 ~ 576´8  
·
·
EEPROM Memory: 32´8~256´8  
Watchdog Timer function  
Operating Voltage:  
·
fSYS= 8MHz: 2.2V~5.5V  
fSYS= 12MHz: 2.7V~5.5V  
fSYS= 20MHz: 4.5V~5.5V  
·
·
Up to 50 bidirectional I/O lines  
Software controlled 4-SCOM lines LCD driver with  
1/2 bias  
·
·
·
Up to 0.2ms instruction cycle with 20MHz system  
clock at VDD=5V  
·
·
Multiple pin-shared external interrupts  
Multiple Timer Module for time measure, input  
capture, compare match output, PWM output or  
single pulse output function  
Power down and wake-up functions to reduce power  
consumption  
Five oscillators:  
External Crystal -- HXT  
Serial Interfaces Module -- SIM for SPI or I2C  
·
·
·
External 32.768kHz Crystal -- LXT  
External RC -- ERC  
Internal RC -- HIRC  
Internal 32kHz RC -- LIRC  
Multi-mode operation: NORMAL, SLOW, IDLE and  
SLEEP  
Dual Comparator functions  
Dual Time-Base functions for generation of fixed time  
interrupt signals  
·
·
·
·
Multi-channel 12-bit resolution A/D converter  
Low voltage reset function  
·
·
·
Low voltage detect function  
Fully integrated internal 4MHz, 8MHz and 12MHz  
oscillator requires no external components  
All instructions executed in one or two instruction  
cycles  
Optional peripheral -- UART module for fully duplex  
asynchronous communication  
·
·
Wide range of available package types  
·
·
·
·
Table read instructions  
63 powerful instructions  
Flash program memory can be re-programmed up to  
100,000 times  
Up to 12-level subroutine nesting  
Bit manipulation instruction  
·
·
Flash program memory data retention > 10 years  
EEPROM data memory can be re-programmed up to  
1,000,000 times  
Peripheral Features  
·
EEPROM data memory data retention > 10 years  
·
Flash Program Memory: 1K´14 ~ 12K´16  
General Description  
The HT66FXX series of devices are Flash Memory A/D  
type 8-bit high performance RISC architecture  
microcontrollers. Offering users the convenience of Flash  
Memory multi-programming features, these devices also  
include a wide range of functions and features. Other  
memory includes an area of RAM Data Memory as well as  
an area of EEPROM memory for storage of non-volatile  
data such as serial numbers, calibration data etc.  
A full choice of HXT, LXT, ERC, HIRC and LIRC oscilla-  
tor functions are provided including a fully integrated  
system oscillator which requires no external compo-  
nents for its implementation. The ability to operate and  
switch dynamically between a range of operating  
modes using different clock sources gives users the  
ability to optimise microcontroller operation and mini-  
mise power consumption.  
Analog features include a multi-channel 12-bit A/D con-  
verter and dual comparator functions. Multiple and ex-  
tremely flexible Timer Modules provide timing, pulse  
generation and PWM generation functions. Communica-  
tion with the outside world is catered for by including fully  
integrated SPI or I2C interface functions, two popular inter-  
faces which provide designers with a means of easy com-  
munication with external peripheral hardware. Protective  
features such as an internal Watchdog Timer, Low Voltage  
Reset and Low Voltage Detector coupled with excellent  
noise immunity and ESD protection ensure that reliable  
operation is maintained in hostile electrical environments.  
The UART module is contained in the HT66FUx0 series of  
devices. It can support the applications such as data com-  
munication networks between microcontrollers, low-cost  
data links between PCs and peripheral devices, portable  
and battery operated device communication, etc.  
The inclusion of flexible I/O programming features,  
Time-Base functions along with many other features en-  
sure that the devices will find excellent use in applica-  
tions such as electronic metering, environmental  
monitoring, handheld instruments, household appli-  
ances, electronically controlled tools, motor driving in  
addition to many others.  
Rev. 1.60  
9
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Selection Table  
Most features are common to all devices, the main feature distinguishing them are Memory capacity, I/O count, TM  
features, stack capacity and package types. The following table summarises the main features of each device.  
Program  
Data  
Data  
Ext.  
Int.  
Timer  
Interface  
(SPI/I2C)  
Part No.  
VDD  
I/O  
A/D  
UART Stack  
Package  
Memory Memory EEPROM  
Module  
2.2V~  
5.5V  
10-bit CTM´1,  
10-bit STM´1  
16DIP/NSOP/SSOP  
20DIP/SOP/SSOP  
HT66F20  
1K´14  
2K´14  
64´8  
96´8  
32´8  
64´8  
18  
2
12-bit´8  
Ö
¾
4
4
16DIP/NSOP/SSOP  
20DIP/SOP/SSOP  
24SKDIP/SOP/SSOP  
HT66F30  
HT66FU30  
HT66F40  
22  
14  
42  
¾
Ö
2.2V~  
5.5V  
10-bit CTM´1,  
10-bit ETM´1  
2
12-bit´8  
12-bit´8  
Ö
24SKDIP/SOP  
24/28SKDIP/SOP/SSOP  
44LQFP  
¾
10-bit CTM´1,  
10-bit ETM´1,  
16-bit STM´1  
2.2V~  
5.5V  
32/40QFN, 48SSOP/QFN  
4K´15  
192´8  
128´8  
2
Ö
8
40QFN, 44LQFP,  
48SSOP/QFN  
HT66FU40  
HT66F50  
34  
42  
Ö
28SKDIP/SOP/SSOP  
44LQFP, 40QFN  
48SSOP/QFN  
10-bit CTM´2,  
10-bit ETM´1,  
16-bit STM´1  
¾
2.2V~  
5.5V  
8K´16  
384´8  
576´8  
256´8  
256´8  
2
4
12-bit´8  
Ö
Ö
8
HT66FU50  
HT66F60  
34  
50  
Ö
44LQFP, 48QFN  
52QFP, 40QFN, 44LQFP  
48SSOP/LQFP/QFN  
¾
10-bit CTMx2,  
10-bit ETMx1,  
16-bit STMx1  
2.2V~  
5.5V  
12K´16  
12-bit´12  
12  
52QFP, 40QFN, 44LQFP  
48LQFP/QFN  
HT66FU60  
42  
Ö
Note: As devices exist in more than one package format, the table reflects the situation for the package with the most  
pins.  
There is an additional peripheral known as the UART module in HT66FU30, HT66FU40, HT66FU50 and  
HT66FU60 devices. All information related to the UART Module will be described in the following UART Mod-  
ule section.  
Block Diagram  
L
o
w
W
a
t
c
h
d
o
g
V
o
l
t
a
g
e
i
T
m
e
r
D
e
t
e
c
t
R
e
s
e
t
L
o
w
C
i
r
c
u
i
t
V
o
l
t
a
g
e
R
e
s
e
t
8
-
b
i
t
I
n
t
e
r
r
u
p
R
I
S
C
C
o
n
t
r
o
l
l
e
M
C
U
C
o
r
e
S
t
a
c
k
F
l
a
s
h
/
E
E
P
R
O
M
E
R
C
/
H
X
T
P
r
o
g
r
a
m
m
i
n
g
O
s
c
i
l
l
a
t
o
C
i
r
c
u
i
t
r
y
(
I
S
P
)
H
I
R
C
L
I
R
C
/
L
X
T
F
l
a
s
h
E
E
P
R
O
M
R
A
M
O
s
c
i
l
l
a
t
O
o
s
r
c
i
l
l
a
t
o
P
r
o
g
r
a
m
D
a
t
a
T
B
0
/
T
B
1
D
a
t
a
M
e
m
o
r
y
M
e
m
o
r
y
M
e
m
o
r
y
1
2
-
B
i
t
A
/
D
C
o
n
v
e
r
t
e
r
C
o
m
p
a
r
a
t
o
r
s
I
/
O
U
A
R
T
S
I
M
T
T
M
M
1
0
T
M
n
Rev. 1.60  
10  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pin Assignment  
P
A
0
/
C
0
X
/
T
P
0
_
2
1
1
1
1
1
1
1
1
1
0
0
9
8
7
6
5
4
3
2
1
/
P
P
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
C
C
N
1
2
3
4
5
6
7
5
0
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
P
C
1
_
0
/
A
N
1
1
2
3
4
5
6
7
8
9
1
V
S
S
&
A
V
S
S
K
0
/
C
0
+
/
A
N
P
A
0
/
C
0
X
/
T
P
0
_
0
/
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
N
1
2
3
4
5
6
7
5
0
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
P
C
1
_
0
/
A
N
1
P
P
B
B
4
3
/
/
X
X
T
T
2
1
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
1
2
3
4
5
6
7
8
1
1
1
1
1
1
1
6
5
4
3
2
1
0
V
S
S
&
A
V
S
S
K
0
/
C
0
+
/
A
N
2
C
K
1
/
A
P
P
B
B
4
3
/
/
X
X
T
T
2
1
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
3
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
1
X
/
S
D
O
/
A
N
C
K
1
/
A
N
4
D
C
C
I
K
S
/
S
D
A
/
A
N
6
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
1
X
/
S
D
O
/
A
N
5
V
D
D
&
A
V
D
D
/
/
S
V
C
R
L
E
/
A
N
D
C
C
I
K
S
/
S
D
A
/
A
N
6
P
B
0
/
R
E
S
F
V
D
D
&
A
V
D
D
S
C
L
/
/
/
A
N
7
P
C
1
/
S
C
O
M
1
2
3
/
/
P
P
C
I
K
/
C
1
+
/
S
C
P
B
0
/
R
E
S
V
R
E
F
P
C
0
/
T
P
1
_
1
/
0
S
C
O
M
0
N
T
/
C
1
-
/
S
C
9
H
T
6
6
F
2
0
H
T
6
6
F
2
0
1
6
D
I
P
-
A
/
N
S
O
P
-
A
/
S
S
O
P
-
A
2
0
D
I
P
-
A
/
S
O
P
-
A
/
S
S
O
P
-
A
P
A
0
/
C
0
X
/
T
P
0
_
2
1
1
1
1
1
1
1
1
1
0
0
9
8
7
6
5
4
3
2
1
/
P
P
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
C
C
N
1
2
3
4
5
6
7
5
0
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
P
C
1
A
/
A
N
1
1
2
3
4
5
6
7
8
9
1
V
S
S
&
A
V
S
S
K
0
/
C
0
+
/
A
N
P
A
0
/
C
0
X
/
T
P
0
_
0
/
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
N
1
2
3
4
5
6
7
5
0
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
P
C
1
A
/
A
N
1
P
P
B
B
4
3
/
/
X
X
T
T
2
1
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
1
2
3
4
5
6
7
8
1
1
1
1
1
1
1
6
5
4
3
2
1
0
V
S
S
&
A
V
S
S
K
0
/
C
0
+
/
A
N
2
C
K
1
/
A
P
P
B
B
4
3
/
/
X
X
T
T
2
1
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
3
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
1
X
/
S
D
O
/
A
N
C
K
1
/
A
N
4
D
C
C
I
K
S
/
S
D
A
/
A
N
6
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
1
X
/
S
D
O
/
A
N
5
V
D
D
D
&
D
A
V
/
/
S
V
C
R
L
E
/
A
N
D
C
C
I
K
S
/
S
D
A
/
A
N
6
P
B
0
/
R
E
S
F
V
D
D
&
A
V
D
D
C
L
/
A
/
/
N
S
7
P
C
1
/
T
P
1
B
_
1
/
[
S
D
O
]
/
S
C
2
3
O
/
/
P
P
M
C
I
1
K
/
C
1
+
P
B
0
/
R
E
S
V
R
E
P
F
C
0
/
T
P
1
B
_
0
/
[
S
D
I
/
S
D
A
]
/
S
C
O
N
M
T
0
/
C
1
-
9
0
H
T
6
6
F
3
0
H
T
6
6
F
3
0
1
6
D
I
P
-
A
/
N
S
O
P
-
A
/
S
S
O
P
-
A
2
0
D
I
P
-
A
/
S
O
P
-
A
/
S
S
O
P
-
A
P
A
0
/
C
0
X
/
T
1
2
3
4
5
6
7
8
9
1
1
1
P
0
_
0
/
P
P
P
P
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
C
C
C
C
N
1
2
3
4
5
6
7
5
0
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
P
C
1
A
/
A
N
1
2
2
2
2
2
1
1
1
1
1
1
1
4
3
2
1
0
9
8
7
6
5
4
3
V
S
S
&
A
V
S
S
K
0
/
C
0
+
/
A
N
2
P
P
B
B
4
3
/
/
X
X
T
T
2
1
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
3
C
K
1
/
A
N
4
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
1
X
/
S
D
O
/
A
N
5
D
C
C
I
K
S
/
S
D
A
/
A
N
6
V
D
D
&
A
V
D
D
/
/
S
V
C
R
L
E
/
A
N
7
P
B
0
/
R
E
S
F
P
C
1
/
T
P
1
B
_
1
/
[
S
D
O
]
/
S
C
/
2
3
4
5
P
O
C
M
K
1
/
C
1
+
P
C
0
/
T
P
1
B
_
0
/
[
S
D
0
1
2
I
/
S
D
A
]
/
/
/
/
S
P
[
T
C
I
O
N
I
M
T
0
/
C
]
1
-
P
C
7
/
[
S
C
K
/
S
C
L
]
/
S
C
O
M
3
P
N
T
P
C
6
/
[
S
C
S
]
/
S
C
O
M
2
P
0
_
1
/
[
P
C
K
]
H
T
6
6
F
3
0
2
4
S
K
D
I
P
-
A
/
S
O
P
-
A
/
S
S
O
P
-
A
P
A
0
/
C
0
X
/
T
1
2
3
4
5
6
7
8
9
1
1
1
1
1
P
0
_
2
2
2
2
2
2
2
2
2
1
1
1
1
1
0
8
7
6
5
4
3
2
1
0
9
8
7
6
5
/
P
P
P
P
P
P
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
C
C
C
C
D
D
N
1
2
3
4
5
6
7
5
0
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
P
C
1
A
/
A
N
1
V
S
S
&
A
V
S
S
K
0
/
C
0
+
/
A
N
2
P
A
0
/
C
0
X
/
T
1
2
3
4
5
6
7
8
9
1
1
1
P
0
_
0
/
P
P
P
P
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
C
C
C
C
N
1
2
3
4
5
6
7
5
0
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
P
C
1
A
/
A
N
1
P
P
B
B
4
3
/
/
X
X
T
T
2
1
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
3
2
2
2
2
2
1
1
1
1
1
1
1
4
3
2
1
0
9
8
7
6
5
4
3
V
S
S
&
A
V
S
S
K
0
/
C
0
+
/
A
N
2
C
K
1
/
A
N
P
P
B
B
4
3
/
/
X
X
T
T
2
1
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
3
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
1
X
/
S
D
O
/
A
N
5
C
K
1
/
A
N
4
D
I
/
S
D
A
/
A
N
6
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
1
X
/
S
D
O
/
A
N
5
V
D
D
&
A
V
D
D
L
C
/
A
K
N
/
/
S
V
7
C
R
D
I
/
S
D
A
/
A
N
6
P
B
0
/
R
E
S
C
C
S
K
E
F
V
D
D
&
A
V
D
D
C
K
/
/
S
V
C
R
L
E
/
A
P
P
N
C
C
7
1
0
/
/
T
T
P
P
1
1
B
B
_
_
1
0
/
/
/
S
S
S
C
O
O
O
M
1
2
3
4
5
0
1
/
/
/
/
/
/
T
P
[
[
[
[
2
/
P
C
K
/
C
1
+
P
B
0
/
R
E
S
C
C
S
K
F
0
0
1
2
3
4
C
C
M
M
I
N
T
/
T
P
2
_
0
/
C
P
P
C
C
1
0
/
/
T
T
P
P
1
1
B
B
_
_
1
0
/
/
/
S
S
S
C
O
O
O
M
1
3
2
3
4
5
/
/
/
/
T
P
[
[
2
/
P
C
K
/
P
C
C
1
7
+
/
[
T
P
1
A
]
3
I
I
T
T
N
N
T
T
0
1
]
]
/
/
[
T
P
I
N
T
]
0
0
1
2
C
C
M
M
I
N
T
/
T
P
2
_
P
0
C
/
C
6
/
1
[
-
T
P
0
_
0
]
/
S
C
O
M
2
P
0
_
1
P
C
7
/
[
T
P
1
A
]
I
I
N
N
T
T
0
1
]
]
/
/
[
T
P
I
N
P
T
D
]
3
/
/
[
P
T
2
C
_
K
1
1
]
/
[
S
D
O
]
C
P
K
2
]
/
[
S
C
S
]
P
C
6
/
[
T
P
0
_
0
]
/
S
C
O
M
2
P
P
0
D
_
2
1
/
/
[
T
T
P
C
1
K
B
0
_
]
2
/
/
[
[
S
P
D
C
I
K
/
]
S
D
A
]
2
_
0
]
/
[
S
D
O
H
T
6
6
F
4
0
H
T
6
6
F
4
0
2
4
S
K
D
I
P
-
A
/
S
O
P
-
A
/
S
S
O
P
-
A
2
8
S
K
D
I
P
-
A
/
S
O
P
-
A
/
S
S
O
P
-
A
Note: 1. Bracketed pin names indicate non-default pinout remapping locations.  
2. If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right side of the  
²/² sign can be used for higher priority.  
3. VDD&AVDD means the VDD and AVDD are the double bonding.  
Rev. 1.60  
11  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
3
3
3
3
3
1
2
3
3
0
4
3
5
4
6
7
8
9
0
1
2
3
4
5
6
7
8
9
1
3
2
2
2
2
2
2
2
2
2
P
P
P
P
P
P
P
P
P
P
D
D
D
D
C
C
C
C
E
E
2
3
4
5
6
7
0
1
/
/
/
/
/
/
/
/
[
[
[
[
[
[
T
T
T
T
T
T
T
T
C
C
P
P
P
P
K
0
]
/
P
B
5
/
S
C
S
/
V
R
E
F
2
2
2
2
5
2
6
3
3
7
3
8
9
0
1
2
1
2
3
4
5
6
7
8
2
2
2
2
2
1
1
1
4
3
2
1
0
9
8
7
9
8
7
6
5
4
3
2
1
K
1
]
/
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
P
P
P
P
P
P
P
P
D
D
D
D
C
C
C
C
0
1
2
3
6
7
0
1
/
/
/
/
/
/
/
/
[
[
[
[
[
[
T
T
T
T
T
T
T
T
C
P
C
C
P
P
K
2
]
/
[
S
C
S
]
A
P
7
/
S
C
K
/
S
C
L
/
A
N
7
2
0
0
1
_
_
_
A
1
1
0
]
]
]
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
2
_
0
0
]
]
/
/
[
S
S
D
O
]
/
[
S
C
K
/
S
C
L
]
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
A
2
/
T
C
K
0
/
C
0
+
/
A
N
2
K
K
0
1
]
]
/
/
[
[
S
S
D
D
I
O
/
S
D
A
]
1
P
A
5
/
C
X
/
S
D
O
P
A
1
/
T
P
1
A
/
A
N
1
]
H
T
6
6
F 4  
4
0
H
T
6
6
F
4
0
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
0
Q
F
3
N
-
A
]
/
P
A
0
/
C
0
X
/
T
T
P
0
3
_
2
0
/
Q
A
F
N
N
0
-
A
0
1
_
A
C
O
M
2
3 /  
P
A
I
N
T
0
/
C
0
-
/
A
N
/
P
S
1
C
B
O
_
M
0
0
P
F
1
/
[
C
1
X
]
]
/
S
C
O
M
3
2
P
A
/
T
+
C
/
K
A
0
N
/
2
C
0
P
1
B
_
1
/
P
F
0
/
[
C
0
X
]
P
1
B
_
0
/
S
C
O
M
0
A
P
1
/
T
P
1
A
/
A
N
1
4
/
[
T
P
1
B
_
2
P
E
I
7
N
/
[
1
]
P
1
B
_
1
/
S
C
O
M
1
/
P
A
0
C
0
X
/
T
P
0
_
0
/
A
N
0
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
0
5
P
F
1
/
[
C
1
X
]
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
P
A
0
/
C
0
X
/
T
P
0
_
0
/
P
P
P
P
P
P
P
P
P
P
P
P
P
N
N
N
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
B
B
D
D
C
N
1
2
3
4
5
6
7
5
6
7
0
/
/
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
[
[
P
C
1
A
/
A
N
1
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
P
P
F
F
1
0
/
/
[
[
C
C
1
0
X
X
]
]
K
0
/
C
0
+
/
A
N
2
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
3
P
P
E
E
7
6
/
/
[
[
I
I
N
N
T
T
1
0
]
]
C
K
1
/
A
N
4
1
X
/
S
D
O
/
A
N
5
V
S
S
&
A
V
S
S
D
C
C
I
K
S
/
S
D
A
/
A
N
6
P
P
B
B
4
3
/
/
X
X
T
T
2
1
/
/
S
V
C
R
L
E
/
A
N
7
F
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
S
S
D
D
O
I
]
3
3
3
3
3
4
3
5
4
6
7
4
8
4
4
9
4
0
1
2
3
4
/
S
D
A
]
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
P
B
5
/
S
C
S
1
2
3
4
5
6
7
8
9
/
V
R
E
F
P
P
P
P
P
P
P
P
P
P
P
D
D
D
E
E
E
E
C
C
C
C
3
4
5
/
/
/
[
[
[
T
T
T
C
P
P
K
1
]
/
3
3
3
3
2
2
2
2
2
2
2
3
2
1
0
9
8
7
6
5
4
3
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
2
0
_
_
1
1
V
D
D
&
A
V
D
D
6
7
4
/
/
/
[
[
[
S
S
I
C
C
K
S
/
]
S
C
L
]
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
B
0
/
R
E
S
P
A
5
/
C
1
X
/
S
D
O
0
1
2
3
P
E
5
N
T
0
]
/
[
P
I
N
T
]
/
T
P
2
_
1
T
P
A
4
/
I
N
1
/
T
C
K
1
/
A
N
4
H
T
6
6
F
4
0
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
P
E
4
/
[
T
P
1
B
_
2
]
C
C
C
4
4
L
Q
F
P
-
A
P
A
2
/
T
+
C
/
K
A
0
N
/
2
C
0
P
P
C
C
1
0
/
/
T
T
P
P
1
1
B
B
_
_
1
0
/
/
S
S
C
C
O
O
M
M
1
0
P
A
1
/
T
P
1
A
/
A
N
1
6
7
0
/
/
/
[
[
T
T
T
P
P
0
1
_
A
0
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
]
/
P
F
1
/
[
1
1
C
0
1
X
X
]
]
P
1
B
_
0
N
C
C
C
C
D
D
D
D
D
2
3
5
0
1
2
3
4
/
/
/
/
/
/
/
/
T
P
[
[
[
[
[
[
C
K
2
/
P
C
K
/
C
1
+
P
F
0
/
[
C
1
0
1
/
T
P
1
B
_
1
/
S
P
C
7
/
[
T
P
1
A
]
/
S
C
O
M
3
I
N
T
/
2
T
P
2
_
0
/
C
1
-
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
P
C
6
/
[
T
P
0
_
0
]
/
S
C
O
M
2
I
T
T
T
T
T
N
T
1
]
/
T
P
0
_
1
/
T
P
1
B
_
2
/
[
P
C
K
]
P
P
P
P
E
E
E
E
3
2
1
0
C
P
C
C
P
K
]
/
[
S
C
S
]
2
_
0
]
/
[
S
D
O
]
/
[
S
C
K
/
S
C
L
]
K
K
0
1
]
]
/
/
[
[
S
S
D
D
I
O
/
S
D
A
]
]
P
D
5
/
[
T
P
0
_
1
]
2
_
1
]
H
T
6
6
F
4
0
4
8
S
S
O
P
-
A
4
4
8
4
7
6
4
4
4
5
4
4
4
2
3
4
1
0
3
3
8
9
1
2
3
4
5
6
7
8
9
3
3
3
3
3
3
3
2
2
2
2
2
6
5
4
3
2
1
0
9
8
7
6
5
P
P
P
P
P
P
P
P
P
N
P
P
D
D
D
E
E
E
E
C
C
3
4
5
/
/
/
[
[
[
T
T
T
C
P
P
K
1
]
N
C
2
0
_
_
1
1
P
B
5
/
S
C
S
/
V
R
E
F
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
0
1
2
3
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
A
5
/
C
1
X
/
0
S
D
O
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
6 F  
H
T
6
4
0
4
8
Q
F
N
-
A
P
A
3
/
I
N
T
/
C
0
-
/
A
N
3
6
7
/
/
[
[
T
T
P
P
0
1
_
A
0
P
A
2
/
C
T
0
C
+
K
/
0
A
/
N
2
]
P
A
1
/
T
P
1
A
/
A
N
1
C
P
A
0
/
C
0
X
/
T
1
1
1
0
1
2
P
0
_
0
/
A
N
0
C
C
0
1
/
/
T
T
P
1
B
_
0
N
C
P
1
B
_
1
P
F
1
/
[
C
1
X
]
1
3
1
4
1
1
7
5
1
1
8
6
1
9
2
0
2
1
2
2
2
3
2
4
Note: 1. Bracketed pin names indicate non-default pinout remapping locations.  
2. If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right side of the  
²/² sign can be used for higher priority.  
3. VDD&AVDD means the VDD and AVDD are the double bonding.  
Rev. 1.60  
12  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
P
A
0
/
C
0
X
/
T
1
2
3
4
5
6
7
8
9
1
1
1
1
1
P
0
_
2
2
2
2
2
2
2
2
2
1
1
1
1
1
0
8
7
6
5
4
3
2
1
0
9
8
7
6
5
/
P
P
P
P
P
P
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
C
C
C
C
D
D
N
1
2
0
/
/
T
T
P
C
1
A
/
A
N
1
V
S
S
&
A
V
S
S
K
0
/
C
0
+
/
A
N
2
P
P
B
B
4
3
/
/
X
X
T
T
2
1
3
/
I
N
T
0
/
C
0
-
/
A
N
3
4
5
6
7
5
/
/
/
/
/
I
C
S
S
S
N
T
1
/
T
C
K
1
/
A
N
4
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
1
X
/
S
D
O
/
A
N
5
D
I
/
S
D
A
/
A
N
6
3
3
3
3
3
1
2
3
3
0
4
3
5
4
6
7
8
9
0
1
2
3
4
5
6
7
8
9
3
2
2
2
2
2
2
2
2
2
V
D
D
C
K
/
/
S
V
C
R
L
E
/
A
N
C
7
1
P
P
P
P
P
P
P
P
P
P
D
D
D
D
C
C
C
C
E
E
2
3
4
5
6
7
0
1
/
/
/
/
/
/
/
/
[
[
[
[
[
[
T
T
T
T
T
T
T
T
C
C
P
P
P
P
K
0
]
/
[
P
B
5
/
S
C
S
/
V
R
E
F
9
8
7
6
5
4
3
2
1
K
1
]
/
T
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
P
B
0
/
R
E
S
C
C
S
K
F
2
0
0
1
_
_
_
A
1
1
0
]
]
]
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
P
C
C
1
0
/
/
T
T
P
P
1
1
B
B
_
_
1
0
/
/
S
S
C
C
C
O
O
M
M
M
1
0
2
3
4
5
0
1
/
/
/
/
/
/
T
P
[
[
[
[
2
/
P
C
K
/
+
P
A
5
/
C
1
X
/
S
D
O
0
1
2
3
4
I
N
T
/
T
P
2
_
0
/
C
1
-
4
/
H
T
6
6
F 5  
4
0
P
A
/
I
N
T
1
/
T
C
K
1
/
A
N
4 0  
-
1
Q
F
3
N
-
A
]
/
S
P
A
3
/
I
N
T
0
/
C
0
/
A
N
P
C
7
/
[
T
P
1
A
]
/
S
O
3
I
I
T
T
N
N
T
T
0
1
]
]
/
/
[
T
P
I
N
T
]
/
T
C
K
3
/
T
P
2
_
P
1
B
_
0
/
S
P
A
/
2
/
T
+
C
B
/
K
A
0
N
/
2
C
0
P
C
6
/
[
T
P
0
_
0
]
/
S
C
O
M
2
P
0
_
1
T
P
1
_
2
/
[
P
C
K
]
P
1
B
_
1
/
S
P
A
1
/
T
P
1
A
/
A
N
1
P
D
3
/
[
T
C
K
1
]
/
T
P
3
_
0
/
[
S
D
O
]
C
P
K
2
]
/
T
P
3
_
1
/
[
S
C
S
]
X /  
4
/
[
T
P
1
B
_
2
]
P
A
0
/
C
0
T
P
0
_
0
/
A
N
0
1
0
1
C
5
/
[
T
P
3
_
0
]
P
F
1
/
[
C
X
]
]
P
D
2
/
[
T
C
K
0
]
/
[
S
D
I
/
S
D
A
]
2
_
0
]
/
[
S
D
O
]
/
[
S
C
K
/
S
L
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
H
T
6
6
F
5
0
2
8
S
K
D
I
P
-
A
/
S
O
P
-
A
/
S
S
O
P
-
A
P
A
0
/
C
0
X
/
T
P
0
_
0
/
P
P
P
P
P
P
P
P
P
P
P
P
P
N
N
N
P
P
P
P
P
P
P
P
A
A
A
A
A
A
A
A
B
B
B
D
D
C
N
1
2
3
4
5
6
7
5
6
7
0
/
/
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
[
[
P
C
1
A
/
A
N
1
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
P
P
F
F
1
0
/
/
[
[
C
C
1
0
X
X
]
]
K
0
/
C
0
+
/
A
N
2
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
3
P
P
E
E
7
6
/
/
[
[
I
I
N
N
T
T
1
0
]
]
C
K
1
/
A
N
4
1
X
/
S
D
O
/
A
N
5
V
S
S
&
A
V
S
S
D
C
C
I
K
S
/
S
D
A
/
A
N
6
P
P
B
B
4
3
/
/
X
X
T
T
2
1
/
/
S
V
C
R
L
E
/
A
N
7
F
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
S
S
D
D
O
I
]
/
S
D
A
]
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
V
D
D
&
A
V
D
D
6
7
4
/
/
/
[
[
[
S
S
I
C
C
K
S
/
]
S
C
L
]
3
3
3
3
3
4
3
5
4
6
7
4
8
4
4
9
4
0
1
2
3
4
P
B
0
/
R
E
S
P
B
5
/
S
C
S
1
2
3
4
5
6
7
8
9
/
V
R
E
F
P
P
P
P
P
P
P
P
P
P
P
D
D
D
E
E
E
E
C
C
C
C
3
4
5
/
/
/
[
[
[
T
T
T
C
P
P
K
1
]
/
T
3
3
3
3
2
2
2
2
2
2
2
3
2
1
0
9
8
7
6
5
4
3
P
E
5
/
[
T
P
3
_
0
]
N
T
0
]
/
[
P
I
N
T
]
/
T
P
2
_
1
K
P
A
7
/
S
C
/
S
C
L
/
A
N
7
2
0
_
_
1
1
]
]
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
E
4
/
[
T
P
1
B
_
2
]
C
C
C
P
A
5
/
C
1
X
/
S
D
O
0
1
2
3
P
P
C
C
1
0
/
/
T
T
P
P
1
1
B
B
_
_
1
0
/
/
S
S
C
C
O
O
M
M
1
0
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
H
T
6
6
F
5
0
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
4
4
L
Q
F
P
-
A
P
A
+
2
/
T
+
C
/
K
A
0
N
/
2
C
0
/
[
T
P
3
_
1
]
N
C
C
C
C
D
D
D
D
D
2
3
5
0
1
2
3
4
/
/
/
/
/
/
/
/
T
P
[
[
[
[
[
[
C
K
2
/
P
C
K
/
C
1
P
A
1
/
T
P
1
A
/
A
N
1
6
7
0
1
/
/
/
/
[
[
T
T
P
P
0
1
_
A
0
]
/
P
C
7
/
[
T
P
1
A
]
/
S
C
O
M
3
I
N
T
/
2
T
P
2
_
0
/
C
1
-
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
]
/
S
P
C
6
/
[
T
P
0
_
0
]
/
S
C
O
M
2
I
T
T
T
N
T
1
]
/
T
P
0
_
1
/
T
P
1
B
_
2
/
[
P
C
K
]
P
P
F
1
/
[
1
C
0
1
1
X
]
]
T
P
1
B
_
0
/
S
C
O
P
E
3
/
[
T
P
3
_
1
]
C
P
C
C
P
K
]
/
[
S
C
S
]
F
0
/
[
1
C
0
X
T
P
1
B
_
1
/
S
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
P
P
P
E
E
E
2
1
0
2
_
0
]
/
[
S
D
O
]
/
[
S
C
K
/
S
C
L
]
K
K
0
1
]
]
/
/
[
[
S
S
D
D
I
O
/
S
D
A
]
T
T
]
P
D
5
/
[
T
P
0
_
1
]
2
_
1
]
H
T
6
6
F
5
0
4
8
S
S
O
P
-
A
4
8
4
4
6
7
4
4
4
4
5
4
3
2
4
4
0
1
3
3
3
8
9
1
2
3
4
5
6
7
8
9
3
3
3
3
3
3
3
2
2
2
2
2
6
5
4
3
2
1
0
9
8
7
6
5
P
P
P
P
P
P
P
P
P
N
P
P
D
D
D
E
E
E
E
C
C
3
4
5
/
/
/
[
[
[
T
T
T
C
P
P
K
1
]
/
N
C
2
0
_
_
1
1
]
]
P
B
5
/
S
C
S
/
V
R
E
F
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
0
1
2
3
P
A
6
/
S
D
I
/
S
D
A
/
A
A
N
N
6
5
P
A
5
/
C
1
X
/
S
D
O
/
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
6 F  
H
T
6
5
0
4
8
Q
F
N
-
A
/
[
T
P
3
_
1
]
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
6
7
/
/
[
[
T
T
P
P
0
1
_
A
0
]
P
A
2
/
C
T
0
C
+
K
/
0
A
/
N
2
]
/
S
P
A
1
/
T
P
1
A
/
A
N
1
C
P
A
0
/
C
0
X
/
T
1
1
1
0
1
2
0
_
0
/
A
N
0
0
C
C
/
T
P
1
B
_
0
/
S
N
C
1
/
T
P
1
B
_
1
/
P
F
1
/
[
C
1
X
]
1
3
1
4
1
1
7
5
1
1
8
6
1
9
2
0
2
1
2
2
2
3
2
4
Note: 1. Bracketed pin names indicate non-default pinout remapping locations.  
2. If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right side of the  
²/² sign can be used for higher priority.  
3. VDD&AVDD means the VDD and AVDD are the double bonding.  
Rev. 1.60  
13  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
3
3
3
3
3
4
3
5
4
6
7
4
8
4
4
9
4
0
1
2
3
4
3
3
3
3
3
1
2
3
3
3
0
4
3
5
4
6
7
8
9
0
P
B
5
/
S
C
S
1
2
3
4
5
6
7
8
9
/
V
R
E
F
3
3
3
3
2
2
2
2
2
2
2
3
2
1
0
9
8
7
6
5
4
3
P
P
P
P
P
P
P
P
P
P
P
D
D
D
E
E
E
E
C
C
C
C
3
4
5
/
/
/
[
[
[
T
T
T
C
P
P
K
1
]
/
T
P
3
_
0
1
2
3
4
5
6
7
8
9
1
3
2
2
2
2
2
2
2
2
2
P
P
P
P
P
P
P
P
P
P
D
D
D
D
C
C
C
C
E
E
2
3
4
5
6
7
0
1
/
/
/
/
/
/
/
/
[
[
[
[
[
[
T
T
T
T
T
T
T
T
C
C
P
P
P
P
K
0
]
/
[
S
D
I
/
S
D
A
]
P
B
5
/
S
C
S
/
V
R
E
F
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
2
0
_
_
1
1
]
]
9
8
7
6
5
4
3
2
1
K
1
]
/
T
P
3
_
0
/
[
S
D
O
]
/
[
S
C
K
/
S
C
L
]
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
2
0
0
1
_
_
_
A
1
1
0
]
]
]
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
A
5
/
C
1
X
/
S
D
O
0
1
2
3
/
/
/
/
[
[
[
[
I
I
I
T
N
N
N
T
T
T
0
1
2
]
]
]
P
A
5
/
C
1
X
/
S
D
O
P
A
4
2
/
I
N
T
1
/
T
C
K
1
/
A
N
4
/
S
C
O
M
P A  
3
H
T
6
6
F 6  
4
0
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
H
T
6
6
F
6
0
3
/
I
N
T
0
/
C
0
-
/
A
N
3
4
0
Q
F
3
N
-
A
]
/
S
C
O
M
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
4
4
L
Q
F
P
-
A
P
A
2
/
T
C
K
0
/
C
0
+
/
A
N
2
P
3
_
1
]
P
1
B
_
0
/
S
C
O
M
0
1
P
A
2
/
T
C
K
0
/
C
0
+
/
A
N
2
P
A
1
/
T
P
1
A
/
A
N
1
6
7
0
1
/
/
/
/
[
[
T
T
T
T
P
P
0
1
_
A
0
]
/
S
C
O
P
1
B
_
1
/
S
C
O
M
P
A
1
/
T
P
1
A
/
A
N
1
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
]
/
S
C
O
M
4
/
[
T
P
1
B
_
2
]
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
P
F
1
/
/
[
C
1
1
X
0
]
/
A
N
N
1
1
0
P
1
B
_
0
/
S
C
O
M
0
5
/
[
T
P
3
_
0
]
P
F
1
/
[
C
1
X
]
/
A
N
1
1
P
F
0
[
C
0
1
X
1
]
/
A
1
P
1
B
_
1
/
S
C
O
M
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
N
N
C
C
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
V
P
C
C
C
C
D
D
D
D
D
D
E
E
E
E
G
C
C
C
C
E
E
B
D
B
2
3
4
5
0
1
2
3
4
5
/
/
/
/
/
/
/
/
/
/
T
P
I
I
[
[
[
[
[
[
C
K
2
/
P
C
K
/
C
1
+
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
I
N
T
/
T
P
2
_
0
/
C
1
-
P
D
7
/
[
S
C
S
]
N
N
T
T
T
T
T
T
T
T
2
3
K
/
/
[
[
I
I
N
N
T
T
0
1
]
]
/
/
[
T
P
I
N
T
]
/
T
C
K
3
/
T
P
2
_
1
P
D
6
/
[
S
C
K
/
S
C
L
]
]
P
0
_
1
/
T
P
1
B
_
2
/
[
P
C
K
]
P
B
7
/
[
S
D
I
/
S
D
A
C
P
C
C
P
P
2
]
/
T
P
3
_
1
/
[
S
C
S
]
P
B
6
/
[
S
D
O
]
2
_
0
]
/
[
S
D
O
]
/
[
S
C
K
/
S
C
L
]
P
C
F
2
K
K
0
1
]
]
/
/
[
T
S
D
I
/
S
D
A
]
P
B
5
/
S
C
S
/
V
R
E
F
P
3
_
0
/
[
S
D
O
]
/
[
S
C
K
/
S
C
L
]
4 4  
4
8
4
4
6
7
4
4
4
5
2
3
4
4
0
1
1
2
3
4
5
6
7
8
9
3
3
3
3
3
3
3
2
2
2
2
2
6
5
4
3
2
1
0
9
8
7
6
5
P
P
P
P
P
P
P
P
P
N
P
P
D
D
D
E
E
E
E
C
C
3
4
5
/
/
/
[
[
[
T
T
T
C
P
P
K
1
]
/
T
P
3
_
N
C
P
A
7
/
S
K
/
S
C
L
/
/
A
A
N
N
7
6
2
0
_
_
1
1
]
]
2
0
_
_
1
1
]
]
P
B
5
/
S
C
S
/
V
R
E
F
P
A
6
/
S
D
I
/
S
D
A
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
0
1
2
3
/
/
/
/
[
[
[
[
I
I
I
T
N
N
N
T
T
T
0
1
2
]
]
]
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
A
5
/
S
C
D
1
O
X
/
/
A
N
5
0
1
2
3
/
/
/
/
[
[
[
[
I
I
I
T
N
N
N
T
T
T
0
1
2
]
]
]
P
A
5
/
C
1
X
/
S
D
O
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
6 F  
H
T
6
6
0
P
A
3
/
I
N
T
0
/
C
0
-
/
/
A
A
N
N
3
2
4
8
L
Q
F
P
-
A
/
Q
F
N
-
A
P
3
_
1
]
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
P
A
2
/
T
C
K
0
/
C
0
+
P
3
_
1
]
P
A
2
/
T
C
K
0
/
C
0
+
/
A
N
2
6
7
/
/
[
[
T
T
P
P
0
1
_
A
0
]
/
S
C
O
]
/
S
C
O
M
P
A
1
/
T
P
1
A
/
A
N
1
P
A
1
/
T
P
1
A
/
A
N
1
1
/
[
C
1
X
]
C
P
A
0
/
C
0
X
/
T
1
1
1
0
1
2
P
0
_
0
/
A
N
0
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
6
7
0
1
0
/
/
/
/
[
[
T
T
T
T
P
P
0
1
_
A
0
]
/
S
C
O
M
2
C
C
0
1
/
/
T
T
P
1
B
_
0
/
S
C
O
M
N
C
P
P
F
F
1
/
[
C
1
X
]
/
A
N
1
1
C
O
M
3
]
/
S
P
1
B
_
1
/
S
C
O
M
P
F
1
/
[
C
1
X
]
/
A
N
1
1
1
3
1
4
1
1
7
5
1
1
8
6
1
9
2
0
2
1
2
2
2
3
2
4
0
/
[
C
0
X
]
/
A
N
1
0
P
P
1
1
B
B
_
_
0
1
/
/
S
S
C
C
O
O
M
M
0
1
P
P
E
E
7
6
/
/
[
[
I
I
N
N
T
T
1
0
]
]
/
/
A
A
N
N
9
8
4
5
0
/
/
/
[
[
R
T
T
P
P
1
3
B
_
_
2
]
V
S
S
&
A
V
S
S
0
]
P
P
B
B
4
3
/
/
X
X
T
T
2
1
E
S
D
&
A
V
D
D
P
B
2
/
O
S
C
2
1
/
O
S
C
1
H
T
6
6
F
6
0
4
8
S
S
O
P
-
A
4
4
5
5
8
5
9
0
1
2
4
4
4
5
6
7
4
4
4
4
0
4
1
2
3
4
3
3
3
3
3
3
9
8
7
6
5
4
P
P
F
3
2
1
2
3
4
5
6
7
8
9
P
D
3
4
5
/
/
/
[
[
[
T
T
T
C
P
P
K
1
]
/
T
P
3
_
F
P
D
2
0
_
_
1
1
]
]
P
B
5
/
S
C
S
/
V
R
E
F
P
D
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
P
E
0
1
2
3
/
/
/
/
[
[
[
[
I
I
I
T
N
N
N
T
T
T
0
1
2
]
]
]
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
E
P
A
5
/
C
1
X
/
0
S
D
O
P
E
H
T
6
6
F
6
0
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
3
3
3
3
2
2
2
3
2
1
0
9
8
7
P
E
P
3
_
1
]
5
2
Q
F
P
-
A
P
A
3
/
I
N
T
/
C
0
-
/
A
N
3
P
F
6
P
A
2
/
T
C
K
0
/
C
0
+
/
A
N
2
P
F
7
P
A
1
/
T
P
1
1
1
1
1
A
0
1
2
3
/
A
N
1
P
P
P
P
G
G
C
C
0
/
[
C
0
X
X
]
]
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
1
/
[
C
1
P
F
F
1
/
[
C
1
X
]
/
A
A
N
1
1
6
7
/
/
[
[
T
T
P
P
0
1
_
A
0
]
/
S
C
O
P
0
/
[
C
0
X
]
/
N
1
0
]
/
S
C
O
M
1
4
1
5
1
6
1
7
2
1
3
8
2
1
4
9
2
2
5
0
2
2
6
1
2
2
Note: 1. Bracketed pin names indicate non-default pinout remapping locations.  
2. If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right side of the  
²/² sign can be used for higher priority.  
3. VDD&AVDD means the VDD and AVDD are the double bonding.  
Rev. 1.60  
14  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pin Description  
With the exception of the power pins, all pins on these devices can be referenced by their Port name, e.g. PA.0, PA.1  
etc, which refer to the digital I/O function of the pins. However these Port pins are also shared with other function such  
as the Analog to Digital Converter, Serial Port pins etc. The function of each pin is listed in the following table, however  
the details behind how each pin is configured is contained in other sections of the datasheet.  
The following tables only include the pins which are directly related to the MCU. The pin descriptions of the additional  
peripheral functions are located at the end of the datasheet along with the relevant peripheral function functional de-  
scription.  
HT66F20  
Pin Name  
PA0~PA7  
Function  
OP  
I/T  
O/T  
Pin-Shared Mapping  
PAWU  
PAPU  
Port A  
ST  
CMOS  
¾
PB0~PB5  
PC0~PC3  
AN0~AN7  
VREF  
Port B  
Port C  
PBPU  
PCPU  
ST  
ST  
AN  
AN  
AN  
AN  
CMOS  
CMOS  
¾
¾
¾
ADC input  
ACERL  
ADCR1  
PA0~PA7  
PB5  
ADC reference input  
Comparator 0, 1 input  
Comparator 0, 1 input  
Comparator 0, 1 output  
TM0, TM1 input  
TM0 I/O  
¾
C0-, C1-  
C0+, C1+  
C0X, C1X  
TCK0, TCK1  
TP0_0  
TP1_0, TP1_1  
INT0, INT1  
PINT  
PA3, PC3  
PA2, PC2  
PA0, PA5  
PA2, PA4  
PA0  
¾
CP0C  
CP1C  
¾
CMOS  
¾
ST  
ST  
ST  
ST  
ST  
¾
TMPC0  
TMPC0  
¾
¾
CMOS  
CMOS  
¾
TM1 I/O  
PA1, PC0  
PA3, PA4  
PC3  
Ext. Interrupt 0, 1  
Peripheral Interrupt  
Peripheral Clock output  
SPI Data input  
SPI Data output  
SPI Slave Select  
SPI Serial Clock  
I2C Clock  
¾
¾
PCK  
CMOS  
PC2  
¾
¾
ST  
SDI  
PA6  
¾
¾
CMOS  
CMOS  
CMOS  
NMOS  
NMOS  
SCOM  
¾
SDO  
PA5  
¾
¾
SCS  
ST  
PB5  
¾
SCK  
ST  
PA7  
¾
SCL  
ST  
PA7  
¾
SDA  
I2C Data  
ST  
PA6  
¾
SCOM0~SCOM3  
OSC1  
SCOM0~SCOM3  
HXT/ERC pin  
HXT pin  
SCOMC  
CO  
CO  
CO  
CO  
CO  
PC0, PC1, PC2, PC3  
PB1  
¾
HXT  
¾
OSC2  
HXT  
¾
PB2  
XT1  
LXT pin  
LXT  
¾
PB3  
XT2  
LXT pin  
LXT  
¾
PB4  
RES  
Reset input  
ST  
PB0  
VDD  
Power supply *  
ADC power supply *  
Ground **  
PWR  
PWR  
PWR  
PWR  
¾
¾
¾
¾
¾
¾
¾
¾
¾
AVDD  
¾
VSS  
¾
AVSS  
ADC ground **  
¾
Rev. 1.60  
15  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Note: I/T: Input type; O/T: Output type  
OP: Optional by configuration option (CO) or register option  
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input  
CMOS: CMOS output; NMOS: NMOS output  
SCOM: Software controlled LCD COM; AN: Analog input pin  
HXT: High frequency crystal oscillator  
LXT: Low frequency crystal oscillator  
*: VDD is the device power supply while AVDD is the ADC power supply. The AVDD pin is bonded together  
internally with VDD.  
**: VSS is the device ground pin while AVSS is the ADC ground pin. The AVSS pin is bonded together  
internally with VSS.  
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed  
pins may be present on package types with smaller numbers of pins.  
HT66F30  
Pin Name  
Function  
OP  
I/T  
O/T  
Pin-Shared Mapping  
PAWU  
PAPU  
PA0~PA7  
Port A  
ST  
CMOS  
¾
PB0~PB5  
PC0~PC7  
AN0~AN7  
VREF  
Port B  
Port C  
PBPU  
PCPU  
ST  
ST  
AN  
AN  
AN  
AN  
CMOS  
CMOS  
¾
¾
¾
ADC input  
ACERL  
ADCR1  
PA0~PA7  
PB5  
ADC reference input  
Comparator 0, 1 input  
Comparator 0, 1 input  
Comparator 0, 1 output  
TM0, TM1 input  
TM0 I/O  
¾
C0-, C1-  
C0+, C1+  
C0X, C1X  
TCK0, TCK1  
TP0_0, TP0_1  
TP1A  
PA3, PC3  
PA2, PC2  
PA0, PA5  
PA2, PA4  
PA0, PC5  
PA1  
¾
CP0C  
CP1C  
¾
CMOS  
¾
ST  
ST  
ST  
ST  
ST  
ST  
¾
TMPC0  
TMPC0  
TMPC0  
¾
¾
CMOS  
CMOS  
CMOS  
¾
TM1 I/O  
TP1B_0, TP1B_1  
INT0, INT1  
PINT  
TM1 I/O  
PC0, PC1  
PA3, PA4  
PC3 or PC4  
PC2 or PC5  
PA6 or PC0  
PA5 or PC1  
PB5 or PC6  
PA7 or PC7  
PA7 or PC7  
PA6 or PC0  
PC0, PC1, PC6, PC7  
PB1  
Ext. Interrupt 0, 1  
Peripheral Interrupt  
Peripheral Clock output  
SPI Data input  
SPI Data output  
SPI Slave Select  
SPI Serial Clock  
I2C Clock  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
SCOMC  
CO  
¾
PCK  
CMOS  
¾
SDI  
ST  
¾
SDO  
CMOS  
CMOS  
CMOS  
NMOS  
NMOS  
SCOM  
¾
ST  
ST  
ST  
ST  
¾
SCS  
SCK  
SCL  
SDA  
I2C Data  
SCOM0~SCOM3  
OSC1  
SCOM0~SCOM3  
HXT/ERC pin  
HXT pin  
HXT  
¾
HXT  
¾
OSC2  
CO  
PB2  
¾
LXT  
¾
XT1  
LXT pin  
CO  
PB3  
XT2  
LXT pin  
CO  
LXT  
PB4  
Rev. 1.60  
16  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pin Name  
Function  
Reset input  
OP  
CO  
¾
I/T  
O/T  
¾
Pin-Shared Mapping  
PB0  
RES  
VDD  
ST  
Power supply *  
ADC power supply *  
Ground **  
PWR  
PWR  
PWR  
PWR  
¾
¾
¾
¾
¾
AVDD  
VSS  
¾
¾
¾
¾
AVSS  
ADC ground **  
¾
¾
Note: I/T: Input type; O/T: Output type  
OP: Optional by configuration option (CO) or register option  
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input  
CMOS: CMOS output; NMOS: NMOS output  
SCOM: Software controlled LCD COM; AN: Analog input pin  
HXT: High frequency crystal oscillator  
LXT: Low frequency crystal oscillator  
*: VDD is the device power supply while AVDD is the ADC power supply. The AVDD pin is bonded together  
internally with VDD.  
**: VSS is the device ground pin while AVSS is the ADC ground pin. The AVSS pin is bonded together  
internally with VSS.  
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed  
pins may be present on package types with smaller numbers of pins.  
HT66F40  
Pin Name  
Function  
OP  
I/T  
O/T  
Pin-Shared Mapping  
PAWU  
PAPU  
PA0~PA7  
Port A  
ST  
CMOS  
¾
PB0~PB7  
PC0~PC7  
PD0~PD7  
PE0~PE7  
PF0~PF1  
AN0~AN7  
VREF  
Port B  
Port C  
Port D  
Port E  
Port F  
PBPU  
PCPU  
PDPU  
PEPU  
PFPU  
ST  
ST  
ST  
ST  
ST  
AN  
AN  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
¾
¾
¾
¾
¾
¾
ADC input  
ACERL  
ADCR1  
PA0~PA7  
PB5  
ADC reference input  
¾
CP0C  
CP1C  
C0-, C1-  
Comparator 0, 1 input  
Comparator 0, 1 input  
AN  
AN  
PA3, PC3  
PA2, PC2  
¾
¾
CP0C  
CP1C  
C0+, C1+  
CP0C  
CP1C  
PRM0  
C0X, C1X  
Comparator 0, 1 output  
CMOS  
PA0, PA5 or PF0, PF1  
¾
PA2, PA4, PC2 or  
PD2, PD3, PD0  
TCK0~TCK2  
TP0_0, TP0_1  
TP1A  
TM0~TM2 input  
TM0 I/O  
PRM1  
ST  
ST  
ST  
ST  
¾
TMPC0  
PRM2  
CMOS  
CMOS  
CMOS  
PA0, PC5 or PC6, PD5  
PA1 or PC7  
TMPC0  
PRM2  
TM1 I/O  
PC0, PC1, PC5 or  
TMPC0  
PRM2  
TP1B_0~TP1B_2  
TM1 I/O  
-, -, PE4  
Rev. 1.60  
17  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pin Name  
Function  
OP  
I/T  
O/T  
Pin-Shared Mapping  
TMPC1  
PRM2  
TP2_0, TP2_1  
TM2 I/O  
ST  
CMOS  
PC3, PC4 or PD1, PD4  
PA3, PA4 or PC4, PC5 or  
PE6, PE7  
INT0, INT1  
Ext. Interrupt 0, 1  
PRM1  
ST  
¾
PINT  
PCK  
Peripheral Interrupt  
Peripheral Clock output  
SPI Data input  
SPI Data output  
SPI Slave Select  
SPI Serial Clock  
I2C Clock  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
SCOMC  
CO  
ST  
¾
PC3 or PC4  
PC2 or PC5  
PA6 or PD2 or PB7  
PA5 or PD3 or PB6  
PB5 or PD0 or PD7  
PA7 or PD1 or PD6  
PA7 or PD1 or PD6  
PA6 or PD2 or PB7  
PC0, PC1, PC6, PC7  
PB1  
¾
CMOS  
SDI  
ST  
¾
SDO  
CMOS  
CMOS  
CMOS  
NMOS  
NMOS  
SCOM  
¾
ST  
ST  
ST  
ST  
¾
SCS  
SCK  
SCL  
SDA  
I2C Data  
SCOM0~SCOM3  
OSC1  
OSC2  
XT1  
SCOM0~SCOM3  
HXT/ERC pin  
HXT pin  
HXT  
¾
HXT  
¾
CO  
PB2  
¾
LXT pin  
CO  
LXT  
¾
PB3  
XT2  
LXT pin  
CO  
LXT  
¾
PB4  
RES  
Reset input  
CO  
ST  
PB0  
VDD  
Power supply *  
ADC power supply *  
Ground **  
PWR  
PWR  
PWR  
PWR  
¾
¾
¾
¾
¾
¾
¾
¾
¾
AVDD  
VSS  
¾
¾
AVSS  
ADC ground **  
¾
Note: I/T: Input type; O/T: Output type  
OP: Optional by configuration option (CO) or register option  
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input  
CMOS: CMOS output; NMOS: NMOS output  
SCOM: Software controlled LCD COM; AN: Analog input pin  
HXT: High frequency crystal oscillator  
LXT: Low frequency crystal oscillator  
*: VDD is the device power supply while AVDD is the ADC power supply. The AVDD pin is bonded together  
internally with VDD.  
**: VSS is the device ground pin while AVSS is the ADC ground pin. The AVSS pin is bonded together  
internally with VSS.  
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed  
pins may be present on package types with smaller numbers of pins.  
Rev. 1.60  
18  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
HT66F50  
Pin Name  
Function  
OP  
I/T  
O/T  
Pin-Shared Mapping  
PAWU  
PAPU  
PA0~PA7  
Port A  
ST  
CMOS  
¾
PB0~PB7  
PC0~PC7  
PD0~PD7  
PE0~PE7  
PF0~PF1  
AN0~AN7  
VREF  
Port B  
Port C  
Port D  
Port E  
Port F  
PBPU  
PCPU  
PDPU  
PEPU  
PFPU  
ST  
ST  
ST  
ST  
ST  
AN  
AN  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
¾
¾
¾
¾
¾
¾
ADC input  
ACERL  
ADCR1  
PA0~PA7  
PB5  
ADC reference input  
¾
CP0C  
CP1C  
C0-, C1-  
Comparator 0, 1 input  
Comparator 0, 1 input  
AN  
AN  
PA3, PC3  
PA2, PC2  
¾
¾
CP0C  
CP1C  
C0+, C1+  
CP0C  
CP1C  
PRM0  
C0X, C1X  
Comparator 0, 1 output  
CMOS  
PA0, PA5 or PF0, PF1  
¾
PA2, PA4, PC2, PC4 or  
TCK0~TCK3  
TP0_0, TP0_1  
TP1A  
TM0~TM3 input  
TM0 I/O  
PRM1  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
¾
PD2, PD3, PD0, -  
TMPC0  
PRM2  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
¾
PA0, PC5 or PC6, PD5  
PA1 or PC7  
TMPC0  
PRM2  
TM1 I/O  
PC0, PC1, PC5 or  
TMPC0  
PRM2  
TP1B_0~TP1B_2  
TP2_0, TP2_1  
TP3_0, TP3_1  
INT0, INT1  
TM1 I/O  
-, -, PE4  
TMPC1  
PRM2  
TM2 I/O  
PC3, PC4 or PD1, PD4  
PD3, PD0 or PE5, PE3  
TMPC1  
PRM2  
TM3 I/O  
PA3, PA4 or PC4, PC5 or  
PE6, PE7  
Ext. Interrupt 0, 1  
PRM1  
PINT  
Peripheral Interrupt  
Peripheral Clock output  
SPI Data input  
SPI Data output  
SPI Slave Select  
SPI Serial Clock  
I2C Clock  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
PRM0  
SCOMC  
CO  
ST  
¾
PC3 or PC4  
¾
PCK  
CMOS  
PC2 or PC5  
SDI  
ST  
PA6 or PD2 or PB7  
PA5 or PD3 or PB6  
PB5 or PD0 or PD7  
PA7 or PD1 or PD6  
PA7 or PD1 or PD6  
PA6 or PD2 or PB7  
PC0, PC1, PC6, PC7  
PB1  
¾
SDO  
CMOS  
CMOS  
CMOS  
NMOS  
NMOS  
SCOM  
¾
ST  
ST  
ST  
ST  
¾
SCS  
SCK  
SCL  
SDA  
I2C Data  
SCOM0~SCOM3  
OSC1  
OSC2  
XT1  
SCOM0~SCOM3  
HXT/ERC pin  
HXT pin  
HXT  
¾
HXT  
¾
CO  
PB2  
¾
LXT pin  
CO  
LXT  
PB3  
Rev. 1.60  
19  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pin Name  
Function  
OP  
CO  
CO  
¾
I/T  
¾
O/T  
LXT  
¾
Pin-Shared Mapping  
PB4  
XT2  
RES  
VDD  
LXT pin  
Reset input  
ST  
PB0  
¾
Power supply *  
ADC power supply *  
Ground **  
PWR  
PWR  
PWR  
PWR  
¾
AVDD  
VSS  
¾
¾
¾
¾
¾
¾
AVSS  
ADC ground **  
¾
¾
¾
Note: I/T: Input type; O/T: Output type  
OP: Optional by configuration option (CO) or register option  
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input  
CMOS: CMOS output; NMOS: NMOS output  
SCOM: Software controlled LCD COM; AN: Analog input pin  
HXT: High frequency crystal oscillator  
LXT: Low frequency crystal oscillator  
*: VDD is the device power supply while AVDD is the ADC power supply. The AVDD pin is bonded together  
internally with VDD.  
**: VSS is the device ground pin while AVSS is the ADC ground pin. The AVSS pin is bonded together  
internally with VSS.  
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed  
pins may be present on package types with smaller numbers of pins.  
HT66F60  
Pin Name  
Function  
OP  
I/T  
O/T  
Pin-Shared Mapping  
PAWU  
PAPU  
PA0~PA7  
Port A  
ST  
CMOS  
¾
PB0~PB7  
PC0~PC7  
PD0~PD7  
PE0~PE7  
PF0~PF7  
PG0~PG1  
Port B  
Port C  
Port D  
Port E  
Port F  
Port G  
PBPU  
PCPU  
PDPU  
PEPU  
PFPU  
PGPU  
ST  
ST  
ST  
ST  
ST  
ST  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
¾
¾
¾
¾
¾
¾
PA0~PA7, PE6, PE7,  
PF0, PF1  
AN0~AN11  
VREF  
ADC input  
AN  
AN  
AN  
¾
¾
¾
ACERH  
ADCR1  
ADC reference input  
Comparator 0, 1 input  
PB5  
CP0C  
CP1C  
C0-, C1-  
PA3, PC3  
CP0C  
CP1C  
C0+, C1+  
C0X, C1X  
Comparator 0, 1 input  
Comparator 0, 1 output  
AN  
PA2, PC2  
¾
CP0C  
CP1C  
PRM0  
PA0, PA5 or PF0, PF1 or  
PG0, PG1  
CMOS  
¾
PA2, PA4, PC2, PC4 or  
TCK0~TCK3  
TM0~TM3 input  
TM0 I/O  
PRM1  
ST  
ST  
¾
PD2, PD3, PD0, -  
TMPC0  
PRM2  
TP0_0, TP0_1  
CMOS  
PA0, PC5 or PC6, PD5  
Rev. 1.60  
20  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pin Name  
TP1A  
Function  
OP  
I/T  
O/T  
Pin-Shared Mapping  
TMPC0  
PRM2  
TM1 I/O  
TM1 I/O  
TM2 I/O  
TM3 I/O  
ST  
CMOS  
PA1 or PC7  
PC0, PC1, PC5 or  
TMPC0  
PRM2  
TP1B_0~TP1B_2  
TP2_0, TP2_1  
TP3_0, TP3_1  
ST  
ST  
ST  
CMOS  
CMOS  
CMOS  
-, -, PE4  
TMPC1  
PRM2  
PC3, PC4 or PD1, PD4  
PD3, PD0 or PE5, PE3  
TMPC1  
PRM2  
PA3, PA4, PC4, PC5 or  
PC4, PC5, PE2, -, or  
PE0, PE1, -, - or  
INT0~INT3  
Ext. Interrupt 0~3  
PRM1  
ST  
¾
PE6, PE7, -, -  
PINT  
PCK  
SDI  
Peripheral Interrupt  
Peripheral Clock output  
SPI Data input  
PRM0  
PRM0  
PRM0  
ST  
¾
PC3 or PC4  
¾
CMOS  
¾
PC2 or PC5  
ST  
PA6 or PD2 or PB7  
PA5 or PD3 or PB6 or  
PD1  
SDO  
SCS  
SCK  
SPI Data output  
SPI Slave Select  
SPI Serial Clock  
PRM0  
PRM0  
PRM0  
CMOS  
CMOS  
CMOS  
¾
ST  
ST  
PB5 or PD0 or PD7  
PA7 or PD1 or PD6 or  
PD3  
PA7 or PD1 or PD6 or  
PD3  
SCL  
I2C Clock  
PRM0  
ST  
NMOS  
SDA  
I2C Data  
PRM0  
SCOMC  
CO  
ST  
¾
NMOS  
SCOM  
¾
PA6 or PD2 or PB7  
SCOM0~SCOM3  
OSC1  
OSC2  
XT1  
SCOM0~SCOM3  
HXT/ERC pin  
HXT pin  
PC0, PC1, PC6, PC7  
HXT  
¾
PB1  
PB2  
PB3  
PB4  
PB0  
¾
CO  
HXT  
¾
LXT pin  
CO  
LXT  
¾
XT2  
LXT pin  
CO  
LXT  
¾
RES  
Reset input  
Power supply *  
ADC power supply *  
Ground **  
CO  
ST  
VDD  
PWR  
PWR  
PWR  
PWR  
¾
¾
AVDD  
VSS  
¾
¾
¾
¾
¾
¾
AVSS  
ADC ground **  
¾
¾
¾
Note: I/T: Input type; O/T: Output type  
OP: Optional by configuration option (CO) or register option  
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input  
CMOS: CMOS output; NMOS: NMOS output  
SCOM: Software controlled LCD COM; AN: Analog input pin  
HXT: High frequency crystal oscillator  
LXT: Low frequency crystal oscillator  
*: VDD is the device power supply while AVDD is the ADC power supply. The AVDD pin is bonded together  
internally with VDD.  
**: VSS is the device ground pin while AVSS is the ADC ground pin. The AVSS pin is bonded together  
internally with VSS.  
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed  
pins may be present on package types with smaller numbers of pins.  
Rev. 1.60  
21  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Absolute Maximum Ratings  
Supply Voltage...........................VSS-0.3V to VSS+6.0V  
Input Voltage..............................VSS-0.3V to VDD+0.3V  
Storage Temperature............................-50°C to 125°C  
Operating Temperature...........................-40°C to 85°C  
I
OL Total ................................................................80mA  
I
OH Total..............................................................-80mA  
Total Power Dissipation .....................................500mW  
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may  
cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed  
in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.  
D.C. Characteristics  
Ta=25°C  
Test Conditions  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
f
SYS=8MHz  
2.2  
2.7  
4.5  
¾
5.5  
5.5  
5.5  
1.1  
2.7  
2.4  
5.0  
3.3  
7.5  
V
¾
¾
Operating Voltage  
(HXT, ERC, HIRC)  
VDD  
fSYS=12MHz  
fSYS=20MHz  
V
¾
V
¾
3V  
5V  
3V  
5V  
3V  
5V  
0.7  
1.8  
1.6  
3.3  
2.2  
5.0  
mA  
mA  
mA  
mA  
mA  
mA  
No load, fSYS=fH=4MHz,  
ADC off, WDT enable  
¾
Operating Current,  
Normal Mode, fSYS=fH  
(HXT, ERC, HIRC)  
¾
No load, fSYS=fH=8MHz,  
ADC off, WDT enable  
IDD1  
¾
¾
No load, fSYS=fH=12MHz,  
ADC off, WDT enable  
¾
Operating Current,  
Normal Mode, fSYS=fH  
(HXT)  
No load, fSYS=fH=20MHz,  
ADC off, WDT enable  
IDD2  
5V  
6.0  
9.0  
mA  
¾
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
10  
30  
20  
50  
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Operating Current, Slow Mode,  
No load, fSYS=fL, ADC off,  
WDT enable  
IDD3  
f
SYS=fL (LXT, LIRC)  
1.5  
3.0  
0.55  
1.30  
¾
3.0  
6.0  
0.83  
2.00  
1
IDLE0 Mode Standby Current  
(LXT or LIRC on)  
No load, ADC off, WDT  
enable  
IIDLE0  
IIDLE1  
ISLEEP0  
ISLEEP1  
No load, ADC off, WDT  
enable, fSYS=12MHz on  
IDLE1 Mode Standby Current  
(HXT, ERC, HIRC)  
SLEEP0 Mode Standby Current  
(LXT and LIRC off)  
No load, ADC off, WDT  
disable  
2
¾
1.5  
2.5  
3.0  
5.0  
SLEEP1 Mode Standby Current  
(LXT or LIRC on)  
No load, ADC off, WDT  
enable  
Input Low Voltage for I/O Ports or  
Input Pins except RES pin  
VIL1  
0.3VDD  
VDD  
0
V
V
¾
¾
¾
¾
¾
¾
Input High Voltage for I/O Ports  
or Input Pins except RES pin  
VIH1  
0.7VDD  
VIL2  
VIH2  
0.4VDD  
VDD  
Input Low Voltage (RES)  
Input High Voltage (RES)  
0
V
V
¾
¾
¾
¾
¾
¾
0.9VDD  
Rev. 1.60  
22  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Ta=25°C  
Test Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
Conditions  
LVR Enable, 2.10V option  
LVR Enable, 2.55V option  
LVR Enable, 3.15V option  
LVR Enable, 4.20V option  
LVDEN=1, VLVD=2.0V  
LVDEN=1, VLVD=2.2V  
LVDEN=1, VLVD=2.4V  
LVDEN=1, VLVD=2.7V  
LVDEN=1, VLVD=3.0V  
LVDEN=1, VLVD=3.3V  
LVDEN=1, VLVD=3.6V  
LVDEN=1, VLVD=4.4V  
LVR Enable, LVDEN=0  
LVR disable, LVDEN=1  
LVR enable, LVDEN=1  
2.10  
2.55  
3.15  
4.20  
2.00  
2.20  
2.40  
2.70  
3.00  
3.30  
3.60  
4.40  
60  
+5%  
+5%  
+5%  
+5%  
+5%  
+5%  
+5%  
+5%  
+5%  
+5%  
+5%  
+5%  
90  
V
V
-5%  
-5%  
-5%  
-5%  
-5%  
-5%  
-5%  
-5%  
-5%  
-5%  
-5%  
-5%  
¾
VLVR  
LVR Voltage Level  
¾
V
V
V
V
V
V
VLVD  
LVD Voltage Level  
¾
V
V
V
V
mA  
mA  
mA  
V
Additional Power Consumption if  
LVR and LVD is Used  
ILV  
75  
115  
135  
0.3  
¾
¾
90  
¾
I
I
OL=9mA  
3V  
5V  
3V  
5V  
3V  
5V  
¾
¾
VOL  
VOH  
RPH  
Output Low Voltage I/O Port  
Output High Voltage I/O Port  
OL=20mA  
0.5  
V
¾
¾
2.7  
V
IOH=-3.2mA  
IOH=-7.4mA  
¾
¾
4.5  
V
¾
¾
20  
60  
100  
50  
kW  
kW  
mA  
mA  
mA  
mA  
VDD  
Pull-high Resistance for I/O  
Ports  
¾
10  
30  
SCOMC, ISEL[1:0]=00  
SCOMC, ISEL[1:0]=01  
SCOMC, ISEL[1:0]=10  
SCOMC, ISEL[1:0]=11  
17.5  
35  
25.0  
50  
32.5  
65  
ISCOM  
SCOM Operating Current  
VDD/2 Voltage for LCD COM  
5V  
70  
100  
200  
130  
260  
140  
VSCOM  
V125  
5V No load  
0.475 0.500 0.525  
1.25V Reference with Buffer  
Voltage  
1.25  
200  
+3%  
300  
V
¾
¾
¾
-3%  
Additional Power Consumption if  
1.25V Reference with Buffer is  
used  
I125  
¾
¾
mA  
Rev. 1.60  
23  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
A.C. Characteristics  
Ta=25°C  
Test Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
Conditions  
2.2V~5.5V  
DC  
DC  
8
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
¾
¾
¾
¾
¾
¾
4
fCPU  
Operating Clock  
2.7V~5.5V  
4.5V~5.5V  
2.2V~5.5V  
2.7V~5.5V  
4.5V~5.5V  
Ta=25°C  
12  
¾
DC  
20  
0.4  
8
fSYS  
System Clock (HXT)  
0.4  
12  
¾
0.4  
20  
3V/5V  
3V/5V  
5V  
+2%  
+2%  
+2%  
+5%  
+4%  
+3%  
-2%  
-2%  
-2%  
-5%  
-4%  
-5%  
8
Ta=25°C  
12  
4
Ta=25°C  
3V/5V  
3V/5V  
5V  
Ta=0~70°C  
Ta=0~70°C  
Ta=0~70°C  
8
12  
2.2V~  
3.6V  
4
4
+7%  
+9%  
+4%  
+9%  
+7%  
+8%  
+9%  
+4%  
+9%  
+7%  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Ta=0~70°C  
-7%  
-5%  
3.0V~  
5.5V  
Ta=0~70°C  
2.2V~  
3.6V  
8
Ta=0~70°C  
-6%  
System Clock  
(HIRC)  
fHIRC  
3.0V~  
5.5V  
8
Ta=0~70°C  
-4%  
3.0V~  
5.5V  
12  
4
Ta=0~70°C  
-6%  
2.2V~  
3.6V  
Ta= -40°C~85°C  
Ta= -40°C~85°C  
Ta= -40°C~85°C  
Ta= -40°C~85°C  
Ta= -40°C~85°C  
-12%  
-10%  
-15%  
-8%  
3.0V~  
5.5V  
4
2.2V~  
3.6V  
8
3.0V~  
5.5V  
8
3.0V~  
5.5V  
12  
-12%  
5V  
5V  
8
8
+2%  
+6%  
MHz  
MHz  
Ta=25°C, R=120kW *  
-2%  
-5%  
Ta=0~70°C, R=120kW *  
Ta= -40°C~85°C,  
R=120kW *  
5V  
8
8
+9%  
MHz  
MHz  
-7%  
-9%  
fERC  
System Clock (ERC)  
3.0V~ Ta= -40°C~85°C,  
+10%  
5.5V  
R=120kW *  
2.2V~ Ta= -40°C~85°C,  
8
+10%  
MHz  
kHz  
-15%  
5.5V  
R=120kW *  
fLXT  
System Clock (LXT)  
32.768  
¾
¾
¾
¾
Rev. 1.60  
24  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Ta=25°C  
Test Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
Conditions  
Ta=25°C  
5V  
32  
32  
+10%  
+60%  
kHz  
kHz  
fSYS  
-10%  
-50%  
fLIRC  
System Clock (LIRC)  
2.2V~  
5.5V  
Ta=-40°C~+85°C  
fTIMER  
tRES  
Timer Input Pin Frequency  
External Reset Low Pulse Width  
Interrupt Pulse Width  
1
¾
¾
480  
90  
¾
¾
90  
4
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
1
¾
¾
ms  
tINT  
tSYS  
1
¾
tLVR  
Low Voltage Width to Reset  
Low Voltage Width to Interrupt  
LVDO stable time  
120  
20  
15  
200  
¾
¾
¾
¾
¾
240  
45  
ms  
ms  
ms  
ms  
ms  
ms  
tLVD  
tLVDS  
tBGS  
tEERD  
tEEWR  
¾
VBG Turn on Stable Time  
EEPROM Read Time  
¾
45  
EEPROM Write Time  
2
fSYS=HXT or LXT  
1024  
15~16  
1~2  
¾
¾
¾
System Start-up Timer Period  
(Wake-up from HALT)  
tSST  
tSYS  
fSYS=ERC or HIRC  
fSYS=LIRC OSC  
¾
Note: 1. tSYS=1/fSYS  
2. * For fERC, as the resistor tolerance will influence the frequency a precision resistor is recommended.  
3. To maintain the accuracy of the internal HIRC oscillator frequency, a 0.1mF decoupling capacitor should be  
connected between VDD and VSS and located as close to the device as possible.  
A/D Converter Characteristics  
Ta=25°C  
Test Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
¾
Conditions  
AVDD  
VADI  
A/D Converter Operating Voltage  
A/D Converter Input Voltage  
A/D Converter Reference Voltage  
Differential Non-linearity  
2.7  
0
5.5  
V
V
¾
¾
¾
VREF  
AVDD  
¾
¾
¾
VREF  
DNL  
INL  
2
V
¾
¾
5V  
5V  
3V  
5V  
¾
LSB  
LSB  
mA  
mA  
ms  
tADCK= 1.0ms  
¾
¾
¾
¾
0.5  
±1  
±2  
±4  
Integral Non-linearity  
t
ADCK= 1.0ms  
±2  
0.90  
1.20  
¾
1.35  
1.80  
10  
No load, tADCK= 0.5ms  
No load, tADCK= 0.5ms  
¾
Additional Power Consumption if  
A/D Converter is Used  
IADC  
tADCK  
tADC  
A/D Converter Clock Period  
A/D Conversion Time (Include  
Sample and Hold Time)  
tADCK  
12-bit A/D Converter  
16  
¾
¾
¾
tADS  
tADCK  
A/D Converter Sampling Time  
A/D Converter On-to-Start Time  
4
¾
¾
¾
¾
¾
¾
¾
tON2ST  
2
¾
ms  
Rev. 1.60  
25  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Comparator Electrical Characteristics  
Ta=25°C  
Test Conditions  
Symbol  
VCMP  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
¾
Conditions  
Comparator Operating Voltage  
Comparator Operating Current  
2.2  
¾
5.5  
56  
V
¾
¾
¾
¾
¾
¾
37  
3V  
5V  
¾
mA  
mA  
mV  
mV  
ICMP  
130  
¾
200  
10  
¾
VCMPOS  
VHYS  
Comparator Input Offset Voltage  
Hysteresis Width  
-10  
20  
40  
60  
¾
Comparator Common Mode  
Voltage Range  
VCM  
AOL  
tPD  
VSS  
60  
¾
VDD-1.4V  
¾
V
¾
¾
¾
¾
¾
¾
80  
Comparator Open Loop Gain  
Comparator Response Time  
dB  
ns  
With 100mV  
370  
560  
overdrive (Note)  
Note:  
Measured with comparator one input pin at VCM = (VDD-1.4)/2 while the other pin input transition from VSS to  
(VCM +100mV) or from VDD to (VCM -100mV).  
Power-on Reset Characteristics  
Ta=25°C  
Test Conditions  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
VDD Start Voltage to Ensure  
Power-on Reset  
VPOR  
RRVDD  
tPOR  
100  
¾
mV  
V/ms  
ms  
¾
¾
¾
¾
¾
0.035  
1
¾
¾
¾
VDD Raising Rate to Ensure  
Power-on Reset  
¾
¾
Minimum Time for VDD Stays at  
¾
V
POR to Ensure Power-on Reset  
V
D
D
t
P
O
R
R
V
R
D
D
V
P
O
R
T
i
m
Rev. 1.60  
26  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
System Architecture  
A key factor in the high-performance features of the  
Holtek range of microcontrollers is attributed to their in-  
ternal system architecture. The range of devices take  
advantage of the usual features found within RISC  
microcontrollers providing increased speed of operation  
and enhanced performance. The pipelining scheme is  
implemented in such a way that instruction fetching and  
instruction execution are overlapped, hence instructions  
are effectively executed in one cycle, with the exception  
of branch or call instructions. An 8-bit wide ALU is used  
in practically all instruction set operations, which carries  
out arithmetic operations, logic operations, rotation, in-  
crement, decrement, branch decisions, etc. The internal  
data path is simplified by moving data through the Accu-  
mulator and the ALU. Certain internal registers are im-  
plemented in the Data Memory and can be directly or  
indirectly addressed. The simple addressing methods of  
these registers along with additional architectural fea-  
tures ensure that a minimum of external components is  
required to provide a functional I/O and A/D control sys-  
tem with maximum reliability and flexibility. This makes  
the device suitable for low-cost, high-volume production  
for controller applications.  
ternally generated non-overlapping clocks, T1~T4. The  
Program Counter is incremented at the beginning of the  
T1 clock during which time a new instruction is fetched.  
The remaining T2~T4 clocks carry out the decoding and  
execution functions. In this way, one T1~T4 clock cycle  
forms one instruction cycle. Although the fetching and  
execution of instructions takes place in consecutive in-  
struction cycles, the pipelining structure of the  
microcontroller ensures that instructions are effectively  
executed in one instruction cycle. The exception to this  
are instructions where the contents of the Program  
Counter are changed, such as subroutine calls or  
jumps, in which case the instruction will take one more  
instruction cycle to execute.  
For instructions involving branches, such as jump or call  
instructions, two machine cycles are required to com-  
plete instruction execution. An extra cycle is required as  
the program takes one cycle to first obtain the actual  
jump or call address and then another cycle to actually  
execute the branch. The requirement for this extra cycle  
should be taken into account by programmers in timing  
sensitive applications.  
Clocking and Pipelining  
The main system clock, derived from either a HXT, LXT,  
HIRC, LIRC or ERC oscillator is subdivided into four in-  
f
S
Y
S
(
S
y
s
s
t
e
e
m
C
C
l
o
c
k
)
P
h
a
l
o
c
k
T
1
P
P
P
h
h
h
a
a
a
s
s
s
e
e
e
C
C
C
l
l
l
o
o
o
c
c
c
k
k
k
T
T
T
2
3
4
P
r
o
g
r
a
m
C
o
u
n
t
e
r
P
C
P
C
+
1
P
C
+
2
F
e
t
c
h
I
n
s
t
.
(
P
C
)
P
i
p
e
l
i
n
i
n
g
E
x
e
c
u
t
e
I
n
s
t
.
(
P
C
-
1
)
t .  
F
e
t
c
h
I
n
s
(
P
C
+
1
)
E
x
e
c
u
t
e
I
n
s
t
.
(
P
C
)
n
F
e
t
c
h
I
s
t
.
(
P
C
+
2
)
E
x
e
c
u
t
e
I
n
s
t
.
(
P
C
+
1
System Clocking and Pipelining  
F
e
t
c h  
]
I
n
s
t
.
1
E
x
e
c
u
t
e
I
n
s
t
.
1
1
2
3
4
5
6
M
C
C
:
:
N
O
V
A
,
[
E
1
2
H
F
e
t
c
h
E
I
x
n
e
s
c
t
u
.
t
2
e
I
n
s
t
.
3
2
A
P
L
L
L
D
L
A
Y
F
e
t
c
h
F
I
l
n
u
s
s
t
h
.
P
i
p
e
l
i
n
e
[
1
2
H
]
F
e
t
c
h
E
I
x
n
e
s
c
t
u
.
t
6
e
I
n
F
e
t
c
h
I
n
s
t
D
E
L
A
Y
O
:
P
Instruction Fetching  
Rev. 1.60  
27  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Program Counter  
If the stack is full and an enabled interrupt takes place,  
the interrupt request flag will be recorded but the ac-  
During program execution, the Program Counter is used  
to keep track of the address of the next instruction to be  
executed. It is automatically incremented by one each  
time an instruction is executed except for instructions,  
such as ²JMP² or ²CALL² that demand a jump to a  
non-consecutive Program Memory address. Only the  
lower 8 bits, known as the Program Counter Low Regis-  
ter, are directly addressable by the application program.  
knowledge signal will be inhibited. When the Stack  
Pointer is decremented, by RET or RETI, the interrupt  
will be serviced. This feature prevents stack overflow al-  
lowing the programmer to use the structure more easily.  
However, when the stack is full, a CALL subroutine in-  
struction can still be executed which will result in a stack  
overflow. Precautions should be taken to avoid such  
cases which might cause unpredictable program  
branching.  
When executing instructions requiring jumps to  
non-consecutive addresses such as a jump instruction,  
a subroutine call, interrupt or reset, etc., the  
microcontroller manages program control by loading the  
required address into the Program Counter. For condi-  
tional skip instructions, once the condition has been  
met, the next instruction, which has already been  
fetched during the present instruction execution, is dis-  
carded and a dummy cycle takes its place while the cor-  
rect instruction is obtained.  
If the stack is overflow, the first Program Counter save in  
the stack will be lost.  
P
r
o
g
r
a
m
T
o
p
o
f
S
S
S
S
t
t
t
t
a
a
a
a
c
c
c
c
k
k
k
k
L
L
L
e
e
e
v
v
v
e
e
e
l
l
l
1
2
3
S
t
a
c
k
P
r
o
g
r
a
P
o
i
n
t
e
r
M
e
m
o
r
Program Counter  
Device  
Program Counter  
High Byte  
PCL Register  
B
o
t
t
o
m
o
S
f
t
a
S
c
t
k
a
c
L
k
e
v
e
l
N
HT66F20  
HT66F30  
HT66F40  
HT66F50  
HT66F60  
PC9, PC8  
PC10~PC8  
PC11~PC8  
PC12~PC8  
PC13~PC8  
Device  
Stack Levels  
PCL7~PCL0  
HT66F20/HT66F30  
HT66F40/HT66F50  
HT66F60  
4
8
12  
Program Counter  
Arithmetic and Logic Unit - ALU  
The lower byte of the Program Counter, known as the  
Program Counter Low register or PCL, is available for  
program control and is a readable and writeable register.  
By transferring data directly into this register, a short pro-  
gram jump can be executed directly, however, as only  
this low byte is available for manipulation, the jumps are  
limited to the present page of memory, that is 256 loca-  
tions. When such program jumps are executed it should  
also be noted that a dummy cycle will be inserted. Manip-  
ulating the PCL register may cause program branching,  
so an extra cycle is needed to pre-fetch.  
The arithmetic-logic unit or ALU is a critical area of the  
microcontrollerthat carries out arithmetic and logic oper-  
ations of the instruction set. Connected to the main  
microcontroller data bus, the ALU receives related in-  
struction codes and performs the required arithmetic or  
logical operations after which the result will be placed in  
the specified register. As these ALU calculation or oper-  
ations may result in carry, borrow or other status  
changes, the status register will be correspondingly up-  
dated to reflect these changes. The ALU supports the  
following functions:  
Stack  
·
·
·
Arithmetic operations: ADD, ADDM, ADC, ADCM,  
SUB, SUBM, SBC, SBCM, DAA  
This is a special part of the memory which is used to  
save the contents of the Program Counter only. The  
stack has multiple levels depending upon the device  
and is neither part of the data nor part of the program  
space, and is neither readable nor writeable. The acti-  
vated level is indexed by the Stack Pointer, and is nei-  
ther readable nor writeable. At a subroutine call or  
interrupt acknowledge signal, the contents of the Pro-  
gram Counter are pushed onto the stack. At the end of a  
subroutine or an interrupt routine, signaled by a return  
instruction, RET or RETI, the Program Counter is re-  
stored to its previous value from the stack. After a device  
reset, the Stack Pointer will point to the top of the stack.  
Logic operations: AND, OR, XOR, ANDM, ORM,  
XORM, CPL, CPLA  
Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA,  
RLC  
·
·
Increment and Decrement INCA, INC, DECA, DEC  
Branch decision, JMP, SZ, SZA, SNZ, SIZ, SDZ,  
SIZA, SDZA, CALL, RET, RETI  
Rev. 1.60  
28  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Flash Program Memory  
The Program Memory is the location where the user  
code or program is stored. For this device series the  
Program Memory is Flash type, which means it can be  
programmed and re-programmed a large number of  
times, allowing the user the convenience of code modifi-  
cation on the same device. By using the appropriate  
programming tools, these Flash devices offer users the  
flexibility to conveniently debug and develop their appli-  
cations while also offering a means of field programming  
and updating.  
Look-up Table  
Any location within the Program Memory can be defined  
as a look-up table where programmers can store fixed  
data. To use the look-up table, the table pointer must  
first be setup by placing the address of the look up data  
to be retrieved in the table pointer register, TBLP and  
TBHP. These registers define the total address of the  
look-up table.  
After setting up the table pointer, the table data can be  
retrieved from the Program Memory using the  
²TABRD[m]² or ²TABRDL[m]² instructions, respectively.  
When the instruction is executed, the lower order table  
byte from the Program Memory will be transferred to the  
user defined Data Memory register [m] as specified in  
the instruction. The higher order table data byte from the  
Program Memory will be transferred to the TBLH special  
register. Any unused bits in this transferred higher order  
byte will be read as ²0².  
Structure  
The Program Memory has a capacity of 1K´14 bits to  
12K´16 bits. The Program Memory is addressed by the  
Program Counter and also contains data, table informa-  
tion and interrupt entries. Table data, which can be  
setup in any location within the Program Memory, is ad-  
dressed by a separate table pointer register.  
Device  
Capacity  
1K´14  
Banks  
The accompanying diagram illustrates the addressing  
data flow of the look-up table.  
HT66F20  
HT66F30  
HT66F40  
HT66F50  
HT66F60  
0
0
2K´14  
P
r
o
g
r
a
m
M
e
m
L
a
s
t
p
a
g
e
o
r
0
4K´15  
T
B
H
P
R
e
g
i
s
t
e
r
a
D
t
a
0
8K´16  
1
4
~
r
1
6
b
i
t
s
T
B
L
P
R
e
g
i
s
t
e
0, 1  
12K´16  
The HT66F60 has its Program Memory divided into two  
Banks, Bank 0 and Bank 1. The required Bank is se-  
lected using Bit 5 of the BP Register.  
U
s
e
r
S
e
R
e
g
i
s
t
e
r
T
B
L
H
R
e
g
i
s
t
H
i
g
h
B
y
t
L
e
o
w
B
y
Special Vectors  
Table Program Example  
Within the Program Memory, certain locations are re-  
served for the reset and interrupts. The location 000H is  
reserved for use by the device reset for program initialis-  
ation. After a device reset is initiated, the program will  
jump to this location and begin execution.  
The following example shows how the table pointer and  
table data is defined and retrieved from the  
microcontroller. This example uses raw table data lo-  
cated in the Program Memory which is stored there us-  
H
T
6
6
F
H
2
T
0
6
6
F
H
3
T
0
6
6
F
H
4
T
0
6
6
F
5
0
H
T
6
6
F
6
0
0
0
0
0
0
0
0
4
R
H
H
e
s
e
t
R
e
s
e
t
R
e
s
e
t
R
e
s
e
t
R
e
s
e
t
I
n
t
e
r
r
I
u
n
p
t
e
t
r
r
I
u
n
p
t
e
t
r
r
I
u
n
p
t
e
t
r
r
u
p
t
I
n
t
e
r
r
u
p
t
V
e
c
t
o
V
r
e
c
t
o
V
r
e
c
t
o
V
r
e
c
t
o
r
V
e
c
t
o
r
0
0
2
C
H
0
0
3
C
H
1 4  
H
b
i
t
s
0
3
F
F
B
a
n
k
0
1 4  
H
b
i
t
s
0
7
F
F
1 5  
H
b
i
t
s
0
F
F
F
1
6
b
i
t
s
1 6  
H
b
i
t
s
1
F
F
F
H
1
F
F
F
2
0
0
0
H
B
a
n
k
1
2
F
F
F
H
Program Memory Structure  
Rev. 1.60  
29  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
ing the ORG statement. The value at this ORG  
As an additional convenience, Holtek has provided a  
means of programming the microcontroller in-circuit us-  
ing a 5-pin interface. This provides manufacturers with  
the possibility of manufacturing their circuit boards com-  
plete with a programmed or un-programmed  
microcontroller, and then programming or upgrading the  
program at a later stage. This enables product manufac-  
turers to easily keep their manufactured products sup-  
plied with the latest program releases without removal  
and re-insertion of the device.  
statement is ²700H² which refers to the start address of  
the last page within the 2K Program Memory of the  
HT66F30. The table pointer is setup here to have an ini-  
tial value of ²06H². This will ensure that the first data  
read from the data table will be at the Program Memory  
address ²706H² or 6 locations after the start of the last  
page. Note that the value for the table pointer is refer-  
enced to the first address of the present page if the  
²TABRD [m]² instruction is being used. The high byte of  
the table data which in this case is equal to zero will be  
transferred to the TBLH register automatically when the  
²TABRD [m]² instruction is executed.  
MCU Programming  
Function  
Pins  
PA0  
PA2  
RES  
VDD  
VSS  
Serial Data Input/Output  
Serial Clock  
Because the TBLH register is a read-only register and  
cannot be restored, care should be taken to ensure its  
protection if both the main routine and Interrupt Service  
Routine use table read instructions. If using the table  
read instructions, the Interrupt Service Routines may  
change the value of the TBLH and subsequently cause  
errors if used again by the main routine. As a rule it is  
recommended that simultaneous use of the table read  
instructions should be avoided. However, in situations  
where simultaneous use cannot be avoided, the inter-  
rupts should be disabled prior to the execution of any  
main routine table-read instructions. Note that all table  
related instructions require two instruction cycles to  
complete their operation.  
Device Reset  
Power Supply  
Ground  
The Program Memory and EEPROM data memory can  
both be programmed serially in-circuit using this 5-wire  
interface. Data is downloaded and uploaded serially on  
a single pin with an additional line for the clock. Two ad-  
ditional lines are required for the power supply and one  
line for the reset. The technical details regarding the  
in-circuit programming of the devices are beyond the  
scope of this document and will be supplied in supple-  
mentary literature.  
During the programming process the RES pin will be  
held low by the programmer disabling the normal opera-  
tion of the microcontroller and taking control of the PA0  
and PA2 I/O pins for data and clock programming pur-  
poses. The user must there take care to ensure that no  
other outputs are connected to these two pins.  
In Circuit Programming  
The provision of Flash type Program Memory provides  
the user with a means of convenient and easy upgrades  
and modifications to their programs on the same device.  
·
Table Read Program Example  
tempreg1 db  
tempreg2 db  
?
?
; temporary register #1  
; temporary register #2  
:
:
mov a,06h  
mov tblp,a  
mov a,07h  
tbhp,a  
; initialise low table pointer - note that this address  
; is referenced  
; initialise high table pointer  
:
:
tabrd tempreg1  
; transfers value in table referenced by table pointer data at program  
; memory address ²706H² transferred to tempreg1 and TBLH  
dec tblp  
; reduce value of table pointer by one  
tabrd tempreg2  
; transfers value in table referenced by table pointer data at program  
; memory address ²705H² transferred to tempreg2 and TBLH in this  
; example the data ²1AH² is transferred to tempreg1 and data ²0FH² to  
; register tempreg2  
:
:
org 700h  
; sets initial address of program memory  
dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh  
:
:
Rev. 1.60  
30  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
W
r
i
t
e
r
C
o
n
n
e
M
c
C
t
U
o
r
P
r
o
g
Device  
Capacity  
Banks  
S
i
g
n
a
l
s
P
i
n
s
0: 60H~7FH  
1: 60H~7FH  
W
r
i
t
e
r
_
V
D
D
V
D
D
HT66F20  
64´8  
0: 60H~7FH  
1: 60H~7FH  
2: 60H~7FH  
R
E
S
R
E
S
HT66F30  
HT66F40  
HT66F50  
96´8  
192´8  
384´8  
D
A
T
A
D
A
T
A
0: 80H~FFH  
1: 80H~BFH  
C
L
K
C
L
K
0: 80H~FFH  
1: 80H~FFH  
2: 80H~FFH  
W
r
i
t
e
r
_
V
S
S
V
S
S
0: 80H~  
1: 80H~FFH  
2: 80H~FFH  
3: 80H~FFH  
4: 80H~BFH  
*
*
*
HT66F60  
576´8  
T
o
o
t
h
e
r
C
i
r
c
u
Note: * may be resistor or capacitor. The resistance  
of * must be greater than 1kW or the capacitance  
of * must be less than 1nF.  
B
a
n
k
0
,
1
B
a
n
k
0
B
I
A
A
R
R
0
1
A
A
D
D
C
C
R
R
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
3
3
3
3
3
3
3
3
3
3
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
M
M
P
P
0
1
I
A
C
n
E
R
L
U
u
s
e
d
Programmer Pin  
RES  
Pins  
PB0  
PA0  
PA2  
B
P
C
P
0
C
A
C
C
C
P
1
C
P
C
L
S
I
M
C
0
1
T
B
L
P
S
I
M
C
DATA  
T
B
L
O
H
S
I
M
D
T
L
B
H
P
S
I
M
A
/
S
I
0
0
A
B
H
H
H
H
H
H
S
T
A
T
U
S
3
3
A
B
T
T
T
M
M
M
0
0
0
C
C
D
0
1
L
S
M
D
Programmer and MCU Pins  
0
0
C
D
V
D
C
3
3
C
D
I
N
T
E
G
T
M
0
D
H
0
E
W
D
T
C
3
E
T
M
0
A
L
RAM Data Memory  
0
F
T
B
C
3
4
5
F
F
F
T
M
0
A
H
1
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
I
I
I
N
N
N
T
T
T
u
C
C
C
0
1
2
U
n
u
s
e
d
C
4
4
4
4
4
4
4
4
4
4
0
1
2
3
4
5
6
7
8
9
The Data Memory is a volatile area of 8-bit wide RAM in-  
ternal memory and is the location where temporary in-  
formation is stored.  
E
E
A
E
E
D
U
n
s
e
d
T
M
P
C
0
M
M
M
F
F
F
I
I
I
0
1
2
U
U
U
U
n
n
n
n
u
u
u
u
s
s
s
s
e
e
e
e
d
d
d
d
Structure  
Divided into two sections, the first of these is an area of  
RAM, known as the Special Function Data Memory.  
Here are located registers which are necessary for cor-  
rect operation of the device. Many of these registers can  
be read from and written to directly under program con-  
trol, however, some remain protected from user manipu-  
lation.  
U
n
u
s
e
d
P
W
A
U
T
T
M
M
1
1
C
C
0
1
P
P
A
B
P
P
U
U
1
1
A
B
H
H
H
H
H
H
P
P
A
B
U
n
u
s
e
d
4
4
A
B
P
P
A
B
C
C
T
M
1
D
L
1
1
C
D
T
M
1
D
H
4
4
C
D
T
M
1
A
L
1
E
T
M
1
A
H
4
E
1
F
P
C
P
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
d
d
d
d
2
0
H
P
C
5
5
5
5
5
5
5
5
5
5
0
1
2
3
4
5
6
7
8
9
2
H
1
P
C
C
H
2
2
2
2
2
2
2
2
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
U
U
U
U
U
U
U
U
U
U
U
U
n
n
n
n
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
u
u
u
u
s
s
s
s
s
s
s
s
s
s
s
s
e
e
e
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
d
d
d
H
H
H
H
H
H
H
H
H
H
H
H
H
H
d
d
d
d
d
d
d
d
d
d
d
2
2
A
B
H
H
H
H
H
H
5
5
A
B
2
C
5
5
C
D
2
D
2
E
A
D
R
L
5
E
S
C
O
M
C
2
F
A
D
R
H
U
n
u
s
e
d
HT66F20 Special Purpose Data Memory  
Rev. 1.60  
31  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
B
a
n
k
0
,
1
,
B
2
a
n
k
0
,
2
B
a
n
k
0
,
1
B
a
n
k
B
a
0
n
k
I
A
R
0
A
A
D
D
C
C
R
R
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
3
3
3
3
3
3
3
3
3
3
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
I
I
A
A
R
R
0
1
U
n
u
s
e
d
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
4
4
4
4
4
4
4
4
4
4
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
M
P
0
M
M
P
P
0
1
E
E
A
I
A
R
1
A
C
n
E
R
L
E
E
D
M
P
1
U
u
s
e
d
T
T
M
M
P
P
C
0
1
B
P
C
P
0
C
B
P
C
A
C
C
C
P
1
C
A
C
C
P
P
P
R
R
R
M
M
M
0
1
2
P
C
L
S
I
M
C
0
1
P
C
L
T
B
L
P
S
I
M
C
T
B
L
P
T
B
L
H
S
I
M
D
T
B
L
H
T
T
T
T
M
M
M
M
1
1
1
1
C
C
C
D
0
1
2
L
T
L
B
H
P
S
I
M
A
/
S
I
T
B
H
P
S
T
U
A
S
T
0
0
A
B
H
H
H
H
H
H
S
T
A
T
U
S
3
3
A
B
T
T
T
M
M
M
0
0
0
C
C
D
0
1
L
0
0
A
B
H
H
H
H
H
H
4
4
A
B
S
M
O
D
S
W
M
O
D
C
L
V
D
C
T
M
1
D
H
0
0
C
D
V
D
C
3
3
C
D
0
0
C
D
4
4
C
D
I
N
T
E
G
T
T
M
M
1
1
A
B
L
L
I
N
T
E
G
T
M
0
D
H
M
A
0
E
D
T
4
E
T
T
M
M
1
1
A
B
H
H
0
E
W
D
T
C
3
E
T
0
L
0
1
2
3
F
F
F
F
T
B
C
0
F
T
B
C
3
4
5
F
F
F
T
M
0
A
H
4
5
6
7
F
F
F
F
1
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
I
I
I
N
N
N
T
T
T
u
C
C
C
0
1
2
1
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
I
I
I
N
N
N
T
T
T
u
C
C
C
0
1
2
U
n
u
s
e
d
C
5
5
5
5
5
5
5
5
5
5
0
1
2
3
4
5
6
7
8
9
4
4
4
4
4
4
4
4
4
4
0
1
2
3
4
5
6
7
8
9
T
T
T
M
M
M
2
2
2
C
C
D
0
L
E
E
A
1
E
E
D
U
n
s
e
d
U
n
s
e
d
T
M
P
C
0
M
M
M
F
F
F
I
I
I
0
1
2
T
M
2
D
H
M
M
M
F
F
F
I
I
I
0
1
2
U
n
u
s
e
d
T
M
2
A
L
P
R
M
0
T
T
M
M
2
2
A
R
H
U
U
n
n
u
u
s
s
e
e
d
d
U
n
u
s
e
d
P
U
n
u
s
e
d
P
A
W
U
U
U
U
U
U
U
n
n
n
n
n
n
u
u
u
u
u
u
s
s
s
s
s
s
e
e
e
e
e
e
d
d
d
d
d
d
P
W
A
U
T
T
T
T
M
M
M
M
1
1
1
1
C
C
C
D
0
1
2
L
P
P
A
B
P
P
U
U
P
P
A
B
P
P
U
U
1
1
A
B
H
H
H
H
H
H
P
P
A
B
5
5
A
B
1
1
A
B
H
H
H
H
H
H
P
P
A
B
4
4
A
B
P
P
A
B
C
C
P
P
A
B
C
C
1
1
C
D
5
5
C
D
1
1
C
D
T
M
1
D
H
4
4
C
D
T
T
M
M
1
1
A
B
L
L
1
E
S
C
O
M
C
5
E
1
E
T
T
M
M
1
1
A
B
H
H
4
E
P
P
C
D
P
P
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
e
e
e
e
e
d
d
d
d
d
1
F
P
C
P
U
2
0
H
P
P
C
D
6
6
6
6
6
6
6
6
6
6
0
1
2
3
4
5
6
7
8
9
2
0
H
P
C
5
5
5
5
5
5
5
5
5
5
0
1
2
3
4
5
6
7
8
9
2
1
H
H
H
H
H
H
H
H
H
H
H
P
P
C
D
C
C
H
2
H
1
P
C
C
U
U
U
U
U
U
U
U
U
U
U
U
U
n
n
n
n
n
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
u
u
u
u
u
s
s
s
s
s
s
s
s
s
s
s
s
s
e
e
e
d
d
d
H
2
2
2
2
2
2
2
2
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
2
2
2
2
2
2
2
2
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
U
U
U
U
U
U
U
U
U
U
U
U
n
n
n
n
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
u
u
u
u
s
s
s
s
s
s
s
s
s
s
s
s
e
e
e
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
d
d
d
H
H
H
H
H
H
H
H
H
H
H
H
H
H
e
d
e
d
P
E
P
U
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
P
E
P
E
C
P
F
P
U
P
F
2
2
A
B
P
F
C
6
6
A
B
2
2
A
B
H
H
H
H
H
H
5
5
A
B
U
U
U
n
n
n
u
u
u
s
s
s
e
e
e
d
d
d
2
2
C
D
H
H
6
6
C
D
2
C
5
5
C
D
2
D
2
E
H
H
H
H
H
H
H
H
H
H
H
H
H
H
A
D
R
L
6
E
2
E
A
D
R
L
5
E
S
C
O
M
C
A
D
R
H
2
F
A
D
R
H
U
n
u
s
e
d
3
3
3
3
3
3
3
3
3
3
0
1
2
3
4
5
6
7
8
9
A
A
D
C
R
0
7
7
7
7
7
7
7
7
7
7
0
1
2
3
4
5
6
7
8
9
D
C
R
1
HT66F30 Special Purpose Data Memory  
A
C
n
E
R
L
U
u
s
e
d
C
C
P
0
1
C
C
P
s
e
d
S
S
I
M
C
0
1
s
s
s
s
s
s
s
s
s
s
e
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
d
I
M
C
S
I
M
D
S
I
M
A
/
S
I
M
C
2
3
3
A
B
T
T
T
M
M
M
0
0
0
0
C
C
D
7
7
A
B
1
3
3
C
D
H
H
L
7
7
C
D
T
M
0
D
H
3
E
H
H
T
M
0
A
L
7
E
T
M
0
A
H
HT66F40 Special Purpose Data Memory  
Rev. 1.60  
32  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
B
a
n
k
0
,
1
,
B
2
a
n
k
B
0
a
,
n
k
2
B
a
n
k
0
,
1
,
B
a
2
n
,
k
3
,
B
4
a
n
k
I
A
R
0
U
n
u
s
e
d
I
I
A
A
R
R
0
1
U
n
u
s
e
d
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
4
4
4
4
4
4
4
4
4
4
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
4
4
4
4
4
4
4
4
4
4
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
M
P
0
E
E
A
M
M
P
P
0
1
E
E
A
I
A
R
1
E
E
D
E
E
D
M
P
1
T
T
M
M
P
P
C
0
T
T
M
M
P
P
C
0
B
P
C
1
B
P
C
1
A
C
C
P
P
P
R
R
R
M
M
M
0
1
2
A
C
C
P
P
P
R
R
R
M
M
M
0
1
2
P
C
L
P
C
L
T
B
L
P
T
B
L
P
T
B
L
H
T
T
T
T
M
M
M
M
1
1
1
1
C
C
C
D
0
1
2
L
T
B
L
H
T
T
T
T
M
M
M
M
1
1
1
1
C
C
C
D
0
1
2
L
T
L
B
H
P
T
B
H
P
S
T
A
T
U
S
S
T
A
T
U
S
0
0
A
B
H
H
H
H
H
H
4
4
A
B
0
0
A
B
H
H
H
H
H
H
4
4
A
B
S
W
M
O
D
C
S
M
O
D
0
0
C
D
V
D
C
4
4
C
D
T
M
1
D
H
0
0
C
D
L
V
D
C
4
4
C
D
T
M
1
D
H
I
N
T
E
G
T
M
1
A
L
I
N
T
E
G
T
T
M
M
1
1
A
B
L
L
0
E
D
T
4
E
T
M
1
A
H
0
E
W
D
T
C
4
E
T
T
M
M
1
1
A
B
H
H
0
1
2
3
F
F
F
F
T
B
C
T
M
1
B
L
0
1
2
3
F
F
F
F
T
B
C
4
5
6
7
F
F
F
F
4
5
6
7
F
F
F
F
1
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
I
I
I
N
N
N
T
T
T
u
C
C
C
0
1
2
T
M
1
B
H
1
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
I
I
I
I
N
N
N
N
T
T
T
T
C
C
C
C
0
1
2
3
5
5
5
5
5
5
5
5
5
5
0
1
2
3
4
5
6
7
8
9
5
5
5
5
5
5
5
5
5
5
0
1
2
3
4
5
6
7
8
9
T
T
T
M
M
M
2
2
2
C
C
D
0
L
T
T
T
M
M
M
2
2
2
C
C
D
0
L
1
1
U
n
s
e
d
M
M
M
M
F
F
F
F
I
I
I
I
0
1
2
3
T
M
2
D
H
M
M
M
M
F
F
F
F
I
I
I
I
0
1
2
3
T
M
2
D
H
T
M
2
A
L
T
M
2
A
L
T
T
M
M
2
2
A
R
H
T
T
M
M
2
2
A
R
H
P
P
P
A
W
U
T
T
T
M
M
M
3
3
3
C
C
D
0
1
L
P
A
W
U
T
T
T
M
M
M
3
3
3
C
C
D
0
1
L
P
A
P
U
P
P
A
B
P
P
U
U
1
1
A
B
H
H
H
H
H
H
P
A
1
1
A
B
H
H
H
H
H
H
P
P
A
B
5
5
A
B
5
5
A
B
P
A
C
T
M
3
D
H
P
P
A
B
C
C
T
M
3
D
H
1
1
C
D
P
B
P
U
T
M
3
A
L
1
1
C
D
T
M
3
A
L
5
5
C
D
5
5
C
D
P
B
T
M
3
A
M
H
T
M
3
A
M
H
1
E
P
B
C
S
C
O
C
1
E
S
C
O
C
5
E
5
E
P
C
P
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
e
e
e
e
e
e
d
d
d
d
d
d
P
P
C
D
P
P
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
e
e
e
e
e
e
d
d
d
d
d
d
2
0
H
P
C
2
0
H
P
P
C
D
6
6
6
6
6
6
6
6
6
6
0
1
2
3
4
5
6
7
8
9
6
6
6
6
6
6
6
6
6
6
0
1
2
3
4
5
6
7
8
9
2
1
H
H
H
H
H
H
H
H
H
H
H
P
C
C
2
1
H
H
H
H
H
H
H
H
H
H
H
P
P
C
D
C
C
H
H
2
2
2
2
2
2
2
2
2
3
4
5
6
7
8
9
P
D
P
U
2
2
2
2
2
2
2
2
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
P
D
P
D
C
P
E
P
U
e
d
P
E
P
U
e
d
P
E
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
P
E
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
P
C
E
P
E
C
P
F
P
U
P
F
P
U
P
F
P
F
2
2
A
B
P
F
C
2
2
A
B
P
F
C
6
6
A
B
6
6
A
B
U
U
U
n
n
n
u
u
u
s
s
s
e
e
e
d
d
d
P
G
P
U
2
2
C
D
H
H
2
2
C
D
H
H
P
G
6
6
C
D
6
6
C
D
P
G
C
2
E
H
H
H
H
H
H
H
H
H
H
H
H
H
H
A
D
R
L
2
E
H
H
H
H
H
H
H
H
H
H
H
H
H
H
A
D
R
L
6
E
6
E
A
D
R
H
A
D
R
H
3
3
3
3
3
3
3
3
3
3
0
1
2
3
4
5
6
7
8
9
3
3
3
3
3
3
3
3
3
3
0
1
2
3
4
5
6
7
8
9
A
A
D
C
R
0
7
7
7
7
7
7
7
7
7
7
0
1
2
3
4
5
6
7
8
9
A
A
D
C
R
0
7
7
7
7
7
7
7
7
7
7
0
1
2
3
4
5
6
7
8
9
D
C
R
1
D
C
R
1
A
C
n
E
R
L
A
C
E
R
L
U
u
s
e
d
A
C
E
R
H
C
C
P
0
1
C
C
C
C
P
0
1
C
C
P
P
S
S
I
M
C
0
1
s
e
d
S
S
I
M
C
0
1
s
e
d
I
M
C
s
s
s
s
s
s
s
s
s
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
I
M
C
s
s
s
s
s
s
s
s
s
e
e
e
e
e
e
e
e
e
d
d
d
d
d
d
d
d
d
S
I
M
D
S
I
M
D
S
I
M
A
/
S
I
M
C
2
S
I
M
A
/
S
I
M
C
2
3
3
A
B
3
3
A
B
T
T
T
M
M
M
0
C
0
7
7
A
B
T
T
T
M
M
M
0
0
0
C
C
D
0
1
L
7
7
A
B
0
C
1
3
3
C
D
H
H
3
3
C
D
H
H
0
D
L
7
7
C
D
7
7
C
D
T
M
0
D
H
T
M
0
D
H
3
E
H
H
3
E
H
H
T
M
0
A
L
7
E
T
M
A
0
L
7
E
T
M
0
A
H
T
M
0
A
H
HT66F50 Special Purpose Data Memory  
HT66F60 Special Purpose Data Memory  
Rev. 1.60  
33  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
The second area of Data Memory is known as the Gen-  
pair, IAR0 and MP0 can together access data from Bank  
0 while the IAR1 and MP1 register pair can access data  
from any bank. As the Indirect Addressing Registers are  
not physically implemented, reading the Indirect Ad-  
dressing Registers indirectly will return a result of ²00H²  
and writing to the registers indirectly will result in no op-  
eration.  
eral Purpose Data Memory, which is reserved for gen-  
eral purpose use. All locations within this area are read  
and write accessible under program control.  
The overall Data Memory is subdivided into several  
banks, the structure of which depends upon the device  
chosen. The Special Purpose Data Memory registers  
are accessible in all banks, with the exception of the  
EEC register at address 40H, which is only accessible in  
Bank 1. Switching between the different Data Memory  
banks is achieved by setting the Bank Pointer to the cor-  
rect value. The start address of the Data Memory for all  
devices is the address 00H.  
Memory Pointers - MP0, MP1  
Two Memory Pointers, known as MP0 and MP1 are pro-  
vided. These Memory Pointers are physically imple-  
mented in the Data Memory and can be manipulated in  
the same way as normal registers providing a conve-  
nient way with which to address and track data. When  
any operation to the relevant Indirect Addressing Regis-  
ters is carried out, the actual address that the  
microcontroller is directed to, is the address specified by  
the related Memory Pointer. MP0, together with Indirect  
Addressing Register, IAR0, are used to access data  
from Bank 0, while MP1 and IAR1 are used to access  
data from all banks according to BP register. Direct Ad-  
dressing can only be used with Bank 0, all other Banks  
must be addressed indirectly using MP1 and IAR1. Note  
that for the HT66F20 and HT66F30 devices, bit 7 of the  
Memory Pointers is not required to address the full  
memory space. When bit 7 of the Memory Pointers for  
HT66F20 and HT66F30 devices is read, a value of ²1²  
will be returned.  
Special Function Register Description  
Most of the Special Function Register details will be de-  
scribed in the relevant functional section, however sev-  
eral registers require a separate description in this  
section.  
Indirect Addressing Registers - IAR0, IAR1  
The Indirect Addressing Registers, IAR0 and IAR1, al-  
though having their locations in normal RAM register  
space, do not actually physically exist as normal regis-  
ters. The method of indirect addressing for RAM data  
manipulation uses these Indirect Addressing Registers  
and Memory Pointers, in contrast to direct memory ad-  
dressing, where the actual memory address is speci-  
fied. Actions on the IAR0 and IAR1 registers will result in  
no actual read or write operation to these registers but  
rather to the memory location specified by their corre-  
sponding Memory Pointers, MP0 or MP1. Acting as a  
The following example shows how to clear a section of  
four Data Memory locations already defined as loca-  
tions adres1 to adres4.  
·
Indirect Addressing Program Example  
data .section ¢data¢  
adres1 db ?  
adres2 db ?  
adres3 db ?  
adres4 db ?  
block db ?  
code .section at 0 ¢code¢  
org 00h  
start:  
mov a,04h  
; setup size of block  
; Accumulator loaded with first RAM address  
; setup memory pointer with first RAM address  
mov block,a  
mov a,offset adres1  
mov mp0,a  
loop:  
clr IAR0  
inc mp0  
sdz block  
jmp loop  
; clear the data at address defined by MP0  
; increment memory pointer  
; check if last memory location has been cleared  
continue:  
The important point to note here is that in the example shown above, no reference is made to specific RAM addresses.  
Rev. 1.60  
34  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Bank Pointer - BP  
unaffected. It should be noted that the Special Function  
Data Memory is not affected by the bank selection,  
Depending upon which device is used, the Program and  
Data Memory are divided into several banks. Selecting  
the required Program and Data Memory area is  
achieved using the Bank Pointer. Bit 5 of the Bank  
Pointer is used to select Program Memory Bank 0 or 1,  
while bits 0~2 are used to select Data Memory Banks  
0~4.  
which means that the Special Function Registers can be  
accessed from within any bank. Directly addressing the  
Data Memory will always result in Bank 0 being ac-  
cessed irrespective of the value of the Bank Pointer. Ac-  
cessing data from banks other than Bank 0 must be  
implemented using Indirect addressing.  
As both the Program Memory and Data Memory share  
the same Bank Pointer Register, care must be taken  
during programming.  
The Data Memory is initialised to Bank 0 after a reset,  
except for a WDT time-out reset in the Power Down  
Mode, in which case, the Data Memory bank remains  
Bit  
Device  
7
6
5
4
3
2
1
0
HT66F20  
HT66F40  
DMBP0  
¾
¾
¾
¾
¾
¾
¾
HT66F30  
HT66F50  
DMBP1  
DMBP1  
DMBP0  
DMBP0  
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
HT66F60  
PMBP0  
DMBP2  
BP Registers List  
·
BP Register  
¨
HT66F20/HT66F40  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
0
DMBP0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7 ~ 1  
Bit 0  
Unimplemented, read as ²0²  
DMBP0: Select Data Memory Banks  
0: Bank 0  
1: Bank 1  
¨
HT66F30/HT66F50  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
DMBP1  
R/W  
0
0
DMBP0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7 ~ 2  
Bit 1 ~ 0  
Unimplemented, read as ²0²  
DMBP1, DMBP0: Select Data Memory Banks  
00: Bank 0  
01: Bank 1  
10: Bank 2  
11: Undefined  
Rev. 1.60  
35  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F60  
Bit  
Name  
R/W  
7
6
5
PMBP0  
R/W  
0
4
3
2
DMBP2  
R/W  
0
1
DMBP1  
R/W  
0
0
DMBP0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7 ~ 6  
Bit 5  
Unimplemented, read as ²0²  
PMBP0: Select Program Memory Banks  
0: Bank 0, Program Memory Address is from 0000H ~ 1FFFH  
1: Bank 1, Program Memory Address is from 2000H ~ 2FFFH  
Bit 4 ~ 3  
Bit 2 ~ 0  
Unimplemented, read as ²0²  
DMBP2 ~ DMBP0: Select Data Memory Banks  
000: Bank 0  
001: Bank 1  
010: Bank 2  
011: Bank 3  
100: Bank 4  
101~111: Undefined  
Accumulator - ACC  
for example using the ²INC² or ²DEC² instructions, al-  
lowing for easy table data pointing and reading. TBLH is  
the location where the high order byte of the table data is  
stored after a table read data instruction has been exe-  
cuted. Note that the lower order table data byte is trans-  
ferred to a user defined location.  
The Accumulator is central to the operation of any  
microcontroller and is closely related with operations  
carried out by the ALU. The Accumulator is the place  
where all intermediate results from the ALU are stored.  
Without the Accumulator it would be necessary to write  
the result of each calculation or logical operation such  
as addition, subtraction, shift, etc., to the Data Memory  
resulting in higher programming and timing overheads.  
Data transfer operations usually involve the temporary  
storage function of the Accumulator; for example, when  
transferring data between one user defined register and  
another, it is necessary to do this by passing the data  
through the Accumulator as no direct transfer between  
two registers is permitted.  
Status Register - STATUS  
This 8-bit register contains the zero flag (Z), carry flag  
(C), auxiliary carry flag (AC), overflow flag (OV), power  
down flag (PDF), and watchdog time-out flag (TO).  
These arithmetic/logical operation and system manage-  
ment flags are used to record the status and operation of  
the microcontroller.  
With the exception of the TO and PDF flags, bits in the  
status register can be altered by instructions like most  
other registers. Any data written into the status register  
will not change the TO or PDF flag. In addition, opera-  
tions related to the status register may give different re-  
sults due to the different instruction operations. The TO  
flag can be affected only by a system power-up, a WDT  
time-out or by executing the ²CLR WDT² or ²HALT² in-  
struction. The PDF flag is affected only by executing the  
²HALT² or ²CLR WDT² instruction or during a system  
power-up.  
Program Counter Low Register - PCL  
To provide additional program control functions, the low  
byte of the Program Counter is made accessible to pro-  
grammers by locating it within the Special Purpose area  
of the Data Memory. By manipulating this register, direct  
jumps to other program locations are easily imple-  
mented. Loading a value directly into this PCL register  
will cause a jump to the specified Program Memory lo-  
cation, however, as the register is only 8-bit wide, only  
jumps within the current Program Memory page are per-  
mitted. When such operations are used, note that a  
dummy cycle will be inserted.  
The Z, OV, AC and C flags generally reflect the status of  
the latest operations.  
·
C is set if an operation results in a carry during an ad-  
dition operation or if a borrow does not take place dur-  
ing a subtraction operation; otherwise C is cleared. C  
is also affected by a rotate through carry instruction.  
Look-up Table Registers - TBLP, TBHP, TBLH  
These three special function registers are used to con-  
trol operation of the look-up table which is stored in the  
Program Memory. TBLP and TBHP are the table pointer  
and indicates the location where the table data is lo-  
cated. Their value must be setup before any table read  
commands are executed. Their value can be changed,  
·
AC is set if an operation results in a carry out of the  
low nibbles in addition, or no borrow from the high nib-  
ble into the low nibble in subtraction; otherwise AC is  
cleared.  
Rev. 1.60  
36  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
·
Z is set if the result of an arithmetic or logical operation  
In addition, on entering an interrupt sequence or execut-  
ing a subroutine call, the status register will not be  
pushed onto the stack automatically. If the contents of  
the status registers are important and if the subroutine  
can corrupt the status register, precautions must be  
taken to correctly save it.  
is zero; otherwise Z is cleared.  
OV is set if an operation results in a carry into the high-  
est-order bit but not a carry out of the highest-order bit,  
or vice versa; otherwise OV is cleared.  
·
·
PDF is cleared by a system power-up or executing the  
²CLR WDT² instruction. PDF is set by executing the  
²HALT² instruction.  
TO is cleared by a system power-up or executing the  
²CLR WDT² or ²HALT² instruction. TO is set by a  
WDT time-out.  
·
STATUS Register  
Bit  
Name  
R/W  
7
6
5
TO  
R
4
PDF  
R
3
OV  
R/W  
x
2
Z
1
AC  
R/W  
x
0
C
¾
¾
¾
¾
¾
¾
R/W  
x
R/W  
x
POR  
0
0
²x² unknown  
Bit 7, 6  
Unimplemented, read as ²0²  
TO: Watchdog Time-Out flag  
Bit 5  
Bit 4  
Bit 3  
0: After power up or executing the ²CLR WDT² or ²HALT² instruction  
1: A watchdog time-out occurred.  
PDF: Power down flag  
0: After power up or executing the ²CLR WDT² instruction  
1: By executing the ²HALT² instruction  
OV: Overflow flag  
0: no overflow  
1: an operation results in a carry into the highest-order bit but not a carry out of the  
highest-order bit or vice versa.  
Bit 2  
Bit 1  
Z: Zero flag  
0: The result of an arithmetic or logical operation is not zero  
1: The result of an arithmetic or logical operation is zero  
AC: Auxiliary flag  
0: no auxiliary carry  
1: an operation results in a carry out of the low nibbles in addition, or no borrow from the  
high nibble into the low nibble in subtraction  
Bit 0  
C: Carry flag  
0: no carry-out  
1: an operation results in a carry during an addition operation or if a borrow does not take place  
during a subtraction operation  
C is also affected by a rotate through carry instruction.  
Rev. 1.60  
37  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
EEPROM Data Memory  
The device contains an area of internal EEPROM Data  
Memory. EEPROM, which stands for Electrically Eras-  
able Programmable Read Only Memory, is by its nature  
a non-volatile form of re-programmable memory, with  
data retention even when its power supply is removed.  
By incorporating this kind of data memory, a whole new  
host of application possibilities are made available to the  
designer. The availability of EEPROM storage allows in-  
formation such as product identification numbers, cali-  
bration values, specific user data, system setup data or  
other product information to be stored directly within the  
product microcontroller. The process of reading and  
writing data to the EEPROM memory has been reduced  
to a very trivial affair.  
Device  
HT66F20  
Capacity  
32´8  
Address  
00H ~ 1FH  
00H ~ 3FH  
00H ~ 7FH  
00H ~ FFH  
HT66F30  
64´8  
HT66F40  
128´8  
256´8  
HT66F50/HT66F60  
EEPROM Registers  
Three registers control the overall operation of the inter-  
nal EEPROM Data Memory. These are the address reg-  
ister, EEA, the data register, EED and a single control  
register, EEC. As both the EEA and EED registers are lo-  
cated in Bank 0, they can be directly accessed in the  
same was as any other Special Function Register. The  
EEC register however, being located in Bank1, cannot be  
directly addressed directly and can only be read from or  
written to indirectly using the MP1 Memory Pointer and  
Indirect Addressing Register, IAR1. Because the EEC  
control register is located at address 40H in Bank 1, the  
MP1 Memory Pointer must first be set to the value 40H  
and the Bank Pointer register, BP, set to the value, 01H,  
before any operations on the EEC register are executed.  
EEPROM Data Memory Structure  
The EEPROM Data Memory capacity varies from 32x8  
to 256´8 bits, according to the device selected. Unlike  
the Program Memory and RAM Data Memory, the  
EEPROM Data Memory is not directly mapped into  
memory space and is therefore not directly addressable  
in the same way as the other types of memory. Read  
and Write operations to the EEPROM are carried out in  
single byte operations using an address and data regis-  
ter in Bank 0 and a single control register in Bank 1.  
·
EEPROM Register List  
¨
¨
¨
HT66F20  
Bit  
Name  
7
6
5
4
3
D3  
2
1
D1  
0
EEA  
EED  
EEC  
D4  
D4  
¾
D2  
D2  
WR  
D0  
D0  
RD  
¾
D7  
¾
¾
D6  
¾
¾
D5  
¾
D3  
D1  
WREN  
RDEN  
HT66F30  
Bit  
Name  
7
6
5
4
3
D3  
2
1
D1  
0
EEA  
EED  
EEC  
D5  
D5  
¾
D4  
D4  
¾
D2  
D2  
WR  
D0  
D0  
RD  
¾
D7  
¾
¾
D6  
¾
D3  
D1  
WREN  
RDEN  
HT66F40  
Bit  
Name  
7
6
5
4
3
D3  
2
1
D1  
0
EEA  
EED  
EEC  
D6  
D6  
¾
D5  
D5  
¾
D4  
D4  
¾
D2  
D2  
WR  
D0  
D0  
RD  
¾
D7  
¾
D3  
D1  
WREN  
RDEN  
Rev. 1.60  
38  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F50/HT66F60  
Bit  
Name  
7
6
5
4
3
D3  
2
1
D1  
0
EEA  
EED  
EEC  
D7  
D7  
¾
D6  
D6  
¾
D5  
D5  
¾
D4  
D4  
¾
D2  
D2  
WR  
D0  
D0  
RD  
D3  
D1  
WREN  
RDEN  
·
EEA Register  
¨
HT66F20  
Bit  
Name  
R/W  
7
6
5
4
D4  
R/W  
x
3
D3  
R/W  
x
2
D2  
R/W  
x
1
D1  
R/W  
x
0
D0  
R/W  
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
x
²x² unknown  
Bit 7 ~ 5  
Bit 4 ~ 0  
Unimplemented, read as ²0²  
Data EEPROM address  
Data EEPROM address bit 4 ~ bit 0  
¨
HT66F30  
Bit  
Name  
R/W  
7
6
5
D5  
R/W  
x
4
D4  
R/W  
x
3
D3  
R/W  
x
2
D2  
R/W  
x
1
D1  
R/W  
x
0
D0  
R/W  
¾
¾
¾
¾
¾
¾
POR  
x
²x² unknown  
Bit 7 ~ 6  
Bit 5 ~ 0  
Unimplemented, read as ²0²  
Data EEPROM address  
Data EEPROM address bit 5 ~ bit 0  
¨
HT66F40  
Bit  
Name  
R/W  
7
6
D6  
R/W  
x
5
D5  
R/W  
x
4
D4  
R/W  
x
3
D3  
R/W  
x
2
D2  
R/W  
x
1
D1  
R/W  
x
0
D0  
R/W  
¾
¾
¾
POR  
x
²x² unknown  
Bit 7  
Unimplemented, read as ²0²  
Bit 6 ~ 0  
Data EEPROM address  
Data EEPROM address bit 6 ~ bit 0  
¨
HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
x
6
D6  
R/W  
x
5
D5  
R/W  
x
4
D4  
R/W  
x
3
D3  
R/W  
x
2
D2  
R/W  
x
1
D1  
R/W  
x
0
D0  
R/W  
POR  
x
²x² unknown  
Bit 7 ~ 0  
Data EEPROM address  
Data EEPROM address bit 7 ~ bit 0  
Rev. 1.60  
39  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
EEC Register  
Bit  
Name  
R/W  
7
6
5
4
3
WREN  
R/W  
0
2
WR  
R/W  
0
1
RDEN  
R/W  
0
0
RD  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7 ~ 4  
Bit 3  
Unimplemented, read as ²0²  
WREN: Data EEPROM Write Enable  
0: Disable  
1: Enable  
This is the Data EEPROM Write Enable Bit which must be set high before Data EEPROM write  
operations are carried out. Clearing this bit to zero will inhibit Data EEPROM write operations.  
Bit 2  
WR: EEPROM Write Control  
0: Write cycle has finished  
1: Activate a write cycle  
This is the Data EEPROM Write Control Bit and when set high by the application program will  
activate a write cycle. This bit will be automatically reset to zero by the hardware after the write  
cycle has finished. Setting this bit high will have no effect if the WREN has not first been set high.  
Bit 1  
Bit 0  
RDEN: Data EEPROM Read Enable  
0: Disable  
1: Enable  
This is the Data EEPROM Read Enable Bit which must be set high before Data EEPROM read  
operations are carried out. Clearing this bit to zero will inhibit Data EEPROM read operations.  
RD: EEPROM Read Control  
0: Read cycle has finished  
1: Activate a read cycle  
This is the Data EEPROM Read Control Bit and when set high by the application program will  
activate a read cycle. This bit will be automatically reset to zero by the hardware after the read  
cycle has finished. Setting this bit high will have no effect if the RDEN has not first been set high.  
Note:  
The WREN, WR, RDEN and RD can not be set to ²1² at the same time in one instruction. The WR and RD can  
not be set to ²1² at the same time.  
Reading Data from the EEPROM  
ter and the data placed in the EED register. If the WR bit  
in the EEC register is now set high, an internal write cy-  
cle will then be initiated. Setting the WR bit high will not  
initiate a write cycle if the WREN bit has not been set. As  
the EEPROM write cycle is controlled using an internal  
timer whose operation is asynchronous to  
microcontroller system clock, a certain time will elapse  
before the data will have been written into the EEPROM.  
Detecting when the write cycle has finished can be im-  
plemented either by polling the WR bit in the EEC regis-  
ter or by using the EEPROM interrupt. When the write  
cycle terminates, the WR bit will be automatically  
cleared to zero by the microcontroller, informing the  
user that the data has been written to the EEPROM. The  
application program can therefore poll the WR bit to de-  
termine when the write cycle has ended.  
To read data from the EEPROM, the read enable bit,  
RDEN, in the EEC register must first be set high to en-  
able the read function. The EEPROM address of the  
data to be read must then be placed in the EEA register.  
If the RD bit in the EEC register is now set high, a read  
cycle will be initiated. Setting the RD bit high will not initi-  
ate a read operation if the RDEN bit has not been set.  
When the read cycle terminates, the RD bit will be auto-  
matically cleared to zero, after which the data can be  
read from the EED register. The data will remain in the  
EED register until another read or write operation is exe-  
cuted. The application program can poll the RD bit to de-  
termine when the data is valid for reading.  
Writing Data to the EEPROM  
To write data to the EEPROM, the write enable bit,  
WREN, in the EEC register must first be set high to en-  
able the write function. The EEPROM address of the  
data to be written must then be placed in the EEA regis-  
Rev. 1.60  
40  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Write Protection  
DEF request flag and its associated multi-function inter-  
rupt request flag will both be set. If the global, EEPROM  
Protection against inadvertent write operation is pro-  
vided in several ways. After the device is powered-on  
the Write Enable bit in the control register will be cleared  
preventing any write operations. Also at power-on the  
Bank Pointer, BP, will be reset to zero, which means that  
Data Memory Bank 0 will be selected. As the EEPROM  
control register is located in Bank 1, this adds a further  
measure of protection against spurious write opera-  
tions. During normal program operation, ensuring that  
the Write Enable bit in the control register is cleared will  
safeguard against incorrect write operations.  
and Multi-function interrupts are enabled and the stack  
is not full, a jump to the associated Multi-function Inter-  
rupt vector will take place. When the interrupt is serviced  
only the Multi-function interrupt flag will be automatically  
reset, the EEPROM interrupt flag must be manually re-  
set by the application program. More details can be ob-  
tained in the Interrupt section.  
Programming Considerations  
Care must be taken that data is not inadvertently written  
to the EEPROM. Protection can be enhanced by ensur-  
ing that the Write Enable bit is normally cleared to zero  
when not writing. Also the Bank Pointer could be nor-  
mally cleared to zero as this would inhibit access to  
Bank 1 where the EEPROM control register exist. Al-  
though certainly not necessary, consideration might be  
given in the application program to the checking of the  
validity of new write data by a simple read back process.  
EEPROM Interrupt  
The EEPROM write or read interrupt is generated when  
an EEPROM write or read cycle has ended. The  
EEPROM interrupt must first be enabled by setting the  
DEE bit in the relevant interrupt register. However as the  
EEPROM is contained within a Multi-function Interrupt,  
the associated multi-function interrupt enable bit must  
also be set. When an EEPROM write cycle ends, the  
·
Programming Examples  
¨
Reading data from the EEPROM - polling method  
MOV A, EEPROM_ADRES  
MOV EEA, A  
MOV A, 040H  
MOV MP1, A  
MOV A, 01H  
MOV BP, A  
; user defined address  
; setup memory pointer MP1  
; MP1 points to EEC register  
; setup Bank Pointer  
SET IAR1.1  
SET IAR1.0  
BACK:  
; set RDEN bit, enable read operations  
; start Read Cycle - set RD bit  
SZ  
JMP BACK  
CLR IAR1  
CLR BP  
MOV A, EEDATA  
MOV READ_DATA, A  
IAR1.0  
; check for read cycle end  
; disable EEPROM read/write  
; move read data to register  
¨
Writing Data to the EEPROM - polling method  
MOV A, EEPROM_ADRES  
MOV EEA, A  
; user defined address  
MOV A, EEPROM_DATA  
MOV EED, A  
; user defined data  
MOV A, 040H  
MOV MP1, A  
MOV A, 01H  
; setup memory pointer MP1  
; MP1 points to EEC register  
; setup Bank Pointer  
MOV BP, A  
SET IAR1.3  
SET IAR1.2  
BACK:  
; set WREN bit, enable write operations  
; start Write Cycle - set WR bit  
SZ  
IAR1.2  
; check for write cycle end  
; disable EEPROM read/write  
JMP BACK  
CLR IAR1  
CLR BP  
Rev. 1.60  
41  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Oscillator  
Various oscillator options offer the user a wide range of  
functions according to their various application require-  
ments. The flexible features of the oscillator functions  
ensure that the best optimisation can be achieved in  
terms of speed and power saving. Oscillator selections  
and operation are selected through a combination of  
configuration options and registers.  
Type  
Name  
HXT  
Freq.  
Pins  
400kHz~  
20MHz  
OSC1/  
OSC2  
External Crystal  
External RC  
ERC  
8MHz  
OSC1  
Internal High  
Speed RC  
HIRC 4, 8 or 12MHz  
¾
Oscillator Overview  
External Low  
Speed Crystal  
XT1/  
XT2  
LXT  
32.768kHz  
32kHz  
In addition to being the source of the main system clock  
the oscillators also provide clock sources for the Watch-  
dog Timer and Time Base Interrupts. External oscilla-  
tors requiring some external components as well as fully  
integrated internal oscillators, requiring no external  
components, are provided to form a wide range of both  
fast and slow system oscillators. All oscillator options  
are selected through the configuration options. The  
higher frequency oscillators provide higher performance  
but carry with it the disadvantage of higher power re-  
quirements, while the opposite is of course true for the  
lower frequency oscillators. With the capability of dy-  
namically switching between fast and slow system  
clock, the device has the flexibility to optimize the perfor-  
mance/power ratio, a feature especially important in  
power sensitive portable applications.  
Internal Low  
Speed RC  
LIRC  
¾
Oscillator Types  
System Clock Configurations  
There are five methods of generating the system clock,  
three high speed oscillators and two low speed oscilla-  
tors. The high speed oscillators are the external crystal/  
ceramic oscillator, external RC network oscillator and  
the internal 4MHz, 8MHz or 12MHz RC oscillator. The  
two low speed oscillators are the internal 32kHz RC os-  
cillator and the external 32.768kHz crystal oscillator. Se-  
lecting whether the low or high speed oscillator is used  
as the system oscillator is implemented using the  
HLCLK bit and CKS2 ~ CKS0 bits in the SMOD register  
and as the system clock can be dynamically selected.  
High Speed Oscillation  
HXT  
fH  
ERC  
6-stage Prescaler  
fH/2  
fH/4  
HIRC  
fH/8  
fH/16  
fH/32  
fH/64  
High Speed Oscillation  
Configuration Option  
Low Speed Oscillation  
LIRC  
fSYS  
fL  
LXT  
HLCLK,  
CKS2~CKS0 bits  
Low Speed Oscillation  
Configuration Option  
fSUB  
Fast Wake-up from SLEEP Mode or  
IDLE Mode Control (for HXT only)  
System Clock Configurations  
Rev. 1.60  
42  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
The actual source clock used for each of the high speed  
termines the oscillation frequency; the external  
capacitor has no influence over the frequency and is  
connected for stability purposes only. Device trimming  
during the manufacturing process and the inclusion of  
internal frequency compensation circuits are used to en-  
sure that the influence of the power supply voltage, tem-  
perature and process variations on the oscillation  
frequency are minimised. As a resistance/frequency ref-  
erence point, it can be noted that with an external 120kW  
resistor connected and with a 5V voltage power supply  
and temperature of 25°C degrees, the oscillator will  
have a frequency of 8MHz within a tolerance of 2%.  
Here only the OSC1 pin is used, which is shared with I/O  
pin PB1, leaving pin PB2 free for use as a normal I/O  
pin.  
and low speed oscillators is chosen via configuration  
options. The frequency of the slow speed or high speed  
system clock is also determined using the HLCLK bit  
and CKS2 ~ CKS0 bits in the SMOD register. Note that  
two oscillator selections must be made namely one high  
speed and one low speed system oscillators. It is not  
possible to choose a no-oscillator selection for either the  
high or low speed oscillator.  
External Crystal/ Ceramic Oscillator - HXT  
The External Crystal/ Ceramic System Oscillator is one  
of the high frequency oscillator choices, which is se-  
lected via configuration option. For most crystal oscilla-  
tor configurations, the simple connection of a crystal  
across OSC1 and OSC2 will create the necessary  
phase shift and feedback for oscillation, without requir-  
ing external capacitors. However, for some crystal types  
and frequencies, to ensure oscillation, it may be neces-  
sary to add two small value capacitors, C1 and C2.  
Using a ceramic resonator will usually require two small  
value capacitors, C1 and C2, to be connected as shown  
for oscillation to occur. The values of C1 and C2 should  
be selected in consultation with the crystal or resonator  
manufacturer¢s specification.  
Internal RC Oscillator - HIRC  
The internal RC oscillator is a fully integrated system os-  
cillator requiring no external components. The internal  
RC oscillator has three fixed frequencies of either  
4MHz, 8MHz or 12MHz. Device trimming during the  
manufacturing process and the inclusion of internal fre-  
quency compensation circuits are used to ensure that  
the influence of the power supply voltage, temperature  
and process variations on the oscillation frequency are  
minimised. As a result, at a power supply of either 3V or  
I
O
C
n
t
e
r
n
C
1
O
S
C
1
s
c
i
l
l
V
D
D
i
r
c
u
i
R
p
R
f
R
O
S
C
O
S
C
1
T
o
i
n
t
c
i
r
c
u
i
O
S
C
2
2
0
p
F
C
2
N
o
t
e
:
1
.
R
p
i
s
n
o
r
m
a
l
l
y
External RC Oscillator - ERC  
2
.
A
l
t
h
o
u
g
h
n
o
t
s
h
o
w
n
c
a
p
a
c
i
t
a
n
c
e
o
f
a
r
o
5V and at a temperature of 25°C degrees, the fixed os-  
cillation frequency of 4MHz, 8MHz or 12MHz will have a  
tolerance within 2%. Note that if this internal system  
clock option is selected, as it requires no external pins  
for its operation, I/O pins PB1 and PB2 are free for use  
as normal I/O pins.  
Crystal/Resonator Oscillator - HXT  
Crystal Oscillator C1 and C2 Values  
Crystal Frequency  
12MHz  
C1  
0pF  
C2  
0pF  
0pF  
0pF  
8MHz  
0pF  
External 32.768kHz Crystal Oscillator - LXT  
4MHz  
0pF  
The External 32.768kHz Crystal System Oscillator is  
one of the low frequency oscillator choices, which is se-  
lected via configuration option. This clock source has a  
fixed frequency of 32.768kHz and requires a 32.768kHz  
crystal to be connected between pins XT1 and XT2. The  
external resistor and capacitor components connected  
to the 32.768kHz crystal are necessary to provide oscil-  
lation. For applications where precise frequencies are  
essential, these components may be required to provide  
frequency compensation due to different crystal manu-  
facturing tolerances. During power-up there is a time  
delay associated with the LXT oscillator waiting for it to  
start-up.  
1MHz  
100pF  
100pF  
Note: C1 and C2 values are for guidance only.  
Crystal Recommended Capacitor Values  
External RC Oscillator - ERC  
Using the ERC oscillator only requires that a resistor,  
with a value between 56kW and 2.4MW, is connected  
between OSC1 and VDD, and a capacitor is connected  
between OSC1 and ground, providing a low cost oscilla-  
tor configuration. It is only the external resistor that de-  
Rev. 1.60  
43  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
LXT Oscillator Low Power Function  
When the microcontroller enters the SLEEP or IDLE  
Mode, the system clock is switched off to stop  
microcontroller activity and to conserve power. How-  
ever, in many microcontroller applications it may be nec-  
essary to keep the internal timers operational even  
when the microcontroller is in the SLEEP or IDLE Mode.  
To do this, another clock, independent of the system  
clock, must be provided.  
The LXT oscillator can function in one of two modes, the  
Quick Start Mode and the Low Power Mode. The mode  
selection is executed using the LXTLP bit in the TBC  
register.  
LXTLP Bit  
LXT Mode  
Quick Start  
Low-power  
0
1
However, for some crystals, to ensure oscillation and  
accurate frequency generation, it is necessary to add  
two small value external capacitors, C1 and C2. The ex-  
act values of C1 and C2 should be selected in consulta-  
tion with the crystal or resonator manufacturer¢s  
specification. The external parallel feedback resistor,  
Rp, is required.  
After power on the LXTLP bit will be automatically  
cleared to zero ensuring that the LXT oscillator is in the  
Quick Start operating mode. In the Quick Start Mode the  
LXT oscillator will power up and stabilise quickly. How-  
ever, after the LXT oscillator has fully powered up it can  
be placed into the Low-power mode by setting the  
LXTLP bit high. The oscillator will continue to run but  
with reduced current consumption, as the higher current  
consumption is only required during the LXT oscillator  
start-up. In power sensitive applications, such as battery  
applications, where power consumption must be kept to  
a minimum, it is therefore recommended that the appli-  
cation program sets the LXTLP bit high about 2 seconds  
after power-on.  
Some configuration options determine if the XT1/XT2  
pins are used for the LXT oscillator or as I/O pins.  
·
If the LXT oscillator is not used for any clock source,  
the XT1/XT2 pins can be used as normal I/O pins.  
·
If the LXT oscillator is used for any clock source, the  
32.768kHz crystal should be connected to the  
XT1/XT2 pins.  
I
O
C
n
t
e
r
n
a
C
1
X
T
1
It should be noted that, no matter what condition the  
LXTLP bit is set to, the LXT oscillator will always func-  
tion normally, the only difference is that it will take more  
time to start up if in the Low-power mode.  
s
c
i
l
l
a
i
r
c
u
i
t
R
p
I
n
t
e
r
n
a
3
2
.
7
6
8
O
s
c
i
l
l
a
k
H
z
X
T
2
T
c
o
i
n
t
e
Internal 32kHz Oscillator - LIRC  
i
r
c
u
i
t
C
2
The Internal 32kHz System Oscillator is one of the low  
frequency oscillator choices, which is selected via con-  
figuration option. It is a fully integrated RC oscillator with  
a typical frequency of 32kHz at 5V, requiring no external  
components for its implementation. Device trimming  
during the manufacturing process and the inclusion of  
internal frequency compensation circuits are used to en-  
sure that the influence of the power supply voltage, tem-  
perature and process variations on the oscillation  
frequency are minimised. As a result, at a power supply  
of 5V and at a temperature of 25°C degrees, the fixed  
oscillation frequency of 32kHz will have a tolerance  
within 10%.  
N
o
t
e
:
1
.
R
p
,
C
1
a
n
d
C
2
2
.
A
l
t
h
o
u
g
h
n
o
t
s
h
o
p
a
r
a
s
i
t
i
c
c
a
p
a
c
i
External LXT Oscillator  
LXT Oscillator C1 and C2 Values  
Crystal Frequency  
C1  
C2  
10pF  
32.768kHz  
10pF  
Note: 1. C1 and C2 values are for guidance only.  
2. RP=5M~10MW is recommended.  
32.768kHz Crystal Recommended Capacitor Values  
Supplementary Oscillators  
The low speed oscillators, in addition to providing a sys-  
tem clock source are also used to provide a clock  
source to two other device functions. These are the  
Watchdog Timer and the Time Base Interrupts.  
Rev. 1.60  
44  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Operating Modes and System Clocks  
Present day applications require that their  
microcontrollers have high performance but often still  
demand that they consume as little power as possible,  
conflicting requirements that are especially true in bat-  
tery powered portable applications. The fast clocks re-  
quired for high performance will by their nature increase  
current consumption and of course vice-versa, lower  
speed clocks reduce current consumption. As Holtek  
has provided these devices with both high and low  
speed clock sources and the means to switch between  
them dynamically, the user can optimise the operation of  
their microcontroller to achieve the best perfor-  
mance/power ratio.  
The main system clock, can come from either a high fre-  
quency, fH, or low frequency, fL, source, and is selected  
using the HLCLK bit and CKS2~CKS0 bits in the SMOD  
register. The high speed system clock can be sourced  
from either an HXT, ERC or HIRC oscillator, selected via  
a configuration option. The low speed system clock  
source can be sourced from internal clock fL. If fL is se-  
lected then it can be sourced by either the LXT or LIRC  
oscillators, selected via a configuration option. The  
other choice, which is a divided version of the high  
speed system oscillator has a range of fH/2~fH/64.  
There are two additional internal clocks for the periph-  
eral circuits, the substitute clock, fSUB, and the Time  
Base clock, fTBC. Each of these internal clocks are  
sourced by either the LXT or LIRC oscillators, selected  
via configuration options. The fSUB clock is used to pro-  
vide a substitute clock for the microcontroller just after a  
wake-up has occurred to enable faster wake-up times.  
System Clocks  
The device has many different clock sources for both  
the CPU and peripheral function operation. By providing  
the user with a wide range of clock options using config-  
uration options and register programming, a clock sys-  
tem can be configured to obtain maximum application  
performance.  
High Speed Oscillation  
HXT  
fH  
ERC  
6-stage Prescaler  
fH/2  
HIRC  
fH/4  
fH/8  
fH/16  
fH/32  
fH/64  
High Speed Oscillation  
Configuration Option  
Low Speed Oscillation  
LIRC  
fSYS  
fL  
LXT  
HLCLK,  
CKS2~CKS0 bits  
Low Speed Oscillation  
Configuration Option  
fSUB  
Fast Wake-up from SLEEP Mode or  
IDLE Mode Control (for HXT only)  
fTB C  
fTB  
Time Base  
fSYS/4  
TBCK  
fSUB  
fS  
WDT  
fSYS/4  
Configuration Option  
System Clock Configurations  
Note: When the system clock source fSYS is switched to fL from fH, the high speed oscillation will stop to conserve the  
power. Thus there is no fH~fH/64 for peripheral circuit to use.  
Rev. 1.60  
45  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Together with fSYS/4 it is also used as one of the clock  
istics and which can be chosen according to the specific  
performance and power requirements of the applica-  
tion. There are two modes allowing normal operation of  
the microcontroller, the NORMAL Mode and SLOW  
Mode. The remaining four modes, the SLEEP0,  
SLEEP1, IDLE0 and IDLE1 Mode are used when the  
microcontroller CPU is switched off to conserve power.  
sources for the Watchdog timer. The fTBC clock is used  
as a source for the Time Base interrupt functions and for  
the TMs.  
System Operation Modes  
There are six different modes of operation for the  
microcontroller, each one with its own special character-  
Description  
Operation Mode  
CPU  
On  
On  
Off  
Off  
Off  
Off  
fSYS  
fH~ fH/64  
fL  
fSUB  
On  
On  
On  
On  
Off  
On  
fS  
On  
fTBC  
On  
On  
On  
On  
Off  
Off  
NORMAL Mode  
SLOW Mode  
IDLE0 Mode  
On  
Off  
On/Off  
On  
IDLE1 Mode  
On  
SLEEP0 Mode  
SLEEP1 Mode  
Off  
Off  
Off  
On  
·
NORMAL Mode  
to operate if the LVDEN is ²1² or the Watchdog Timer  
function is enabled and if its clock source is chosen  
As the name suggests this is one of the main operat-  
ing modes where the microcontroller has all of its  
functions operational and where the system clock is  
provided by one of the high speed oscillators. This  
mode operates allowing the microcontroller to operate  
normally with a clock source will come from one of the  
high speed oscillators, either the HXT, ERC or HIRC  
oscillators. The high speed oscillator will however first  
be divided by a ratio ranging from 1 to 64, the actual  
ratio being selected by the CKS2~CKS0 and HLCLK  
bits in the SMOD register. Although a high speed os-  
cillator is used, running the microcontroller at a di-  
vided clock ratio reduces the operating current.  
via configuration option to come from the fSUB  
.
·
IDLE0 Mode  
The IDLE0 Mode is entered when a HALT instruction  
is executed and when the IDLEN bit in the SMOD reg-  
ister is high and the FSYSON bit in the WDTC register  
is low. In the IDLE0 Mode the system oscillator will be  
inhibited from driving the CPU but some peripheral  
functions will remain operational such as the Watch-  
dog Timer, TMs and SIM. In the IDLE0 Mode, the sys-  
tem oscillator will be stopped. In the IDLE0 Mode the  
Watchdog Timer clock, fS, will either be on or off de-  
pending upon the fS clock source. If the source is  
·
SLOW Mode  
fSYS/4 then the fS clock will be off, and if the source co-  
This is also a mode where the microcontroller oper-  
ates normally although now with a slower speed clock  
source. The clock source used will be from one of the  
low speed oscillators, either the LXT or the LIRC.  
Running the microcontroller in this mode allows it to  
run with much lower operating currents. In the SLOW  
Mode, the fH is off.  
mes from fSUB then fS will be on.  
·
IDLE1 Mode  
The IDLE1 Mode is entered when an HALT instruction  
is executed and when the IDLEN bit in the SMOD reg-  
ister is high and the FSYSON bit in the WDTC register  
is high. In the IDLE1 Mode the system oscillator will be  
inhibited from driving the CPU but may continue to  
provide a clock source to keep some peripheral func-  
tions operational such as the Watchdog Timer, TMs  
and SIM. In the IDLE1 Mode, the system oscillator will  
continue to run, and this system oscillator may be high  
speed or low speed system oscillator. In the IDLE1  
Mode the Watchdog Timer clock, fS, will be on. If the  
source is fSYS/4 then the fS clock will be on, and if the  
source comes from fSUB then fS will be on.  
·
SLEEP0 Mode  
The SLEEP Mode is entered when an HALT instruc-  
tion is executed and when the IDLEN bit in the SMOD  
register is low. In the SLEEP0 mode the CPU will be  
stopped, and the fSUB and fS clocks will be stopped too,  
and the Watchdog Timer function is disabled. In this  
mode, the LVDEN is must set to ²0². If the LVDEN is  
set to ²1², it won¢t enter the SLEEP0 Mode.  
·
SLEEP1 Mode  
The SLEEP Mode is entered when an HALT instruc-  
tion is executed and when the IDLEN bit in the SMOD  
register is low. In the SLEEP1 mode the CPU will be  
stopped. However the fSUB and fS clocks will continue  
Rev. 1.60  
46  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Control Register  
A single register, SMOD, is used for overall control of the internal clocks within the device.  
·
SMOD Register  
Bit  
7
6
CKS1  
R/W  
0
5
CKS0  
R/W  
0
4
FSTEN  
R/W  
0
3
LTO  
R
2
HTO  
R
1
IDLEN  
R/W  
1
0
HLCLK  
R/W  
1
Name  
R/W  
CKS2  
R/W  
0
POR  
0
0
Bit 7~5  
CKS2~CKS0: The system clock selection when HLCLK is ²0²  
000: fL (fLXT or fLIRC  
001: fL (fLXT or fLIRC  
010: fH/64  
)
)
011: fH/32  
100: fH/16  
101: fH/8  
110: fH/4  
111: fH/2  
These three bits are used to select which clock is used as the system clock source. In addition  
to the system clock source, which can be either the LXT or LIRC, a divided version of the high  
speed system oscillator can also be chosen as the system clock source.  
Bit 4  
FSTEN: Fast Wake-up Control (only for HXT)  
0: Disable  
1: Enable  
This is the Fast Wake-up Control bit which determines if the fSUB clock source is initially used  
after the device wakes up. When the bit is high, the fSUB clock source can be used as a  
temporary system clock to provide a faster wake up time as the fSUB clock is available.  
Bit 3  
LTO: Low speed system oscillator ready flag  
0: Not ready  
1: Ready  
This is the low speed system oscillator ready flag which indicates when the low speed system  
oscillator is stable after power on reset or a wake-up has occurred. The flag will be low when in  
the SLEEP0 Mode but after a wake-up has occurred, the flag will change to a high level after  
1024 clock cycles if the LXT oscillator is used and 1~2 clock cycles if the LIRC oscillator is used.  
Bit 2  
HTO: High speed system oscillator ready flag  
0: Not ready  
1: Ready  
This is the high speed system oscillator ready flag which indicates when the high speed system  
oscillator is stable. This flag is cleared to ²0² by hardware when the device is powered on and  
then changes to a high level after the high speed system oscillator is stable. Therefore this flag  
will always be read as ²1² by the application program after device power-on. The flag will be  
low when in the SLEEP or IDLE0 Mode but after a wake-up has occurred, the flag will change to  
a high level after 1024 clock cycles if the HXT oscillator is used and after 15~16 clock cycles if  
the ERC or HIRC oscillator is used.  
Bit 1  
IDLEN: IDLE Mode control  
0: Disable  
1: Enable  
This is the IDLE Mode Control bit and determines what happens when the HALT instruction is  
executed. If this bit is high, when a HALT instruction is executed the device will enter the  
IDLE Mode. In the IDLE1 Mode the CPU will stop running but the system clock will continue to  
keep the peripheral functions operational, if FSYSON bit is high. If FSYSON bit is low, the CPU  
and the system clock will all stop in IDLE0 mode. If the bit is low the device will enter the  
SLEEP Mode when a HALT instruction is executed.  
Bit 0  
HLCLK: system clock selection  
0: fH/2 ~ fH/64 or fL  
1: fH  
This bit is used to select if the fH clock or the fH/2 ~ fH/64 or fL clock is used as the system  
clock. When the bit is high the fH clock will be selected and if low the fH/2 ~ fH/64 or fL clock will  
be selected. When system clock switches from the fH clock to the fL clock and the fH clock will  
be automatically switched off to conserve power.  
Rev. 1.60  
47  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Fast Wake-up  
able function is controlled using the FSTEN bit in the  
SMOD register.  
To minimise power consumption the device can enter  
the SLEEP or IDLE0 Mode, where the system clock  
source to the device will be stopped. However when the  
device is woken up again, it can take a considerable  
time for the original system oscillator to restart, stabilise  
and allow normal operation to resume. To ensure the  
device is up and running as fast as possible a Fast  
If the HXT oscillator is selected as the NORMAL Mode  
system clock, and if the Fast Wake-up function is en-  
abled, then it will take one to two tSUB clock cycles of the  
LIRC or LXT oscillator for the system to wake-up. The  
system will then initially run under the fSUB clock source  
until 1024 HXT clock cycles have elapsed, at which  
point the HTO flag will switch high and the system will  
switch over to operating from the HXT oscillator.  
Wake-up function is provided, which allows fSUB  
,
namely either the LXT or LIRC oscillator, to act as a tem-  
porary clock to first drive the system until the original  
system oscillator has stabilised. As the clock source for  
the Fast Wake-up function is fSUB, the Fast Wake-up  
function is only available in the SLEEP1 and IDLE0  
modes. When the device is woken up from the SLEEP0  
mode, the Fast Wake-up function has no effect because  
the fSUB clock is stopped. The Fast Wake-up enable/dis-  
If the ERC or HIRC oscillators or LIRC oscillator is used  
as the system oscillator then it will take 15~16 clock cy-  
cles of the ERC or HIRC or 1~2 cycles of the LIRC to  
wake up the system from the SLEEP or IDLE0 Mode.  
The Fast Wake-up bit, FSTEN will have no effect in  
these cases.  
System  
FSTEN  
Bit  
Wake-up Time  
(SLEEP0 Mode)  
Wake-up Time  
(SLEEP1 Mode)  
Wake-up Time  
(IDLE0 Mode)  
Wake-up Time  
(IDLE1 Mode)  
Oscillator  
0
1024 HXT cycles  
1024 HXT cycles  
1~2 HXT cycles  
1~2 fSUB cycles  
HXT  
1
1024 HXT cycles  
(System runs with fSUB first for 1024 HXT cycles  
and then switches over to run with the HXT clock)  
1~2 HXT cycles  
ERC  
HIRC  
LIRC  
LXT  
X
X
X
X
15~16 ERC cycles  
15~16 HIRC cycles  
1~2 LIRC cycles  
1024 LTX cycles  
15~16 ERC cycles  
15~16 HIRC cycles  
1~2 LIRC cycles  
1024 LXT cycles  
1~2 ERC cycles  
1~2 HIRC cycles  
1~2 LIRC cycles  
1~2 LXT cycles  
Wake-Up Times  
Note that if the Watchdog Timer is disabled, which means that the LXT and LIRC are all both off, then there will be no  
Fast Wake-up function available when the device wakes-up from the SLEEP0 Mode.  
I
D
L
E
1
N
O
R
M
A
L
H
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
c
u
f
S
Y
=
S
H
~
H
/
6
4
C
P
U
s
t
o
p
f
H
o
n
I
D
L
E
N
=
1
C
P
U
r
u
n
F
S
Y
S
O
N
=
1
f
S
T
Y
S
o
o
n
n
f
S
Y
S
o
n
f
B
C
f
T
B
C
o
n
f
S
U
B
o
n
f
S
U
B
o
n
S
L
E
E
P
0
I
D
L
E
0
H
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
c
u
t
e
d
H
A
L
T
i
n
s
t
r
u
c
t
i
o
f
S
Y
o
S
f
f
C
P
U
s
t
o
p
C
P
U
s
t
o
p
I
D
L
E
N
=
1
I
D
L
E
N
=
0
F
S
Y
S
O
N
=
0
f
T
B
o
C
f
f
f
S
Y
S
o
f
f
f
S
U
o
B
f
f
f
T
B
C
o
n
W
D
T
&
L
V
D
o
f
f
f
S
U
B
o
n
S
L
E
E
P
1
S
L
O
W
H
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
f
S
Y
e
S
L
x
f
e
c
u
t
e
d
f
S
Y
S
o
o
f
f
f
f
f
L
o
n
C
P
U
s
t
o
p
C
P
U
r
u
n
I
D
L
E
N
=
0
f
S
Y
S
o
n
n
f
T
B
C
f
T
B
C
o
f
S
U
B
o
n
f
S
U
B
o
n
W
D
T
o
r
L
V
D
o
n
f
H
o
f
f
Rev. 1.60  
48  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Operating Mode Switching and Wake-up  
sources will also stop running, which may affect the op-  
eration of other internal functions such as the TMs and  
The device can switch between operating modes dy-  
namically allowing the user to select the best perfor-  
mance/power ratio for the present task in hand. In this  
way microcontroller operations that do not require high  
performance can be executed using slower clocks thus  
requiring less operating current and prolonging battery  
life in portable applications.  
the SIM. The accompanying flowchart shows what hap-  
pens when the device moves between the various oper-  
ating modes.  
NORMAL Mode to SLOW Mode Switching  
When running in the NORMAL Mode, which uses the  
high speed system oscillator, and therefore consumes  
more power, the system clock can switch to run in the  
SLOW Mode by set the HLCLK bit to ²0² and set the  
CKS2~CKS0 bits to ²000² or ²001² in the SMOD regis-  
ter. This will then use the low speed system oscillator  
which will consume less power. Users may decide to do  
this for certain operations which do not require high per-  
formance and can subsequently reduce power con-  
sumption.  
In simple terms, Mode Switching between the NORMAL  
Mode and SLOW Mode is executed using the HLCLK bit  
and CKS2~CKS0 bits in the SMOD register while Mode  
Switching from the NORMAL/SLOW Modes to the  
SLEEP/IDLE Modes is executed via the HALT instruc-  
tion. When a HALT instruction is executed, whether the  
device enters the IDLE Mode or the SLEEP Mode is de-  
termined by the condition of the IDLEN bit in the SMOD  
register and FSYSON in the WDTC register.  
The SLOW Mode is sourced from the LXT or the LIRC  
oscillators and therefore requires these oscillators to be  
stable before full mode switching occurs. This is moni-  
tored using the LTO bit in the SMOD register.  
When the HLCLK bit switches to a low level, which im-  
plies that clock source is switched from the high speed  
clock source, fH, to the clock source, fH/2~fH/64 or fL. If  
the clock is from the fL, the high speed clock source will  
stop running to conserve power. When this happens it  
must be noted that the fH/16 and fH/64 internal clock  
N
O
R
M
A
L
M
o
d
e
C
H
K
S
2
~
C
K
S
0
=
0
0
x
B
L
C
L
K
=
0
S
L
O
W
M
o
d
e
W
I
H
D
T
a
n
d
L
V
D
a
r
e
a
l
l
o
f
f
D
L
E
N
=
0
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
S
L
E
E
P
0
M
o
d
e
W
I
H
D
T
o
s
r
o
L
n
V
D
i
D
L
E
N
=
0
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
c
u
t
e
S
L
E
E
P
1
M
o
d
e
I
D
L
E
N
=
1
,
F
S
Y
S
O
N
=
0
H
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
c
u
t
e
d
I
D
E
L
0
M
o
d
e
I
D
L
E
N
=
1
,
F
S
Y
S
O
N
=
1
H
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
c
u
t
e
d
I
D
L
E
1
M
o
d
e
Rev. 1.60  
49  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
S
L
O
W
M
o
d
e
C
K
S
2
~
¹
0
C
0
K
0
S
B
0
,
0
0
1
B
a
s
H
L
o
r
H
L
C
L
K
=
1
N
O
R
M
A
L
M
o
d
e
W
I
H
D
T
a
n
d
L
V
D
a
r
e
a
l
l
o
f
f
D
L
E
N
=
0
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
c
S
L
E
E
P
0
M
o
d
e
W
I
H
D
T
o
i
r
s
L
o
V
n
D
D
L
E
N
=
0
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
c
u
t
e
d
S
L
E
E
P
1
M
o
d
e
I
D
L
E
N
=
1
,
F
S
Y
S
O
N
=
0
H
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
c
u
t
e
d
I
D
L
E
0
M
o
d
e
I
D
L
E
N
=
1
,
F
S
Y
S
O
N
=
1
H
A
L
T
i
n
s
t
r
u
c
t
i
o
n
i
s
e
x
e
c
u
t
e
d
I
D
L
E
1
M
o
d
e
SLOW Mode to NORMAL Mode Switching  
Entering the SLEEP0 Mode  
In SLOW Mode the system uses either the LXT or LIRC  
low speed system oscillator. To switch back to the  
NORMAL Mode, where the high speed system oscillator  
is used, the HLCLK bit should be set to ²1² or HLCLK bit  
is ²0², but CKS2~CKS0 is set to ²010², ²011², ²100²,  
²101², ²110² or ²111². As a certain amount of time will be  
required for the high frequency clock to stabilise, the  
status of the HTO bit is checked. The amount of time  
required for high speed system oscillator stabilization  
depends upon which high speed system oscillator type  
is used.  
There is only one way for the device to enter the  
SLEEP0 Mode and that is to execute the ²HALT² instruc-  
tion in the application program with the IDLEN bit in  
SMOD register equal to ²0² and the WDT and LVD both  
off. When this instruction is executed under the condi-  
tions described above, the following will occur:  
·
The system clock, WDT clock and Time Base clock  
will be stopped and the application program will stop  
at the ²HALT² instruction.  
·
·
The Data Memory contents and registers will maintain  
their present condition.  
The WDT will be cleared and stopped no matter if the  
WDT clock source originates from the fSUB clock or  
from the system clock.  
·
·
The I/O ports will maintain their present conditions.  
In the status register, the Power Down flag, PDF, will  
be set and the Watchdog time-out flag, TO, will be  
cleared.  
Rev. 1.60  
50  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Entering the SLEEP1 Mode  
Entering the IDLE1 Mode  
There is only one way for the device to enter the  
SLEEP1 Mode and that is to execute the ²HALT²  
instruction in the application program with the IDLEN bit  
in SMOD register equal to ²0² and the WDT or LVD on.  
When this instruction is executed under the conditions  
described above, the following will occur:  
There is only one way for the device to enter the IDLE1  
Mode and that is to execute the ²HALT² instruction in the  
application program with the IDLEN bit in SMOD register  
equal to ²1² and the FSYSON bit in WDTC register equal  
to ²1². When this instruction is executed under the with  
conditions described above, the following will occur:  
·
The system clock and Time Base clock will be  
stopped and the application program will stop at the  
²HALT² instruction, but the WDT or LVD will remain  
with the clock source coming from the fSUB clock.  
·
The system clock and Time Base clock and fSUB clock  
will be on and the application program will stop at the  
²HALT² instruction.  
·
·
The Data Memory contents and registers will maintain  
their present condition.  
·
·
The Data Memory contents and registers will maintain  
their present condition.  
The WDT will be cleared and resume counting if the  
WDT is enabled regardless of the WDT clock source  
which originates from the fSUB clock or from the system  
clock.  
The WDT will be cleared and resume counting if the  
WDT clock source is selected to come from the fSUB  
clock as the WDT is enabled.  
·
·
The I/O ports will maintain their present conditions.  
·
·
The I/O ports will maintain their present conditions.  
In the status register, the Power Down flag, PDF, will  
be set and the Watchdog time-out flag, TO, will be  
cleared.  
In the status register, the Power Down flag, PDF, will  
be set and the Watchdog time-out flag, TO, will be  
cleared.  
Standby Current Considerations  
Entering the IDLE0 Mode  
As the main reason for entering the SLEEP or IDLE  
Mode is to keep the current consumption of the device  
to as low a value as possible, perhaps only in the order  
of several micro-amps except in the IDLE1 Mode, there  
are other considerations which must also be taken into  
account by the circuit designer if the power consumption  
is to be minimised. Special attention must be made to  
the I/O pins on the device. All high-impedance input pins  
must be connected to either a fixed high or low level as  
any floating input pins could create internal oscillations  
and result in increased current consumption. This also  
applies to devices which have different package types,  
as there may be unbonbed pins. These must either be  
setup as outputs or if setup as inputs must have  
pull-high resistors connected.  
There is only one way for the device to enter the IDLE0  
Mode and that is to execute the ²HALT² instruction in the  
application program with the IDLEN bit in SMOD register  
equal to ²1² and the FSYSON bit in WDTC register equal  
to ²0². When this instruction is executed under the condi-  
tions described above, the following will occur:  
·
The system clock will be stopped and the application  
program will stop at the ²HALT² instruction, but the  
Time Base clock and fSUB clock will be on.  
·
·
The Data Memory contents and registers will maintain  
their present condition.  
The WDT will be cleared and resume counting if the  
WDT clock source is selected to come from the fSUB  
clock and the WDT is enabled. The WDT will stop if its  
clock source originates from the system clock.  
Care must also be taken with the loads, which are con-  
nected to I/O pins, which are setup as outputs. These  
should be placed in a condition in which minimum cur-  
rent is drawn or connected only to external circuits that  
do not draw current, such as other CMOS inputs. Also  
note that additional standby current will also be required  
if the configuration options have enabled the LXT or  
LIRC oscillator.  
·
·
The I/O ports will maintain their present conditions.  
In the status register, the Power Down flag, PDF, will  
be set and the Watchdog time-out flag, TO, will be  
cleared.  
In the IDLE1 Mode the system oscillator is on, if the sys-  
tem oscillator is from the high speed system oscillator,  
the additional standby current will also be perhaps in the  
order of several hundred micro-amps  
Rev. 1.60  
51  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Wake-up  
Programming Considerations  
After the system enters the SLEEP or IDLE Mode, it can  
be woken up from one of various sources listed as fol-  
lows:  
The HXT and LXT oscillators both use the same SST  
counter. For example, if the system is woken up from the  
SLEEP0 Mode and both the HXT and LXT oscillators  
need to start-up from an off state. The LXT oscillator  
uses the SST counter after HXT oscillator has finished  
its SST period.  
·
·
·
·
An external reset  
An external falling edge on Port A  
A system interrupt  
·
If the device is woken up from the SLEEP0 Mode to  
the NORMAL Mode, the high speed system oscillator  
needs an SST period. The device will execute first in-  
struction after HTO is ²1². At this time, the LXT oscilla-  
tor may not be stability if fSUB is from LXT oscillator. The  
same situation occurs in the power-on state. The LXT  
oscillator is not ready yet when the first instruction is  
executed.  
A WDT overflow  
If the system is woken up by an external reset, the de-  
vice will experience a full system reset, however, if the  
device is woken up by a WDT overflow, a Watchdog  
Timer reset will be initiated. Although both of these  
wake-up methods will initiate a reset operation, the ac-  
tual source of the wake-up can be determined by exam-  
ining the TO and PDF flags. The PDF flag is cleared by a  
system power-up or executing the clear Watchdog  
Timer instructions and is set when executing the ²HALT²  
instruction. The TO flag is set if a WDT time-out occurs,  
and causes a wake-up that only resets the Program  
Counter and Stack Pointer, the other flags remain in their  
original status.  
·
·
·
If the device is woken up from the SLEEP1 Mode to  
NORMAL Mode, and the system clock source is from  
HXT oscillator and FSTEN is ²1², the system clock can  
be switched to the LXT or LIRC oscillator after wake  
up.  
There are peripheral functions, such as WDT, TMs  
and SIM, for which the fSYS is used. If the system clock  
source is switched from fH to fL, the clock source to the  
peripheral functions mentioned above will change ac-  
cordingly.  
Each pin on Port A can be setup using the PAWU regis-  
ter to permit a negative transition on the pin to wake-up  
the system. When a Port A pin wake-up occurs, the pro-  
gram will resume execution at the instruction following  
the ²HALT² instruction. If the system is woken up by an  
interrupt, then two possible situations may occur. The first  
is where the related interrupt is disabled or the interrupt is  
enabled but the stack is full, in which case the program  
will resume execution at the instruction following the  
²HALT² instruction. In this situation, the interrupt which  
woke-up the device will not be immediately serviced, but  
will rather be serviced later when the related interrupt is fi-  
nally enabled or when a stack level becomes free. The  
other situation is where the related interrupt is enabled  
and the stack is not full, in which case the regular inter-  
rupt response takes place. If an interrupt request flag is  
set high before entering the SLEEP or IDLE Mode, the  
wake-up function of the related interrupt will be disabled.  
The on/off condition of fSUB and fS depends upon  
whether the WDT is enabled or disabled as the WDT  
clock source is selected from fSUB  
.
Rev. 1.60  
52  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Watchdog Timer  
The Watchdog Timer is provided to prevent program  
malfunctions or sequences from jumping to unknown lo-  
cations, due to certain uncontrollable external events  
such as electrical noise.  
However, it should be noted that this specified internal  
clock period can vary with VDD, temperature and pro-  
cess variations. The LXT oscillator is supplied by an ex-  
ternal 32.768kHz crystal. The other Watchdog Timer  
clock source option is the fSYS/4 clock. The Watchdog  
Timer clock source can originate from its own internal  
LIRC oscillator, the LXT oscillator or fSYS/4. It is divided  
by a value of 28 to 215, using the WS2~WS0 bits in the  
WDTC register to obtain the required Watchdog Timer  
time-out period.  
Watchdog Timer Clock Source  
The Watchdog Timer clock source is provided by the in-  
ternal clock, fS, which is in turn supplied by one of two  
sources selected by configuration option: fSUB or fSYS/4.  
The fSUB clock can be sourced from either the LXT or  
LIRC oscillators, again chosen via a configuration op-  
tion. The Watchdog Timer source clock is then subdi-  
vided by a ratio of 28 to 215 to give longer timeouts, the  
actual value being chosen using the WS2~WS0 bits in  
the WDTC register. The LIRC internal oscillator has an  
approximate period of 32kHz at a supply voltage of 5V.  
Watchdog Timer Control Register  
A single register, WDTC, controls the required timeout  
period as well as the enable/disable operation. This reg-  
ister together with several configuration options control  
the overall operation of the Watchdog Timer.  
·
WDTC Register  
Bit  
7
6
5
4
3
2
1
0
Name  
R/W  
FSYSON  
WS2  
R/W  
1
WS1  
R/W  
1
WS0  
R/W  
1
WDTEN3 WDTEN2 WDTEN1 WDTEN0  
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
POR  
Bit 7  
FSYSON: fSYS Control in IDLE Mode  
0: Disable  
1: Enable  
Bit 6 ~ 4  
WS2, WS1, WS0 : WDT time-out period selection  
000: 256/fS  
001: 512/fS  
010: 1024/fS  
011: 2048/fS  
100: 4096/fS  
101: 8192/fS  
110: 16384/fS  
111: 32768/fS  
These three bits determine the division ratio of the Watchdog Timer source clock, which in turn  
determines the timeout period.  
Bit 3 ~ 0  
WDTEN3, WDTEN2, WDTEN1, WDTEN0 : WDT Software Control  
1010: Disable  
Other: Enable  
Rev. 1.60  
53  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Watchdog Timer Operation  
bit TO. However, if the system is in the SLEEP or IDLE  
Mode, when a Watchdog Timer time-out occurs, the TO  
The Watchdog Timer operates by providing a device re-  
set when its timer overflows. This means that in the ap-  
plication program and during normal operation the user  
has to strategically clear the Watchdog Timer before it  
overflows to prevent the Watchdog Timer from execut-  
ing a reset. This is done using the clear watchdog in-  
structions. If the program malfunctions for whatever  
reason, jumps to an unkown location, or enters an end-  
less loop, these clear instructions will not be executed in  
the correct manner, in which case the Watchdog Timer  
will overflow and reset the device. Some of the Watch-  
dog Timer options, such as enable/disable, clock source  
selection and clear instruction type are selected using  
configuration options. In addition to a configuration op-  
tion to enable/disable the Watchdog Timer, there are  
also four bits, WDTEN3~WDTEN0, in the WDTC regis-  
ter to offer an additional enable/disable control of the  
Watchdog Timer. To disable the Watchdog Timer, as  
well as the configuration option being set to disable, the  
WDTEN3~WDTEN0 bits must also be set to a specific  
value of ²1010². Any other values for these bits will keep  
the Watchdog Timer enabled, irrespective of the configu-  
ration enable/disable setting. After power on these bits  
will have the value of 1010. If the Watchdog Timer is used  
it is recommended that they are set to a value of 0101 for  
maximum noise immunity. Note that if the Watchdog  
Timer has been disabled, then any instruction relating to  
its operation will result in no operation.  
bit in the status register will be set and only the Program  
Counter and Stack Pointer will be reset. Three methods  
can be adopted to clear the contents of the Watchdog  
Timer. The first is an external hardware reset, which  
means a low level on the RES pin, the second is using  
the Watchdog Timer software clear instructions and the  
third is via a HALT instruction.  
There are two methods of using software instructions to  
clear the Watchdog Timer, one of which must be chosen  
by configuration option. The first option is to use the sin-  
gle ²CLR WDT² instruction while the second is to use  
the two commands ²CLR WDT1² and ²CLR WDT2². For  
the first option, a simple execution of ²CLR WDT² will  
clear the WDT while for the second option, both ²CLR  
WDT1² and ²CLR WDT2² must both be executed alter-  
nately to successfully clear the Watchdog Timer. Note  
that for this second option, if ²CLR WDT1² is used to  
clear the Watchdog Timer, successive executions of this  
instruction will have no effect, only the execution of a  
²CLR WDT2² instruction will clear the Watchdog Timer.  
Similarly after the ²CLR WDT2² instruction has been ex-  
ecuted, only a successive ²CLR WDT1² instruction can  
clear the Watchdog Timer.  
The maximum time out period is when the 215 division ra-  
tio is selected. As an example, with a 32.768kHz LXT  
oscillator as its source clock, this will give a maximum  
watchdog period of around 1 second for the 215 division  
ratio, and a minimum timeout of 7.8ms for the 28 division  
ration. If the fSYS/4 clock is used as the Watchdog Timer  
clock source, it should be noted that when the system  
enters the SLEEP or IDLE0 Mode, then the instruction  
clock is stopped and the Watchdog Timer may lose its  
protecting purposes. For systems that operate in noisy  
environments, using the fSUB clock source is strongly  
recommended.  
WDT Configuration  
Option  
WDTEN3~  
WDT  
WDTEN0 Bits  
WDT Enable  
WDT Disable  
WDT Disable  
xxxx  
Except 1010  
1010  
Enable  
Enable  
Disable  
Watchdog Timer Enable/Disable Control  
Under normal program operation, a Watchdog Timer  
time-out will initialise a device reset and set the status  
C
C
L
L
R
R
W
W
D
D
T
T
1
2
F
F
l
l
a
a
g
g
C
l
e
a
r
W
D
T
T
y
p
e
C
o
n
f
i
g
u
r
a
t
i
o
n
O
p
t
i
o
n
1
o
r
2
I
n
s
t
r
u
c
t
i
o
n
s
C
L
R
8
f
S
/
2
f
S
Y
/
S
4
f
S
M
8
-
s
t
a
g
e
D
i
v
i
d
e
r
P
W
D
T
r
e
s
c
a
l
e
r
U
L
X
T
M
f
S
U
B
X
U
X
W
D
X
T
T
i
m
e
-
o
8
-
t
o
-
1
M
U
L
I
R
C
8
1
5
S
/ ) f  
C
o
n
f
i
g
u
r
a
t
i
o
n
(
2
/
S
f
~
2
O
p
t
i
o
n
W
S
2
~
W
S
0
C
o
n
f
i
g
u
r
a
t
i
o
n
8
1
5
O
p
t
i
o
n
(
S
/
f
2
~
f
S
/
2
)
Watchdog Timer  
Rev. 1.60  
54  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Reset and Initialisation  
A reset function is a fundamental part of any  
microcontroller ensuring that the device can be set to  
some predetermined condition irrespective of outside  
parameters. The most important reset condition is after  
power is first applied to the microcontroller. In this case,  
internal circuitry will ensure that the microcontroller, af-  
ter a short delay, will be in a well defined state and ready  
to execute the first program instruction. After this  
power-on reset, certain important internal registers will  
be set to defined states before the program com-  
mences. One of these registers is the Program Counter,  
which will be reset to zero forcing the microcontroller to  
begin program execution from the lowest Program  
Memory address.  
·
RES Pin  
As the reset pin is shared with PB.0, the reset function  
must be selected using a configuration option. Al-  
though the microcontroller has an internal RC reset  
function, if the VDD power supply rise time is not fast  
enough or does not stabilise quickly at power-on, the  
internal reset function may be incapable of providing  
proper reset operation. For this reason it is recom-  
mended that an external RC network is connected to  
the RES pin, whose additional time delay will ensure  
that the RES pin remains low for an extended period  
to allow the power supply to stabilise. During this time  
delay, normal operation of the microcontroller will be  
inhibited. After the RES line reaches a certain voltage  
value, the reset delay time tRSTD is invoked to provide  
an extra delay time after which the microcontroller will  
begin normal operation. The abbreviation SST in the  
figures stands for System Start-up Timer.  
In addition to the power-on reset, situations may arise  
where it is necessary to forcefully apply a reset condition  
when the microcontroller is running. One example of this  
is where after power has been applied and the  
microcontroller is already running, the RES line is force-  
fully pulled low. In such a case, known as a normal oper-  
ation reset, some of the microcontroller registers remain  
unchanged allowing the microcontroller to proceed with  
normal operation after the reset line is allowed to return  
high.  
For most applications a resistor connected between  
VDD and the RES pin and a capacitor connected be-  
tween VSS and the RES pin will provide a suitable ex-  
ternal reset circuit. Any wiring connected to the RES  
pin should be kept as short as possible to minimise  
any stray noise interference.  
For applications that operate within an environment  
where more noise is present the Enhanced Reset Cir-  
cuit shown is recommended.  
Another type of reset is when the Watchdog Timer over-  
flows and resets the microcontroller. All types of reset  
operations result in different register conditions being  
setup. Another reset exists in the form of a Low Voltage  
Reset, LVR, where a full reset, similar to the RES reset  
is implemented in situations where the power supply  
voltage falls below a certain threshold.  
V
D
D
0
.
m
0
F
1
*
*
V
D
D
1
N
4
1
4
8
*
1
W
0 ~ k  
1
0
W
0
k
P
B
0
/
R
E
3
W
0 * 0  
Reset Functions  
0
.
1
m
F
~
1
There are five ways in which a microcontroller reset can  
occur, through events occurring both internally and ex-  
ternally:  
V
S
S
Note:  
²*² It is recommended that this component is  
added for added ESD protection  
·
Power-on Reset  
The most fundamental and unavoidable reset is the  
one that occurs after power is first applied to the  
microcontroller. As well as ensuring that the Program  
Memory begins execution from the first memory ad-  
dress, a power-on reset also ensures that certain  
other registers are preset to known conditions. All the  
I/O port and port control registers will power up in a  
high condition ensuring that all pins will be first set to  
inputs.  
²**² It is recommended that this component is  
added in environments where power line noise  
is significant  
External RES Circuit  
More information regarding external reset circuits is  
located in Application Note HA0075E on the Holtek  
website.  
V
D
D
0
.
D
9
D
V
R
E
S
t
t
R
R
S
S
T
T
t
t
S
S
D
D
S
S
I
n
t
e
r
n
a
l
R
e
s
e
t
Note: tRSTD is power-on delay, typical time=100ms  
Power-On Reset Timing Chart  
Rev. 1.60  
55  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pulling the RES Pin low using external hardware will  
Program Counter and the Stack Pointer will be  
cleared to ²0² and the TO flag will be set to ²1². Refer  
to the A.C. Characteristics for tSST details.  
also execute a device reset. In this case, as in the  
case of other resets, the Program Counter will reset to  
zero and program execution initiated from this point.  
Note: The tSST is 15~16 clock cycles if the system  
clock source is provided by ERC or HIRC. The  
tSST is 1024 clock for HXT or LXT. The tSST is  
1~2 clock for LIRC.  
0
.
D
9
D
V
0
.
D
4
D
V
R
E
S
t
R
S
T
t
S
D
S
I
n
t
e
r
n
a
l
R
e
s
e
t
Reset Initial Conditions  
Note: tRSTD is power-on delay, typical time=100ms  
The different types of reset described affect the reset  
flags in different ways. These flags, known as PDF and  
TO are located in the status register and are controlled  
by various microcontroller operations, such as the  
SLEEP or IDLE Mode function or Watchdog Timer. The  
reset flags are shown in the table:  
RES Reset Timing Chart  
·
Low Voltage Reset - LVR  
The microcontroller contains a low voltage reset circuit  
in order to monitor the supply voltage of the device,  
which is selected via a configuration option. If the supply  
voltage of the device drops to within a range of  
0.9V~VLVR such as might occur when changing the bat-  
tery, the LVR will automatically reset the device inter-  
nally. The LVR includes the following specifications: For  
a valid LVR signal, a low voltage, i.e., a voltage in the  
range between 0.9V~VLVR must exist for greater than  
the value tLVR specified in the A.C. characteristics. If the  
low voltage state does not exceed tLVR, the LVR will ig-  
nore it and will not perform a reset function. One of a  
range of specified voltage values for VLVR can be se-  
lected using configuration options.  
TO PDF  
RESET Conditions  
Power-on reset  
0
u
0
u
RES or LVR reset during NORMAL or  
SLOW Mode operation  
WDT time-out reset during NORMAL or  
SLOW Mode operation  
1
1
u
1
WDT time-out reset during IDLE or SLEEP  
Mode operation  
Note: ²u² stands for unchanged  
L
V
R
t
R
S
T
t
S
D
S
+
T
The following table indicates the way in which the vari-  
ous components of the microcontroller are affected after  
a power-on reset occurs.  
I
n
t
e
r
n
a
l
R
e
s
e
t
Note: tRSTD is power-on delay, typical time=100ms  
Low Voltage Reset Timing Chart  
Item  
Condition After RESET  
Program Counter Reset to zero  
·
Watchdog Time-out Reset during Normal Operation  
The Watchdog time-out Reset during normal opera-  
tion is the same as a hardware RES pin reset except  
that the Watchdog time-out flag TO will be set to ²1².  
Interrupts  
WDT  
All interrupts will be disabled  
Clear after reset, WDT begins  
counting  
W
D
T
T
i
m
e
-
o
u
t
Timer/Event  
Counter  
Timer Counter will be turned off  
t
R
S
T
t
S
D
S
+
T
I/O ports will be setup as inputs,  
I
n
t
e
r
n
a
l
R
e
s
e
t
Input/Output Ports and AN0~AN11 in as A/D input  
pin.  
Note: tRSTD is power-on delay, typical time=100ms  
WDT Time-out Reset during Normal Operation  
Timing Chart  
Stack Pointer will point to the top  
Stack Pointer  
of the stack  
·
Watchdog Time-out Reset during SLEEP or IDLE  
Mode  
The Watchdog time-out Reset during SLEEP or IDLE  
Mode is a little different from other kinds of reset. Most  
of the conditions remain unchanged except that the  
W
D
T
T
i
m
e
-
o
u
t
t
S
S
T
I
n
t
e
r
n
a
l
R
e
s
e
t
WDT Time-out Reset during SLEEP or IDLE  
Timing Chart  
Rev. 1.60  
56  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable  
continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller  
is in after a particular reset occurs. The following table describes how each type of reset affects each of the  
microcontroller internal registers. Note that where more than one package type exists the table will reflect the situation  
for the larger package type.  
·
HT66F20 Register  
Register  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
(Power-on)  
(Normal Operation)  
MP0  
- x x x x x x x  
- x x x x x x x  
- - - - - - - 0  
x x x x x x x x  
0 0 0 0 0 0 0 0  
x x x x x x x x  
- - x x x x x x  
- - - - - - x x  
- - 0 0 x x x x  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
- - 0 0 - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - 0 0 0 0 0 0  
- - 1 1 1 1 1 1  
- - 1 1 1 1 1 1  
- - - - 0 0 0 0  
- - - - 1 1 1 1  
- - - - 1 1 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- x x x x x x x  
- x x x x x x x  
- - - - - - - 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
- - u u u u u u  
- - - - - - u u  
- - u u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
- - 0 0 - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - 0 0 0 0 0 0  
- - 1 1 1 1 1 1  
- - 1 1 1 1 1 1  
- - - - 0 0 0 0  
- - - - 1 1 1 1  
- - - - 1 1 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- x x x x x x x  
- x x x x x x x  
- - - - - - - 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
- - u u u u u u  
- - - - - - u u  
- - 1 u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
- - 0 0 - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - 0 0 0 0 0 0  
- - 1 1 1 1 1 1  
- - 1 1 1 1 1 1  
- - - - 0 0 0 0  
- - - - 1 1 1 1  
- - - - 1 1 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- u u u u u u u  
- u u u u u u u  
- - - - - - - u  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
- - u u u u u u  
- - - - - - u u  
- - 1 1 u u u u  
u u u u u u u u  
- - u u - u u u  
- - - - u u u u  
u u u u u u u u  
u u u u u u u u  
- u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - u u - - u u  
- - u u - - u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - u u u u u u  
- - u u u u u u  
- - u u u u u u  
- - - - u u u u  
- - - - u u u u  
- - - - u u u u  
u u u u - - - -  
u u u u u u u u  
u u u u u u u u  
MP1  
BP  
ACC  
PCL  
TBLP  
TBLH  
TBHP  
STATUS  
SMOD  
LVDC  
INTEG  
WDTC  
TBC  
INTC0  
INTC1  
INTC2  
MFI0  
MFI1  
MFI2  
PAWU  
PAPU  
PA  
PAC  
PBPU  
PB  
PBC  
PCPU  
PC  
PCC  
ADRL (ADREF=0)  
ADRL (ADREF=1)  
ADRH(ADREF=0)  
Rev. 1.60  
57  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
Register  
(Power-on)  
(Normal Operation)  
ADRH (ADREF=1)  
ADCR0  
ADCR1  
ACERL  
CP0C  
- - - - x x x x  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- - - x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
- - 0 1 - - - 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - x x x x  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- - - x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
- - 0 1 - - - 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - x x x x  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- - - x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
- - 0 1 - - - 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - u u u u  
u u u - u u u u  
u u - u - u u u  
u u u u u u u u  
u u u u u - - u  
u u u u u - - u  
u u u u u u u -  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
- - - 0 0 0 0 0  
u u u u u u u u  
- - - - u u u u  
- - u u - - - u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
CP1C  
SIMC0  
SIMC1  
SIMD  
SIMA/SIMC2  
TM0C0  
TM0C1  
TM0DL  
TM0DH  
TM0AL  
TM0AH  
EEA  
EED  
EEC  
TMPC0  
TM1C0  
TM1C1  
TM1DL  
TM1DH  
TM1AL  
TM1AH  
SCOMC  
Note:  
²u² stands for unchanged  
²x² stands for unknown  
²-² stands for unimplemented  
Rev. 1.60  
58  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
HT66F30 Register  
Register  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
(Power-on)  
(Normal Operation)  
MP0  
- x x x x x x x  
- x x x x x x x  
- - - - - - 0 0  
x x x x x x x x  
0 0 0 0 0 0 0 0  
x x x x x x x x  
- - x x x x x x  
- - - - - x x x  
- - 0 0 x x x x  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - 0 0 0 0 0 0  
- - 1 1 1 1 1 1  
- - 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
- x x x x x x x  
- x x x x x x x  
- - - - - - 0 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
- - u u u u u u  
- - - - - u u u  
- - u u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - 0 0 0 0 0 0  
- - 1 1 1 1 1 1  
- - 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
- x x x x x x x  
- x x x x x x x  
- - - - - - 0 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
- - u u u u u u  
- - - - - u u u  
- - 1 u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - 0 0 0 0 0 0  
- - 1 1 1 1 1 1  
- - 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
- u u u u u u u  
- u u u u u u u  
- - - - - - u u  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
- - u u u u u u  
- - - - - u u u  
- - 1 1 u u u u  
u u u u u u u u  
- - u u - u u u  
- - - - u u u u  
u u u u u u u u  
u u u u u u u u  
- u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - u u - - u u  
- u u u - u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - u u u u u u  
- - u u u u u u  
- - u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u - - - -  
u u u u u u u u  
u u u u u u u u  
- - - - u u u u  
u u u u - u u u  
u u - u - u u u  
u u u u u u u u  
u u u u u - - u  
MP1  
BP  
ACC  
PCL  
TBLP  
TBLH  
TBHP  
STATUS  
SMOD  
LVDC  
INTEG  
WDTC  
TBC  
INTC0  
INTC1  
INTC2  
MFI0  
MFI1  
MFI2  
PAWU  
PAPU  
PA  
PAC  
PBPU  
PB  
PBC  
PCPU  
PC  
PCC  
ADRL (ADREF=0)  
ADRL (ADREF=1)  
ADRH(ADREF=0)  
ADRH (ADREF=1)  
ADCR0  
ADCR1  
ACERL  
CP0C  
Rev. 1.60  
59  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
Register  
CP1C  
(Power-on)  
(Normal Operation)  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- - x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 - 0 1 - - 0 1  
- - - - - 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- - x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 - 0 1 - - 0 1  
- - - - - 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- - x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 - 0 1 - - 0 1  
- - - - - 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
u u u u u - - u  
u u u u u u u -  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
- - u u u u u u  
u u u u u u u u  
- - - - u u u u  
u - u u - - u u  
- - - - - u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
SIMC0  
SIMC1  
SIMD  
SIMA/SIMC2  
TM0C0  
TM0C1  
TM0DL  
TM0DH  
TM0AL  
TM0AH  
EEA  
EED  
EEC  
TMPC0  
PRM0  
TM1C0  
TM1C1  
TM1C2  
TM1DL  
TM1DH  
TM1AL  
TM1AH  
TM1BL  
TM1BH  
SCOMC  
Note:  
²u² stands for unchanged  
²x² stands for unknown  
²-² stands for unimplemented  
Rev. 1.60  
60  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
HT66F40 Register  
Register  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
(Power-on)  
(Normal Operation)  
MP0  
x x x x x x x x  
x x x x x x x x  
- - - - - - - 0  
x x x x x x x x  
0 0 0 0 0 0 0 0  
x x x x x x x x  
- x x x x x x x  
- - - - x x x x  
- - 0 0 x x x x  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - - - - - 0 0  
- - - - - - 1 1  
- - - - - - 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
x x x x x x x x  
x x x x x x x x  
- - - - - - - 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
- u u u u u u u  
- - - - u u u u  
- - u u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - - - - - 0 0  
- - - - - - 1 1  
- - - - - - 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
x x x x x x x x  
x x x x x x x x  
- - - - - - - 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
- u u u u u u u  
- - - - u u u u  
- - 1 u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - - - - - 0 0  
- - - - - - 1 1  
- - - - - - 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
u u u u u u u u  
u u u u u u u u  
- - - - - - - u  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
- u u u u u u u  
- - - - u u u u  
- - 1 1 u u u u  
u u u u u u u u  
- - u u - u u u  
- - - - u u u u  
u u u u u u u u  
u u u u u u u u  
- u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- u u u - u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
- - - - - - u u  
- - - - - - u u  
u u u u - - - -  
u u u u u u u u  
u u u u u u u u  
- - - - u u u u  
MP1  
BP  
ACC  
PCL  
TBLP  
TBLH  
TBHP  
STATUS  
SMOD  
LVDC  
INTEG  
WDTC  
TBC  
INTC0  
INTC1  
INTC2  
MFI0  
MFI1  
MFI2  
PAWU  
PAPU  
PA  
PAC  
PBPU  
PB  
PBC  
PCPU  
PC  
PCC  
PDPU  
PD  
PDC  
PEPU  
PE  
PEC  
PFPU  
PF  
PFC  
ADRL (ADREF=0)  
ADRL (ADREF=1)  
ADRH(ADREF=0)  
ADRH (ADREF=1)  
Rev. 1.60  
61  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
Register  
ADCR0  
(Power-on)  
(Normal Operation)  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- x x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 0 0 1 - - 0 1  
- - - - - - 0 1  
- 0 - 0 0 0 0 0  
0 0 0 - 0 0 0 0  
- - 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 - - -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- x x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 0 0 1 - - 0 1  
- - - - - - 0 1  
- 0 - 0 0 0 0 0  
0 0 0 - 0 0 0 0  
- - 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 - - -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- x x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 0 0 1 - - 0 1  
- - - - - - 0 1  
- 0 - 0 0 0 0 0  
0 0 0 - 0 0 0 0  
- - 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 - - -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
u u u u - u u u  
u u - u - u u u  
u u u u u u u u  
u u u u u - - u  
u u u u u - - u  
u u u u u u u -  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
- u u u u u u u  
u u u u u u u u  
- - - - u u u u  
u u u u - - u u  
- - - - - - u u  
- u - u u u u u  
u u u - u u u u  
- - u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u - - -  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
ADCR1  
ACERL  
CP0C  
CP1C  
SIMC0  
SIMC1  
SIMD  
SIMA/SIMC2  
TM0C0  
TM0C1  
TM0DL  
TM0DH  
TM0AL  
TM0AH  
EEA  
EED  
EEC  
TMPC0  
TMPC1  
PRM0  
PRM1  
PRM2  
TM1C0  
TM1C1  
TM1C2  
TM1DL  
TM1DH  
TM1AL  
TM1AH  
TM1BL  
TM1BH  
TM2C0  
TM2C1  
TM2DL  
TM2DH  
TM2AL  
TM2AH  
TM2RP  
SCOMC  
Note:  
²u² stands for unchanged  
²x² stands for unknown  
²-² stands for unimplemented  
Rev. 1.60  
62  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
HT66F50 Register  
Register  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
(Power-on)  
(Normal Operation)  
MP0  
x x x x x x x x  
x x x x x x x x  
- - - - - - 0 0  
x x x x x x x x  
0 0 0 0 0 0 0 0  
x x x x x x x x  
x x x x x x x x  
- - - x x x x x  
- - 0 0 x x x x  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - - - - - 0 0  
x x x x x x x x  
x x x x x x x x  
- - - - - - 0 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
u u u u u u u u  
- - - u u u u u  
- - u u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - - - - - 0 0  
x x x x x x x x  
x x x x x x x x  
- - - - - - 0 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
u u u u u u u u  
- - - u u u u u  
- - 1 u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
- - - - 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - - - - - 0 0  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
u u u u u u u u  
- - - u u u u u  
- - 1 1 u u u u  
u u u u u u u u  
- - u u - u u u  
- - - - u u u u  
u u u u u u u u  
u u u u u u u u  
- u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- u u u - u u u  
u u u u u u u u  
- - u u - - u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
MP1  
BP  
ACC  
PCL  
TBLP  
TBLH  
TBHP  
STATUS  
SMOD  
LVDC  
INTEG  
WDTC  
TBC  
INTC0  
INTC1  
INTC2  
MFI0  
MFI1  
MFI2  
MFI3  
PAWU  
PAPU  
PA  
PAC  
PBPU  
PB  
PBC  
PCPU  
PC  
PCC  
PDPU  
PD  
PDC  
PEPU  
PE  
PEC  
PFPU  
Rev. 1.60  
63  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
Register  
(Power-on)  
(Normal Operation)  
PF  
- - - - - - 1 1  
- - - - - - 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
x x x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 0 0 1 - - 0 1  
- - 0 1 - - 0 1  
- 0 - 0 0 0 0 0  
0 0 0 - 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- - - - - - 1 1  
- - - - - - 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
x x x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 0 0 1 - - 0 1  
- - 0 1 - - 0 1  
- 0 - 0 0 0 0 0  
0 0 0 - 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- - - - - - 1 1  
- - - - - - 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
0 1 1 0 - 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
x x x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 0 0 1 - - 0 1  
- - 0 1 - - 0 1  
- 0 - 0 0 0 0 0  
0 0 0 - 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
- - - - - - u u  
- - - - - - u u  
u u u u - - - -  
u u u u u u u u  
u u u u u u u u  
- - - - u u u u  
u u u u - u u u  
u u - u - u u u  
u u u u u u u u  
u u u u u - - u  
u u u u u - - u  
u u u u u u u -  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
u u u u u u u u  
- - - - u u u u  
u u u u - - u u  
- - u u - - u u  
- u - u u u u u  
u u u - u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
PFC  
ADRL (ADREF=0)  
ADRL (ADREF=1)  
ADRH(ADREF=0)  
ADRH (ADREF=1)  
ADCR0  
ADCR1  
ACERL  
CP0C  
CP1C  
SIMC0  
SIMC1  
SIMD  
SIMA/SIMC2  
TM0C0  
TM0C1  
TM0DL  
TM0DH  
TM0AL  
TM0AH  
EEA  
EED  
EEC  
TMPC0  
TMPC1  
PRM0  
PRM1  
PRM2  
TM1C0  
TM1C1  
TM1C2  
TM1DL  
TM1DH  
TM1AL  
TM1AH  
TM1BL  
TM1BH  
Rev. 1.60  
64  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
Register  
TM2C0  
(Power-on)  
(Normal Operation)  
0 0 0 0 0 - - -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 - - -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 - - -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
u u u u u - - -  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
TM2C1  
TM2DL  
TM2DH  
TM2AL  
TM2AH  
TM2RP  
TM3C0  
TM3C1  
TM3DL  
TM3DH  
TM3AL  
TM3AH  
SCOMC  
Note:  
²u² stands for unchanged  
²x² stands for unknown  
²-² stands for unimplemented  
Rev. 1.60  
65  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
HT66F60 Register  
Register  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
(Power-on)  
(Normal Operation)  
MP0  
x x x x x x x x  
x x x x x x x x  
- - 0- - 0 0 0  
x x x x x x x x  
0 0 0 0 0 0 0 0  
x x x x x x x x  
x x x x x x x x  
- - x x x x x x  
- - 0 0 x x x x  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
x x x x x x x x  
x x x x x x x x  
- - 0- - 0 0 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
u u u u u u u u  
- - u u u u u u  
- - u u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
x x x x x x x x  
x x x x x x x x  
- - 0- - 0 0 0  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
u u u u u u u u  
- - u u u u u u  
- - 1 u u u u u  
0 0 0 0 0 0 1 1  
- - 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
0 1 1 1 1 0 1 0  
0 0 1 1 0 1 1 1  
- 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- 0 0 0 - 0 0 0  
0 0 0 0 0 0 0 0  
- - 0 0 - - 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
u u u u u u u u  
u u u u u u u u  
- - u - - u u u  
u u u u u u u u  
0 0 0 0 0 0 0 0  
u u u u u u u u  
u u u u u u u u  
- - u u u u u u  
- - 1 1 u u u u  
u u u u u u u u  
- - u u - u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- u u u - u u u  
u u u u u u u u  
- - u u - - u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
MP1  
BP  
ACC  
PCL  
TBLP  
TBLH  
TBHP  
STATUS  
SMOD  
LVDC  
INTEG  
WDTC  
TBC  
INTC0  
INTC1  
INTC2  
INTC3  
MFI0  
MFI1  
MFI2  
MFI3  
PAWU  
PAPU  
PA  
PAC  
PBPU  
PB  
PBC  
PCPU  
PC  
PCC  
PDPU  
PD  
PDC  
PEPU  
PE  
PEC  
PFPU  
Rev. 1.60  
66  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
Register  
(Power-on)  
(Normal Operation)  
PF  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
- - - - - - 0 0  
- - - - - - 1 1  
- - - - - - 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
0 1 1 0 0 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
- - - - 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
x x x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 0 0 1 - - 0 1  
- - 0 1 - - 0 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
PFC  
PGPU  
PG  
- - - - - - 1 1  
- - - - - - 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
0 1 1 0 0 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
- - - - 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
x x x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 0 0 1 - - 0 1  
- - 0 1 - - 0 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 1 1  
- - - - - - 1 1  
x x x x - - - -  
x x x x x x x x  
x x x x x x x x  
- - - - x x x x  
0 1 1 0 0 0 0 0  
0 0 - 0 - 0 0 0  
1 1 1 1 1 1 1 1  
- - - - 1 1 1 1  
1 0 0 0 0 - - 1  
1 0 0 0 0 - - 1  
1 1 1 0 0 0 0 -  
1 0 0 0 0 0 0 1  
x x x x x x x x  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
x x x x x x x x  
x x x x x x x x  
- - - - 0 0 0 0  
1 0 0 1 - - 0 1  
- - 0 1 - - 0 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - u u  
- - - - - - u u  
u u u u - - - -  
u u u u u u u u  
u u u u u u u u  
- - - - u u u u  
u u u u u u u u  
u u - u - u u u  
u u u u u u u u  
- - - - u u u u  
u u u u u - - u  
u u u u u - - u  
u u u u u u u -  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
u u u u u u u u  
- - - - u u u u  
u u u u - - u u  
- - u u - - u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
PGC  
ADRL (ADREF=0)  
ADRL (ADREF=1)  
ADRH(ADREF=0)  
ADRH (ADREF=1)  
ADCR0  
ADCR1  
ACERL  
ACERH  
CP0C  
CP1C  
SIMC0  
SIMC1  
SIMD  
SIMA/SIMC2  
TM0C0  
TM0C1  
TM0DL  
TM0DH  
TM0AL  
TM0AH  
EEA  
EED  
EEC  
TMPC0  
TMPC1  
PRM0  
PRM1  
PRM2  
TM1C0  
TM1C1  
TM1C2  
TM1DL  
TM1DH  
TM1AL  
Rev. 1.60  
67  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Reset  
RES or LVR  
Reset  
WDT Time-out  
WDT Time-out  
(IDLE)  
Register  
TM1AH  
(Power-on)  
(Normal Operation)  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 - - -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 - - -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 - - -  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - 0 0  
0 0 0 0 0 0 0 0  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u - - -  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
- - - - - - u u  
u u u u u u u u  
TM1BL  
TM1BH  
TM2C0  
TM2C1  
TM2DL  
TM2DH  
TM2AL  
TM2AH  
TM2RP  
TM3C0  
TM3C1  
TM3DL  
TM3DH  
TM3AL  
TM3AH  
SCOMC  
Note:  
²u² stands for unchanged  
²x² stands for unknown  
²-² stands for unimplemented  
Rev. 1.60  
68  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Input/Output Ports  
Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output designation of every pin  
fully under user program control, pull-high selections for all ports and wake-up selections on certain pins, the user is  
provided with an I/O structure to meet the needs of a wide range of application possibilities.  
The device provides bidirectional input/output lines labeled with port names PA~PG. These I/O ports are mapped to the  
RAM Data Memory with specific addresses as shown in the Special Purpose Data Memory table. All of these I/O ports  
can be used for input and output operations. For input operation, these ports are non-latching, which means the inputs  
must be ready at the T2 rising edge of instruction ²MOV A,[m]², where m denotes the port address. For output opera-  
tion, all the data is latched and remains unchanged until the output latch is rewritten.  
·
I/O Register List  
¨
HT66F20  
Bit  
Register  
Name  
7
6
5
4
3
2
1
0
PAWU  
PAPU  
PA  
D7  
D7  
D7  
D7  
¾
¾
¾
¾
¾
¾
D6  
D6  
D6  
D6  
¾
¾
¾
¾
¾
¾
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
PAC  
PBPU  
PB  
PBC  
PCPU  
PC  
¾
¾
¾
¾
¾
¾
PCC  
¨
HT66F30  
Bit  
Register  
Name  
7
6
5
4
3
2
1
0
PAWU  
PAPU  
PA  
D7  
D7  
D7  
D7  
¾
D6  
D6  
D6  
D6  
¾
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
PAC  
PBPU  
PB  
¾
¾
PBC  
PCPU  
PC  
¾
¾
D7  
D7  
D7  
D6  
D6  
D6  
PCC  
Rev. 1.60  
69  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F40/HT66F50  
Bit  
Register  
Name  
7
6
5
4
3
2
1
0
PAWU  
PAPU  
PA  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
¾
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
¾
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
¾
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
¾
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
¾
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
¾
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
PAC  
PBPU  
PB  
PBC  
PCPU  
PC  
PCC  
PDPU  
PD  
PDC  
PEPU  
PE  
PEC  
PFPU  
PF  
¾
¾
¾
¾
¾
¾
PFC  
¾
¾
¾
¾
¾
¾
Rev. 1.60  
70  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F60  
Bit  
Register  
Name  
7
6
5
4
3
2
1
0
PAWU  
PAPU  
PA  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
¾
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
¾
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
¾
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
¾
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
¾
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
¾
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
PAC  
PBPU  
PB  
PBC  
PCPU  
PC  
PCC  
PDPU  
PD  
PDC  
PEPU  
PE  
PEC  
PFPU  
PF  
PFC  
PGPU  
PG  
¾
¾
¾
¾
¾
¾
PGC  
¾
¾
¾
¾
¾
¾
Rev. 1.60  
71  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pull-high Resistors  
Many product applications require pull-high resistors for their switch inputs usually requiring the use of an external re-  
sistor. To eliminate the need for these external resistors, all I/O pins, when configured as an input have the capability of  
being connected to an internal pull-high resistor. These pull-high resistors are selected using registers PAPU~PGPU,  
and are implemented using weak PMOS transistors.  
·
PAPU Register  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
·
PBPU Register  
¨
HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
·
·
·
PCPU Register  
¨
HT66F30/HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
PDPU Register  
¨
HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
PEPU Register  
¨
HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
Rev. 1.60  
72  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
PFPU Register  
¨
HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
Bit 7~0  
I/O Port bit 7 ~ bit 0 Pull-High Control  
0: Disable  
1: Enable  
·
PBPU Register  
¨
HT66F20/HT66F30  
Bit  
Name  
R/W  
7
6
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
¾
¾
¾
¾
¾
¾
POR  
Bit 7~6  
Bit 5~0  
²¾² Unimplemented, read as ²0²  
PBPU: Port B bit 5 ~ bit 0 Pull-High Control  
0: Disable  
1: Enable  
·
PCPU Register  
¨
HT66F20  
Bit  
Name  
R/W  
7
6
5
4
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~4  
Bit 3~0  
²¾² Unimplemented, read as ²0²  
PCPU: Port C bit 3 ~ bit 0 Pull-High Control  
0: Disable  
1: Enable  
·
PFPU Register  
¨
HT66F40/HT66F50  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D1  
R/W  
0
0
D0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~2  
Bit 1~0  
²¾² Unimplemented, read as ²0²  
PFPU: Port F bit 1 ~ bit 0 Pull-High Control  
0: Disable  
1: Enable  
Rev. 1.60  
73  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
PGPU Register  
¨
HT66F60  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D1  
R/W  
0
0
D0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~2  
Bit 1~0  
²¾² Unimplemented, read as ²0²  
PGPU: Port G bit 1 ~ bit 0 Pull-High Control  
0: Disable  
1: Enable  
Port A Wake-up  
The HALT instruction forces the microcontroller into the SLEEP or IDLE Mode which preserves power, a feature that is  
important for battery and other low-power applications. Various methods exist to wake-up the microcontroller, one of  
which is to change the logic condition on one of the Port A pins from high to low. This function is especially suitable for  
applications that can be woken up via external switches. Each pin on Port A can be selected individually to have this  
wake-up feature using the PAWU register.  
·
PAWU Register  
Bit  
7
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
Name  
R/W  
D7  
R/W  
0
POR  
Bit 7~0  
PAWU: Port A bit 7 ~ bit 0 Wake-up Control  
0: Disable  
1: Enable  
I/O Port Control Registers  
Each I/O port has its own control register known as PAC~PGC, to control the input/output configuration. With this con-  
trol register, each CMOS output or input can be reconfigured dynamically under software control. Each pin of the I/O  
ports is directly mapped to a bit in its associated port control register. For the I/O pin to function as an input, the corre-  
sponding bit of the control register must be written as a ²1². This will then allow the logic state of the input pin to be di-  
rectly read by instructions. When the corresponding bit of the control register is written as a ²0², the I/O pin will be setup  
as a CMOS output. If the pin is currently setup as an output, instructions can still be used to read the output register.  
However, it should be noted that the program will in fact only read the status of the output data latch and not the actual  
logic status of the output pin.  
·
PAC Register  
Bit  
Name  
R/W  
7
D7  
R/W  
1
6
D6  
R/W  
1
5
D5  
R/W  
1
4
D4  
R/W  
1
3
D3  
R/W  
1
2
D2  
R/W  
1
1
D1  
R/W  
1
0
D0  
R/W  
1
POR  
·
PBC Register  
¨
HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
1
6
D6  
R/W  
1
5
D5  
R/W  
1
4
D4  
R/W  
1
3
D3  
R/W  
1
2
D2  
R/W  
1
1
D1  
R/W  
1
0
D0  
R/W  
1
POR  
Rev. 1.60  
74  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
·
·
·
PCC Register  
¨
HT66F30/HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
1
6
D6  
R/W  
1
5
D5  
R/W  
1
4
D4  
R/W  
1
3
D3  
R/W  
1
2
D2  
R/W  
1
1
D1  
R/W  
1
0
D0  
R/W  
1
POR  
PDC Register  
¨
HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
1
6
D6  
R/W  
1
5
D5  
R/W  
1
4
D4  
R/W  
1
3
D3  
R/W  
1
2
D2  
R/W  
1
1
D1  
R/W  
1
0
D0  
R/W  
1
POR  
PEC Register  
¨
HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
1
6
D6  
R/W  
1
5
D5  
R/W  
1
4
D4  
R/W  
1
3
D3  
R/W  
1
2
D2  
R/W  
1
1
D1  
R/W  
1
0
D0  
R/W  
1
POR  
PFC Register  
¨
HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
1
6
D6  
R/W  
1
5
D5  
R/W  
1
4
D4  
R/W  
1
3
D3  
R/W  
1
2
D2  
R/W  
1
1
D1  
R/W  
1
0
D0  
R/W  
1
POR  
Bit 7~0  
I/O Port bit 7 ~ bit 0 Input/Output Control  
0: Output  
1: Input  
·
PBC Register  
¨
HT66F20/HT66F30  
Bit  
Name  
R/W  
7
6
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
¾
¾
¾
¾
¾
¾
POR  
Bit 7~6  
Bit 5~0  
²¾² Unimplemented, read as ²0²  
PBC: Port B bit 5 ~ bit 0 Input/Output Control  
0: Output  
1: Input  
Rev. 1.60  
75  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
·
·
PCC Register  
¨
HT66F20  
Bit  
Name  
R/W  
7
6
5
4
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~4  
Bit 3~0  
²¾² Unimplemented, read as ²0²  
PCC: Port C bit 3 ~ bit 0 Input/Output Control  
0: Output  
1: Input  
PFC Register  
¨
HT66F40/HT66F50  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D1  
R/W  
0
0
D0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~2  
Bit 1~0  
²¾² Unimplemented, read as ²0²  
PFC: Port F bit 1 ~ bit 0 Input/Output Control  
0: Output  
1: Input  
PGC Register  
¨
HT66F60  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D1  
R/W  
0
0
D0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~2  
Bit 1~0  
²¾² Unimplemented, read as ²0²  
PGC: Port G bit 1 ~ bit 0 Input/Output Control  
0: Output  
1: Input  
Rev. 1.60  
76  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pin-remapping Functions  
The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more than one function.  
Limited numbers of pins can force serious design constraints on designers but by supplying pins with multi-functions,  
many of these difficulties can be overcome. The way in which the pin function of each pin is selected is different for each  
function and a priority order is established where more than one pin function is selected simultaneously. Additionally  
there are a series of PRM0, PRM1 and PRM2 registers to establish certain pin functions.  
Pin-remapping Registers  
The limited number of supplied pins in a package can impose restrictions on the amount of functions a certain device  
can contain. However by allowing the same pins to share several different functions and providing a means of function  
selection, a wide range of different functions can be incorporated into even relatively small package sizes. Some de-  
vices include PRM0, PRM1 or PRM2 registers which can select the functions of certain pins.  
·
Pin-remapping Register List  
¨
HT66F30  
Bit  
Register  
Name  
7
6
5
4
3
2
1
0
PRM0  
PCPRM  
SIMPS0  
PCKPS  
¾
¾
¾
¾
¾
¨
HT66F40  
Bit  
Register  
Name  
7
¾
6
5
4
C0XPS0  
¾
3
2
1
0
PRM0  
PRM1  
PRM2  
C1XPS0  
TCK1PS  
¾
PDPRM  
SIMPS1  
SIMPS0  
PCKPS  
¾
TCK2PS  
¾
TCK0PS  
TP21PS  
INT1PS1 INT1PS0 INT0PS1 INT0PS0  
TP20PS TP1B2PS TP1APS  
TP01PS  
TP00PS  
¨
HT66F50  
Bit  
Register  
Name  
7
6
5
4
C0XPS0  
¾
3
2
1
0
PRM0  
PRM1  
PRM2  
C1XPS0  
TCK1PS  
TP30PS  
PDPRM  
SIMPS1  
SIMPS0  
PCKPS  
¾
¾
TCK2PS  
TP31PS  
TCK0PS  
TP21PS  
INT1PS1 INT1PS0 INT0PS1 INT0PS0  
TP20PS TP1B2PS TP1APS  
TP01PS  
TP00PS  
¨
HT66F60  
Bit  
Register  
Name  
7
6
5
4
3
2
1
0
PRM0  
PRM1  
PRM2  
C1XPS1  
TCK2PS  
TP31PS  
C1XPS0  
TCK1PS  
TP30PS  
C0XPS1  
TCK0PS  
TP21PS  
C0XPS0  
PDPRM  
SIMPS1  
SIMPS0  
PCKPS  
INT2PS1 INT1PS1 INT1PS0 INT0PS1 INT0PS0  
TP20PS TP1B2PS TP1APS TP01PS TP00PS  
Rev. 1.60  
77  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
PRM0 Register  
¨
HT66F30  
Bit  
Name  
R/W  
7
6
5
4
3
2
PCPRM  
R/W  
0
1
SIMPS0  
R/W  
0
0
PCKPS  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~3  
Bit 2  
²¾² Unimplemented, read as ²0²  
PCPRM: PC1~PC0 pin-shared function Pin Remapping Control  
0: No change  
1: TP1B_0 on PC0 change to PA6, TP1B_1 on PC1 change to PA7 if SIMPS0=1  
Bit 1  
Bit 0  
SIMPS0: SIM Pin Remapping Control  
0: SDO on PA5; SDI/SDA on PA6; SCK/SCL on PA7; SCS on PB5  
1: SDO on PC1; SDI/SDA on PC0; SCK/SCL on PC7; SCS on PC6  
PCKPS: PCK and PINT Pin Remapping Control  
0: PCK on PC2; PINT on PC3  
1: PCK on PC5; PINT on PC4  
·
PRM0 Register  
¨
HT66F40/HT66F50  
Bit  
Name  
R/W  
7
6
C1XPS0  
R/W  
0
5
4
C0XPS0  
R/W  
0
3
PDPRM  
R/W  
0
2
SIMPS1  
R/W  
0
1
SIMPS0  
R/W  
0
0
PCKPS  
R/W  
0
¾
¾
¾
¾
¾
¾
POR  
Bit 7  
Bit 6  
²¾² Unimplemented, read as ²0²  
C1XPS0: C1X Pin Remapping Control  
0: C1X on PA5  
1: C1X on PF1  
Bit 5  
Bit 4  
²¾² Unimplemented, read as ²0²  
C0XPS0: C0X Pin Remapping Control  
0: C0X on PA0  
1: C0X on PF0  
Bit 3  
PDPRM: PD3~PD0 pin-shared function Pin Remapping Control  
0: No change  
1: TCK2 on PD0 change to PB6, TP2_0 on PD1 change to PB7, TCK0 on PD2 change to PD6,  
TCK1 on PD3 change to PD7 if SIMPS1, SIMPS0=01  
Bit 2~1  
SIMPS1, SIMPS0: SIM Pin Remapping Control  
00: SDO on PA5; SDI/SDA on PA6; SCK/SCL on PA7; SCS on PB5  
01: SDO on PD3; SDI/SDA on PD2; SCK/SCL on PD1; SCS on PD0  
10: SDO on PB6; SDI/SDA on PB7; SCK/SCL on PD6; SCS on PD7  
11: Undefined  
Bit 0  
PCKPS: PCK and PINT Pin Remapping Control  
0: PCK on PC2; PINT on PC3  
1: PCK on PC5; PINT on PC4  
Rev. 1.60  
78  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
PRM0 Register  
¨
HT66F60  
Bit  
Name  
R/W  
7
C1XPS1  
R/W  
0
6
C1XPS0  
R/W  
0
5
C0XPS1  
R/W  
0
4
C0XPS0  
R/W  
0
3
PDPRM  
R/W  
0
2
SIMPS1  
R/W  
0
1
SIMPS0  
R/W  
0
0
PCKPS  
R/W  
0
POR  
Bit 7~6  
C1XPS1, C1XPS0: C1X Pin Remapping Control  
00: C1X on PA5  
01: C1X on PF1  
10: C1X on PG1  
11: Undefined  
Bit 5~4  
C0XPS1, C0XPS0: C0X Pin Remapping Control  
00: C0X on PA0  
01: C0X on PF0  
10: C0X on PG0  
11: Undefined  
Bit 3  
PDPRM: PD3~PD0 pin-shared function Pin Remapping Control  
0: No change  
1: TCK2 on PD0 change to PB6, TP2_0 on PD1 change to PB7, TCK0 on PD2 change to PD6,  
TCK1 on PD3 change to PD7 if SIMPS1, SIMPS0=01 or 11  
Bit 2~1  
SIMPS1, SIMPS0: SIM Pin Remapping Control  
00: SDO on PA5; SDI/SDA on PA6; SCK/SCL on PA7; SCS on PB5  
01: SDO on PD3; SDI/SDA on PD2; SCK/SCL on PD1; SCS on PD0  
10: SDO on PB6; SDI/SDA on PB7; SCK/SCL on PD6; SCS on PD7  
11: SDO on PD1; SDI/SDA on PD2; SCK/SCL on PD3; SCS on PD0  
Bit 0  
PCKPS: PCK and PINT Pin Remapping Control  
0: PCK on PC2; PINT on PC3  
1: PCK on PC5; PINT on PC4  
·
PRM1 Register  
¨
HT66F40/HT66F50  
Bit  
Name  
R/W  
7
TCK2PS  
R/W  
6
TCK1PS  
R/W  
5
TCK0PS  
R/W  
4
3
2
1
0
INT1PS1 INT1PS0 INT0PS1 INT0PS0  
¾
¾
¾
R/W  
0
R/W  
0
R/W  
0
R/W  
0
POR  
0
0
0
Bit 7  
Bit 6  
Bit 5  
TCK2PS: TCK2 Pin Remapping Control  
0: TCK2 on PC2  
1: TCK2 on PD0  
TCK1PS: TCK1 Pin Remapping Control  
0: TCK1 on PA4  
1: TCK1 on PD3  
TCK0PS: TCK0 Pin Remapping Control  
0: TCK0 on PA2  
1: TCK0 on PD2  
Bit 4  
²¾² Unimplemented, read as ²0²  
Bit 3~2  
INT1PS1, INT1PS0: INT1 Pin Remapping Control  
00: INT1 on PA4  
01: INT1 on PC5  
10: Undefined  
11: INT1 on PE7  
Bit 1~0  
INT0PS1, INT0PS0: INT0 Pin Remapping Control  
00: INT0 on PA3  
01: INT0 on PC4  
10: Undefined  
11: INT0 on PE6  
Rev. 1.60  
79  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
PRM1 Register  
¨
HT66F60  
Bit  
Name  
R/W  
7
TCK2PS  
R/W  
6
TCK1PS  
R/W  
5
TCK0PS  
R/W  
4
INT2PS  
R/W  
0
3
2
1
0
INT1PS1 INT1PS0 INT0PS1 INT0PS0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
POR  
0
0
0
Bit 7  
TCK2PS: TCK2 Pin Remapping Control  
0: TCK2 on PC2  
1: TCK2 on PD0  
Bit 6  
TCK1PS: TCK1 Pin Remapping Control  
0: TCK1 on PA4  
1: TCK1 on PD3  
Bit 5  
TCK0PS: TCK0 Pin Remapping Control  
0: TCK0 on PA2  
1: TCK0 on PD2  
Bit 4  
INT2PS: INT2 Pin Remapping Control  
0: INT2 on PC4  
1: INT2 on PE2  
Bit 3~2  
INT1PS1, INT1PS0: INT1 Pin Remapping Control  
00: INT1 on PA4  
01: INT1 on PC5  
10: INT1 on PE1  
11: INT1 on PE7  
Bit 1~0  
INT0PS1, INT0PS0: INT0 Pin Remapping Control  
00: INT0 on PA3  
01: INT0 on PC4  
10: INT0 on PE0  
11: INT0 on PE6  
·
PRM2 Register  
¨
HT66F40  
Bit  
Name  
R/W  
7
6
5
TP21PS  
R/W  
0
4
3
2
1
TP01PS  
R/W  
0
0
TP00PS  
R/W  
0
TP20PS TP1B2PS TP1APS  
¾
¾
¾
¾
¾
¾
R/W  
0
R/W  
0
R/W  
0
POR  
Bit 7~6  
Bit 5  
²¾² Unimplemented, read as ²0²  
TP21PS: TP2_1 Pin Remapping Control  
0: TP2_1 on PC4  
1: TP2_1 on PD4  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TP20PS: TP2_0 Pin Remapping Control  
0: TP2_0 on PC3  
1: TP2_0 on PD1  
TP1B2PS: TP1B_2 Pin Remapping Control  
0: TP1B_2 on PC5  
1: TP1B_2 on PE4  
TP1APS: TP1A Pin Remapping Control  
0: TP1A on PA1  
1: TP1A on PC7  
TP01PS: TP0_1 Pin Remapping Control  
0: TP0_1 on PC5  
1: TP0_1 on PD5  
TP00PS: TP0_0 Pin Remapping Control  
0: TP0_0 on PA0  
1: TP0_0 on PC6  
Rev. 1.60  
80  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
PRM2 Register  
¨
HT66F50/HT66F60  
Bit  
Name  
R/W  
7
TP31PS  
R/W  
0
6
TP30PS  
R/W  
0
5
TP21PS  
R/W  
0
4
3
2
1
TP01PS  
R/W  
0
0
TP00PS  
R/W  
0
TP20PS TP1B2PS TP1APS  
R/W  
0
R/W  
0
R/W  
0
POR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TP31PS: TP3_1 Pin Remapping Control  
0: TP3_1 on PD0  
1: TP3_1 on PE3  
TP30PS: TP3_0 Pin Remapping Control  
0: TP3_0 on PD3  
1: TP3_0 on PE5  
TP21PS: TP2_1 Pin Remapping Control  
0: TP2_1 on PC4  
1: TP2_1 on PD4  
TP20PS: TP2_0 Pin Remapping Control  
0: TP2_0 on PC3  
1: TP2_0 on PD1  
TP1B2PS: TP1B_2 Pin Remapping Control  
0: TP1B_2 on PC5  
1: TP1B_2 on PE4  
TP1APS: TP1A Pin Remapping Control  
0: TP1A on PA1  
1: TP1A on PC7  
TP01PS: TP0_1 Pin Remapping Control  
0: TP0_1 on PC5  
1: TP0_1 on PD5  
TP00PS: TP0_0 Pin Remapping Control  
0: TP0_0 on PA0  
1: TP0_0 on PC6  
Rev. 1.60  
81  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
I/O Pin Structures  
be achieved byte-wide by loading the correct values into  
the appropriate port control register or by programming  
The accompanying diagrams illustrate the internal  
structures of some generic I/O pin types. As the exact  
logical construction of the I/O pin will differ from these  
drawings, they are supplied as a guide only to assist  
with the functional understanding of the I/O pins. The  
wide range of pin-shared structures does not permit all  
types to be shown.  
individual bits in the port control register using the ²SET  
[m].i² and ²CLR [m].i² instructions. Note that when using  
these bit control instructions, a read-modify-write opera-  
tion takes place. The microcontroller must first read in  
the data on the entire port, modify it to the required new  
bit values and then rewrite this data back to the output  
ports.  
Programming Considerations  
Port A has the additional capability of providing wake-up  
functions. When the device is in the SLEEP or IDLE  
Mode, various methods are available to wake the device  
up. One of these is a high to low transition of any of the  
Port A pins. Single or multiple pins on Port A can be  
setup to have this function.  
Within the user program, one of the first things to con-  
sider is port initialisation. After a reset, all of the I/O data  
and port control registers will be set high. This means  
that all I/O pins will default to an input state, the level of  
which depends on the other connected circuitry and  
whether pull-high selections have been chosen. If the  
port control registers, PAC~PGC, are then programmed  
to setup some pins as outputs, these output pins will  
have an initial high output value unless the associated  
port data registers, PA~PG, are first programmed. Se-  
lecting which pins are inputs and which are outputs can  
V
D
D
P
R
S
u
e
l
l
l
e
-
H
i
g
h
e
g
i
s
t
e
r
C
o
n
t
r
o
l
B
i
t
t
c
W
e
a
k
D
a
t
a
B
u
s
D
Q
P
u
l
l
-
u
p
W
r
i
t
e
C
o
n
t
r
e
o
l
K
Q
R
e
g
i
s
t
e
r
C
S
C
h
i
p
R
s
e
t
I
/
O
p
i
n
R
e
a
d
C
o
n
t
r
o
l
R
e
g
i
s
t
e
r
D
a
t
a
B
i
t
D
C
Q
W
r
i
t
e
D
a
t
a
R
K
Q
e
g
i
s
t
e
r
S
M
U
X
R
e
a
d
D
a
t
a
R
e
g
i
s
t
e
r
S
y
s
t
e
m
W
a
k
e
-
u
p
P
A
o
n
l
y
c
W
a
k
e
-
u
p
S
e
l
e
t
Generic Input/Output Structure  
Rev. 1.60  
82  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
V
D
D
P
R
S
u
e
l
l
l
e
-
H
i
g
h
e
g
i
s
t
e
r
C
o
n
t
r
o
l
B
i
t
t
W
e
a
k
c
P
u
l
l
-
u
p
D
a
t
a
B
D
C
u
s
Q
Q
W
r
i
t
e
C
o
n
t
r
o
l
R
e
g
i
s
t
e
r
K
S
C
h
i
p
R
e
s
e
t
A
/
D
I
n
p
u
t
P
o
R
e
a
d
C
o
n
t
r
o
l
R
e
g
i
s
t
e
r
D
a
t
a
B
i
t
D
C
Q
Q
W
r
i
t
e
D
a
t
a
R
e
g
i
s
t
e
r
K
S
M
U
X
R
e
a
d
D
a
t
a
R
e
g
i
s
t
e
r
A
n
a
l
o
g
I
n
p
u
t
S
e
l
e
c
t
o
r
T
o
A
/
D
C
o
n
v
e
r
t
e
r
A
C
S
3
~
A
C
S
0
A/D Input/Output Structure  
Rev. 1.60  
83  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Timer Modules - TM  
One of the most fundamental functions in any  
microcontroller device is the ability to control and mea-  
sure time. To implement time related functions each de-  
vice includes several Timer Modules, abbreviated to the  
name TM. The TMs are multi-purpose timing units and  
serve to provide operations such as Timer/Counter, In-  
put Capture, Compare Match Output and Single Pulse  
Output as well as being the functional unit for the gener-  
ation of PWM signals. Each of the TMs has either two or  
three individual interrupts. The addition of input and out-  
put pins for each TM ensures that users are provided  
with timing units with a wide and flexible range of fea-  
tures.  
Introduction  
The devices contain from two to four TMs depending  
upon which device is selected with each TM having a  
reference name of TM0, TM1, TM2 and TM3. Each indi-  
vidual TM can be categorised as a certain type, namely  
Compact Type TM, Standard Type TM or Enhanced  
Type TM. Although similar in nature, the different TM  
types vary in their feature complexity. The common fea-  
tures to all of the Compact, Standard and Enhanced  
TMs will be described in this section, the detailed opera-  
tion regarding each of the TM types will be described in  
separate sections. The main features and differences  
between the three types of TMs are summarised in the  
accompanying table.  
The common features of the different TM types are de-  
scribed here with more detailed information provided in  
the individual Compact, Standard and Enhanced TM  
sections.  
Function  
CTM  
STM  
ETM  
Timer/Counter  
I/P Capture  
Ö
Ö
Ö
¾
Ö
Ö
Compare Match Output  
PWM Channels  
Ö
Ö
Ö
1
¾
1
2
Single Pulse Output  
PWM Alignment  
1
2
Edge  
Edge  
Edge & Centre  
Duty or Period  
PWM Adjustment Period & Duty  
Duty or Period  
Duty or Period  
TM Function Summary  
Each device in the series contains a specific number of either Compact Type, Standard Type and Enhanced Type TM  
units which are shown in the table together with their individual reference name, TM0~TM3.  
Device  
TM0  
TM1  
10-bit STM  
TM2  
¾
TM3  
HT66F20  
HT66F30  
HT66F40  
HT66F50  
HT66F60  
10-bit CTM  
10-bit CTM  
10-bit CTM  
10-bit CTM  
10-bit CTM  
¾
¾
10-bit ETM  
¾
10-bit ETM  
16-bit STM  
16-bit STM  
16-bit STM  
¾
10-bit ETM  
10-bit CTM  
10-bit CTM  
10-bit ETM  
TM Name/Type Reference  
Rev. 1.60  
84  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
TM Operation  
functions, it consequently has three internal interrupts.  
When a TM interrupt is generated it can be used to clear  
The three different types of TM offer a diverse range of  
functions, from simple timing operations to PWM signal  
generation. The key to understanding how the TM oper-  
ates is to see it in terms of a free running counter whose  
value is then compared with the value of  
pre-programmed internal comparators. When the free  
running counter has the same value as the  
pre-programmed comparator, known as a compare  
match situation, a TM interrupt signal will be generated  
which can clear the counter and perhaps also change  
the condition of the TM output pin. The internal TM  
counter is driven by a user selectable clock source,  
which can be an internal clock or an external pin.  
the counter and also to change the state of the TM out-  
put pin.  
TM External Pins  
Each of the TMs, irrespective of what type, has one TM  
input pin, with the label TCKn. The TM input pin, is es-  
sentially a clock source for the TM and is selected using  
the TnCK2~TnCK0 bits in the TMnC0 register. This ex-  
ternal TM input pin allows an external clock source to  
drive the internal TM. This external TM input pin is  
shared with other functions but will be connected to the  
internal TM if selected using the TnCK2~TnCK0 bits.  
The TM input pin can be chosen to have either a rising or  
falling active edge.  
TM Clock Source  
The clock source which drives the main counter in each  
TM can originate from various sources. The selection of  
the required clock source is implemented using the  
TnCK2~TnCK0 bits in the TM control registers. The  
clock source can be a ratio of either the system clock  
fSYS or the internal high clock fH, the fTBC clock source or  
the external TCKn pin. Note that setting these bits to the  
value 101 will select a reserved clock input, in effect dis-  
connecting the TM clock source. The TCKn pin clock  
source is used to allow an external signal to drive the TM  
as an external clock source or for event counting.  
The TMs each have one or more output pins with the la-  
bel TPn. When the TM is in the Compare Match Output  
Mode, these pins can be controlled by the TM to switch  
to a high or low level or to toggle when a compare match  
situation occurs. The external TPn output pin is also the  
pin where the TM generates the PWM output waveform.  
As the TM output pins are pin-shared with other func-  
tion, the TM output function must first be setup using  
registers. Asingle bit in one of the registers determines if  
its associated pin is to be used as an external TM output  
pin or if it is to have another function. The number of out-  
put pins for each TM type and device is different, the de-  
tails are provided in the accompanying table.  
TM Interrupts  
The Compact and Standard type TMs each have two in-  
ternal interrupts, one for each of the internal comparator  
A or comparator P, which generate a TM interrupt when  
a compare match condition occurs. As the Enhanced  
type TM has three internal comparators and comparator  
A or comparator B or comparator P compare match  
All TM output pin names have an ²_n² suffix. Pin names  
that include a ²_1² or ²_2² suffix indicate that they are  
from a TM with multiple output pins. This allows the TM  
to generate a complimentary output pair, selected using  
the I/O register data bits.  
Device  
CTM  
STM  
ETM  
Registers  
HT66F20  
TP0_0  
TP1_0, TP1_1  
TMPC0  
¾
TP1A, TP1B_0,  
TP1B_1  
HT66F30  
HT66F40  
HT66F50  
HT66F60  
TP0_0, TP0_1  
TP0_0, TP0_1  
TMPC0  
¾
TP1A, TP1B_0,  
TP2_0, TP2_1  
TP2_0, TP2_1  
TMPC0, TMPC1  
TMPC0, TMPC1  
TMPC0, TMPC1  
TP1B_1, TP1B_2  
TP0_0, TP0_1  
TP3_0, TP3_1  
TP1A, TP1B_0,  
TP1B_1, TP1B_2  
TP0_0, TP0_1  
TP3_0, TP3_1  
TP1A, TP1B_0,  
TP2_0, TP2_1  
TP1B_1, TP1B_2  
TM Output Pins  
Rev. 1.60  
85  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
TM Input/Output Pin Control Registers  
Selecting to have a TM input/output or whether to retain its other shared function, is implemented using one or two reg-  
isters, with a single bit in each register corresponding to a TM input/output pin. Setting the bit high will setup the corre-  
sponding pin as a TM input/output, if reset to zero the pin will retain its original other function.  
Bit  
Registers  
Device  
7
¾
6
5
4
3
2
1
¾
0
TMPC0  
TMPC0  
HT66F20  
HT66F30  
T1CP1  
T1BCP1  
T1CP0  
T1BCP0  
T0CP0  
T0CP0  
¾
¾
¾
¾
¾
¾
T1ACP0  
T0CP1  
HT66F40  
HT66F50  
HT66F60  
TMPC0  
T1ACP0  
T1BCP2  
T1BCP1  
T1BCP0  
T0CP1  
T0CP0  
¾
¾
TMPC1  
TMPC1  
HT66F40  
T2CP1  
T2CP1  
T2CP0  
T2CP0  
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
HT66F50  
HT66F60  
T3CP1  
T3CP0  
TM Input/Output Pin Control Registers List  
0
1
P
A
0
O
u
t
p
u
t
F
u
n
c
t
i
o
n
P
A
0
/
T
P
0
_
0
O
u
t
p
u
t
T
0
C
P
0
T
M
0
(
C
T
M
)
T
C
K
I
n
p
u
t
P
A
2
/
T
C
K
0
P
A
1
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
A
1
/
T
P
1
_
0
0
1
T
1
C
P
0
P
A
1
P
C
0
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
0
/
T
P
1
_
1
O
u
t
p
u
t
0
1
T
1
C
P
1
P
C
0
1
0
C
a
p
t
u
r
e
I
n
p
u
t
T
M
1
T
1
C
P
1
(
S
T
M
)
1
0
T
1
C
P
0
T
C
K
I
n
p
u
t
P
A
4
/
T
C
K
1
HT66F20 TM Function Pin Control Block Diagram  
Note: 1. The I/O register data bits shown are used for TM output inversion control.  
2. In the Capture Input Mode, the TM pin control register must never enable more than one TM input.  
Rev. 1.60  
86  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
0
1
P
A
0
O
u
t
p
u
t
F
u
n
c
t
i
o
n
P
A
0
/
T
P
0
_
0
0
1
T
0
C
P
0
P
5
A
0
0
1
P
C
O
u
t
p
u
t
F
u
n
c
t
i
o
n
P
C
5
/
T
P
0
_
1
O
u
t
p
u
t
0
1
T
0
C
P
1
T
M
0
(
C
T
M
)
P
C
5
T
C
K
I
n
p
u
t
P
A
2
/
T
C
K
0
P
A
1
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
A
1
/
T
P
1
A
C
C
R
A
O
u
t
p
u
t
T
1
A
C
P
0
1
0
C
C
R
A
C
a
p
t
u
r
e
I
n
p
u
t
T
1
A
C
P
0
P
C
0
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
0
/
T
P
1
B
_
0
0
1
T
1
B
C
P
0
P
C
0
T
M
1
P
C
1
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
(
E
T
M
)
P
C
1
/
T
P
1
B
_
1
C
C
R
B
O
u
t
p
u
t
0
1
T
1
B
C
P
1
P
C
1
1
0
C
C
R
B
C
a
p
t
u
r
e
I
n
p
u
t
T
1
B
C
P
1
1
0
T
1
B
C
P
0
T
C
K
I
n
p
u
t
P
A
4
/
T
C
K
1
HT66F30 TM Function Pin Control Block Diagram  
Note: 1. The I/O register data bits shown are used for TM output inversion control.  
2. In the Capture Input Mode, the TM pin control register must never enable more than one TM input.  
Rev. 1.60  
87  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
0
1
P
A
0
O
u
t
p
u
t
F
u
n
c
t
i
o
n
P
A
0
/
T
P
0
_
0
0
1
T
0
C
P
0
P
5
A
0
0
1
P
C
O
u
t
p
u
t
F
u
n
c
t
i
o
n
P
C
5
/
T
P
0
_
1
O
u
t
p
u
t
0
1
T
0
C
P
1
T
M
0
(
C
T
M
)
P
C
5
T
C
K
I
n
p
u
t
P
A
2
/
T
C
K
0
P
C
3
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
3
/
T
P
2
_
0
0
1
T
2
C
P
0
P
C
3
P
C
4
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
4
/
T
P
2
_
1
O
u
t
p
u
t
0
1
T
2
C
P
1
P
C
4
1
0
C
a
p
t
u
r
e
I
n
p
u
t
T
M
2
T
2
C
P
1
(
S
T
M
)
1
0
T
2
C
P
0
T
C
K
I
n
p
u
t
P
C
2
/
T
C
K
2
HT66F40 TM0 & TM2 Function Pin Control Block Diagram  
Note: 1. The I/O register data bits shown are used for TM output inversion control.  
2. In the Capture Input Mode, the TM pin control register must never enable more than one TM input.  
Rev. 1.60  
88  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
P
A
1
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
A
1
/
T
P
1
A
C
C
R
A
O
u
t
p
u
t
T
1
A
C
P
0
1
0
C
C
R
A
C
a
p
t
u
r
e
I
n
p
u
t
T
1
A
C
P
0
P
C
0
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
0
/
T
P
1
B
_
0
0
1
T
1
B
C
P
0
P
C
0
P
C
1
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
1
/
T
P
1
B
_
1
0
1
T
1
B
C
P
1
T
M
1
P
C
1
(
E
T
M
)
P
C
5
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
5
/
T
P
1
B
_
2
C
C
R
B
O
u
t
p
u
t
0
1
T
1
B
C
P
2
P
C
5
1
0
C
C
R
B
C
a
p
t
u
r
e
I
n
p
u
t
T
1
B
C
P
2
1
0
T
1
B
C
P
1
1
0
T
1
B
C
P
0
T
C
K
I
n
p
u
t
P
A
4
/
T
C
K
1
HT66F40 TM1 Function Pin Control Block Diagram  
Note: 1. The I/O register data bits shown are used for TM output inversion control.  
2. In the Capture Input Mode, the TM pin control register must never enable more than one TM input.  
Rev. 1.60  
89  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
0
1
P
A
0
O
u
t
p
u
t
F
u
n
c
t
i
o
n
P
A
0
/
T
P
0
_
0
0
1
T
0
C
P
0
P
5
A
0
0
1
P
C
O
u
t
p
u
t
F
u
n
c
t
i
o
n
P
C
5
/
T
P
0
_
1
O
u
t
p
u
t
0
1
T
0
C
P
1
T
M
0
(
C
T
M
)
P
C
5
T
C
K
I
n
p
u
t
P
A
2
/
T
C
K
0
P
C
3
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
3
/
T
P
2
_
0
0
1
T
2
C
P
0
P
C
3
P
C
4
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
4
/
T
P
2
_
1
O
u
t
p
u
t
0
1
T
2
C
P
1
P
C
4
1
0
C
a
p
t
u
r
e
I
n
p
u
t
T
M
2
T
2
C
P
1
(
S
T
M
)
1
0
T
2
C
P
0
T
C
K
I
n
p
u
t
P
C
2
/
T
C
K
2
0
1
P
D
3
O
u
t
p
u
t
F
u
n
c
t
i
o
n
P
D
3
/
T
P
3
_
0
0
1
T
3
C
P
0
P
0
D
3
0
1
P
D
O
u
t
p
u
t
F
u
n
c
t
i
o
n
P
D
0
/
T
P
3
_
1
O
u
t
p
u
t
0
1
T
3
C
P
1
T
M
3
(
C
T
M
)
P
D
0
T
C
K
I
n
p
u
t
P
C
4
/
T
C
K
3
HT66F50 and HT66F60 TM0, TM2, TM3 Function Pin Control Block Diagram  
Note: 1. The I/O register data bits shown are used for TM output inversion control.  
2. In the Capture Input Mode, the TM pin control register must never enable more than one TM input.  
Rev. 1.60  
90  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
P
A
1
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
A
1
/
T
P
1
A
C
C
R
A
O
u
t
p
u
t
T
1
A
C
P
0
1
0
C
C
R
A
C
a
p
t
u
r
e
I
n
p
u
t
T
1
A
C
P
0
P
C
0
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
0
/
T
P
1
B
_
0
0
1
T
1
B
C
P
0
P
C
0
P
C
1
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
1
/
T
P
1
B
_
1
0
1
T
1
B
C
P
1
T
M
1
P
C
1
(
E
T
M
)
P
C
5
O
u
t
p
u
t
0
1
F
u
n
c
t
i
o
n
P
C
5
/
T
P
1
B
_
2
C
C
R
B
O
u
t
p
u
t
0
1
T
1
B
C
P
2
P
C
5
1
0
C
C
R
B
C
a
p
t
u
r
e
I
n
p
u
t
T
1
B
C
P
2
1
0
T
1
B
C
P
1
1
0
T
1
B
C
P
0
T
C
K
I
n
p
u
t
P
A
4
/
T
C
K
1
HT66F50 and HT66F60 TM1 Function Pin Control Block Diagram  
Note: 1. The I/O register data bits shown are used for TM output inversion control.  
2. In the Capture Input Mode, the TM pin control register must never enable more than one TM input.  
Rev. 1.60  
91  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
TMPC0 Register  
¨
HT66F20  
Bit  
Name  
R/W  
7
6
5
T1CP1  
R/W  
0
4
T1CP0  
R/W  
1
3
2
1
0
T0CP0  
R/W  
1
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7, 6  
Bit 5  
Unimplemented, read as ²0²  
T1CP1: TP1_1 pin Control  
0: disable  
1: enable  
Bit 4  
T1CP0: TP1_0 pin Control  
0: disable  
1: enable  
Bit 3~1  
Bit 0  
Unimplemented, read as ²0²  
T0CP0: TP0_0 pin Control  
0: disable  
1: enable  
¨
HT66F30  
Bit  
Name  
R/W  
7
T1ACP0  
R/W  
1
6
5
T1BCP1  
R/W  
0
4
T1BCP0  
R/W  
1
3
2
1
T0CP1  
R/W  
0
0
T0CP0  
R/W  
1
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7  
T1ACP0: TP1A pin Control  
0: disable  
1: enable  
Bit 6  
Bit 5  
Unimplemented, read as ²0²  
T1BCP1: TP1B_1 pin Control  
0: disable  
1: enable  
Bit 4  
T1BCP0: TP1B_0 pin Control  
0: disable  
1: enable  
Bit 3~2  
Bit 1  
Unimplemented, read as ²0²  
T0CP1: TP0_1 pin Control  
0: disable  
1: enable  
Bit 0  
T0CP0: TP0_0 pin Control  
0: disable  
1: enable  
Rev. 1.60  
92  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
T1ACP0  
R/W  
1
6
T1BCP2  
R/W  
0
5
T1BCP1  
R/W  
0
4
T1BCP0  
R/W  
1
3
2
1
T0CP1  
R/W  
0
0
T0CP0  
R/W  
1
¾
¾
¾
¾
¾
¾
POR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
T1ACP0: TP1A pin Control  
0: disable  
1: enable  
T1BCP2: TP1B_2 pin Control  
0: disable  
1: enable  
T1BCP1: TP1B_1 pin Control  
0: disable  
1: enable  
T1BCP0: TP1B_0 pin Control  
0: disable  
1: enable  
Bit 3~2  
Bit 1  
Unimplemented, read as ²0²  
T0CP1: TP0_1 pin Control  
0: disable  
1: enable  
Bit 0  
T0CP0: TP0_0 pin Control  
0: disable  
1: enable  
·
TMPC1 Register  
¨
HT66F40  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
T2CP1  
R/W  
0
0
T2CP0  
R/W  
1
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~2  
Bit 1  
Unimplemented, read as ²0²  
T2CP1: TP2_1 pin Control  
0: disable  
1: enable  
Bit 0  
T2CP0: TP2_0 pin Control  
0: disable  
1: enable  
Rev. 1.60  
93  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F50/HT66F60  
Bit  
Name  
R/W  
7
6
5
T3CP1  
R/W  
0
4
T3CP0  
R/W  
1
3
2
1
T2CP1  
R/W  
0
0
T2CP0  
R/W  
1
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~6  
Bit 5  
Unimplemented, read as ²0²  
T3CP1: TP3_1 pin Control  
0: disable  
1: enable  
Bit 4  
T3CP0: TP3_0 pin Control  
0: disable  
1: enable  
Bit 3~2  
Bit 1  
Unimplemented, read as ²0²  
T2CP1: TP2_1 pin Control  
0: disable  
1: enable  
Bit 0  
T2CP0: TP2_0 pin Control  
0: disable  
1: enable  
Programming Considerations  
The TM Counter Registers and the Capture/Compare CCRA and CCRB registers, being either 10-bit or 16-bit, all have  
a low and high byte structure. The high bytes can be directly accessed, but as the low bytes can only be accessed via  
an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important  
point to note is that data transfer to and from the 8-bit buffer and its related low byte only takes place when a write or  
read operation to its corresponding high byte is executed.  
TM Counter Register (Read only)  
TMxDL TMxDH  
8-bit  
Buffer  
TMxAL TMxAH  
TM CCRA Register (Read/Write)  
TMxBL TMxBH  
TM CCRB Register (Read/Write)  
Data  
Bus  
As the CCRA and CCRB registers are implemented in the way shown in the following diagram and accessing these  
register pairs is carried out in a specific way as described above, it is recommended to use the ²MOV² instruction to ac-  
cess the CCRA and CCRB low byte registers, named TMxAL and TMxBL, using the following access procedures. Ac-  
cessing the CCRA or CCRB low byte registers without following these access procedures will result in unpredictable  
values.  
The following steps show the read and write procedures:  
·
Writing Data to CCRB or CCRA  
¨
¨
Step 1. Write data to Low Byte TMxAL or TMxBL  
- note that here data is only written to the 8-bit buffer.  
Step 2. Write data to High Byte TMxAH or TMxBH  
- here data is written directly to the high byte registers and simultaneously data is latched from the 8-bit buffer  
to the Low Byte registers.  
Rev. 1.60  
94  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
Reading Data from the Counter Registers and CCRB or CCRA  
¨
Step 1. Read data from the High Byte TMxDH, TMxAH or TMxBH  
- here data is read directly from the High Byte registers and simultaneously data is latched from the Low Byte  
register into the 8-bit buffer.  
¨
Step 2. Read data from the Low Byte TMxDL, TMxAL or TMxBL  
- this step reads data from the 8-bit buffer.  
Compact Type TM  
Although the simplest form of the three TM types, the Compact TM type still contains three operating modes, which are  
Compare Match Output, Timer/Event Counter and PWM Output modes. The Compact TM can also be controlled with  
an external input pin and can drive one or two external output pins. These two external output pins can be the same sig-  
nal or the inverse signal.  
CTM  
Name  
TM No.  
TM Input Pin  
TCK0  
TM Output Pin  
TP0_0  
HT66F20  
HT66F30  
HT66F40  
HT66F50  
HT66F60  
10-bit CTM  
10-bit CTM  
10-bit CTM  
10-bit CTM  
10-bit CTM  
0
0
TCK0  
TP0_0, TP0_1  
0
TCK0  
TP0_0, TP0_1  
0, 3  
0, 3  
TCK0, TCK3  
TCK0, TCK3  
TP0_0, TP0_1; TP3_0, TP3_1  
TP0_0, TP0_1; TP3_0, TP3_1  
Compact TM Operation  
At its core is a 10-bit count-up counter which is driven by a user selectable internal or external clock source. There are  
also two internal comparators with the names, Comparator A and Comparator P. These comparators will compare the  
value in the counter with CCRP and CCRA registers. The CCRP is three bits wide whose value is compared with the  
highest three bits in the counter while the CCRA is the ten bits and therefore compares with all counter bits.  
The only way of changing the value of the 10-bit counter using the application program, is to clear the counter by chang-  
ing the TnON bit from low to high. The counter will also be cleared automatically by a counter overflow or a compare  
match with one of its associated comparators. When these conditions occur, a TM interrupt signal will also usually be  
generated. The Compact Type TM can operate in a number of different operational modes, can be driven by different  
clock sources including an input pin and can also control an output pin. All operating setup conditions are selected us-  
ing relevant internal registers.  
C
C
R
P
C
o
m
p
a
r
a
t
o
r
P
M
a
t
c
h
3
-
b
i
t
C
o
m
p
a
r
a
t
o
r
P
T
n
P
F
I
n
t
e
r
r
u
p
t
f
S
Y
S
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
b
7
~
b
9
f
S
Y
S
T
n
O
C
f
H
H
/
1
6
f
/
6
4
T
T
P
P
n
n
f
T
B
C
O
u
t
p
u
P
t
o
l
a
r
i
T
t
P
y
n
P
i
n
C
o
u
n
t
e
r
C
l
e
a
r
0
C
o
n
t
r
o
C
l
o
n
t
r
o
O
l
u
t
p
u
t
R
e
s
e
r
v
e
d
1
0
-
b
i
t
C
o
u
n
t
-
u
p
C
o
u
n
t
e
r
1
T
C
K
n
1
1
1
T
n
M
1
,
T
T
n
n
M
P
0
O
L
T
n
C
C
L
R
T
n
O
N
T
n
I
O
1
,
T
n
I
O
0
b
0
~
b
9
T
n
P
A
U
C
o
m
p
a
r
a
t
o
r
A
M
a
t
c
h
1
0
-
b
i
t
C
o
m
p
a
r
a
t
o
r
A
T
n
A
F
I
n
t
e
r
r
u
p
t
T
n
C
K
2
~
T
n
C
K
0
C
C
R
A
Compact Type TM Block Diagram  
Rev. 1.60  
95  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Compact Type TM Register Description  
Overall operation of the Compact TM is controlled using six registers. A read only register pair exists to store the inter-  
nal counter 10-bit value, while a read/write register pair exists to store the internal 10-bit CCRA value. The remaining  
two registers are control registers which setup the different operating and control modes as well as the three CCRP  
bits.  
Name  
TMnC0  
TMnC1  
TMnDL  
TMnDH  
TMnAL  
TMnAH  
Bit7  
TnPAU  
TnM1  
D7  
Bit6  
TnCK2  
TnM0  
D6  
Bit5  
TnCK1  
TnIO1  
D5  
Bit4  
TnCK0  
TnIO0  
D4  
Bit3  
TnON  
TnOC  
D3  
Bit2  
TnRP2  
TnPOL  
D2  
Bit1  
TnRP1  
TnDPX  
D1  
Bit0  
TnRP0  
TnCCLR  
D0  
D9  
D8  
¾
¾
¾
¾
¾
¾
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D9  
D8  
¾
¾
¾
¾
¾
¾
Compact TM Register List (n=0 or 3)  
·
TMnDL Register  
Bit  
Name  
R/W  
7
D7  
R
6
D6  
R
5
D5  
R
4
D4  
R
3
D3  
R
2
D2  
R
1
D1  
R
0
D0  
R
POR  
0
0
0
0
0
0
0
0
Bit 7~0  
TMnDL: TMn Counter Low Byte Register bit 7 ~ bit 0  
TMn 10-bit Counter bit 7 ~ bit 0  
·
TMnDH Register  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D9  
R
0
D8  
R
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
0
0
Bit 7~2  
Bit 1~0  
Unimplemented, read as ²0²  
TMnDH: TMn Counter High Byte Register bit 1 ~ bit 0  
TMn 10-bit Counter bit 9 ~ bit 8  
·
TMnAL Register  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
Bit 7~0  
TMnAL: TMn CCRA Low Byte Register bit 7 ~ bit 0  
TMn 10-bit CCRA bit 7 ~ bit 0  
·
TMnAH Register  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D9  
R/W  
0
0
D8  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~2  
Bit 1~0  
Unimplemented, read as ²0²  
TMn 10-bit CCRA bit 9 ~ bit 8  
Rev. 1.60  
96  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
TMnC0 Register  
Bit  
7
6
TnCK2  
R/W  
0
5
TnCK1  
R/W  
0
4
TnCK0  
R/W  
0
3
TnON  
R/W  
0
2
TnRP2  
R/W  
0
1
TnRP1  
R/W  
0
0
TnRP0  
R/W  
0
Name  
R/W  
TnPAU  
R/W  
0
POR  
Bit 7  
TnPAU: TMn Counter Pause Control  
0: run  
1: pause  
The counter can be paused by setting this bit high. Clearing the bit to zero restores normal  
counter operation. When in a Pause condition the TM will remain powered up and continue to  
consume power. The counter will retain its residual value when this bit changes from low to high  
and resume counting from this value when the bit changes to a low value again.  
Bit 6~4  
TnCK2~TnCK0: Select TMn Counter clock  
000: fSYS/4  
001: fSYS  
010: fH/16  
011: fH/64  
100: fTBC  
101: undefined  
110: TCKn rising edge clock  
111: TCKn falling edge clock  
These three bits are used to select the clock source for the TM. Selecting the Reserved clock  
input will effectively disable the internal counter. The external pin clock source can be chosen to  
be active on the rising or falling edge. The clock source fSYS is the system clock, while fH and  
f
TBC are other internal clocks, the details of which can be found in the oscillator section.  
Bit 3  
TnON: TMn Counter On/Off Control  
0: Off  
1: On  
This bit controls the overall on/off function of the TM. Setting the bit high enables the counter to  
run, clearing the bit disables the TM. Clearing this bit to zero will stop the counter from counting  
and turn off the TM which will reduce its power consumption. When the bit changes state from  
low to high the internal counter value will be reset to zero, however when the bit changes from  
high to low, the internal counter will retain its residual value.  
If the TM is in the Compare Match Output Mode then the TM output pin will be reset to its initial  
condition, as specified by the TnOC bit, when the TnON bit changes from low to high.  
Bit 2~0  
TnRP2~TnRP0: TMn CCRP 3-bit register, compared with the TMn Counter bit 9~bit 7  
Comparator P Match Period  
000: 1024 TMn clocks  
001: 128 TMn clocks  
010: 256 TMn clocks  
011: 384 TMn clocks  
100: 512 TMn clocks  
101: 640 TMn clocks  
110: 768 TMn clocks  
111: 896 TMn clocks  
These three bits are used to setup the value on the internal CCRP 3-bit register, which are then  
compared with the internal counter's highest three bits. The result of this comparison can be  
selected to clear the internal counter if the TnCCLR bit is set to zero. Setting the TnCCLR bit to  
zero ensures that a compare match with the CCRP values will reset the internal counter. As the  
CCRP bits are only compared with the highest three counter bits, the compare values exist in 128  
clock cycle multiples. Clearing all three bits to zero is in effect allowing the counter to overflow at  
its maximum value.  
Rev. 1.60  
97  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
TMnC1 Register  
Bit  
Name  
R/W  
7
TnM1  
R/W  
0
6
TnM0  
R/W  
0
5
TnIO1  
R/W  
0
4
TnIO0  
R/W  
0
3
TnOC  
R/W  
0
2
TnPOL  
R/W  
0
1
TnDPX  
R/W  
0
0
TnCCLR  
R/W  
POR  
0
Bit 7~6  
TnM1~TnM0: Select TMn Operating Mode  
00: Compare Match Output Mode  
01: Undefined  
10: PWM Mode  
11: Timer/Counter Mode  
These bits setup the required operating mode for the TM. To ensure reliable operation the TM  
should be switched off before any changes are made to the TnM1 and TnM0 bits. In the  
Timer/Counter Mode, the TM output pin control must be disabled.  
Bit 5~4  
TnIO1~TnIO0: Select TPn_0, TPn_1 output function  
Compare Match Output Mode  
00: No change  
01: Output low  
10: Output high  
11: Toggle output  
PWM Mode  
00: PWM output inactive state  
01: PWM output active state  
10: PWM output  
11: Undefined  
Timer/counter Mode  
unused  
These two bits are used to determine how the TM output pin changes state when a certain  
condition is reached. The function that these bits select depends upon in which mode the TM is  
running.  
In the Compare Match Output Mode, the TnIO1 and TnIO0 bits determine how the TM output  
pin changes state when a compare match occurs from the Comparator A. The TM output pin can  
be setup to switch high, switch low or to toggle its present state when a compare match occurs  
from the Comparator A. When the bits are both zero, then no change will take place on the  
output. The initial value of the TM output pin should be setup using the TnOC bit in the TMnC1  
register. Note that the output level requested by the TnIO1 and TnIO0 bits must be different from  
the initial value setup using the TnOC bit otherwise no change will occur on the TM output pin  
when a compare match occurs. After the TM output pin changes state it can be reset to its initial  
level by changing the level of the TnON bit from low to high.  
In the PWM Mode, the TnIO1 and TnIO0 bits determine how the TM output pin changes state  
when a certain compare match condition occurs. The PWM output function is modified by  
changing these two bits. It is necessary to change the values of the TnIO1 and TnIO0 bits only  
after the TMn has been switched off. Unpredictable PWM outputs will occur if the TnIO1 and  
TnIO0 bits are changed when the TM is running  
Bit 3  
TnOC: TPn_0, TPn_1 Output control bit  
Compare Match Output Mode  
0: Initial low  
1: Initial high  
PWM Mode  
0: Active low  
1: Active high  
This is the output control bit for the TM output pin. Its operation depends upon whether TM is  
being used in the Compare Match Output Mode or in the PWM Mode. It has no effect if the TM is  
in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of  
the TM output pin before a compare match occurs. In the PWM Mode it determines if the PWM  
signal is active high or active low.  
Rev. 1.60  
98  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Bit 2  
TnPOL: TPn_0, TPn_1 Output polarity Control  
0: Non-invert  
1: Invert  
This bit controls the polarity of the TPn_0 or TPn_1 output pin. When the bit is set high the TM  
output pin will be inverted and not inverted when the bit is zero. It has no effect if the TM is in the  
Timer/Counter Mode.  
Bit 1  
Bit 0  
TnDPX: TMn PWM period/duty Control  
0: CCRP - period; CCRA - duty  
1: CCRP - duty; CCRA - period  
This bit, determines which of the CCRA and CCRP registers are used for period and duty  
control of the PWM waveform.  
TnCCLR: Select TMn Counter clear condition  
0: TMn Comparatror P match  
1: TMn Comparatror A match  
This bit is used to select the method which clears the counter. Remember that the Compact TM  
contains two comparators, Comparator A and Comparator P, either of which can be selected to  
clear the internal counter. With the TnCCLR bit set high, the counter will be cleared when a  
compare match occurs from the Comparator A. When the bit is low, the counter will be cleared  
when a compare match occurs from the Comparator P or with a counter overflow. A counter  
overflow clearing method can only be implemented if the CCRP bits are all cleared to zero.  
The TnCCLR bit is not used in the PWM Mode.  
Compact Type TM Operating Modes  
As the name of the mode suggests, after a comparison  
is made, the TM output pin will change state. The TM  
output pin condition however only changes state when  
an TnAF interrupt request flag is generated after a com-  
pare match occurs from Comparator A. The TnPF inter-  
rupt request flag, generated from a compare match  
occurs from Comparator P, will have no effect on the TM  
output pin. The way in which the TM output pin changes  
state are determined by the condition of the TnIO1 and  
TnIO0 bits in the TMnC1 register. The TM output pin can  
be selected using the TnIO1 and TnIO0 bits to go high,  
to go low or to toggle from its present condition when a  
compare match occurs from Comparator A. The initial  
condition of the TM output pin, which is setup after the  
TnON bit changes from low to high, is setup using the  
TnOC bit. Note that if the TnIO1 and TnIO0 bits are zero  
then no pin change will take place.  
The Compact Type TM can operate in one of three oper-  
ating modes, Compare Match Output Mode, PWM  
Mode or Timer/Counter Mode. The operating mode is  
selected using the TnM1 and TnM0 bits in the TMnC1  
register.  
Compare Match Output Mode  
To select this mode, bits TnM1 and TnM0 in the TMnC1  
register, should be set to ²00² respectively. In this mode  
once the counter is enabled and running it can be  
cleared by three methods. These are a counter over-  
flow, a compare match from Comparator A and a com-  
pare match from Comparator P. When the TnCCLR bit is  
low, there are two ways in which the counter can be  
cleared. One is when a compare match occurs from  
Comparator P, the other is when the CCRP bits are all  
zero which allows the counter to overflow. Here both  
TnAF and TnPF interrupt request flags for the Compara-  
tor A and Comparator P respectively, will both be gener-  
ated.  
Timer/Counter Mode  
To select this mode, bits TnM1 and TnM0 in the TMnC1  
register should be set to 11 respectively. The  
Timer/Counter Mode operates in an identical way to the  
Compare Match Output Mode generating the same in-  
terrupt flags. The exception is that in the Timer/Counter  
Mode the TM output pin is not used. Therefore the  
above description and Timing Diagrams for the Com-  
pare Match Output Mode can be used to understand its  
function. As the TM output pin is not used in this mode,  
the pin can be used as a normal I/O pin or other  
pin-shared function.  
If the TnCCLR bit in the TMnC1 register is high then the  
counter will be cleared when a compare match occurs  
from Comparator A. However, here only the TnAF inter-  
rupt request flag will be generated even if the value of  
the CCRP bits is less than that of the CCRA registers.  
Therefore when TnCCLR is high no TnPF interrupt re-  
quest flag will be generated. If the CCRA bits are all  
zero, the counter will overflow when its reaches its maxi-  
mum 10-bit, 3FF Hex, value, however here the TnAF in-  
terrupt request flag will not be generated.  
Rev. 1.60  
99  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter overflow  
Counter Value  
TnCCLR = 0; TnM [1:0] = 00  
CCRP > 0  
Counter cleared by CCRP value  
CCRP=0  
0x3FF  
CCRP > 0  
Counter  
Restart  
Resume  
Pause  
CCRP  
CCRA  
Stop  
Time  
TnON  
TnPAU  
TnPOL  
CCRP Int.  
Flag TnPF  
CCRA Int.  
Flag TnAF  
TM O/P Pin  
Output not affected by TnAF  
flag. Remains High until reset  
by TnON bit  
Output Inverts  
when TnPOL is high  
Output pin set to  
initial Level Low  
if TnOC=0  
Output Toggle with  
TnAF flag  
Output Pin  
Reset to Initial value  
Note TnIO [1:0] = 10  
Active High Output select  
Here TnIO [1:0] = 11  
Toggle Output select  
Output controlled by  
other pin-shared function  
Compare Match Output Mode -- TnCCLR = 0  
Note: 1. With TnCCLR=0, a Comparator P match will clear the counter  
2. The TM output pin is controlled only by the TnAF flag  
3. The output pin is reset to its initial state by a TnON bit rising edge  
Rev. 1.60  
100  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter Value  
TnCCLR = 1; TnM [1:0] = 00  
CCRA = 0  
CCRA > 0 Counter cleared by CCRA value  
Counter overflow  
0x3FF  
CCRA  
CCRP  
CCRA=0  
Resume  
Pause  
Stop  
Counter Restart  
Time  
TnON  
TnPAU  
TnPOL  
No TnAF flag  
generated on  
CCRA overflow  
CCRA Int.  
Flag TnAF  
CCRP Int.  
Flag TnPF  
TnPF not  
generated  
Output does  
not change  
TM O/P Pin  
Output not affected by  
TnAF flag. Remains High  
until reset by TnON bit  
Output Inverts  
when TnPOL is high  
Output Toggle with  
TnAF flag  
Output pin set to  
initial Level Low  
if TnOC=0  
Output Pin  
Reset to Initial value  
Output controlled by  
other pin-shared function  
Note TnIO [1:0] = 10  
Active High Output select  
Here TnIO [1:0] = 11  
Toggle Output select  
Compare Match Output Mode -- TnCCLR = 1  
Note: 1. With TnCCLR=1, a Comparator A match will clear the counter  
2. The TM output pin is controlled only by the TnAF flag  
3. The output pin is reset to its initial state by a TnON bit rising edge  
4. The TnPF flag is not generated when TnCCLR=1  
Rev. 1.60  
101  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
PWM Output Mode  
while the other one is used to control the duty cycle.  
Which register is used to control either frequency or duty  
To select this mode, bits TnM1 and TnM0 in the TMnC1  
register should be set to 10 respectively. The PWM func-  
tion within the TM is useful for applications which require  
functions such as motor control, heating control, illumi-  
nation control etc. By providing a signal of fixed fre-  
quency but of varying duty cycle on the TM output pin, a  
square wave AC waveform can be generated with vary-  
ing equivalent DC RMS values.  
cycle is determined using the TnDPX bit in the TMnC1  
register. The PWM waveform frequency and duty cycle  
can therefore be controlled by the values in the CCRA  
and CCRP registers.  
An interrupt flag, one for each of the CCRA and CCRP,  
will be generated when a compare match occurs from  
either Comparator A or Comparator P. The TnOC bit in  
the TMnC1 register is used to select the required polar-  
ity of the PWM waveform while the two TnIO1 and  
TnIO0 bits are used to enable the PWM output or to  
force the TM output pin to a fixed high or low level. The  
TnPOL bit is used to reverse the polarity of the PWM  
output waveform.  
As both the period and duty cycle of the PWM waveform  
can be controlled, the choice of generated waveform is  
extremely flexible. In the PWM mode, the TnCCLR bit  
has no effect on the PWM operation. Both of the CCRA  
and CCRP registers are used to generate the PWM  
waveform, one register is used to clear the internal  
counter and thus control the PWM waveform frequency,  
Counter Value  
TnDPX = 0; TnM [1:0] = 10  
Counter cleared  
by CCRP  
Counter Reset when  
TnON returns high  
CCRP  
Counter Stop if  
TnON bit low  
Pause  
Resume  
CCRA  
Time  
TnON  
TnPAU  
TnPOL  
CCRA Int.  
Flag TnAF  
CCRP Int.  
Flag TnPF  
TM O/P Pin  
(TnOC=1)  
TM O/P Pin  
(TnOC=0)  
PWM Duty Cycle  
set by CCRA  
PWM resumes  
operation  
Output controlled by  
other pin-shared function  
Output Inverts  
when TnPOL = 1  
PWM Period  
set by CCRP  
PWM Mode -- TnDPX = 0  
Note: 1. Here TnDPX=0 -- Counter cleared by CCRP  
2. A counter clear sets the PWM Period  
3. The internal PWM function continues even when TnIO [1:0] = 00 or 01  
4. The TnCCLR bit has no influence on PWM operation  
Rev. 1.60  
102  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
CTM, PWM Mode, Edge-aligned Mode, TnDPX=0  
CCRP  
Period  
Duty  
001b  
128  
010b  
256  
011b  
384  
100b  
512  
101b  
640  
110b  
768  
111b  
896  
000b  
1024  
CCRA  
If fSYS = 16MHz, TM clock source is fSYS/4, CCRP = 100b and CCRA =128,  
The CTM PWM output frequency = (fSYS/4) / 512 = fSYS/2048 = 7.8125 kHz, duty = 128/512 = 25%.  
If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty  
is 100%.  
·
CTM, PWM Mode, Edge-aligned Mode, TnDPX=1  
CCRP  
Period  
Duty  
001b  
010b  
011b  
100b  
512  
101b  
640  
110b  
768  
111b  
896  
000b  
1024  
CCRA  
128  
256  
384  
The PWM output period is determined by the CCRA register value together with the TM clock while the PWM duty cy-  
cle is defined by the CCRP register value.  
Counter Value  
TnDPX = 1; TnM [1:0] = 10  
Counter cleared  
by CCRA  
Counter Reset when  
TnON returns high  
CCRA  
Counter Stop if  
TnON bit low  
Pause  
Resume  
CCRP  
Time  
TnON  
TnPAU  
TnPOL  
CCRP Int.  
Flag TnPF  
CCRA Int.  
Flag TnAF  
TM O/P Pin  
(TnOC=1)  
TM O/P Pin  
(TnOC=0)  
PWM Duty Cycle  
set by CCRP  
PWM resumes  
operation  
Output controlled by  
other pin-shared function  
Output Inverts  
when TnPOL = 1  
PWM Period  
set by CCRA  
PWM Mode -- TnDPX = 1  
Note: 1. Here TnDPX = 1 -- Counter cleared by CCRA  
2. A counter clear sets the PWM Period  
3. The internal PWM function continues even when TnIO [1:0] = 00 or 01  
4. The TnCCLR bit has no influence on PWM operation  
Rev. 1.60  
103  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Standard Type TM - STM  
The Standard Type TM contains five operating modes, which are Compare Match Output, Timer/Event Counter, Cap-  
ture Input, Single Pulse Output and PWM Output modes. The Standard TM can also be controlled with an external in-  
put pin and can drive one or two external output pins.  
CTM  
Name  
10-bit STM  
¾
TM No.  
TM Input Pin  
TCK1  
TM Output Pin  
TP1_0, TP1_1  
¾
HT66F20  
HT66F30  
HT66F40  
HT66F50  
HT66F60  
1
¾
2
¾
16-bit STM  
16-bit STM  
16-bit STM  
TCK2  
TP2_0, TP2_1  
TP2_0, TP2_1  
TP2_0, TP2_1  
2
TCK2  
2
TCK2  
Standard TM Operation  
comparators. When these conditions occur, a TM inter-  
rupt signal will also usually be generated. The Standard  
Type TM can operate in a number of different opera-  
tional modes, can be driven by different clock sources  
including an input pin and can also control an output pin.  
All operating setup conditions are selected using rele-  
vant internal registers.  
There are two sizes of Standard TMs, one is 10-bits  
wide and the other is 16-bits wide. At the core is a 10 or  
16-bit count-up counter which is driven by a user  
selectable internal or external clock source. There are  
also two internal comparators with the names, Com-  
parator A and Comparator P. These comparators will  
compare the value in the counter with CCRP and CCRA  
registers. The CCRP comparator is 3 or 8-bits wide  
whose value is compared the with highest 3 or 8 bits in  
the counter while the CCRA is the ten or sixteen bits and  
therefore compares all counter bits.  
Standard Type TM Register Description  
Overall operation of the Standard TM is controlled using  
a series of registers. A read only register pair exists to  
store the internal counter 10 or 16-bit value, while a  
read/write register pair exists to store the internal 10 or  
16-bit CCRA value. The remaining two registers are  
control registers which setup the different operating and  
control modes as well as the three or eight CCRP bits.  
The only way of changing the value of the 10 or 16-bit  
counter using the application program, is to clear the  
counter by changing the TnON bit from low to high. The  
counter will also be cleared automatically by a counter  
overflow or a compare match with one of its associated  
C
C
R
P
C
o
m
p
a
r
a
t
o
r
P
M
a
t
c
h
3
o
r
8
-
b
i
t
C
o
m
p
a
r
a
t
o
r
P
T
n
P
F
I
n
t
e
r
r
u
p
t
b
7
~
b
9
o
r
b
8
~
b
1
5
T
n
O
C
f
S
Y
S
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
f
S
Y
S
f
H
H
/
1
6
T
T
P
P
n
n
O
u
t
p
u
P
t
o
l
a
r
i
T
t
P
y
n
P
i
n
f
/
6
4
0
1
C
o
u
n
t
e
r
C
l
e
a
r
C
o n  
r
t
r
o
C
l
o
n
t
r
I
o
n
l
p
u
t
/
O
u
t
p
1
0
o
r
1
6
-
b
i
t
C
o
u
n
t
-
u
p
C
o
u
n
t
e
f
T
B
C
R
e
s
e
r
v
e
d
T
n
C
C
L
R
T
n
P
O
0
L
T
n
M
1
,
T
n
M
T
n
O
N
b
0
~
b
9
o
r
T
C
K
n
1
1
1
T
n
I
O
1
,
T
n
I
O
0
b
0
~
b
1
5
T
n
P
A
U
C
o
m
p
t
a
r
a
t
o
r
A
M
a
t
c
h
1
0
o
r
1
6
-
b
i
T
n
A
F
I
n
t
e
r
r
u
p
t
C
o
m
p
a
r
a
t
o
r
A
T
n
I
O
1
,
T
n
I
O
0
T
n
C
K
2
~
T
n
C
K
0
C
C
R
A
E
d
g
e
D
e
t
e
c
t
o
r
Standard Type TM Block Diagram  
Rev. 1.60  
104  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Name  
TM1C0  
TM1C1  
TM1DL  
TM1DH  
TM1AL  
TM1AH  
Bit7  
T1PAU  
T1M1  
D7  
Bit6  
T1CK2  
T1M0  
D6  
Bit5  
T1CK1  
T1IO1  
D5  
Bit4  
T1CK0  
T1IO0  
D4  
Bit3  
T1ON  
T1OC  
D3  
Bit2  
T1RP2  
T1POL  
D2  
Bit1  
T1RP1  
T1DPX  
D1  
Bit0  
T1RP0  
T1CCLR  
D0  
D9  
D8  
¾
¾
¾
¾
¾
¾
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D9  
D8  
¾
¾
¾
¾
¾
¾
10-bit Standard TM Register List (for HT66F20)  
Name  
TM2C0  
TM2C1  
TM2DL  
TM2DH  
TM2AL  
TM2AH  
TM2RP  
Bit7  
T2PAU  
T2M1  
D7  
Bit6  
T2CK2  
T2M0  
D6  
Bit5  
T2CK1  
T2IO1  
D5  
Bit4  
T2CK0  
T2IO0  
D4  
Bit3  
T2ON  
T2OC  
D3  
Bit2  
¾
Bit1  
¾
Bit0  
¾
T2POL  
D2  
T2DPX  
D1  
T2CCLR  
D0  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D8  
D1  
D0  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D8  
D1  
D0  
16-bit Standard TM Register List (for HT66F40/HT66F50/HT66F60)  
·
10-bit Standard TM Register List - HT66F20  
¨
TM1C0 Register - 10-bit STM  
Bit  
Name  
R/W  
7
T1PAU  
R/W  
0
6
T1CK2  
R/W  
0
5
T1CK1  
R/W  
0
4
T1CK0  
R/W  
0
3
T1ON  
R/W  
0
2
T1RP2  
R/W  
0
1
T1RP1  
R/W  
0
0
T1RP0  
R/W  
0
POR  
Bit 7  
T1PAU: TM1 Counter Pause Control  
0: run  
1: pause  
The counter can be paused by setting this bit high. Clearing the bit to zero restores normal  
counter operation. When in a Pause condition the TM will remain powered up and continue to  
consume power. The counter will retain its residual value when this bit changes from low to high  
and resume counting from this value when the bit changes to a low value again.  
Bit 6~4  
T1CK2~T1CK0: Select TM1 Counter clock  
000: fSYS/4  
001: fSYS  
010: fH/16  
011: fH/64  
100: fTBC  
101: undefined  
110: TCK1 rising edge clock  
111: TCK1 falling edge clock  
These three bits are used to select the clock source for the TM. Selecting the Reserved clock  
input will effectively disable the internal counter. The external pin clock source can be chosen to  
be active on the rising or falling edge. The clock source fSYS is the system clock, while fH and  
f
TBC are other internal clocks, the details of which can be found in the oscillator section.  
Rev. 1.60  
105  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Bit 3  
T1ON: TM1 Counter On/Off Control  
0: Off  
1: On  
This bit controls the overall on/off function of the TM. Setting the bit high enables the counter to  
run, clearing the bit disables the TM. Clearing this bit to zero will stop the counter from counting  
and turn off the TM which will reduce its power consumption. When the bit changes state from  
low to high the internal counter value will be reset to zero, however when the bit changes from  
high to low, the internal counter will retain its residual value until the bit returns high again.  
If the TM is in the Compare Match Output Mode then the TM output pin will be reset to its initial  
condition, as specified by the T1OC bit, when the T1ON bit changes from low to high.  
Bit 2~0  
T1RP2~T1RP0: TM1 CCRP 3-bit register, compared with the TM1 Counter bit 9~bit 7  
Comparator P Match Period  
000: 1024 TM1 clocks  
001: 128 TM1 clocks  
010: 256 TM1 clocks  
011: 384 TM1 clocks  
100: 512 TM1 clocks  
101: 640 TM1 clocks  
110: 768 TM1 clocks  
111: 896 TM1 clocks  
These three bits are used to setup the value on the internal CCRP 3-bit register, which are then  
compared with the internal counter's highest three bits. The result of this comparison can be  
selected to clear the internal counter if the T1CCLR bit is set to zero. Setting the T1CCLR bit to  
zero ensures that a compare match with the CCRP values will reset the internal counter. As the  
CCRP bits are only compared with the highest three counter bits, the compare values exist in 128  
clock cycle multiples. Clearing all three bits to zero is in effect allowing the counter to overflow at  
its maximum value.  
¨
TM1C1 Register - 10-bit STM  
Bit  
Name  
R/W  
7
T1M1  
R/W  
0
6
T1M0  
R/W  
0
5
T1IO1  
R/W  
0
4
T1IO0  
R/W  
0
3
T1OC  
R/W  
0
2
T1POL  
R/W  
0
1
T1DPX  
R/W  
0
0
T1CCLR  
R/W  
POR  
0
Bit 7~6  
T1M1~T1M0: Select TM1 Operating Mode  
00: Compare Match Output Mode  
01: Capture Input Mode  
10: PWM Mode or Single Pulse Output Mode  
11: Timer/Counter Mode  
These bits setup the required operating mode for the TM. To ensure reliable operation the TM  
should be switched off before any changes are made to the T1M1 and T1M0 bits. In the  
Timer/Counter Mode, the TM output pin control must be disabled.  
Bit 5~4  
T1IO1~T1IO0: Select TP1_0, TP1_1 output function  
Compare Match Output Mode  
00: No change  
01: Output low  
10: Output high  
11: Toggle output  
PWM Mode/Single Pulse Output Mode  
00: PWM output inactive state  
01: PWM output active state  
10: PWM output  
11: Single pulse output  
Capture Input Mode  
00: Input capture at rising edge of TP1_0, TP1_1  
01: Input capture at falling edge of TP1_0, TP1_1  
10: Input capture at falling/rising edge of TP1_0, TP1_1  
11: Input capture disabled  
Timer/counter Mode:  
Unused  
Rev. 1.60  
106  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
These two bits are used to determine how the TM output pin changes state when a certain  
condition is reached. The function that these bits select depends upon in which mode the TM is  
running.  
In the Compare Match Output Mode, the T1IO1 and T1IO0 bits determine how the TM output  
pin changes state when a compare match occurs from the Comparator A. The TM output pin can  
be setup to switch high, switch low or to toggle its present state when a compare match occurs  
from the Comparator A. When the bits are both zero, then no change will take place on the  
output. The initial value of the TM output pin should be setup using the T1OC bit in the TM1C1  
register. Note that the output level requested by the T1IO1 and T1IO0 bits must be different from  
the initial value setup using the T1OC bit otherwise no change will occur on the TM output pin  
when a compare match occurs. After the TM output pin changes state it can be reset to its initial  
level by changing the level of the T1ON bit from low to high.  
In the PWM Mode, the T1IO1 and T1IO0 bits determine how the TM output pin changes state  
when a certain compare match condition occurs. The PWM output function is modified by  
changing these two bits. It is necessary to change the values of the T1IO1 and T1IO0 bits only  
after the TM has been switched off. Unpredictable PWM outputs will occur if the T1IO1 and  
T1IO0 bits are changed when the TM is running  
Bit 3  
T1OC: TP1_0, TP1_1 Output control bit  
Compare Match Output Mode  
0: initial low  
1: initial high  
PWM Mode/ Single Pulse Output Mode  
0: Active low  
1: Active high  
This is the output control bit for the TM output pin. Its operation depends upon whether TM is  
being used in the Compare Match Output Mode or in the PWM Mode/ Single Pulse Output Mode.  
It has no effect if the TM is in the Timer/Counter Mode. In the Compare Match Output Mode it  
determines the logic level of the TM output pin before a compare match occurs. In the PWM  
Mode it determines if the PWM signal is active high or active low.  
Bit 2  
T1POL: TP1_0, TP1_1 Output polarity Control  
0: non-invert  
1: invert  
This bit controls the polarity of the TP1_0 or TP1_1 output pin. When the bit is set high the TM  
output pin will be inverted and not inverted when the bit is zero. It has no effect if the TM is in the  
Timer/Counter Mode.  
Bit 1  
Bit 0  
T1DPX: TM1 PWM period/duty Control  
0: CCRP - period; CCRA - duty  
1: CCRP - duty; CCRA - period  
This bit, determines which of the CCRA and CCRP registers are used for period and duty  
control of the PWM waveform.  
T1CCLR: Select TM1 Counter clear condition  
0: TM1 Comparatror P match  
1: TM1 Comparatror A match  
This bit is used to select the method which clears the counter. Remember that the Standard  
TM contains two comparators, Comparator A and Comparator P, either of which can be selected  
to clear the internal counter. With the T1CCLR bit set high, the counter will be cleared when a  
compare match occurs from the Comparator A. When the bit is low, the counter will be cleared  
when a compare match occurs from the Comparator P or with a counter overflow. A counter  
overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The  
T1CCLR bit is not used in the PWM, Single Pulse or Input Capture Mode.  
Rev. 1.60  
107  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
TM1DL Register - 10-bit STM  
Bit  
Name  
R/W  
7
D7  
R
6
D6  
R
5
D5  
R
4
D4  
R
3
D3  
R
2
D2  
R
1
D1  
R
0
D0  
R
POR  
0
0
0
0
0
0
0
0
Bit 7~0  
TM1DL: TM1 Counter Low Byte Register bit 7~bit 0  
TM1 10-bit Counter bit 7~bit 0  
¨
TM1DH Register - 10-bit STM  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D9  
R
0
D8  
R
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
0
0
Bit 7~2  
Bit 1~0  
Unimplemented, read as ²0²  
TM1DH: TM1 Counter High Byte Register bit 1~bit 0  
TM1 10-bit Counter bit 9~bit 8  
¨
TM1AL Register - 10-bit STM  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
Bit 7~0  
TM1AL: TM1 CCRA Low Byte Register bit 7~bit 0  
TM1 10-bit CCRA bit 7~bit 0  
¨
TM1AH Register - 10-bit STM  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D9  
R/W  
0
0
D8  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~2  
Bit 1~0  
Unimplemented, read as ²0²  
TM1AH: TM1 CCRA High Byte Register bit 1~bit 0  
TM1 10-bit CCRA bit 9~bit 8  
Rev. 1.60  
108  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
16-bit Standard TM Register List - HT66F40/HT66F50/HT66F60  
¨
TM2C0 Register - 16-bit STM  
Bit  
Name  
R/W  
7
T2PAU  
R/W  
0
6
T2CK2  
R/W  
0
5
T2CK1  
R/W  
0
4
T2CK0  
R/W  
0
3
T2ON  
R/W  
0
2
1
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7  
T2PAU: TM2 Counter Pause Control  
0: Run  
1: Pause  
The counter can be paused by setting this bit high. Clearing the bit to zero restores normal  
counter operation. When in a Pause condition the TM will remain powered up and continue to  
consume power. The counter will retain its residual value when this bit changes from low to high  
and resume counting from this value when the bit changes to a low value again.  
Bit 6~4  
T2CK2, T2CK1, T2CK0: Select TM2 Counter clock  
000: fSYS/4  
001: fSYS  
010: fH/16  
011: fH/64  
100: fTBC  
101: undefined  
110: TCK2 rising edge clock  
111: TCK2 falling edge clock  
These three bits are used to select the clock source for the TM. Selecting the Reserved clock  
input will effectively disable the internal counter. The external pin clock source can be chosen to  
be active on the rising or falling edge. The clock source fSYS is the system clock, while fH and  
f
TBC are other internal clocks, the details of which can be found in the oscillator section.  
Bit 3  
T2ON: TM2 Counter On/Off Control  
0: Off  
1: On  
This bit controls the overall on/off function of the TM. Setting the bit high enables the counter to  
run, clearing the bit disables the TM. Clearing this bit to zero will stop the counter from counting  
and turn off the TM which will reduce its power consumption. When the bit changes state from  
low to high the internal counter value will be reset to zero, however when the bit changes from  
high to low, the internal counter will retain its residual value until the bit returns high again.  
If the TM is in the Compare Match Output Mode then the TM output pin will be reset to its initial  
condition, as specified by the T2OC bit, when the T2ON bit changes from low to high.  
Bit 2~0  
Unimplemented, read as ²0²  
Rev. 1.60  
109  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
TM2C1 Register - 16-bit STM  
Bit  
Name  
R/W  
7
T2M1  
R/W  
0
6
T2M0  
R/W  
0
5
T2IO1  
R/W  
0
4
T2IO0  
R/W  
0
3
T2OC  
R/W  
0
2
T2POL  
R/W  
0
1
T2DPX  
R/W  
0
0
T2CCLR  
R/W  
POR  
0
Bit 7~6  
T2M1~T2M0: Select TM2 Operating Mode  
00: Compare Match Output Mode  
01: Capture Input Mode  
10: PWM Mode or Single Pulse Output Mode  
11: Timer/Counter Mode  
These bits setup the required operating mode for the TM. To ensure reliable operation the TM  
should be switched off before any changes are made to the T2M1 and T2M0 bits. In the  
Timer/Counter Mode, the TM output pin control must be disabled.  
Bit 5~4  
T2IO1~T2IO0: Select TP2_0, TP2_1 output function  
Compare Match Output Mode  
00: No change  
01: Output low  
10: Output high  
11: Toggle output  
PWM Mode/ Single Pulse Output Mode  
00: PWM output inactive state  
01: PWM output active state  
10: PWM output  
11: Single pulse output  
Capture Input Mode  
00: Input capture at rising edge of TP2_0, TP2_1  
01: Input capture at falling edge of TP2_0, TP2_1  
10: Input capture at falling/rising edge of TP2_0, TP2_1  
11: Input capture disabled  
Timer/counter Mode:  
Unused  
These two bits are used to determine how the TM output pin changes state when a certain  
condition is reached. The function that these bits select depends upon in which mode the TM  
is running.  
In the Compare Match Output Mode, the T2IO1 and T2IO0 bits determine how the TM output  
pin changes state when a compare match occurs from the Comparator A. The TM output pin can  
be setup to switch high, switch low or to toggle its present state when a compare match occurs  
from the Comparator A. When the bits are both zero, then no change will take place on the  
output. The initial value of the TM output pin should be setup using the T2OC bit in the TM2C1  
register. Note that the output level requested by the T2IO1 and T2IO0 bits must be different from  
the initial value setup using the T2OC bit otherwise no change will occur on the TM output pin  
when a compare match occurs. After the TM output pin changes state it can be reset to its initial  
level by changing the level of the T2ON bit from low to high.  
In the PWM Mode, the T2IO1 and T2IO0 bits determine how the TM output pin changes state  
when a certain compare match condition occurs. The PWM output function is modified by  
changing these two bits. It is necessary to change the values of the T2IO1 and T2IO0 bits only  
after the TM has been switched off. Unpredictable PWM outputs will occur if the T2IO1 and  
T2IO0 bits are changed when the TM is running  
Bit 3  
T2OC: TP2_0, TP2_1 Output control bit  
Compare Match Output Mode  
0: Initial low  
1: Initial high  
PWM Mode/ Single Pulse Output Mode  
0: Active low  
1: Active high  
Rev. 1.60  
110  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
This is the output control bit for the TM output pin. Its operation depends upon whether TM is  
being used in the Compare Match Output Mode or in the PWM Mode/ Single Pulse Output Mode.  
It has no effect if the TM is in the Timer/Counter Mode. In the Compare Match Output Mode it  
determines the logic level of the TM output pin before a compare match occurs. In the PWM  
Mode it determines if the PWM signal is active high or active low.  
Bit 2  
T2POL: TP2_0, TP2_1 Output polarity Control  
0: Non-invert  
1: Invert  
This bit controls the polarity of the TP2_0 or TP2_1 output pin. When the bit is set high the TM  
output pin will be inverted and not inverted when the bit is zero. It has no effect if the TM is in the  
Timer/Counter Mode.  
Bit 1  
Bit 0  
T2DPX: TM2 PWM period/duty Control  
0: CCRP - period; CCRA - duty  
1: CCRP - duty; CCRA - period  
This bit, determines which of the CCRA and CCRP registers are used for period and duty  
control of the PWM waveform.  
T2CCLR: Select TM2 Counter clear condition  
0: TM2 Comparator P match  
1: TM2 Comparator A match  
This bit is used to select the method which clears the counter. Remember that the Standard  
TM contains two comparators, Comparator A and Comparator P, either of which can be selected  
to clear the internal counter. With the T2CCLR bit set high, the counter will be cleared when a  
compare match occurs from the Comparator A. When the bit is low, the counter will be cleared  
when a compare match occurs from the Comparator P or with a counter overflow. A counter  
overflow clearing method can only be implemented if the CCRP bits are all cleared to zero.  
The T1CCLR bit is not used in the PWM, Single Pulse or Input Capture Mode.  
¨
TM2DL Register - 16-bit STM  
Bit  
Name  
R/W  
7
D7  
R
6
D6  
R
5
D5  
R
4
D4  
R
3
D3  
R
2
D2  
R
1
D1  
R
0
D0  
R
POR  
0
0
0
0
0
0
0
0
Bit 7~0  
TM2DL: TM2 Counter Low Byte Register bit 7~bit 0  
TM2 16-bit Counter bit 7~bit 0  
¨
TM2DH Register - 16-bit STM  
Bit  
Name  
R/W  
7
D15  
R
6
D14  
R
5
D13  
R
4
D12  
R
3
D11  
R
2
D10  
R
1
D9  
R
0
D8  
R
POR  
0
0
0
0
0
0
0
0
Bit 7~0  
TM2DH: TM2 Counter High Byte Register bit 7~bit 0  
TM2 16-bit Counter bit 15~bit 8  
¨
TM2AL Register - 16-bit STM  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
Bit 7~0  
TM2AL: TM2 CCRA Low Byte Register bit 7~bit 0  
TM2 16-bit CCRA bit 7~bit 0  
Rev. 1.60  
111  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
TM2AH Register - 16-bit STM  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D9  
R/W  
0
0
D8  
R/W  
0
D15  
R/W  
0
D14  
R/W  
0
D13  
R/W  
0
D12  
R/W  
0
D11  
R/W  
0
D10  
R/W  
0
POR  
Bit 7~0  
TM2AH: TM2 CCRA High Byte Register bit 7~bit 0  
TM2 16-bit CCRA bit 15~bit 8  
¨
TM2RP Register - 16-bit STM  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
Bit 7~0  
TM2RP: TM2 CCRP Register bit 7 ~ bit 0  
TM2 CCRP 8-bit register, compared with the TM2 Counter bit 15 ~ bit 8. Comparator P Match  
Period  
0: 65536 TM2 clocks  
1~255: 256 x (1~255) TM2 clocks  
These eight bits are used to setup the value on the internal CCRP 8-bit register, which are then  
compared with the internal counter's highest eight bits. The result of this comparison can be  
selected to clear the internal counter if the T2CCLR bit is set to zero. Setting the T2CCLR bit to  
zero ensures that a compare match with the CCRP values will reset the internal counter. As the  
CCRP bits are only compared with the highest eight counter bits, the compare values exist in 256  
clock cycle multiples. Clearing all eight bits to zero is in effect allowing the counter to overflow at  
its maximum value.  
Standard Type TM Operating Modes  
from Comparator A. However, here only the TnAF inter-  
rupt request flag will be generated even if the value of  
the CCRP bits is less than that of the CCRA registers.  
Therefore when TnCCLR is high no TnPF interrupt re-  
quest flag will be generated. In the Compare Match Out-  
put Mode, the CCRA can not be set to ²0².  
The Standard Type TM can operate in one of five oper-  
ating modes, Compare Match Output Mode, PWM Out-  
put Mode, Single Pulse Output Mode, Capture Input  
Mode or Timer/Counter Mode. The operating mode is  
selected using the TnM1 and TnM0 bits in the TMnC1  
register.  
As the name of the mode suggests, after a comparison  
is made, the TM output pin, will change state. The TM  
output pin condition however only changes state when  
an TnAF interrupt request flag is generated after a com-  
pare match occurs from Comparator A. The TnPF inter-  
rupt request flag, generated from a compare match  
occurs from Comparator P, will have no effect on the TM  
output pin. The way in which the TM output pin changes  
state are determined by the condition of the TnIO1 and  
TnIO0 bits in the TMnC1 register. The TM output pin can  
be selected using the TnIO1 and TnIO0 bits to go high,  
to go low or to toggle from its present condition when a  
compare match occurs from Comparator A. The initial  
condition of the TM output pin, which is setup after the  
TnON bit changes from low to high, is setup using the  
TnOC bit. Note that if the TnIO1 and TnIO0 bits are zero  
then no pin change will take place.  
Compare Output Mode  
To select this mode, bits TnM1 and TnM0 in the TMnC1  
register, should be set to 00 respectively. In this mode  
once the counter is enabled and running it can be  
cleared by three methods. These are a counter over-  
flow, a compare match from Comparator A and a com-  
pare match from Comparator P. When the TnCCLR bit is  
low, there are two ways in which the counter can be  
cleared. One is when a compare match from Compara-  
tor P, the other is when the CCRP bits are all zero which  
allows the counter to overflow. Here both TnAF and  
TnPF interrupt request flags for Comparator Aand Com-  
parator P respectively, will both be generated.  
If the TnCCLR bit in the TMnC1 register is high then the  
counter will be cleared when a compare match occurs  
Rev. 1.60  
112  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter overflow  
Counter Value  
TnCCLR = 0; TnM [1:0] = 00  
CCRP > 0  
Counter cleared by CCRP value  
CCRP=0  
0x3FF  
CCRP > 0  
Counter  
Restart  
Resume  
Pause  
CCRP  
CCRA  
Stop  
Time  
TnON  
TnPAU  
TnPOL  
CCRP Int.  
Flag TnPF  
CCRA Int.  
Flag TnAF  
TM O/P Pin  
Output not affected by TnAF  
flag. Remains High until reset  
by TnON bit  
Output Inverts  
when TnPOL is high  
Output pin set to  
initial Level Low  
if TnOC=0  
Output Toggle with  
TnAF flag  
Output Pin  
Reset to Initial value  
Note TnIO [1:0] = 10  
Active High Output select  
Here TnIO [1:0] = 11  
Toggle Output select  
Output controlled by  
other pin-shared function  
Compare Match Output Mode -- TnCCLR = 0  
Note: 1. With TnCCLR=0 a Comparator P match will clear the counter  
2. The TM output pin is controlled only by the TnAF flag  
3. The output pin is reset to itsinitial state by a TnON bit rising edge  
Rev. 1.60  
113  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter Value  
TnCCLR = 1; TnM [1:0] = 00  
CCRA = 0  
CCRA > 0 Counter cleared by CCRA value  
Counter overflow  
0x3FF  
CCRA  
CCRP  
CCRA=0  
Resume  
Pause  
Stop  
Counter Restart  
Time  
TnON  
TnPAU  
TnPOL  
No TnAF flag  
generated on  
CCRA overflow  
CCRA Int.  
Flag TnAF  
CCRP Int.  
Flag TnPF  
TnPF not  
generated  
Output does  
not change  
TM O/P Pin  
Output not affected by  
TnAF flag. Remains High  
until reset by TnON bit  
Output Inverts  
when TnPOL is high  
Output Toggle with  
TnAF flag  
Output pin set to  
initial Level Low  
if TnOC=0  
Output Pin  
Reset to Initial value  
Output controlled by  
other pin-shared function  
Note TnIO [1:0] = 10  
Active High Output select  
Here TnIO [1:0] = 11  
Toggle Output select  
Compare Match Output Mode -- TnCCLR = 1  
Note: 1. With TnCCLR=1 a Comparator A match will clear the counter  
2. The TM output pin is controlled only by the TnAF flag  
3. The output pin is reset to its initial state by a TnON bit rising edge  
4. A TnPF flag is not generated when TnCCLR=1  
Rev. 1.60  
114  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Timer/Counter Mode  
As both the period and duty cycle of the PWM waveform  
can be controlled, the choice of generated waveform is  
To select this mode, bits TnM1 and TnM0 in the TMnC1  
register should be set to 11 respectively. The  
Timer/Counter Mode operates in an identical way to the  
Compare Match Output Mode generating the same in-  
terrupt flags. The exception is that in the Timer/Counter  
Mode the TM output pin is not used. Therefore the  
above description and Timing Diagrams for the Com-  
pare Match Output Mode can be used to understand its  
function. As the TM output pin is not used in this mode,  
the pin can be used as a normal I/O pin or other  
pin-shared function.  
extremely flexible. In the PWM mode, the TnCCLR bit  
has no effect as the PWM period. Both of the CCRA and  
CCRP registers are used to generate the PWM wave-  
form, one register is used to clear the internal counter  
and thus control the PWM waveform frequency, while  
the other one is used to control the duty cycle. Which  
register is used to control either frequency or duty cycle  
is determined using the TnDPX bit in the TMnC1 regis-  
ter. The PWM waveform frequency and duty cycle can  
therefore be controlled by the values in the CCRA and  
CCRP registers.  
PWM Output Mode  
An interrupt flag, one for each of the CCRA and CCRP,  
will be generated when a compare match occurs from  
either Comparator A or Comparator P. The TnOC bit in  
the TMnC1 register is used to select the required polar-  
ity of the PWM waveform while the two TnIO1 and  
TnIO0 bits are used to enable the PWM output or to  
force the TM output pin to a fixed high or low level. The  
TnPOL bit is used to reverse the polarity of the PWM  
output waveform.  
To select this mode, bits TnM1 and TnM0 in the TMnC1  
register should be set to 10 respectively and also the  
TnIO1 and TnIO0 bits should be set to 10 respectively.  
The PWM function within the TM is useful for applica-  
tions which require functions such as motor control,  
heating control, illumination control etc. By providing a  
signal of fixed frequency but of varying duty cycle on the  
TM output pin, a square wave AC waveform can be gen-  
erated with varying equivalent DC RMS values.  
·
10-bit STM, PWM Mode, Edge-aligned Mode, TnDPX=0  
CCRP  
Period  
Duty  
001b  
128  
010b  
256  
011b  
384  
100b  
512  
101b  
640  
110b  
768  
111b  
896  
000b  
1024  
CCRA  
If fSYS = 16MHz, TM clock source is fSYS/4, CCRP = 100b and CCRA =128,  
The STM PWM output frequency = (fSYS/4) / 512 = fSYS/2048 = 7.8125 kHz, duty = 128/512 = 25%.  
If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty  
is 100%.  
·
10-bit STM, PWM Mode, Edge-aligned Mode, TnDPX=1  
CCRP  
Period  
Duty  
001b  
010b  
011b  
100b  
101b  
640  
110b  
768  
111b  
896  
000b  
1024  
CCRA  
128  
256  
384  
512  
The PWM output period is determined by the CCRA register value together with the TM clock while the PWM duty cy-  
cle is defined by the CCRP register value.  
Rev. 1.60  
115  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
16-bit STM, PWM Mode, Edge-aligned Mode, TnDPX=0  
CCRP  
Period  
Duty  
1~255  
0
65536  
CCRP ´ 256  
CCRA  
If fSYS = 16MHz, TM clock source is fSYS/4, CCRP = 2 and CCRA =128,  
The STM PWM output frequency = (fSYS/4) / (2´256) = fSYS/2048 = 7.8125 kHz, duty = 128 / (2´256) = 25%.  
If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty  
is 100%.  
·
16-bit STM, PWM Mode, Edge-aligned Mode, TnDPX=1  
CCRP  
Period  
Duty  
1~255  
0
CCRA  
65536  
CCRP ´ 256  
The PWM output period is determined by the CCRA register value together with the TM clock while the PWM duty cy-  
cle is defined by the (CCRP x 256) except when the CCRP value is equal to 0.  
Counter Value  
TnDPX = 0; TnM [1:0] = 10  
Counter cleared  
by CCRP  
Counter Reset when  
TnON returns high  
CCRP  
Counter Stop if  
TnON bit low  
Pause  
Resume  
CCRA  
Time  
TnON  
TnPAU  
TnPOL  
CCRA Int.  
Flag TnAF  
CCRP Int.  
Flag TnPF  
TM O/P Pin  
(TnOC=1)  
TM O/P Pin  
(TnOC=0)  
PWM Duty Cycle  
set by CCRA  
PWM resumes  
operation  
Output controlled by  
other pin-shared function  
Output Inverts  
when TnPOL = 1  
PWM Period  
set by CCRP  
PWM Mode -- TnDPX = 0  
Note: 1. Here TnDPX=0 -- Counter cleared by CCRP  
2. A counter clear sets the PWM Period  
3. The internal PWM function continues running even when TnIO [1:0] = 00 or 01  
4. The TnCCLR bit has no influence on PWM operation  
Rev. 1.60  
116  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter Value  
TnDPX = 1; TnM [1:0] = 10  
Counter cleared  
by CCRA  
Counter Reset when  
TnON returns high  
CCRA  
CCRP  
Counter Stop if  
TnON bit low  
Pause  
Resume  
Time  
TnON  
TnPAU  
TnPOL  
CCRP Int.  
Flag TnPF  
CCRA Int.  
Flag TnAF  
TM O/P Pin  
(TnOC=1)  
TM O/P Pin  
(TnOC=0)  
PWM resumes  
operation  
PWM Duty Cycle  
set by CCRP  
Output controlled by  
other pin-shared function  
Output Inverts  
when TnPOL = 1  
PWM Period  
set by CCRA  
PWM Mode -- TnDPX = 1  
Note: 1. Here TnDPX=1 -- Counter cleared by CCRA  
2. A counter clear sets the PWM Period  
3. The internal PWM function continues even when TnIO [1:0] = 00 or 01  
4. The TnCCLR bit has no influence on PWM operation  
Rev. 1.60  
117  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Single Pulse Mode  
automatically change from low to high using the external  
TCKn pin, which will in turn initiate the Single Pulse out-  
To select this mode, bits TnM1 and TnM0 in the TMnC1  
register should be set to 10 respectively and also the  
TnIO1 and TnIO0 bits should be set to 11 respectively.  
The Single Pulse Output Mode, as the name suggests,  
will generate a single shot pulse on the TM output pin.  
put. When the TnON bit transitions to a high level, the  
counter will start running and the pulse leading edge will  
be generated. The TnON bit should remain high when  
the pulse is in its active state. The generated pulse trail-  
ing edge will be generated when the TnON bit is cleared  
to zero, which can be implemented using the application  
program or when a compare match occurs from Com-  
parator A.  
The trigger for the pulse output leading edge is a low to  
high transition of the TnON bit, which can be imple-  
mented using the application program. However in the  
Single Pulse Mode, the TnON bit can also be made to  
L
e
a
d
i
n
g
E
d
g
e
T
r
a
i
l
i
n
g
E
d
g
e
S
/
W
C
o
m
m
a
n
d
S
/
W
C
o
m
m
a
n
d
S
E
T
"
T
n
O
N
"
C
L
C
R
"
T
n
O
N
"
T
n
O
N
b
i
t
T
n
O
N
b
o
i
r
t
o
r
0
®
1
1
®
0
T
C
K
n
P
i
n
T
r
a
n
s
i
t
i
o
n
C
R
A
M
a
t
c
h
C
o
T
M
n
O
u
t
p
u
t
P
i
n
P
u
l
s
e
W
i
d
t
h
=
C
C
R
A
V
a
l
u
e
Single Pulse Generation  
Counter Value  
TnM [1:0] = 10 ; TnIO [1:0] = 11  
Counter stopped  
by CCRA  
Counter Reset when  
TnON returns high  
CCRA  
CCRP  
Counter Stops  
by software  
Resume  
Pause  
Time  
TnON  
Auto. set by  
TCKn pin  
Software  
Trigger  
Cleared by  
CCRA match  
Software  
Trigger  
Software  
Clear  
Software  
Trigger  
Software  
Trigger  
TCKn pin  
TnPAU  
TCKn pin  
Trigger  
TnPOL  
No CCRP Interrupts  
generated  
CCRP Int.  
Flag TnPF  
CCRA Int.  
Flag TnAF  
TM O/P Pin  
(TnOC=1)  
TM O/P Pin  
(TnOC=0)  
Output Inverts  
when TnPOL = 1  
Pulse Width  
set by CCRA  
Single Pulse Mode  
Note: 1. Counter stopped by CCRA  
2. CCRP is not used  
3. The pulse is triggered by the TCKn pin or by setting the TnON bit high  
4. A TCKn pin active edge will automatically set the TnON bit high  
5. In the Single Pulse Mode, TnIO [1:0] must be set to ²11² and can not be changed.  
Rev. 1.60  
118  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
However a compare match from Comparator A will also  
be latched into the CCRA registers and a TM interrupt  
generated. Irrespective of what events occur on the  
TPn_0 or TPn_1 pin the counter will continue to free run  
until the TnON bit changes from high to low. When a  
CCRP compare match occurs the counter will reset  
back to zero; in this way the CCRP value can be used to  
control the maximum counter value. When a CCRP  
compare match occurs from Comparator P, a TM inter-  
rupt will also be generated. Counting the number of  
overflow interrupt signals from the CCRP can be a use-  
ful method in measuring long pulse widths. The TnIO1  
and TnIO0 bits can select the active trigger edge on the  
TPn_0 or TPn_1 pin to be a rising edge, falling edge or  
both edge types. If the TnIO1 and TnIO0 bits are both  
set high, then no capture operation will take place irre-  
spective of what happens on the TPn_0 or TPn_1 pin,  
however it must be noted that the counter will continue  
to run.  
automatically clear the TnON bit and thus generate the  
Single Pulse output trailing edge. In this way the CCRA  
value can be used to control the pulse width. A compare  
match from Comparator A will also generate a TM inter-  
rupt. The counter can only be reset back to zero when  
the TnON bit changes from low to high when the counter  
restarts. In the Single Pulse Mode CCRP is not used.  
The TnCCLR and TnDPX bits are not used in this Mode.  
Capture Input Mode  
To select this mode bits TnM1 and TnM0 in the TMnC1  
register should be set to 01 respectively. This mode en-  
ables external signals to capture and store the present  
value of the internal counter and can therefore be used  
for applications such as pulse width measurements.  
The external signal is supplied on the TPn_0 or TPn_1  
pin, whose active edge can be either a rising edge, a  
falling edge or both rising and falling edges; the active  
edge transition type is selected using the TnIO1 and  
TnIO0 bits in the TMnC1 register. The counter is started  
when the TnON bit changes from low to high which is ini-  
tiated using the application program.  
As the TPn_0 or TPn_1 pin is pin shared with other func-  
tions, care must be taken if the TM is in the Input Cap-  
ture Mode. This is because if the pin is setup as an  
output, then any transitions on this pin may cause an in-  
put capture operation to be executed. The TnCCLR and  
TnDPX bits are not used in this Mode.  
When the required edge transition appears on the  
TPn_0 or TPn_1 pin the present value in the counter will  
Counter Value  
TnM [1:0] = 01  
Counter cleared  
by CCRP  
Counter Counter  
Stop Reset  
CCRP  
YY  
Resume  
Pause  
XX  
Time  
TnON  
TnPAU  
Active  
edge  
Active  
edge  
Active edge  
TM capture  
pin TPn_x  
CCRA Int.  
Flag TnAF  
CCRP Int.  
Flag TnPF  
CCRA  
Value  
XX  
YY  
XX  
YY  
TnIO [1:0]  
Value  
00  
Rising edge  
01  
Falling edge 10  
Both edges  
11  
Disable Capture  
Capture Input Mode  
Note: 1.. TnM [1:0] = 01 and active edge set by the TnIO [1:0] bits  
2. A TM Capture input pin active edge transfers the counter value to CCRA  
3. TnCCLR bit not used  
4. No output function -- TnOC and TnPOL bits are not used  
5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to  
zero.  
Rev. 1.60  
119  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Enhanced Type TM - ETM  
The Enhanced Type TM contains five operating modes, which are Compare Match Output, Timer/Event Counter, Cap-  
ture Input, Single Pulse Output and PWM Output modes. The Enhanced TM can also be controlled with an external in-  
put pin and can drive three or four external output pins.  
CTM  
Name  
¾
TM No.  
TM Input Pin  
¾
TM Output Pin  
¾
HT66F20  
HT66F30  
HT66F40  
HT66F50  
HT66F60  
¾
1
10-bit ETM  
10-bit ETM  
10-bit ETM  
10-bit ETM  
TCK1  
TP1A; TP1B_0, TP1B_1  
TP1A, TP1B_0, TP1B_1, TP1B_2  
TP1A, TP1B_0, TP1B_1, TP1B_2  
TP1A, TP1B_0, TP1B_1, TP1B_2  
1
TCK1  
1
TCK1  
1
TCK1  
Enhanced TM Operation  
The only way of changing the value of the 10-bit counter  
using the application program, is to clear the counter by  
changing the TnON bit from low to high. The counter will  
also be cleared automatically by a counter overflow or a  
compare match with one of its associated comparators.  
When these conditions occur, a TM interrupt signal will  
also usually be generated. The Enhanced Type TM can  
operate in a number of different operational modes, can  
be driven by different clock sources including an input  
pin and can also control output pins. All operating setup  
conditions are selected using relevant internal registers.  
At its core is a 10-bit count-up/count-down counter  
which is driven by a user selectable internal or external  
clock source. There are three internal comparators with  
the names, Comparator A, Comparator B and Com-  
parator P. These comparators will compare the value in  
the counter with the CCRA, CCRB and CCRP registers.  
The CCRP comparator is 3-bits wide whose value is  
compared with the highest 3-bits in the counter while  
CCRA and CCRB are 10-bits wide and therefore com-  
pared with all counter bits.  
C
C
R
P
C
o
m
p
a
r
a
t
o
r
P
M
a
t
c
h
3
-
b
i
t
C
o
m
p
a
r
a
t
o
r
P
T
n
P
F
I
n
t
e
r
r
u
p
t
b
7
~
b
9
T
n
A
O
C
f
S
Y
S
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
f
S
Y
S
f
H
H
/
1
6
C
o
l
u
n
t
e
r
O
u
t
p
u
P
t
o
l
a
r
T
i
t
P
y
n
A
P
i
n
f
/
6
4
T
P
n
0
1
C
e
a
r
C
o
n
t
r
o
C
l
o
n
t
r
I
o
n
l
p
u
t
/
O
u
t
p
1
0
-
b
i
t
U
p
/
D
o
w
n
C
o
u
n
t
e
r
f
T
B
C
R
e
s
e
r
v
e
d
T
n
A
M
1
,
T
T
n
n
A
A
P
M
O
0
L
T
n
O
N
T
n
C
C
L
R
T
C
K
n
1
1
1
T
n
A
I
O
1
,
T
n
A
I
O
0
b
0
~
b
9
T
n
P
A
U
T
n
A
F
C
t
o
m
p
a
r
a
t
o
r
A
M
a
t
c
h
1
0
-
b
i
T
n
C
K
2
~
T
n
C
K
0
I
n
t
e
r
r
u
p
t
C
o
m
p
a
r
a
t
o
r
A
T
n
A
I
O
1
,
T
n
A
I
O
0
C
C
R
A
E
d
g
e
D
e
t
e
c
t
o
r
T
n
B
O
C
T
T
T
P
P
P
n
n
n
O
u
t
p
u
P
t
o
l
a
r
T
i
t
P
y
n
B
P
i
n
C
o
m
p
a
r
a
t
o
r
B
M
a
t
c
h
1
0
-
b
i
t
C
o
n
t
r
o
C
l
o
n
t
r
I
o
n
l
p
u
t
/
O
u
t
p
C
o
m
p
a
r
a
t
o
r
B
T
n
B
F
I
n
t
e
r
r
u
p
t
T
n
B
M
1
,
T
T
n
n
B
B
P
M
O
0
L
C
C
R
B
T
n
B
I
O
1
,
T
n
B
I
O
0
E
d
g
e
D
e
t
e
c
t
o
r
T
n
I
O
1
,
T
n
I
O
0
Enhanced Type TM Block Diagram  
Rev. 1.60  
120  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Enhanced Type TM Register Description  
Overall operation of the Enhanced TM is controlled using a series of registers. A read only register pair exists to store  
the internal counter 10-bit value, while two read/write register pairs exist to store the internal 10-bit CCRA and CCRB  
value. The remaining three registers are control registers which setup the different operating and control modes as well  
as the three CCRP bits.  
Name  
TM1C0  
TM1C1  
TM1C2  
TM1DL  
TM1DH  
TM1AL  
TM1AH  
TM1BL  
TM1BH  
Bit7  
T1PAU  
T1AM1  
T1BM1  
D7  
Bit6  
T1CK2  
T1AM0  
T1BM0  
D6  
Bit5  
T1CK1  
T1AIO1  
T1BIO1  
D5  
Bit4  
T1CK0  
T1AIO0  
T1BIO0  
D4  
Bit3  
T1ON  
T1AOC  
T1BOC  
D3  
Bit2  
T1RP2  
T1APOL  
T1BPOL  
D2  
Bit1  
T1RP1  
T1CDN  
T1PWM1  
D1  
Bit0  
T1RP0  
T1CCLR  
T1PWM0  
D0  
D9  
D8  
¾
¾
¾
¾
¾
¾
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D9  
D8  
¾
¾
¾
¾
¾
¾
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D9  
D8  
¾
¾
¾
¾
¾
¾
10-bit Enhanced TM Register List (if ETM is TM1)  
·
10-bit Enhanced TM Register List - HT66F30/HT66F40/HT66F50/HT66F60  
¨
TM1C0 Register - 10-bit ETM  
Bit  
Name  
R/W  
7
T1PAU  
R/W  
0
6
T1CK2  
R/W  
0
5
T1CK1  
R/W  
0
4
T1CK0  
R/W  
0
3
T1ON  
R/W  
0
2
T1RP2  
R/W  
0
1
T1RP1  
R/W  
0
0
T1RP0  
R/W  
0
POR  
Bit 7  
T1PAU: TM1 Counter Pause Control  
0: run  
1: pause  
The counter can be paused by setting this bit high. Clearing the bit to zero restores normal  
counter operation. When in a Pause condition the TM will remain powered up and continue to  
consume power. The counter will retain its residual value when this bit changes from low to high  
and resume counting from this value when the bit changes to a low value again.  
Bit 6~4  
T1CK2~T1CK0: Select TM1 Counter clock  
000: fSYS/4  
001: fSYS  
010: fH/16  
011: fH/64  
100: fTBC  
101: Undefined  
110: TCK1 rising edge clock  
111: TCK1 falling edge clock  
These three bits are used to select the clock source for the TM. Selecting the Reserved clock  
input will effectively disable the internal counter. The external pin clock source can be chosen to  
be active on the rising or falling edge. The clock source fSYS is the system clock, while fH and  
f
TBC are other internal clocks, the details of which can be found in the oscillator section.  
Bit 3  
T1ON: TM1 Counter On/Off Control  
0: Off  
1: On  
This bit controls the overall on/off function of the TM. Setting the bit high enables the counter to  
run, clearing the bit disables the TM. Clearing this bit to zero will stop the counter from counting  
and turn off the TM which will reduce its power consumption. When the bit changes state from  
low to high the internal counter value will be reset to zero, however when the bit changes from  
high to low, the internal counter will retain its residual value until the bit returns high again.  
Rev. 1.60  
121  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
If the TM is in the Compare Match Output Mode then the TM output pin will be reset to its initial  
condition, as specified by the T1OC bit, when the T1ON bit changes from low to high.  
Bit 2~0  
T1RP2~T1RP0: TM1 CCRP 3-bit register, compared with the TM1 Counter bit 9~bit 7  
Comparator P Match Period  
000: 1024 TM1 clocks  
001: 128 TM1 clocks  
010: 256 TM1 clocks  
011: 384 TM1 clocks  
100: 512 TM1 clocks  
101: 640 TM1 clocks  
110: 768 TM1 clocks  
111: 896 TM1 clocks  
These three bits are used to setup the value on the internal CCRP 3-bit register, which are then  
compared with the internal counter¢s highest three bits. The result of this comparison can be  
selected to clear the internal counter if the T1CCLR bit is set to zero. Setting the T1CCLR bit to  
zero ensures that a compare match with the CCRP values will reset the internal counter. As the  
CCRP bits are only compared with the highest three counter bits, the compare values exist in 128  
clock cycle multiples. Clearing all three bits to zero is in effect allowing the counter to overflow at  
its maximum value.  
¨
TM1C1 Register - 10-bit ETM  
Bit  
Name  
R/W  
7
T1AM1  
R/W  
0
6
T1AM0  
R/W  
0
5
T1AIO1  
R/W  
0
4
T1AIO0  
R/W  
0
3
T1AOC  
R/W  
0
2
T1APOL  
R/W  
0
1
0
T1CCLR  
R/W  
T1CDN  
R
0
POR  
0
Bit 7~6  
T1AM1~T1AM0: Select TM1 CCRA Operating Mode  
00: Compare Match Output Mode  
01: Capture Input Mode  
10: PWM Mode or Single Pulse Output Mode  
11: Timer/Counter Mode  
These bits setup the required operating mode for the TM. To ensure reliable operation the TM  
should be switched off before any changes are made to the T1AM1 and T1AM0 bits. In the  
Timer/Counter Mode, the TM output pin control must be disabled.  
Bit 5~4  
T1AIO1~T1AIO0: Select TP1A output function  
Compare Match Output Mode  
00: No change  
01: Output low  
10: Output high  
11: Toggle output  
PWM Mode/ Single Pulse Output Mode  
00: PWM output inactive state  
01: PWM output active state  
10: PWM output  
11: Single pulse output  
Capture Input Mode  
00: Input capture at rising edge of TP1A  
01: Input capture at falling edge of TP1A  
10: Input capture at falling/rising edge of TP1A  
11: Input capture disabled  
Timer/counter Mode  
Unused  
These two bits are used to determine how the TM output pin changes state when a certain  
condition is reached. The function that these bits select depends upon in which mode the TM is  
running.  
Rev. 1.60  
122  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
In the Compare Match Output Mode, the T1AIO1 and T1AIO0 bits determine how the TM  
output pin changes state when a compare match occurs from the Comparator A. The TM output  
pin can be setup to switch high, switch low or to toggle its present state when a compare match  
occurs from the Comparator A. When the bits are both zero, then no change will take place on  
the output. The initial value of the TM output pin should be setup using the T1AOC bit in the  
TM1C1 register. Note that the output level requested by the T1AIO1 and T1AIO0 bits must be  
different from the initial value setup using the T1AOC bit otherwise no change will occur on the  
TM output pin when a compare match occurs. After the TM output pin changes state it can be  
reset to its initial level by changing the level of the T1ON bit from low to high.  
In the PWM Mode, the T1AIO1 and T1AIO0 bits determine how the TM output pin changes state  
when a certain compare match condition occurs. The PWM output function is modified by  
changing these two bits. It is necessary to change the values of the T1AIO1 and T1AIO0 bits  
only after the TM has been switched off. Unpredictable PWM outputs will occur if the T1AIO1  
and T1AIO0 bits are changed when the TM is running  
Bit 3  
T1AOC: TP1A Output control bit  
Compare Match Output Mode  
0: Initial low  
1: Initial high  
PWM Mode/ Single Pulse Output Mode  
0: Active low  
1: Active high  
This is the output control bit for the TM output pin. Its operation depends upon whether TM is  
being used in the Compare Match Output Mode or in the PWM Mode/ Single Pulse Output Mode.  
It has no effect if the TM is in the Timer/Counter Mode. In the Compare Match Output Mode it  
determines the logic level of the TM output pin before a compare match occurs. In the PWM  
Mode it determines if the PWM signal is active high or active low.  
Bit 2  
T1APOL: TP1A Output polarity Control  
0: Non-invert  
1: Invert  
This bit controls the polarity of the TP1A output pin. When the bit is set high the TM output pin  
will be inverted and not inverted when the bit is zero. It has no effect if the TM is in the  
Timer/Counter Mode.  
Bit 1  
Bit 0  
T1CDN: TM1 Counter count up or down flag  
0: Count up  
1: Count down  
T1CCLR: Select TM1 Counter clear condition  
0: TM1 Comparator P match  
1: TM1 Comparator A match  
This bit is used to select the method which clears the counter. Remember that the Enhanced  
TM contains three comparators, Comparator A, Comparator B and Comparator P, but only  
Comparator A or Comparator Pan be selected to clear the internal counter. With the T1CCLR bit  
set high, the counter will be cleared when a compare match occurs from the Comparator A.  
When the bit is low, the counter will be cleared when a compare match occurs from the  
Comparator P or with a counter overflow. A counter overflow clearing method can only be  
implemented if the CCRP bits are all cleared to zero. The T1CCLR bit is not used in the  
Single Pulse or Input Capture Mode.  
Rev. 1.60  
123  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
TM1C2 Register - 10-bit ETM  
Bit  
Name  
R/W  
7
T1BM1  
R/W  
0
6
T1BM0  
R/W  
0
5
T1BIO1  
R/W  
0
4
T1BIO0  
R/W  
0
3
T1BOC  
R/W  
0
2
T1BPOL  
R/W  
0
1
0
T1PWM1 T1PWM0  
R
0
R/W  
0
POR  
Bit 7~6  
T1BM1~T1BM0: Select TM1 CCRB Operating Mode  
00: Compare Match Output Mode  
01: Capture Input Mode  
10: PWM Mode or Single Pulse Output Mode  
11: Timer/Counter mode  
These bits setup the required operating mode for the TM. To ensure reliable operation the TM  
should be switched off before any changes are made to the T1BM1 and T1BM0 bits. In the  
Timer/Counter Mode, the TM output pin control must be disabled.  
Bit 5~4  
T1BIO1~T1BIO0: Select TP1B_0, TP1B_1, TP1B_2 output function  
Compare Match Output Mode  
00: No change  
01: Output low  
10: Output high  
11: Toggle output  
PWM Mode/Single Pulse Output Mode  
00: PWM output inactive state  
01: PWM output active state  
10: PWM output  
11: Single pulse output  
Capture Input Mode  
00: Input capture at rising edge of TP1B_0, TP1B_1, TP1B_2  
01: Input capture at falling edge of TP1B_0, TP1B_1, TP1B_2  
10: Input capture at falling/rising edge of TP1B_0, TP1B_1, TP1B_2  
11: Input capture disabled  
Timer/counter Mode  
Unused  
These two bits are used to determine how the TM output pin changes state when a certain  
condition is reached. The function that these bits select depends upon in which mode the  
TM is running.  
In the Compare Match Output Mode, the T1BIO1 and T1BIO0 bits determine how the TM  
output pin changes state when a compare match occurs from the Comparator A. The TM output  
pin can be setup to switch high, switch low or to toggle its present state when a compare match  
occurs from the Comparator A. When the bits are both zero, then no change will take place on  
the output. The initial value of the TM output pin should be setup using the T1BOC bit in the  
TM1C2 register. Note that the output level requested by the T1BIO1 and T1BIO0 bits must be  
different from the initial value setup using the T1BOC bit otherwise no change will occur on the  
TM output pin when a compare match occurs. After the TM output pin changes state it can be  
reset to its initial level by changing the level of the T1ON bit from low to high.  
In the PWM Mode, the T1BIO1 and T1BIO0 bits determine how the TM output pin changes  
state when a certain compare match condition occurs. The PWM output function is modified by  
changing these two bits. It is necessary to change the values of the T1BIO1 and T1BIO0 bits only  
after the TM has been switched off. Unpredictable PWM outputs will occur if the T1BIO1 and  
T1BIO0 bits are changed when the TM is running  
Bit 3  
T1BOC: TP1B_0, TP1B_1, TP1B_2 Output control bit  
Compare Match Output Mode  
0: Initial low  
1: Initial high  
PWM Mode/ Single Pulse Output Mode  
0: Active low  
1: Active high  
Rev. 1.60  
124  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
This is the output control bit for the TM output pin. Its operation depends upon whether TM is  
being used in the Compare Match Output Mode or in the PWM Mode/ Single Pulse Output Mode.  
It has no effect if the TM is in the Timer/Counter Mode. In the Compare Match Output Mode it  
determines the logic level of the TM output pin before a compare match occurs. In the PWM  
Mode it determines if the PWM signal is active high or active low.  
Bit 2  
T1BPOL: TP1B_0, TP1B_1, TB1B_2 Output polarity Control  
0: Non-invert  
1: Invert  
This bit controls the polarity of the TP1B_0, TP1B_1, TP1B_2 output pin. When the bit is set  
high the TM output pin will be inverted and not inverted when the bit is zero. It has no effect if the  
TM is in the Timer/Counter Mode.  
Bit 1~0  
T1PWM1~T1PWM0: Select PWM Mode  
00: Edge aligned  
01: Centre aligned, compare match on count up  
10: Centre aligned, compare match on count down  
11: Centre aligned, compare match on count up or down  
¨
TM1DL Register - 10-bit ETM  
Bit  
Name  
R/W  
7
D7  
R
6
D6  
R
5
D5  
R
4
D4  
R
3
D3  
R
2
D2  
R
1
D1  
R
0
D0  
R
POR  
0
0
0
0
0
0
0
0
Bit 7~0  
TM1DL: TM1 Counter Low Byte Register bit 7~bit 0  
TM1 10-bit Counter bit 7~bit 0  
¨
TM1DH Register - 10-bit ETM  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D9  
R
0
D8  
R
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
0
0
Bit 7~2  
Bit 1~0  
Unimplemented, read as ²0²  
TM1DH: TM1 Counter High Byte Register bit 1~bit 0  
TM1 10-bit Counter bit 9~bit 8  
¨
TM1AL Register - 10-bit ETM  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
Bit 7~0  
TM1AL: TM1 CCRA Low Byte Register bit 7~bit 0  
TM1 10-bit CCRA bit 7~bit 0  
¨
TM1AH Register - 10-bit ETM  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D9  
R/W  
0
0
D8  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~2  
Bit 1~0  
Unimplemented, read as ²0²  
TM1AH: TM1 CCRA High Byte Register bit 1~bit 0  
TM1 10-bit CCRA bit 9~bit 8  
Rev. 1.60  
125  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
TM1BL Register - 10-bit ETM  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
D5  
R/W  
0
4
D4  
R/W  
0
3
D3  
R/W  
0
2
D2  
R/W  
0
1
D1  
R/W  
0
0
D0  
R/W  
0
POR  
Bit 7 ~ 0  
TM1BL: TM1 CCRB Low Byte Register bit 7~bit 0  
TM1 10-bit CCRB bit 7~bit 0  
¨
TM1BH Register - 10-bit ETM  
Bit  
Name  
R/W  
7
6
5
4
3
2
1
D9  
R/W  
0
0
D8  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~2  
Bit 1~0  
Unimplemented, read as ²0²  
TM1BH: TM1 CCRB High Byte Register bit 1~bit 0  
TM1 10-bit CCRB bit 9 ~ bit 8  
Enhanced Type TM Operating Modes  
The Enhanced Type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output  
Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The operating mode is selected using  
the TnAM1 and TnAM0 bits in the TMnC1, and the TnBM1 and TnBM0 bits in the TMnC2 register.  
CCRA Com-  
CCRA  
CCRA Single CCRA Input  
CCRA PWM  
ETM Operating Mode  
pare Match Timer/Coun-  
Pulse Output  
Mode  
Capture  
Mode  
Output Mode  
Output Mode  
ter Mode  
CCRB Compare Match Output Mode  
CCRB Timer/Counter Mode  
CCRB PWM Output Mode  
Ö
¾
Ö
¾
¾
Ö
¾
¾
¾
Ö
¾
¾
¾
¾
Ö
¾
¾
¾
¾
¾
¾
¾
CCRB Single Pulse Output Mode  
CCRB Input Capture Mode  
¾
¾
¾
²Ö²: permitted; ²¾² : not permitted  
Compare Output Mode  
If the TnCCLR bit in the TMnC1 register is high then the  
counter will be cleared when a compare match occurs  
from Comparator A. However, here only the TnAF inter-  
rupt request flag will be generated even if the value of  
the CCRP bits is less than that of the CCRA registers.  
Therefore when TnCCLR is high no TnPF interrupt re-  
quest flag will be generated.  
To select this mode, bits TnAM1, TnAM0 and TnBM1,  
TnBM0 in the TMnC1/TMnC2 registers should be all  
cleared to zero. In this mode once the counter is en-  
abled and running it can be cleared by three methods.  
These are a counter overflow, a compare match from  
Comparator A and a compare match from Comparator  
P. When the TnCCLR bit is low, there are two ways in  
which the counter can be cleared. One is when a com-  
pare match occurs from Comparator P, the other is when  
the CCRP bits are all zero which allows the counter to  
overflow. Here both the TnAF and TnPF interrupt re-  
quest flags for Comparator A and Comparator P respec-  
tively, will both be generated.  
Rev. 1.60  
126  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
As the name of the mode suggests, after a comparison  
be selected using the TnAIO1, TnAIO0 bits (for the  
TPnA pin) and TnBIO1, TnBIO0 bits (for the TPnB_0,  
TPnB_1 or TPnB_2 pins) to go high, to go low or to tog-  
gle from its present condition when a compare match  
occurs from Comparator A or a compare match occurs  
from Comparator B. The initial condition of the TM out-  
put pin, which is setup after the TnON bit changes from  
low to high, is setup using the TnAOC or TnBOC bit for  
TPnA or TPnB_0, TPnB_1, TPnB_2 output pins. Note  
that if the TnAIO1,TnAIO0 and TnBIO1, TnBIO0 bits are  
zero then no pin change will take place.  
is made, the TM output pin, will change state. The TM  
output pin condition however only changes state when  
an TnAF or TnBF interrupt request flag is generated af-  
ter a compare match occurs from Comparator Aor Com-  
parator B. The TnPF interrupt request flag, generated  
from a compare match from Comparator P, will have no  
effect on the TM output pin. The way in which the TM  
output pin changes state is determined by the condition  
of the TnAIO1 and TnAIO0 bits in the TMnC1 register for  
ETM CCRA, and the TnBIO1 and TnBIO0 bits in the  
TMnC2 register for ETM CCRB. The TM output pin can  
Counter overflow  
CCRP=0  
Counter Value  
TnCCLR = 0; TnAM [1:0] = 00  
CCRP > 0  
Counter cleared by CCRP value  
0x3FF  
CCRP > 0  
Counter  
Restart  
Resume  
CCRP  
CCRA  
Pause  
Stop  
Time  
TnON  
TnPAU  
TnAPOL  
CCRP Int.  
Flag TnPF  
CCRA Int.  
Flag TnAF  
TPnA O/P  
Pin  
Output not affected by TnAF  
flag. Remains High until reset  
by TnON bit  
Output Inverts  
when TnAPOL is high  
Output pin set to  
initial Level Low  
if TnAOC=0  
Output Toggle with  
TnAF flag  
Output Pin  
Reset to Initial value  
Output controlled by  
other pin-shared function  
Note TnAIO [1:0] = 10  
Active High Output select  
Here TnAIO [1:0] = 11  
Toggle Output select  
ETM CCRA Compare Match Output Mode -- TnCCLR = 0  
Note: 1. With TnCCLR=0 a Comparator P match will clear the counter  
2. The TPnA output pin is controlled only by the TnAF flag  
3. The output pin is reset to its initial state by a TnON bit rising edge  
Rev. 1.60  
127  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter overflow  
Counter Value  
TnCCLR = 0; TnBM [1:0] = 00  
CCRP > 0  
Counter cleared by CCRP value  
CCRP=0  
0x3FF  
CCRP > 0  
Counter  
Restart  
Resume  
Pause  
CCRP  
CCRB  
Stop  
Time  
TnON  
TnPAU  
TnBPOL  
CCRP Int.  
Flag TnPF  
CCRB Int.  
Flag TnBF  
TPnB O/P  
Pin  
Output not affected by TnBF  
flag. Remains High until reset  
by TnON bit  
Output Inverts  
when TnBPOL is high  
Output pin set to  
initial Level Low  
if TnBOC=0  
Output Toggle with  
TnBF flag  
Output Pin  
Reset to Initial value  
Note TnBIO [1:0] = 10  
Active High Output select  
Here TnBIO [1:0] = 11  
Toggle Output select  
Output controlled by  
other pin-shared function  
ETM CCRB Compare Match Output Mode -- TnCCLR = 0  
Note: 1. With TnCCLR=0 a Comparator P match will clear the counter  
2. The TPnB output pin is controlled only by the TnBF flag  
3. The output pin is reset to its initial state by a TnON bit rising edge  
Rev. 1.60  
128  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter Value  
TnCCLR = 1; TnAM [1:0] = 00  
CCRA = 0  
CCRA > 0 Counter cleared by CCRA value  
Counter overflow  
0x3FF  
CCRA  
CCRP  
CCRA=0  
Resume  
Pause  
Stop Counter Restart  
Time  
TnON  
TnPAU  
TnAPOL  
No TnAF flag  
generated on  
CCRA overflow  
CCRA Int.  
Flag TnAF  
CCRP Int.  
Flag TnPF  
TnPF not  
generated  
Output does  
not change  
TPnA O/P  
Pin  
Output not affected by  
TnAF flag. Remains High  
until reset by TnON bit  
Output Inverts  
when TnAPOL is high  
Output pin set to  
initial Level Low  
if TnAOC=0  
Output Toggle with  
TnAF flag  
Output Pin  
Reset to Initial value  
Output controlled by  
other pin-shared function  
Note TnAIO [1:0] = 10  
Active High Output select  
Here TnAIO [1:0] = 11  
Toggle Output select  
ETM CCRA Compare Match Output Mode -- TnCCLR = 1  
Note: 1. With TnCCLR=1 a Comparator A match will clear the counter  
2. The TPnA output pin is controlled only by the TnAF flag  
3. The TPnA output pin is reset to its initial state by a TnON bit rising edge  
4. The TnPF flag is not generated when TnCCLR=1  
Rev. 1.60  
129  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter Value  
TnCCLR = 1; TnBM [1:0] = 00  
CCRA = 0  
CCRA > 0 Counter cleared by CCRA value  
Counter overflow  
0x3FF  
CCRA  
CCRB  
CCRA=0  
Resume  
Pause  
Stop Counter Restart  
Time  
TnON  
TnPAU  
TnBPOL  
No TnAF flag  
generated on  
CCRA overflow  
CCRA Int.  
Flag TnAF  
CCRB Int.  
Flag TnBF  
TPnB O/P  
Pin  
Output not affected by  
TnBF flag. Remains High  
until reset by TnON bit  
Output Toggle with  
TnBF flag  
Output Inverts  
when TnBPOL is high  
Output pin set to  
initial Level Low  
if TnBOC=0  
Output Pin  
Reset to Initial value  
Output controlled by  
other pin-shared function  
Note TnBIO [1:0] = 10  
Active High Output select  
Here TnBIO [1:0] = 11  
Toggle Output select  
ETM CCRB Compare Match Output Mode -- TnCCLR = 1  
Note: 1. With TnCCLR=1 a Comparator A match will clear the counter  
2. The TPnB output pin is controlled only by the TnBF flag  
3. The TPnB output pin is reset to its initial state by a TnON bit rising edge  
4. The TnPF flag is not generated when TnCCLR=1  
Rev. 1.60  
130  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Timer/Counter Mode  
can be finely controlled using the CCRA registers. In this  
case the CCRB registers are used to set the PWM duty  
To select this mode, bits TnAM1, TnAM0 and TnBM1,  
TnBM0 in the TMnC1 and TMnC2 register should all be  
set high. The Timer/Counter Mode operates in an identi-  
cal way to the Compare Match Output Mode generating  
the same interrupt flags. The exception is that in the  
Timer/Counter Mode the TM output pin is not used.  
Therefore the above description and Timing Diagrams  
for the Compare Match Output Mode can be used to un-  
derstand its function. As the TM output pin is not used in  
this mode, the pin can be used as a normal I/O pin or  
other pin-shared function.  
value (for TPnB output pins). The CCRP bits are not used  
and TPnA output pin is not used. The PWM output can  
only be generated on the TPnB output pins. With the  
TnCCLR bit cleared to zero, the PWM period is set using  
one of the eight values of the three CCRP bits, in multi-  
ples of 128. Now both CCRA and CCRB registers can be  
used to setup different duty cycle values to provide dual  
PWM outputs on their relative TPnA and TPnB pins.  
The TnPWM1 and TnPWM0 bits determine the PWM  
alignment type, which can be either edge or centre type.  
In edge alignment, the leading edge of the PWM signals  
will all be generated concurrently when the counter is re-  
set to zero. With all power currents switching on at the  
same time, this may give rise to problems in higher  
power applications. In centre alignment the centre of the  
PWM active signals will occur sequentially, thus reduc-  
ing the level of simultaneous power switching currents.  
PWM Output Mode  
To select this mode, the required bit pairs, TnAM1,  
TnAM0 and TnBM1, TnBM0 should be set to 10 respec-  
tively and also the TnAIO1, TnAIO0 and TnBIO1,  
TnBIO0 bits should be set to 10 respectively. The PWM  
function within the TM is useful for applications which re-  
quire functions such as motor control, heating control, il-  
lumination control etc. By providing a signal of fixed  
frequency but of varying duty cycle on the TM output pin,  
a square wave AC waveform can be generated with  
varying equivalent DC RMS values.  
Interrupt flags, one for each of the CCRA, CCRB and  
CCRP, will be generated when a compare match occurs  
from either the Comparator A, Comparator B or Com-  
parator P. The TnAOC and TnBOC bits in the TMnC1 and  
TMnC2 register are used to select the required polarity of  
the PWM waveform while the two TnAIO1, TnAIO0 and  
TnBIO1, TnBIO0 bits pairs are used to enable the PWM  
output or to force the TM output pin to a fixed high or low  
level. The TnAPOL and TnBPOL bit are used to reverse  
the polarity of the PWM output waveform.  
As both the period and duty cycle of the PWM waveform  
can be controlled, the choice of generated waveform is  
extremely flexible. In the PWM mode, the TnCCLR bit is  
used to determine in which way the PWM period is con-  
trolled. With the TnCCLR bit set high, the PWM period  
·
ETM, PWM Mode, Edge-aligned Mode, TnCCLR=0  
CCRP  
Period  
A Duty  
B Duty  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
000b  
128  
256  
384  
512  
640  
768  
896  
1024  
CCRA  
CCRB  
If fSYS = 16MHz, TM clock source select fSYS/4, CCRP = 100b, CCRA = 128 and CCRB = 256,  
The TP1A PWM output frequency = (fSYS/4) / 512 = fSYS/2048 = 7.8125kHz, duty = 128/512 = 25%.  
The TP1B_n PWM output frequency = (fSYS/4) / 512 = fSYS/2048 = 7.8125kHz, duty = 256/512 = 50%.  
If the Duty value defined by CCRAor CCRB register is equal to or greater than the Period value, then the PWM output  
duty is 100%.  
·
·
ETM, PWM Mode, Edge-aligned Mode, TnCCLR=1  
CCRA  
Period  
B Duty  
1
2
3
......  
511  
512  
......  
1021  
1022  
1023  
1
2
3
......  
511  
512  
......  
1021  
1022  
1023  
CCRB  
ETM, PWM Mode, Center-aligned Mode, TnCCLR=0  
CCRP  
Period  
A Duty  
B Duty  
001b  
010b  
011b  
100b  
101b  
1280  
110b  
111b  
1792  
000b  
256  
512  
768  
1024  
1536  
2046  
(CCRA´2)-1  
(CCRB´2)-1  
Rev. 1.60  
131  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
ETM, PWM Mode, Center-aligned Mode, TnCCLR=1  
CCRA  
Period  
B Duty  
1
2
3
511  
512  
1021  
1022  
1023  
2
4
6
1022  
1024  
2042  
2044  
2046  
(CCRB´2)-1  
Counter Value  
TnCCLR = 0;  
TnAM [1:0] = 10, TnBM [1:0] = 10;  
TnPWM [1:0] = 00  
Counter Cleared by CCRP  
CCRP  
CCRA  
CCRB  
Counter  
Restart  
Resume  
Stop  
Pause  
Time  
TnON  
TnPAU  
TnAPOL  
CCRA Int.  
Flag TnAF  
CCRB Int.  
Flag TnBF  
CCRP Int.  
Flag TnPF  
TPnA Pin  
(TnAOC=1)  
Duty Cycle  
set by CCRA  
Duty Cycle  
set by CCRA  
Duty Cycle  
set by CCRA  
Output Inverts  
when TnAPOL  
is high  
TPnB Pin  
(TnBOC=1)  
TPnB Pin  
(TnBOC=0)  
Duty Cycle  
set by CCRB  
Output controlled by Output Pin  
other pin-shared function Reset to Initial value  
PWM Period set by CCRP  
ETM PWM Mode -- Edge Aligned  
Note: 1. Here TnCCLR=0 therefore CCRP clears counter and determines the PWM period  
2. The internal PWM function continues running even when TnAIO [1:0] (or TnBIO [1:0]) = 00 or 01  
3. CCRA controls the TPnA PWM duty and CCRB controls the TPnB PWM duty  
Rev. 1.60  
132  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter Value  
CCRA  
TnCCLR = 1; TnBM [1:0] = 10;  
TnPWM [1:0] = 00  
Counter Cleared by CCRA  
Counter  
Restart  
Resume  
Stop  
Pause  
CCRB  
Time  
TnON  
TnPAU  
TnBPOL  
CCRP Int.  
Flag TnPF  
CCRB Int.  
Flag TnBF  
TPnB Pin  
(TnBOC=1)  
TPnB Pin  
(TnBOC=0)  
Duty Cycle  
set by CCRB  
Output Pin  
Output Inverts  
when TnBPOL  
is high  
Reset to  
Initial value  
Output controlled by  
other pin-shared function  
PWM Period set by CCRA  
ETM PWM Mode -- Edge Aligned  
Note: 1. Here TnCCLR=1 therefore CCRA clears the counter and determines the PWM period  
2. The internal PWM function continues running even when TnBIO [1:0] = 00 or 01  
3. The CCRA controls the TPnB PWM period and CCRB controls the TPnB PWM duty  
4. Here the TM pin control register should not enable the TPnA pin as a TM output pin.  
Rev. 1.60  
133  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter Value  
TnCCLR = 0;  
TnAM [1:0] = 10, TnBM [1:0] = 10;  
TnPWM [1:0] = 11  
CCRP  
CCRA  
CCRB  
Counter  
Restart  
Stop  
Resume  
Pause  
Time  
TnON  
TnPAU  
TnAPOL  
CCRA Int.  
Flag TnAF  
CCRB Int.  
Flag TnBF  
CCRP Int.  
Flag TnPF  
TPnA Pin  
(TnAOC=1)  
Duty Cycle set by CCRA  
Output Inverts  
when TnAPOL  
is high  
TPnB Pin  
(TnBOC=1)  
TPnB Pin  
(TnBOC=0)  
Duty Cycle set by CCRB  
PWM Period set by CCRP  
Output controlled by  
Other pin-shared function  
Output Pin  
Reset to Initial value  
ETM PWM Mode -- Centre Aligned  
Note: 1. Here TnCCLR=0 therefore CCRP clears the counter and determines the PWM period  
2. TnPWM [1:0] =11 therefore the PWM is centre aligned  
3. The internal PWM function continues running even when TnAIO [1:0] (or TnBIO [1:0]) = 00 or 01  
4. CCRA controls the TPnA PWM duty and CCRB controls the TPnB PWM duty  
5. CCRP will generate an interrupt request when the counter decrements to its zero value  
Rev. 1.60  
134  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter Value  
CCRA  
TnCCLR = 1; TnBM [1:0] = 10;  
TnPWM [1:0] = 11  
Counter  
Restart  
Stop  
Resume  
Pause  
CCRB  
Time  
TnON  
TnPAU  
TnBPOL  
CCRA Int.  
Flag TnAF  
CCRB Int.  
Flag TnBF  
CCRP Int.  
Flag TnPF  
TPnB Pin  
(TnBOC=1)  
TPnB Pin  
(TnBOC=0)  
Output controlled  
Output Inverts  
Duty Cycle set by CCRB  
PWM Period set by CCRA  
by other pin-shared  
function  
when TnBPOL is high  
Output Pin  
Reset to Initial value  
ETM PWM Mode -- Centre Aligned  
Note: 1. Here TnCCLR=1 therefore CCRA clears the counter and determines the PWM period  
2. TnPWM [1:0] =11 therefore the PWM is centre aligned  
3. The internal PWM function continues running even when TnBIO [1:0] = 00 or 01  
4. CCRA controls the TPnB PWM period and CCRB controls the TPnB PWM duty  
5. CCRP will generate an interrupt request when the counter decrements to its zero value  
Rev. 1.60  
135  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Single Pulse Output Mode  
TPnA will be generated. The TnON bit should remain  
high when the pulse is in its active state. The generated  
To select this mode, the required bit pairs, TnAM1,  
TnAM0 and TnBM1, TnBM0 should be set to 10 respec-  
tively and also the corresponding TnAIO1, TnAIO0 and  
TnBIO1, TnBIO0 bits should be set to 11 respectively.  
The Single Pulse Output Mode, as the name suggests,  
will generate a single shot pulse on the TM output pin.  
pulse trailing edge of TPnA and TPnB will be generated  
when the TnON bit is cleared to zero, which can be im-  
plemented using the application program or when a  
compare match occurs from Comparator A.  
However a compare match from Comparator A will also  
automatically clear the TnON bit and thus generate the  
Single Pulse output trailing edge of TPnA and TPnB. In  
this way the CCRA value can be used to control the  
pulse width of TPnA. The CCRA-CCRB value can be  
used to control the pulse width of TPnB. A compare  
match from Comparator A and Comparator B will also  
generate TM interrupts. The counter can only be reset  
back to zero when the TnON bit changes from low to  
high when the counter restarts. In the Single Pulse  
Mode CCRP is not used. The TnCCLR bit is also not  
used.  
The trigger for the pulse TPnA output leading edge is a  
low to high transition of the TnON bit, which can be im-  
plemented using the application program. The trigger  
for the pulse TPnB output leading edge is a compare  
match from Comparator B, which can be implemented  
using the application program. However in the Single  
Pulse Mode, the TnON bit can also be made to automat-  
ically change from low to high using the external TCKn  
pin, which will in turn initiate the Single Pulse output of  
TPnA. When the TnON bit transitions to a high level, the  
counter will start running and the pulse leading edge of  
Single Pulse Generation  
Rev. 1.60  
136  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Counter Value  
TnAM [1:0] = 10, TnBM [1:0] = 10;  
TnAIO [1:0] = 11, TnBIO [1:0] = 11  
Counter stopped  
by CCRA  
Counter Reset  
when TnON  
returns high  
CCRA  
CCRB  
Counter Stops  
by software  
Resume  
Pause  
Time  
TnON  
Auto. set by  
TCKn pin  
Software  
Trigger  
Cleared by  
CCRA match  
Software  
Trigger  
Software  
Clear  
Software  
Trigger  
Software  
Trigger  
TCKn pin  
TnPAU  
TCKn pin  
Trigger  
TnAPOL  
TnBPOL  
CCRB Int.  
Flag TnBF  
CCRA Int.  
Flag TnAF  
TPnA Pin  
(TnAOC=1)  
Pulse Width  
set by CCRA  
TPnA Pin  
(TnAOC=0)  
Output Inverts  
when TnAPOL=1  
TPnB Pin  
(TnBOC=1)  
TPnB Pin  
(TnBOC=0)  
Pulse Width set  
by (CCRA-CCRB)  
Output Inverts  
when TnBPOL=1  
ETM -- Single Pulse Mode  
Note: 1. Counter stopped by CCRA  
2. CCRP is not used  
3. The pulse is triggered by the TCKn pin or by setting the TnON bit high  
4. A TCKn pin active edge will automatically set the TnON bit high  
5. In the Single Pulse Mode, TnAIO [1:0] and TnBIO [1:0] must be set to ²11² and can not be changed.  
Rev. 1.60  
137  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Capture Input Mode  
zero; in this way the CCRP value can be used to control  
the maximum counter value. When a CCRP compare  
To select this mode bits TnAM1, TnAM0 and TnBM1,  
TnBM0 in the TMnC1 and TMnC2 registers should be  
set to 01 respectively. This mode enables external sig-  
nals to capture and store the present value of the inter-  
nal counter and can therefore be used for applications  
such as pulse width measurements. The external signal  
is supplied on the TPnA and TPnB_0, TPnB_1, TPnB_2  
pins, whose active edge can be either a rising edge, a  
falling edge or both rising and falling edges; the active  
edge transition type is selected using the TnAIO1,  
TnAIO0 and TnBIO1, TnBIO0 bits in the TMnC1 and  
TMnC2 registers. The counter is started when the TnON  
bit changes from low to high which is initiated using the  
application program.  
match occurs from Comparator P, a TM interrupt will  
also be generated. Counting the number of overflow in-  
terrupt signals from the CCRP can be a useful method in  
measuring long pulse widths. The TnAIO1, TnAIO0 and  
TnBIO1, TnBIO0 bits can select the active trigger edge  
on the TPnA and TPnB_0, TPnB_1, TPnB_2 pins to be  
a rising edge, falling edge or both edge types. If the  
TnAIO1, TnAIO0 and TnBIO1, TnBIO0 bits are both set  
high, then no capture operation will take place irrespec-  
tive of what happens on the TPnA and TPnB_0,  
TPnB_1, TPnB_2 pins, however it must be noted that  
the counter will continue to run.  
As the TPnA and TPnB_0, TPnB_1, TPnB_2 pins are  
pin shared with other functions, care must be taken if the  
TM is in the Capture Input Mode. This is because if the  
pin is setup as an output, then any transitions on this pin  
may cause an input capture operation to be executed.  
The TnCCLR, TnAOC, TnBOC, TnAPOL and TnBPOL  
bits are not used in this mode.  
When the required edge transition appears on the TPnA  
and TPnB_0, TPnB_1, TPnB_2 pins the present value  
in the counter will be latched into the CCRA and CCRB  
registers and a TM interrupt generated. Irrespective of  
what events occur on the TPnA and TPnB_0, TPnB_1,  
TPnB_2 pins the counter will continue to free run until  
the TnON bit changes from high to low. When a CCRP  
compare match occurs the counter will reset back to  
Counter Value  
TnAM [1:0] = 01  
Counter cleared  
by CCRP  
Counter Counter  
Stop Reset  
CCRP  
YY  
Resume  
Pause  
XX  
Time  
TnON  
TnPAU  
Active  
edge  
Active  
edge  
Active edge  
TM capture  
pin TPnA  
CCRA Int.  
Flag TnAF  
CCRP Int.  
Flag TnPF  
CCRA  
Value  
XX  
YY  
XX  
YY  
TnAIO [1:0]  
Value  
00  
Rising edge  
01  
Falling edge 10  
Both edges  
11  
Disable Capture  
ETM CCRA Capture Input Mode  
Note: 1. TnAM [1:0] = 01 and active edge set by the TnAIO [1:0] bits  
2. The TM Capture input pin active edge transfers he counter value to CCRA  
3. TnCCLR bit not used  
4. No output function -- TnAOC and TnAPOL bits not used  
5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal  
to zero.  
Rev. 1.60  
138  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
TnBM1, TnBM0 = 01  
Counter  
Value  
Counter  
overflow  
Counter  
CCRP  
YY  
Stop  
Reset  
Pause Resume  
XX  
Time  
TnON bit  
TnPAU bit  
Active  
edges  
Active  
edge  
Active  
edge  
TM Capture Pin  
CCRB Int.  
Flag TnBF  
CCRP Int.  
Flag TnPF  
CCRB  
Value  
XX  
YY  
XX  
YY  
TnBIO1, TnBIO0  
Value  
00 - Rising edge  
01 - Falling edge  
10 - Both edges  
11 - Disable Capture  
ETM CCRB Capture Input Mode  
Note: 1. TnBM [1:0] = 01 and active edge set by the TnBIO [1:0] bits  
2. The TM Capture input pin active edge transfers the counter value to CCRB  
3. TnCCLR bit not used  
4. No output function -- TnBOC and TnBPOL bits not used  
5. CCRP determines the counter value and the counter has a maximum count value when CCRP  
is equal to zero.  
Rev. 1.60  
139  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Analog to Digital Converter  
The need to interface to real world analog signals is a  
common requirement for many electronic systems.  
However, to properly process these signals by a  
microcontroller, they must first be converted into digital  
signals by A/D converters. By integrating the A/D con-  
version electronic circuitry into the microcontroller, the  
need for external components is reduced significantly  
with the corresponding follow-on benefits of lower costs  
and reduced component space requirements.  
Input  
A/D Channel  
Select Bits  
Input  
Pins  
Part No.  
Channels  
HT66F20  
HT66F30  
HT66F40  
HT66F50  
ACS4,  
8
AN0~AN7  
ACS2~ACS0  
ACS4,  
HT66F60  
12  
AN0~AN11  
ACS3~ACS0  
A/D Overview  
The accompanying block diagram shows the overall in-  
ternal structure of the A/D converter, together with its as-  
sociated registers.  
The devices contains a multi-channel analog to digital  
converter which can directly interface to external analog  
signals, such as that from sensors or other control sig-  
nals and convert these signals directly into either a  
12-bit digital value.  
A/D Converter Register Description  
Overall operation of the A/D converter is controlled us-  
ing six registers. A read only register pair exists to store  
the ADC data 12-bit value. The remaining three or four  
registers are control registers which setup the operating  
and control function of the A/D converter.  
Bit  
Register  
Name  
7
D3  
6
D2  
5
D1  
4
D0  
3
2
¾
1
¾
0
¾
ADRL(ADRFS=0)  
ADRL(ADRFS=1)  
ADRH(ADRFS=0)  
ADRH(ADRFS=1)  
ADCR0  
¾
D7  
D6  
D5  
D4  
D3  
D7  
D11  
D2  
D1  
D0  
D11  
¾
D10  
D9  
D8  
D6  
D5  
D4  
D10  
ACS2  
ADCK2  
ACE2  
D9  
D8  
¾
¾
¾
START  
ACS4  
ACE7  
EOCB  
V125EN  
ACE6  
ADOFF  
ADRFS  
VREFS  
ACE4  
ACS1  
ADCK1  
ACE1  
ACS0  
ADCK0  
ACE0  
¾
¾
ADCR1  
¾
ACERL  
ACE5  
ACE3  
HT66F20/HT66F30/HT66F40/HT66F50 A/D Converter Register List  
Bit  
Register  
Name  
7
D3  
6
D2  
5
D1  
4
D0  
3
¾
2
¾
1
¾
0
¾
ADRL(ADRFS=0)  
ADRL(ADRFS=1)  
ADRH(ADRFS=0)  
ADRH(ADRFS=1)  
ADCR0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D11  
¾
D10  
¾
D9  
D8  
D7  
D6  
D5  
D4  
D11  
ACS3  
¾
D10  
D9  
D8  
¾
¾
START  
ACS4  
ACE7  
¾
EOCB  
V125EN  
ACE6  
¾
ADOFF  
¾
ADRFS  
VREFS  
ACE4  
¾
ACS2  
ADCK2  
ACE2  
ACE10  
ACS1  
ADCK1  
ACE1  
ACE9  
ACS0  
ADCK0  
ACE0  
ACE8  
ADCR1  
ACERL  
ACE5  
¾
ACE3  
ACE11  
ACERH  
HT66F60 A/D Converter Register List  
Rev. 1.60  
140  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
V
D
D
f
S
Y
S
N
¸
2
A
D
C
K
2
~
A
D
C
K
0
~ 6  
P
B
5
/
V
R
E
F
(
N
=
0
)
A
D
O
F
F
A
C
E
1
1
~
A
C
E
0
B
i
t
c
V
R
E
F
S
A
/
D
C
l
o
k
B
i
t
A
/
D
R
e
f
e
r
e
n
c
e
V
P
A
0
/
A
N
0
~
P
A
7
/
A
N
7
P
E
6
/
A
N
8
A
D
R
L
A
/
D
D
a
t
a
P
E
7
/
A
N
9
A
/
D
C
o
n
v
e
r
t
e
r
R
H
e
g
i
s
t
e
r
A
D
R
P
F
0
/
A
N
1
0
P
F
1
/
A
N
1
1
V
S
S
A
D
R
F
S
1
.
2
5
V
b
i
t
V
1
2
5
E
N
A
C
S
4
~
A
S
C
T
S
A
0
E
R
O
T
C
A
B
D
O
F
F
A/D Converter Structure  
A/D Converter Data Registers - ADRL, ADRH  
As the devices contain an internal 12-bit A/D converter, they require two data registers to store the converted value.  
These are a high byte register, known as ADRH, and a low byte register, known as ADRL. After the conversion process  
takes place, these registers can be directly read by the microcontroller to obtain the digitised conversion value. As only  
12 bits of the 16-bit register space is utilised, the format in which the data is stored is controlled by the ADRFS bit in the  
ADCR0 register as shown in the accompanying table. D0~D11 are the A/D conversion result data bits. Any unused bits  
will be read as zero.  
ADRH  
ADRL  
ADRFS  
7
6
5
4
3
2
1
0
7
6
5
4
3
0
2
0
1
0
0
0
0
1
D11 D10 D9  
D8  
0
D7  
D6  
D5  
D4  
D8  
D3  
D7  
D2  
D6  
D1  
D5  
D0  
D4  
0
0
0
D11 D10 D9  
D3  
D2  
D1  
D0  
A/D Data Registers  
A/D Converter Control Registers -  
ADCR0, ADCR1, ACERL, ACERH  
The ACERH and ACERL control registers contain the  
ACER11~ACER0 bits which determine which pins on  
Port A, PE6, PE7, PF0 and PF1 are used as analog in-  
puts for the A/D converter input and which pins are not  
to be used as the A/D converter input. Setting the corre-  
sponding bit high will select the A/D input function, clear-  
ing the bit to zero will select either the I/O or other  
pin-shared function. When the pin is selected to be an  
A/D input, its original function whether it is an I/O or  
other pin-shared function will be removed. In addition,  
any internal pull-high resistors connected to these pins  
will be automatically removed if the pin is selected to be  
an A/D input.  
To control the function and operation of the A/D con-  
verter, three or four control registers known as ADCR0,  
ADCR1, ACERL and ACERH are provided. These 8-bit  
registers define functions such as the selection of which  
analog channel is connected to the internal A/D con-  
verter, the digitised data format, the A/D clock source as  
well as controlling the start function and monitoring the  
A/D converter end of conversion status. The  
ACS3~ACS0 bits in the ADCR0 register and ACS4 bit is  
the ADCR1 register define the ADC input channel num-  
ber. As the device contains only one actual analog to  
digital converter hardware circuit, each of the individual  
8 or 12 analog inputs must be routed to the converter. It  
is the function of the ACS4~ACS0 bits to determine  
which analog channel input pins or internal 1.25V is ac-  
tually connected to the internal A/D converter.  
Rev. 1.60  
141  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
ADCR0 Register  
¨
HT66F20/HT66F30/HT66F40/HT66F50  
Bit  
Name  
R/W  
7
START  
R/W  
0
6
EOCB  
R
5
ADOFF  
R/W  
1
4
ADRFS  
R/W  
0
3
2
ACS2  
R/W  
0
1
ACS1  
R/W  
0
0
ACS0  
R/W  
0
¾
¾
¾
POR  
1
Bit 7  
START: Start the A/D conversion  
0®1®0 : start  
0®1  
: reset the A/D converter and set EOCB to ²1²  
This bit is used to initiate an A/D conversion process. The bit is normally low but if set high and  
then cleared low again, the A/D converter will initiate a conversion process. When the bit is set  
high the A/D converter will be reset.  
Bit 6  
Bit 5  
EOCB: End of A/D conversion flag  
0: A/D conversion ended  
1: A/D conversion in progress  
This read only flag is used to indicate when an A/D conversion process has completed. When  
the conversion process is running the bit will be high.  
ADOFF : ADC module power on/off control bit  
0: ADC module power on  
1: ADC module power off  
This bit controls the power to the A/D internal function. This bit should be cleared to zero to  
enable the A/D converter. If the bit is set high then the A/D converter will be switched off reducing  
the device power consumption. As the A/D converter will consume a limited amount of power,  
even when not executing a conversion, this may be an important consideration in power sensitive  
battery powered applications.  
Note: 1. it is recommended to set ADOFF=1 before entering IDLE/SLEEP Mode for saving  
power.  
2. ADOFF=1 will power down the ADC module.  
Bit 4  
ADRFS: ADC Data Format Control  
0: ADC Data MSB is ADRH bit 7, LSB is ADRL bit 4  
1: ADC Data MSB is ADRH bit 3, LSB is ADRL bit 0  
This bit controls the format of the 12-bit converted A/D value in the two A/D data registers.  
Details are provided in the A/D data register section.  
Bit 3  
unimplemented, read as ²0²  
Bit 2~0  
ACS2, ACS1, ACS0: Select A/D channel (when ACS4 is ²0²)  
000: AN0  
001: AN1  
010: AN2  
011: AN3  
100: AN4  
101: AN5  
110: AN6  
111: AN7  
These are the A/D channel select control bits. As there is only one internal hardware A/D  
converter each of the eight A/D inputs must be routed to the internal converter using these bits.  
If bit ACS4 in the ADCR1 register is set high then the internal 1.25V will be routed to the A/D  
Converter.  
Rev. 1.60  
142  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
ADCR0 Register  
¨
HT66F60  
Bit  
Name  
R/W  
7
START  
R/W  
0
6
EOCB  
R
5
ADOFF  
R/W  
1
4
ADRFS  
R/W  
0
3
ACS3  
R/W  
0
2
ACS2  
R/W  
0
1
ACS1  
R/W  
0
0
ACS0  
R/W  
0
POR  
1
Bit 7  
START: Start the A/D conversion  
0®1®0 : start  
0®1  
: reset the A/D converter and set EOCB to ²1²  
This bit is used to initiate an A/D conversion process. The bit is normally low but if set high and  
then cleared low again, the A/D converter will initiate a conversion process. When the bit is set  
high the A/D converter will be reset.  
Bit 6  
Bit 5  
EOCB: End of A/D conversion flag  
0: A/D conversion ended  
1: A/D conversion in progress  
This read only flag is used to indicate when an A/D conversion process has completed. When  
the conversion process is running the bit will be high.  
ADOFF : ADC module power on/off control bit  
0: ADC module power on  
1: ADC module power off  
This bit controls the power to the A/D internal function. This bit should be cleared to zero to  
enable the A/D converter. If the bit is set high then the A/D converter will be switched off reducing  
the device power consumption. As the A/D converter will consume a limited amount of power,  
even when not executing a conversion, this may be an important consideration in power sensitive  
battery powered applications.  
Note: 1. it is recommended to set ADOFF=1 before entering IDLE/SLEEP Mode for saving  
power.  
2. ADOFF=1 will power down the ADC module.  
Bit 4  
ADRFS: ADC Data Format Control  
0: ADC Data MSB is ADRH bit 7, LSB is ADRL bit 4  
1: ADC Data MSB is ADRH bit 3, LSB is ADRL bit 0  
This bit controls the format of the 12-bit converted A/D value in the two A/D data registers.  
Details are provided in the A/D data register section.  
Bit 3~0  
ACS3, ACS2, ACS1, ACS0: Select A/D channel (when ACS4 is ²0²)  
0000: AN0  
0001: AN1  
0010: AN2  
0011: AN3  
0100: AN4  
0101: AN5  
0110: AN6  
0111: AN7  
1000: AN8  
1001: AN9  
1010: AN10  
1011: AN11  
1100~1111: undefined, can¢t be used  
These are the A/D channel select control bits. As there is only one internal hardware A/D  
converter each of the eight A/D inputs must be routed to the internal converter using these bits.  
If bit ACS4 in the ADCR1 register is set high then the internal 1.25V will be routed to the A/D  
Converter.  
Rev. 1.60  
143  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
ADCR1 Register  
Bit  
7
6
V125EN  
R/W  
0
5
4
VREFS  
R/W  
0
3
2
ADCK2  
R/W  
0
1
ADCK1  
R/W  
0
0
ADCK0  
R/W  
0
Name  
R/W  
ACS4  
R/W  
0
¾
¾
¾
¾
¾
¾
POR  
Bit 7  
ACS4: Selecte Internal 1.25V as ADC input Control  
0: Disable  
1: Enable  
This bit enables 1.25V to be connected to the A/D converter. The V125EN bit must first have  
been set to enable the bandgap circuit 1.25V voltage to be used by the A/D converter. When the  
ACS4 bit is set high, the bandgap 1.25V voltage will be routed to the A/D converter and the other  
A/D input channels disconnected.  
Bit 6  
V125EN: Internal 1.25V Control  
0: Disable  
1: Enable  
This bit controls the internal Bandgap circuit on/off function to the A/D converter. When the bit  
is set high the bandgap voltage 1.25V can be used by the A/D converter. If 1.25V is not used by  
the A/D converter and the LVR/LVD function is disabled then the bandgap reference circuit will be  
automatically switched off to conserve power. When 1.25V is switched on for use by the A/D  
converter, a time tBG should be allowed for the bandgap circuit to stabilise before implementing  
an A/D conversion.  
Bit 5  
Bit 4  
unimplemented, read as ²0²  
VREFS: Selecte ADC reference voltage  
0: Internal ADC power  
1: VREF pin  
This bit is used to select the reference voltage for the A/D converter. If the bit is high, then the  
A/D converter reference voltage is supplied on the external VREF pin. If the pin is low, then the  
internal reference is used which is taken from the power supply pin VDD.  
Bit 3  
unimplemented, read as ²0²  
Bit 2~0  
ADCK2, ADCK1, ADCK0: Select ADC clock source  
000: fSYS  
001: fSYS/2  
010: fSYS/4  
011: fSYS/8  
100: fSYS/16  
101: fSYS/32  
110: fSYS/64  
111: Undefined  
These three bits are used to select the clock source for the A/D converter.  
Rev. 1.60  
144  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
ACERL Register  
Bit  
7
6
ACE6  
R/W  
1
5
ACE5  
R/W  
1
4
ACE4  
R/W  
1
3
ACE3  
R/W  
1
2
ACE2  
R/W  
1
1
ACE1  
R/W  
1
0
ACE0  
R/W  
1
Name  
R/W  
ACE7  
R/W  
1
POR  
Bit 7  
ACE7: Define PA7 is A/D input or not  
0: Not A/D input  
1: A/D input, AN7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ACE6: Define PA6 is A/D input or not  
0: Not A/D input  
1: A/D input, AN6  
ACE5: Define PA5 is A/D input or not  
0: Not A/D input  
1: A/D input, AN5  
ACE4: Define PA4 is A/D input or not  
0: Not A/D input  
1: A/D input, AN4  
ACE3: Define PA3 is A/D input or not  
0: Not A/D input  
1: A/D input, AN3  
ACE2: Define PA2 is A/D input or not  
0: Not A/D input  
1: A/D input, AN2  
ACE1: Define PA1 is A/D input or not  
0: Not A/D input  
1: A/D input, AN1  
ACE0: Define PA0 is A/D input or not  
0: Not A/D input  
1: A/D input, AN0  
·
ACERH Register  
¨
HT66F60  
Bit  
Name  
R/W  
7
6
5
4
3
ACE11  
R/W  
1
2
ACE10  
R/W  
1
1
ACE9  
R/W  
1
0
ACE8  
R/W  
1
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~4  
Bit 3  
unimplemented, read as ²0²  
ACE11: Define PF1 is A/D input or not  
0: Not A/D input  
1: A/D input, AN11  
Bit 2  
Bit 1  
Bit 0  
ACE10: Define PF0 is A/D input or not  
0: Not A/D input  
1: A/D input, AN10  
ACE9: Define PE7 is A/D input or not  
0: Not A/D input  
1: A/D input, AN9  
ACE8: Define PE6 is A/D input or not  
0: Not A/D input  
1: A/D input, AN8  
Rev. 1.60  
145  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
A/D Operation  
whether it has been cleared as an alternative method of  
detecting the end of an A/D conversion cycle.  
The START bit in the ADCR0 register is used to start  
and reset the A/D converter. When the microcontroller  
sets this bit from low to high and then low again, an ana-  
log to digital conversion cycle will be initiated. When the  
START bit is brought from low to high but not low again,  
the EOCB bit in the ADCR0 register will be set high and  
the analog to digital converter will be reset. It is the  
START bit that is used to control the overall start opera-  
tion of the internal analog to digital converter.  
The clock source for the A/D converter, which originates  
from the system clock fSYS, can be chosen to be either  
fSYS or a subdivided version of fSYS. The division ratio  
value is determined by the ADCK2~ADCK0 bits in the  
ADCR1 register.  
Although the A/D clock source is determined by the sys-  
tem clock fSYS, and by bits ADCK2~ADCK0, there are  
some limitations on the maximum A/D clock source  
speed that can be selected. As the minimum value of per-  
missible A/D clock period, tADCK, is 0.5ms, care must be  
taken for system clock frequencies equal to or greater  
than 4MHz. For example, if the system clock operates at  
a frequency of 4MHz, the ADCK2~ADCK0 bits should  
not be set to ²000². Doing so will give A/D clock periods  
that are less than the minimum A/D clock period which  
may result in inaccurate A/D conversion values. Refer to  
the following table for examples, where values marked  
with an asterisk * show where, depending upon the de-  
vice, special care must be taken, as the values may be  
less than the specified minimum A/D Clock Period.  
The EOCB bit in the ADCR0 register is used to indicate  
when the analog to digital conversion process is com-  
plete. This bit will be automatically set to ²0² by the  
microcontroller after a conversion cycle has ended. In  
addition, the corresponding A/D interrupt request flag  
will be set in the interrupt control register, and if the inter-  
rupts are enabled, an appropriate internal interrupt sig-  
nal will be generated. This A/D internal interrupt signal  
will direct the program flow to the associated A/D inter-  
nal interrupt address for processing. If the A/D internal  
interrupt is disabled, the microcontroller can be used to  
poll the EOCB bit in the ADCR0 register to check  
A/D Clock Period (tADCK  
)
ADCK2,  
ADCK1,  
ADCK0  
= 000  
ADCK2,  
ADCK1,  
ADCK0  
= 001  
ADCK2,  
ADCK1,  
ADCK0  
= 010  
ADCK2,  
ADCK1,  
ADCK0  
= 011  
ADCK2,  
ADCK1,  
ADCK0  
= 100  
ADCK2,  
ADCK1,  
ADCK0  
= 101  
ADCK2,  
ADCK1,  
ADCK0  
= 110  
ADCK2,  
ADCK1,  
ADCK0  
= 111  
fSYS  
(fSYS  
)
(fSYS/2)  
(fSYS/4)  
(fSYS/8)  
(fSYS/16)  
(fSYS/32)  
(fSYS/64)  
1MHz  
2MHz  
4MHz  
8MHz  
12MHz  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
1ms  
2ms  
1ms  
4ms  
2ms  
8ms  
4ms  
16ms  
8ms  
32ms  
16ms  
8ms  
64ms  
32ms  
16ms  
8ms  
500ns  
250ns*  
125ns*  
83ns*  
500ns  
250ns*  
167ns*  
1ms  
2ms  
4ms  
500ns  
333ns*  
1ms  
2ms  
4ms  
667ns  
1.33ms  
2.67ms  
5.33ms  
A/D Clock Period Examples  
Controlling the power on/off function of the A/D con-  
verter circuitry is implemented using the ADOFF bit in  
the ADCR0 register. This bit must be zero to power on  
the A/D converter. When the ADOFF bit is cleared to  
zero to power on the A/D converter internal circuitry a  
certain delay, as indicated in the timing diagram, must  
be allowed before an A/D conversion is initiated. Even if  
no pins are selected for use as A/D inputs by clearing  
the ACE11~ACE0 bits in the ACERH and ACERL regis-  
ters, if the ADOFF bit is zero then some power will still  
be consumed. In power conscious applications it is  
therefore recommended that the ADOFF is set high to  
reduce power consumption when the A/D converter  
function is not being used.  
functions, when the VREFS bit is set high, the VREF pin  
function will be selected and the other pin functions will  
be disabled automatically.  
A/D Input Pins  
All of the A/D analog input pins are pin-shared with the  
I/O pins on Port A, PE6, PF7, PF0 or PF1 as well as  
other functions. The ACE11~ ACE0 bits in the ACERH  
and ACERL registers, determine whether the input pins  
are setup as A/D converter analog inputs or whether  
they have other functions. If the ACE11~ ACE0 bits for  
its corresponding pin is set high then the pin will be  
setup to be an A/D converter input and the original pin  
functions disabled. In this way, pins can be changed un-  
der program control to change their function between  
A/D inputs and other functions. All pull-high resistors,  
which are setup through register programming, will be  
automatically disconnected if the pins are setup as A/D  
inputs. Note that it is not necessary to first setup the A/D  
The reference voltage supply to the A/D Converter can  
be supplied from either the positive power supply pin,  
VDD, or from an external reference sources supplied on  
pin VREF. The desired selection is made using the  
VREFS bit. As the VREF pin is pin-shared with other  
Rev. 1.60  
146  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
·
·
Step 3  
pin as an input in the PAC, PEC or PFC port control reg-  
ister to enable the A/D input as when the ACE11~ ACE0  
bits enable an A/D input, the status of the port control  
register will be overridden.  
Select which channel is to be connected to the internal  
A/D converter by correctly programming the  
ACS4~ACS0 bits which are also contained in the  
ADCR1 and ADCR0 register.  
The A/D converter has its own reference voltage pin,  
VREF, however the reference voltage can also be sup-  
plied from the power supply pin, a choice which is made  
through the VREFS bit in the ADCR1 register. The ana-  
log input values must not be allowed to exceed the value  
of VREF.  
Step 4  
Select which pins are to be used as A/D inputs and  
configure them by correctly programming the  
ACE11~ACE0 bits in the ACERH and ACERL  
registers.  
Step 5  
P
A
0
/
A
P
N
F
0
1
/
A
N
1
1
If the interrupts are to be used, the interrupt control  
registers must be correctly configured to ensure the  
A/D converter interrupt function is active. The master  
interrupt control bit, EMI, and the A/D converter inter-  
rupt bit, EADI, must both be set high to do this.  
1
.
2
5
V
A
C
S
4
~
A
C
S
0
I
n
p
u
t
V
o
l
t
a
g
e
f e  
B
u
f
V
r
1
2
·
·
Step 6  
B
a
n
d
g
a
The analog to digital conversion process can now be  
initialised by setting the START bit in the ADCR regis-  
ter from low to high and then low again. Note that this  
bit should have been originally cleared to zero.  
V
R
E F  
C
S
1
2
-
b
i
t
A
D
R
e
f
e
r
e
n
V
o
l
t
a
g
V
D
D
V
R
E
F
P
B
5
/
V
R
E
F
Step 7  
A/D Input Structure  
Summary of A/D Conversion Steps  
To check when the analog to digital conversion pro-  
cess is complete, the EOCB bit in the ADCR0 register  
can be polled. The conversion process is complete  
when this bit goes low. When this occurs the A/D data  
registers ADRL and ADRH can be read to obtain the  
conversion value. As an alternative method, if the in-  
terrupts are enabled and the stack is not full, the pro-  
gram can wait for an A/D interrupt to occur.  
Note: When checking for the end of the conversion  
process, if the method of polling the EOCB bit in the  
ADCR0 register is used, the interrupt enable step  
above can be omitted.  
The following summarises the individual steps that  
should be executed in order to implement an A/D con-  
version process.  
·
Step 1  
Select the required A/D conversion clock by correctly  
programming bits ADCK2~ADCK0 in the ADCR1 reg-  
ister.  
·
Step 2  
Enable the A/D by clearing the ADOFF bit in the  
ADCR0 register to zero.  
A
D
O
F
F
t
O
N
2
S
T
A
D
C
M
o
d
u
l
e
o
f
f
o
f
f
o
n
o
n
O
N
A
/
D
s
a
m
p
l
i
n
g
A
/
t
D
i
m
s
e
a
m
p
l
i
n
g
t
i
m
e
A
D
t
S
A
D
S
S
T
A
R
T
E
O
C
B
A
C
S
4
~
A
C
0
S
0
0
0
1
1
B
0
0
0
1
0
B
0
0
0
0
0
B
0
0
0
0
1
B
P
o
w
e
r
-
o
n
S
t
a
r
t
o
f
A
/
D
S
t
a
r
t
o
f
A
/
D
S
t
a
r
t
o
f
A
/
D
R
e
s
e
t
c
o
n
v
e
r
s
i
o
n
c
o
n
v
e
r
s
i
o
n
c
o
n
v
e
r
s
i
o
n
R
e
s
e
t
A
/
D
R
e
s
e
t
A
/
D
R
e
s
e
t
A
/
D
c
o
n
v
e
r
t
e
r
c
o
n
v
e
r
t
e
r
c
o
e
n
v
e
r
t
e
r
E
n
d
o
f
A
/
D
E
n
d
o
f
A
/
D
c
o
n
v
e
r
s
i
o
n
c
n
o
n
v
e
r
s
i
o
n
1
:
D
e
f
i
n
p
o
r
t
c
o
n
f
i
g
u
r
a
t
i
o
2
:
S
e
l
e
c
t
a
n
a
l
o
g
c
h
a
n
n
e
l
t
A
D
C
t
A
D
C
A
/
D
c
o
n
v
e
r
s
i
A
o
/
n
D
t
c
i
m
o
n
e
v
e
r
s
i
o
n
t
i
m
e
A/D Conversion Timing  
Rev. 1.60  
147  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
The accompanying diagram shows graphically the vari-  
value of VDD or VREF divided by 4096.  
ous stages involved in an analog to digital conversion  
process and its associated timing. After an A/D conver-  
sion process has been initiated by the application pro-  
gram, the microcontroller internal hardware will begin to  
carry out the conversion, during which time the program  
can continue with other functions. The time taken for the  
A/D conversion is 16tADCK where tADCK is equal to the A/D  
clock period.  
1 LSB= (VDD or VREF) ¸ 4096  
The A/D Converter input voltage value can be  
calculated using the following equation:  
A/D input voltage =  
A/D output digital value ´ (VDD or VREF) ¸ 4096  
The diagram shows the ideal transfer function between  
the analog input value and the digitised output value for  
the A/D converter. Except for the digitised zero value,  
the subsequent digitised values will change at a point  
0.5 LSB below where they would change without the off-  
set, and the last full scale digitised value will change at a  
point 1.5 LSB below the VDD or VREF level.  
Programming Considerations  
During microcontroller operations where the A/D con-  
verter is not being used, the A/D internal circuitry can be  
switched off to reduce power consumption, by setting bit  
ADOFF high in the ADCR0 register. When this happens,  
the internal A/D converter circuits will not consume  
power irrespective of what analog voltage is applied to  
their input lines. If the A/D converter input lines are used  
as normal I/Os, then care must be taken as if the input  
voltage is not at a valid logic level, then this may lead to  
some increase in power consumption.  
A/D Programming Example  
The following two programming examples illustrate how  
to setup and implement an A/D conversion. In the first  
example, the method of polling the EOCB bit in the  
ADCR0 register is used to detect when the conversion  
cycle is complete, whereas in the second example, the  
A/D interrupt is used to determine when the conversion  
is complete.  
A/D Transfer Function  
As the devices contain a 12-bit A/D converter, its  
full-scale converted digitised value is equal to FFFH.  
Since the full-scale analog input value is equal to the  
VDD or VREF voltage, this gives a single bit analog input  
1
.
5
L
S
B
F
F
F
H
F
F
E
H
F
F
D
H
A
/
D
C
o
n
v
e
r
s
i
o
n
R
e
s
u
l
t
0
.
5
L
S
B
0
0
0
3
2
1
H
H
H
V
D
D
o
r
R
E
F
(
4
0
9
6
6
0
1
2
3
4
0
4
9
0
3
9
4
4
0
9
5
4
0
9
A
n
a
l
o
g
I
n
p
u
t
V
o
l
t
a
g
e
Ideal A/D Transfer Function  
Rev. 1.60  
148  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Example: using an EOCB polling method to detect the end of conversion  
clr EADI  
mov a,03H  
mov ADCR1,a  
clr ADOFF  
mov a,0Fh  
mov ACERL,a  
mov a,00h  
mov ACERH,00h  
mov a,00h  
mov ADCR0,a  
:
; disable ADC interrupt  
; select fSYS/8 as A/D clock and switch off 1.25V  
; setup ACERL and ACERH to configure pins AN0~AN3  
; ACERH is only for HT66F60  
; enable and connect AN0 channel to A/D converter  
start_conversion:  
clr START  
set START  
clr START  
polling_EOC:  
; high pulse on start bit to initiate conversion  
; reset A/D  
; start A/D  
sz  
EOCB  
; poll the ADCR0 register EOCB bit to detect end  
; of A/D conversion  
; continue polling  
; read low byte conversion result value  
; save result to user defined register  
; read high byte conversion result value  
; save result to user defined register  
jmp polling_EOC  
mov a,ADRL  
mov ADRL_buffer,a  
mov a,ADRH  
mov ADRH_buffer,a  
:
:
jmp start_conversion ; start next a/d conversion  
Example: using the interrupt method to detect the end of conversion  
clr EADI  
mov a,03H  
mov ADCR1,a  
Clr ADOFF  
mov a,0Fh  
mov ACERL,a  
mov a,00h  
mov ACERH,00h  
mov a,00h  
mov ADCR0,a  
Start_conversion:  
clr START  
set START  
clr START  
clr ADF  
; disable ADC interrupt  
; select fSYS/8 as A/D clock and switch off 1.25V  
; setup ACERL and ACERH to configure pins AN0~AN3  
; ACERH is only for HT66F60  
; enable and connect AN0 channel to A/D converter  
; high pulse on START bit to initiate conversion  
; reset A/D  
; start A/D  
; clear ADC interrupt request flag  
; enable ADC interrupt  
; enable global interrupt  
set EADI  
set EMI  
:
:
; ADC interrupt service routine  
ADC_ISR:  
mov acc_stack,a  
mov a,STATUS  
; save ACC to user defined memory  
mov status_stack,a  
:
; save STATUS to user defined memory  
:
mov a,ADRL  
mov adrl_buffer,a  
mov a,ADRH  
mov adrh_buffer,a  
; read low byte conversion result value  
; save result to user defined register  
; read high byte conversion result value  
; save result to user defined register  
:
:
EXIT_INT_ISR:  
mov a,status_stack  
mov STATUS,a  
mov a,acc_stack  
reti  
; restore STATUS from user defined memory  
; restore ACC from user defined memory  
Rev. 1.60  
149  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Comparators  
Two independent analog comparators are contained  
within these devices. These functions offer flexibility via  
their register controlled features such as power-down,  
polarity select, hysteresis etc. In sharing their pins with  
normal I/O pins the comparators do not waste precious  
I/O pins if there functions are otherwise unused.  
Any pull-high resistors connected to the shared com-  
parator input pins will be automatically disconnected  
when the comparator is enabled. As the comparator in-  
puts approach their switching level, some spurious out-  
put signals may be generated on the comparator output  
due to the slow rising or falling nature of the input sig-  
nals. This can be minimised by selecting the hysteresis  
function will apply a small amount of positive feedback  
to the comparator. Ideally the comparator should switch  
at the point where the positive and negative inputs sig-  
nals are at the same voltage level, however, unavoid-  
able input offsets introduce some uncertainties here.  
The hysteresis function, if enabled, also increases the  
switching offset value.  
C
n
P
O
C
L
n
O
U
T
C
n
+
C
n
X
C
n
-
C
n
S
E
L
Comparator  
Comparator Operation  
The device contains two comparator functions which  
are used to compare two analog voltages and provide  
an output based on their difference. Full control over the  
two internal comparators is provided via two control reg-  
isters, CP0C and CP1C, one assigned to each com-  
parator. The comparator output is recorded via a bit in  
their respective control register, but can also be trans-  
ferred out onto a shared I/O pin. Additional comparator  
functions include, output polarity, hysteresis functions  
and power down control.  
Comparator Registers  
There are two registers for overall comparator opera-  
tion, one for each comparator. As corresponding bits in  
the two registers have identical functions, they following  
register table applies to both registers.  
Bit  
Register  
Name  
7
6
5
4
3
2
1
0
CP0C  
CP1C  
C0SEL  
C1SEL  
C0EN  
C1EN  
C0POL  
C1POL  
C0OUT  
C1OUT  
C0OS  
C1OS  
C0HYEN  
C1HYEN  
¾
¾
¾
¾
Comparator Registers List  
Comparator Interrupt  
Programming Considerations  
Each also possesses its own interrupt function. When  
any one of the changes state, its relevant interrupt flag  
will be set, and if the corresponding interrupt enable bit  
is set, then a jump to its relevant interrupt vector will be  
executed. Note that it is the changing state of the  
C0OUT or C1OUT bit and not the output pin which gen-  
erates an interrupt. If the microcontroller is in the SLEEP  
or IDLE Mode and the Comparator is enabled, then if the  
external input lines cause the Comparator output to  
change state, the resulting generated interrupt flag will  
also generate a wake-up. If it is required to disable a  
wake-up from occurring, then the interrupt flag should  
be first set high before entering the SLEEP or IDLE  
Mode.  
If the comparator is enabled, it will remain active when  
the microcontroller enters the SLEEP or IDLE Mode,  
however as it will consume a certain amount of power,  
the user may wish to consider disabling it before the  
SLEEP or IDLE Mode is entered.  
As comparator pins are shared with normal I/O pins the  
I/O registers for these pins will be read as zero (port con-  
trol register is ²1²) or read as port data register value  
(port control register is ²0²) if the comparator function is  
enabled.  
Rev. 1.60  
150  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
CP0C Register  
Bit  
Name  
R/W  
7
C0SEL  
R/W  
1
6
C0EN  
R/W  
0
5
C0POL  
R/W  
0
4
3
C0OS  
R/W  
0
2
1
0
C0HYEN  
R/W  
C0OUT  
¾
¾
¾
¾
¾
¾
R
0
POR  
1
Bit 7  
C0SEL: Select Comparator pins or I/O pins  
0: I/O pin select  
1: Comparator pin select  
This is the Comparator pin or I/O pin select bit. If the bit is high the comparator will be selected  
and the two comparator input pins will be enabled. As a result, these two pins will lose their I/O  
pin functions. Any pull-high configuration options associated with the comparator shared pins will  
also be automatically disconnected.  
Bit 6  
C0EN: Comparator On/Off control  
0: Off  
1: On  
This is the Comparator on/off control bit. If the bit is zero the comparator will be switched off  
and no power consumed even if analog voltages are applied to its inputs. For power sensitive  
applications this bit should be cleared to zero if the comparator is not used or before the device  
enters the SLEEP or IDLE mode.  
Bit 5  
C0POL: Comparator output polarity  
0: output not inverted  
1: output inverted  
This is the comparator polarity bit. If the bit is zero then the C0OUT bit will reflect the  
non-inverted output condition of the comparator. If the bit is high the comparator C0OUT bit will  
be inverted.  
Bit 4  
C0OUT: Comparator output bit  
C0POL=0  
0: C0+ < C0-  
1: C0+ > C0-  
C0POL=1  
0: C0+ > C0-  
1: C0+ < C0-  
This bit stores the comparator output bit. The polarity of the bit is determined by the voltages  
on the comparator inputs and by the condition of the C0POL bit.  
Bit 3  
C0OS: Output path select  
0: C0X pin  
1: Internal use  
This is the comparator output path select control bit. If the bit is set to ²0² and the C0SEL bit is  
²1² the comparator output is connected to an external C0X pin. If the bit is set to ²1² or the  
C0SEL bit is ²0² the comparator output signal is only used internally by the device allowing the  
shared comparator output pin to retain its normal I/O operation.  
Bit 2~1  
Bit 0  
unimplemented, read as ²0²  
C0HYEN: Hysteresis Control  
0: Off  
1: On  
This is the hysteresis control bit and if set high will apply a limited amount of hysteresis to the  
comparator, as specified in the Comparator Electrical Characteristics table. The positive feedback  
induced by hysteresis reduces the effect of spurious switching near the comparator threshold.  
Rev. 1.60  
151  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
CP1C Register  
Bit  
Name  
R/W  
7
C1SEL  
R/W  
1
6
C1EN  
R/W  
0
5
C1POL  
R/W  
0
4
3
C1OS  
R/W  
0
2
1
0
C1HYEN  
R/W  
C1OUT  
¾
¾
¾
¾
¾
¾
R
0
POR  
1
Bit 7  
C1SEL: Select Comparator pins or I/O pins  
0: I/O pin select  
1: Comparator pin select  
This is the Comparator pin or I/O pin select bit. If the bit is high the comparator will be selected  
and the two comparator input pins will be enabled. As a result, these two pins will lose their I/O  
pin functions. Any pull-high configuration options associated with the comparator shared pins will  
also be automatically disconnected.  
Bit 6  
C1EN: Comparator On/Off control  
0: Off  
1: On  
This is the Comparator on/off control bit. If the bit is zero the comparator will be switched off  
and no power consumed even if analog voltages are applied to its inputs. For power sensitive  
applications this bit should be cleared to zero if the comparator is not used or before the device  
enters the SLEEP or IDLE mode.  
Bit 5  
C1POL: Comparator output polarity  
0: output not inverted  
1: output inverted  
This is the comparator polarity bit. If the bit is zero then the C1OUT bit will reflect the  
non-inverted output condition of the comparator. If the bit is high the comparator C1OUT bit will  
be inverted.  
Bit 4  
C1OUT: Comparator output bit  
C1POL=0  
0: C1+ < C1-  
1: C1+ > C1-  
C1POL=1  
0: C1+ > C1-  
1: C1+ < C1-  
This bit stores the comparator output bit. The polarity of the bit is determined by the voltages  
on the comparator inputs and by the condition of the C1POL bit.  
Bit 3  
C1OS: Output path select  
0: C1X pin  
1: Internal use  
This is the comparator output path select control bit. If the bit is set to ²0² and the C1SEL bit is  
²1² the comparator output is connected to an external C1X pin. If the bit is set to ²1² or the  
C1SEL bit is ²0² the comparator output signal is only used internally by the device allowing the  
shared comparator output pin to retain its normal I/O operation.  
Bit 2~1  
Bit 0  
unimplemented, read as ²0²  
C1HYEN: Hysteresis Control  
0: Off  
1: On  
This is the hysteresis control bit and if set high will apply a limited amount of hysteresis to the  
comparator, as specified in the Comparator Electrical Characteristics table. The positive feedback  
induced by hysteresis reduces the effect of spurious switching near the comparator threshold.  
Rev. 1.60  
152  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Serial Interface Module - SIM  
These devices contain a Serial Interface Module, which  
includes both the four line SPI interface or the two line  
I2C interface types, to allow an easy method of commu-  
nication with external peripheral hardware. Having rela-  
tively simple communication protocols, these serial  
interface types allow the microcontroller to interface to  
external SPI or I2C based hardware such as sensors,  
Flash or EEPROM memory, etc. The SIM interface pins  
are pin-shared with other I/O pins therefore the SIM in-  
terface function must first be selected using a configura-  
tion option. As both interface types share the same pins  
and registers, the choice of whether the SPI or I2C type  
is used is made using the SIM operating mode control  
bits, named SIM2~SIM0, in the SIMC0 register. These  
pull-high resistors of the SIM pin-shared I/O are se-  
lected using pull-high control registers, and also if the  
SIM function is enabled.  
needs to control multiple slave devices from a single  
master, the master can use I/O pin to select the slave  
devices.  
·
SPI Interface Operation  
The SPI interface is a full duplex synchronous serial  
data link. It is a four line interface with pin names SDI,  
SDO, SCK and SCS. Pins SDI and SDO are the Serial  
Data Input and Serial Data Output lines, SCK is the  
Serial Clock line and SCS is the Slave Select line. As  
the SPI interface pins are pin-shared with normal I/O  
pins and with the I2C function pins, the SPI interface  
must first be enabled by selecting the SIM enable con-  
figuration option and setting the correct bits in the  
SIMC0 and SIMC2 registers. After the SPI configura-  
tion option has been configured it can also be addi-  
tionally disabled or enabled using the SIMEN bit in the  
SIMC0 register. Communication between devices  
connected to the SPI interface is carried out in a  
slave/master mode with all data transfer initiations be-  
ing implemented by the master. The Master also con-  
trols the clock signal. As the device only contains a  
single SCS pin only one slave device can be utilized.  
The SCS pin is controlled by software, set CSEN bit to  
²1² to enable SCS pin function, set CSEN bit to ²0² the  
SCS pin will be floating state.  
SPI Interface  
The SPI interface is often used to communicate with ex-  
ternal peripheral devices such as sensors, Flash or  
EEPROM memory devices etc. Originally developed by  
Motorola, the four line SPI interface is a synchronous  
serial data interface that has a relatively simple commu-  
nication protocol simplifying the programming require-  
ments when communicating with external hardware  
devices.  
S
P
I
M
a
s
t
e
S
r
P
I
S
l
a
v
e
S
C
K
S
S
S
S
C
D
D
C
K
I
O
S
S
D
O
S
D
I
The communication is full duplex and operates as a  
slave/master type, where the device can be either mas-  
ter or slave. Although the SPI interface specification can  
control multiple slave devices from a single master, but  
this device provided only one SCS pin. If the master  
S
C
S
SPI Master/Slave Connection  
D
a
t
a
B
u
s
S
I
M
D
S
D
I
P
i
n
T
x
/
R
x
S
h
i
f
t
R
e
g
i
s
t
e
r
S
D
O
P
i
n
C
l
o
c
k
E
n
a
b
l
e
/
D
i
s
a
b
l
e
C
K
E
N
b
i
t
E
d
g
e
/
P
o
l
a
r
i
t
y
C
K
P
O
L
B
b
i
t
o n  
C
t
r
o
l
B
u
s
y
C
o
n
f
i
g
u
r
a
t
i
o
n
W
C
O
L
F
l
a
S
t
a
t
u
s
O
p
t
i
o
n
S
C
K
P
i
n
T
R
F
F
l
a
g
f
S
Y
S
C
l
o
c
k
f
T
B
C
S
o
u
r
c
e
S
e
l
e
c
t
T
M
0
C
C
R
P
m
a
t
c
h
f
r
e
q
u
e
n
c
y
/
2
S
C
S
P
i
n
C
o
n
f
i
g
u
r
a
t
i
o
n
C
S
E
N
b
i
t
O
p
t
i
o
n
E
n
a
b
l
e
/
D
i
s
a
b
l
e
SPI Block Diagram  
Rev. 1.60  
153  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
The SPI function in this device offers the following  
features:  
There are several configuration options associated with  
the SPI interface. One of these is to enable the SIM  
function which selects the SIM pins rather than normal  
I/O pins. Note that if the configuration option does not  
select the SIM function then the SIMEN bit in the SIMC0  
register will have no effect. Another two SPI configura-  
tion options determine if the CSEN and WCOL bits are  
to be used.  
¨
¨
¨
¨
¨
¨
Full duplex synchronous data transfer  
Both Master and Slave modes  
LSB first or MSB first data transmission modes  
Transmission complete flag  
Rising or falling active clock edge  
WCOL and CSEN bit enabled or disable select  
SPI Registers  
The status of the SPI interface pins is determined by a  
number of factors such as whether the device is in the  
master or slave mode and upon the condition of certain  
control bits such as CSEN and SIMEN.  
There are three internal registers which control the over-  
all operation of the SPI interface. These are the SIMD  
data register and two registers SIMC0 and SIMC2. Note  
that the SIMC1 register is only used by the I2C interface.  
Bit  
Register  
Name  
7
SIM2  
D7  
6
SIM1  
D6  
5
SIM0  
D5  
4
3
2
1
0
¾
SIMC0  
PCKEN  
D4  
PCKP1  
D3  
PCKP0  
D2  
SIMEN  
D1  
SIMD  
D0  
TRF  
SIMC2  
D7  
D6  
CKPOLB  
CKEG  
MLS  
CSEN  
WCOL  
SIM Registers List  
The SIMD register is used to store the data being transmitted and received. The same register is used by both the SPI  
and I2C functions. Before the device writes data to the SPI bus, the actual data to be transmitted must be placed in the  
SIMD register. After the data is received from the SPI bus, the device can read it from the SIMD register. Any transmis-  
sion or reception of data from the SPI bus must be made via the SIMD register.  
·
SIMD Register  
Bit  
Name  
R/W  
7
D7  
R/W  
x
6
D6  
R/W  
x
5
D5  
R/W  
x
4
D4  
R/W  
x
3
D3  
R/W  
x
2
D2  
R/W  
x
1
D1  
R/W  
x
0
D0  
R/W  
POR  
x
²x² unknown  
Rev. 1.60  
154  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
There are also two control registers for the SPI interface, SIMC0 and SIMC2. Note that the SIMC2 register also has  
the name SIMA which is used by the I2C function. The SIMC1 register is not used by the SPI function, only by the I2C  
function. Register SIMC0 is used to control the enable/disable function and to set the data transmission clock fre-  
quency. Although not connected with the SPI function, the SIMC0 register is also used to control the Peripheral Clock  
Prescaler. Register SIMC2 is used for other control functions such as LSB/MSB selection, write collision flag etc.  
·
SIMC0 Register  
Bit  
Name  
R/W  
7
SIM2  
R/W  
1
6
SIM1  
R/W  
1
5
SIM0  
R/W  
1
4
PCKEN  
R/W  
0
3
PCKP1  
R/W  
0
2
PCKP0  
R/W  
0
1
SIMEN  
R/W  
0
0
¾
¾
¾
POR  
Bit 7~5  
SIM2, SIM1, SIM0: SIM Operating Mode Control  
000: SPI master mode; SPI clock is fSYS/4  
001: SPI master mode; SPI clock is fSYS/16  
010: SPI master mode; SPI clock is fSYS/64  
011: SPI master mode; SPI clock is fTBC  
100: SPI master mode; SPI clock is TM0 CCRP match frequency/2  
101: SPI slave mode  
110: I2C slave mode  
111: Unused mode  
These bits setup the overall operating mode of the SIM function. As well as selecting if the I2C  
or SPI function, they are used to control the SPI Master/Slave selection and the SPI Master clock  
frequency. The SPI clock is a function of the system clock but can also be chosen to be sourced  
from the TM0. If the SPI Slave Mode is selected then the clock will be supplied by an external  
Master device.  
Bit 4  
PCKEN: PCK Output Pin Control  
0: Disable  
1: Enable  
Bit 3~2  
PCKP1, PCKP0: Select PCK output pin frequency  
00: fSYS  
01: fSYS/4  
10: fSYS/8  
11: TM0 CCRP match frequency/2  
Bit 1  
SIMEN: SIM Control  
0: Disable  
1: Enable  
The bit is the overall on/off control for the SIM interface. When the SIMEN bit is cleared to zero  
to disable the SIM interface, the SDI, SDO, SCK and SCS, or SDA and SCL lines will be in a  
floating condition and the SIM operating current will be reduced to a minimum value. When the bit  
is high the SIM interface is enabled. The SIM configuration option must have first enabled the  
SIM interface for this bit to be effective. If the SIM is configured to operate as an SPI interface via  
the SIM2~SIM0 bits, the contents of the SPI control registers will remain at the previous settings  
when the SIMEN bit changes from low to high and should therefore be first initialised by the  
application program. If the SIM is configured to operate as an I2C interface via the SIM2~SIM0  
bits and the SIMEN bit changes from low to high, the contents of the I2C control bits such as HTX  
and TXAK will remain at the previous settings and should therefore be first initialised by the  
application program while the relevant I2C flags such as HCF, HAAS, HBB, SRW and RXAK will  
be set to their default states.  
Bit 0  
unimplemented, read as ²0²  
Rev. 1.60  
155  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
SIMC2 Register  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
D6  
R/W  
0
5
CKPOLB  
R/W  
4
CKEG  
R/W  
0
3
2
CSEN  
R/W  
0
1
WCOL  
R/W  
0
0
MLS  
R/W  
0
TRF  
R/W  
0
POR  
0
Bit 7~6  
Bit 5  
Undefined bit  
This bit can be read or written by user software program.  
CKPOLB: Determines the base condition of the clock line  
0: the SCK line will be high when the clock is inactive  
1: the SCK line will be low when the clock is inactive  
The CKPOLB bit determines the base condition of the clock line, if the bit is high, then the SCK  
line will be low when the clock is inactive. When the CKPOLB bit is low, then the SCK line will be  
high when the clock is inactive.  
Bit 4  
CKEG: Determines SPI SCK active clock edge type  
CKPOLB=0  
0: SCK is high base level and data capture at SCK rising edge  
1: SCK is high base level and data capture at SCK falling edge  
CKPOLB=1  
0: SCK is low base level and data capture at SCK falling edge  
1: SCK is low base level and data capture at SCK rising edge  
The CKEG and CKPOLB bits are used to setup the way that the clock signal outputs and  
inputs data on the SPI bus. These two bits must be configured before data transfer is executed  
otherwise an erroneous clock edge may be generated. The CKPOLB bit determines the base  
condition of the clock line, if the bit is high, then the SCK line will be low when the clock is  
inactive. When the CKPOLB bit is low, then the SCK line will be high when the clock is inactive.  
The CKEG bit determines active clock edge type which depends upon the condition of CKPOLB  
bit.  
Bit 3  
Bit 2  
MLS: SPI Data shift order  
0: LSB  
1: MSB  
This is the data shift select bit and is used to select how the data is transferred, either MSB or  
LSB first. Setting the bit high will select MSB first and low for LSB first.  
CSEN: SPI SCS pin Control  
0: Disable  
1: Enable  
The CSEN bit is used as an enable/disable for the SCS pin. If this bit is low, then the SCS  
pin will be disabled and placed into a floating condition. If the bit is high the SCS pin will be  
enabled and used as a select pin.  
Note that using the CSEN bit can be disabled or enabled via configuration option.  
Bit 1  
WCOL: SPI Write Collision flag  
0: No collision  
1: Collision  
The WCOL flag is used to detect if a data collision has occurred. If this bit is high it means that  
data has been attempted to be written to the SIMD register during a data transfer operation. This  
writing operation will be ignored if data is being transferred. The bit can be cleared by the  
application program. Note that using the WCOL bit can be disabled or enabled via configuration  
option.  
Bit 0  
TRF: SPI Transmit/Receive Complete flag  
0: Data is being transferred  
1: SPI data transmission is completed  
The TRF bit is the Transmit/Receive Complete flag and is set ²1² automatically when an SPI  
data transmission is completed, but must set to ²0² by the application program. It can be used to  
generate an interrupt.  
Rev. 1.60  
156  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SPI Communication  
The master should output an SCS signal to enable the  
slave device before a clock signal is provided. The slave  
After the SPI interface is enabled by setting the SIMEN  
bit high, then in the Master Mode, when data is written to  
the SIMD register, transmission/reception will begin si-  
multaneously. When the data transfer is complete, the  
TRF flag will be set automatically, but must be cleared  
using the application program. In the Slave Mode, when  
the clock signal from the master has been received, any  
data in the SIMD register will be transmitted and any  
data on the SDI pin will be shifted into the SIMD register.  
data to be transferred should be well prepared at the ap-  
propriate moment relative to the SCS signal depending  
upon the configurations of the CKPOLB bit and CKEG  
bit. The accompanying timing diagram shows the rela-  
tionship between the slave data and SCS signal for vari-  
ous configurations of the CKPOLB and CKEG bits.  
The SPI will continue to function even in the IDLE Mode.  
S
S
I
I
M
M
E
E
N
N
=
,
1
,
C
S
E
N
=
0
(
E
x
t
e
r
n
a
l
P
S
C
S
C
S
E
N
=
1
S
S
S
S
S
S
S
C
C
C
C
D
D
D
K
K
K
K
O
O
I
(
(
(
(
C
C
C
C
K
K
K
K
P
P
P
P
O
O
O
O
L
L
L
L
B
B
B
B
=
1
,
C
K
E
G
=
0
)
=
=
=
0
1
0
,
,
,
C
C
C
K
K
K
E
E
E
G
G
G
=
=
=
0
1
1
)
)
)
D
D
7
7
/
/
D
D
0
0
D
D
6
6
/
/
D
D
1
1
D
D
5
5
/
/
D
D
2
2
D
D
4
4
/
/
D
D
3
3
D
D
3
3
/
/
D
D
4
4
D
D
(
(
C
C
K
K
E
E
G
G
=
=
0
1
)
)
D
a
t
a
C
a
p
t
u
r
e
W
r
i
t
e
t
o
S
I
M
D
SPI Master Mode Timing  
S
C
S
S
S
S
S
C
C
D
D
K
K
O
I
(
(
C
C
K
K
P
P
O
O
L
L
B
B
=
=
1
0
)
)
D
7
/
D
0
D
6
/
D
1
D
5
/
D
2
D
4
/
D
3
D
3
/
D
4
D
2
D
a
t
a
C
a
p
t
u
r
e
W
r
i
t
e
t
o
S
I
M
D
(
S
D
O
d
o
e
s
n
o
t
c
h
a
n
g
e
u
n
t
i
l
f
i
r
s
t
SPI Slave Mode Timing - CKEG=0  
Rev. 1.60  
157  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
S
S
S
S
S
C
C
C
D
D
S
K
K
O
I
(
(
C
C
K
K
P
P
O
O
L
L
B
B
=
=
1
0
)
)
D
7
/
D
0
D
6
/
D
1
D
5
/
D
2
D
4
/
D
3
D
3
/
D
4
D
2
D
a
t
a
C
a
p
t
u
r
e
W
r
i
t
e
t
o
S
I
M
D
(
S
D
O
c
h
a
n
g
e
s
a
s
s
o
o
n
a
s
w
r
i
t
i
n
g
o
N
o
t
e
:
F
o
r
S
P
I
s
l
a
v
e
m
o
d
e
,
i
f
S
I
M
E
N
a
n
d
i
g
n
o
r
e
s
t
h
e
S
C
S
l
e
v
e
l
.
SPI Slave Mode Timing - CKEG=1  
A
S
P
I
t
r
a
n
s
f
e
r
W
r
i
t
e
D
a
t
a
C
l
e
a
r
W
C
O
L
i
n
t
o
S
I
M
D
m
a
s
t
e
r
o
r
S
M
a
s
t
e
r
l
a
v
e
s
l
a
v
e
Y
?
W
C
O
L
=
1
?
S
I
M
[
2
:
0
]
=
0
0
0
,
N
S
I
M
[
2
:
0
]
=
1
0
1
0
0
1
,
0
1
0
,
0
1
1
o
r
1
0
0
T
r
a
n
s
m
i
s
s
i
N
c
o
m
p
l
e
t
e
d
(
T
R
F
=
1
?
)
C
o
n
f
i
g
u
r
e
C
K
P
O
L
B
,
C
K
E
G
,
C
S
E
N
a
n
d
M
L
S
Y
R
e
a
d
D
a
t
a
S
I
M
E
N
=
1
f
r
o
m
S
I
M
D
C
l
e
a
r
T
R
F
A
N
T
r
a
n
s
f
e
r
F
i
n
i
s
h
e
d
?
Y
E
N
D
SPI Transfer Control Flowchart  
Rev. 1.60  
158  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
I2C Interface  
lationship between the system clock, fSYS, and the I2C  
debounce time. For either the I2C Standard or Fast  
The I2C interface is used to communicate with external  
peripheral devices such as sensors, EEPROM memory  
etc. Originally developed by Philips, it is a two line low  
speed serial interface for synchronous serial data trans-  
fer. The advantage of only two lines for communication,  
relatively simple communication protocol and the ability  
to accommodate multiple devices on the same bus has  
made it an extremely popular interface type for many  
applications.  
mode operation, users must take care of the selected  
system clock frequency and the configured debounce  
time to match the criterion shown in the following ta-  
ble.  
I2C Debounce  
I2C Standard  
I2C Fast Mode  
(400kHz)  
Time Selection Mode (100kHz)  
No debounce  
f
SYS > 2MHz  
SYS > 4MHz  
fSYS > 5MHz  
2 system clock  
debounce  
f
fSYS > 10MHz  
V
D
4 system clock  
debounce  
f
SYS > 8MHz  
fSYS > 20MHz  
S
D
S
C
I2C Minimum fSYS Frequency  
D
e
v
i
c
D
e
e
v
i
c
D
e
e
v
i
c
e
S
T
A
R
T
s
i
g
n
a
l
S
l
a
v
M
e
a
s
t
e
S
r
l
a
v
e
f
r
o
m
M
a
s
t
e
r
I2C Master Slave Bus Connection  
S
e
n
d
s
l
a
v
e
a
d
d
r
e
a
n
d
R
/
W
b
i
t
f
r
o
m
I2C Interface Operation  
·
The I2C serial interface is a two line interface, a serial  
data line, SDA, and serial clock line, SCL. As many  
devices may be connected together on the same bus,  
their outputs are both open drain types. For this rea-  
son it is necessary that external pull-high resistors are  
connected to these outputs. Note that no chip select  
line exists, as each device on the I2C bus is identified  
by a unique address which will be transmitted and re-  
ceived on the I2C bus.  
A
c
k
n
o
w
l
e
d
g
e
f
r
o
m
s
l
a
v
e
S
e
n
d
d
a
t
a
b
y
t
e
f
r
o
m
M
a
s
t
e
r
A
c
k
n
o
w
l
e
d
g
e
f
r
o
m
s
l
a
v
e
When two devices communicate with each other on  
the bidirectional I2C bus, one is known as the master  
device and one as the slave device. Both master and  
slave can transmit and receive data, however, it is the  
master device that has overall control of the bus. For  
these devices, which only operates in slave mode,  
there are two methods of transferring data on the I2C  
bus, the slave transmit mode and the slave receive  
mode.  
S
T
O
P
s
i
g
n
a
l
f
r
o
m
M
a
s
t
e
r
I2C Registers  
·
There are three control registers associated with the  
I2C bus, SIMC0, SIMC1 and SIMA and one data regis-  
ter, SIMD. The SIMD register, which is shown in the  
above SPI section, is used to store the data being  
transmitted and received on the I2C bus. Before the  
microcontroller writes data to the I2C bus, the actual  
data to be transmitted must be placed in the SIMD  
register. After the data is received from the I2C bus,  
the microcontroller can read it from the SIMD register.  
Any transmission or reception of data from the I2C bus  
must be made via the SIMD register.  
There are several configuration options associated  
with the I2C interface. One of these is to enable the  
function which selects the SIM pins rather than normal  
I/O pins. Note that if the configuration option does not  
select the SIM function then the SIMEN bit in the  
SIMC0 register will have no effect. A configuration op-  
tion determines the debounce time of the I2C inter-  
face. This uses the system clock to in effect add a  
debounce time to the external clock to reduce the pos-  
sibility of glitches on the clock line causing erroneous  
operation. The debounce time, if selected, can be  
chosen to be either 2 or 4 system clocks. To achieve  
the required I2C data transfer speed, there exists a re-  
Note that the SIMA register also has the name SIMC2  
which is used by the SPI function. Bit SIMEN and bits  
SIM2~SIM0 in register SIMC0 are used by the I2C in-  
terface.  
Rev. 1.60  
159  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Bit  
Register  
Name  
7
6
5
4
3
2
1
0
¾
SIMC0  
SIM2  
HCF  
D7  
SIM1  
HAAS  
D6  
SIM0  
HBB  
D5  
PCKEN  
HTX  
PCKP1  
TXAK  
D3  
PCKP0  
SRW  
D2  
SIMEN  
IAMWU  
D1  
SIMC1  
SIMD  
SIMA  
RXAK  
D0  
D4  
IICA6  
IICA5  
IICA4  
IICA3  
IICA2  
IICA1  
IICA0  
D0  
I2C Registers List  
·
SIMC0 Register  
Bit  
Name  
R/W  
7
SIM2  
R/W  
1
6
5
4
3
2
1
SIMEN  
R/W  
0
0
SIM1  
R/W  
1
SIM0  
R/W  
1
PCKEN  
R/W  
0
PCKP1  
R/W  
0
PCKP0  
¾
¾
¾
R/W  
0
POR  
Bit 7~5  
SIM2, SIM1, SIM0: SIM Operating Mode Control  
000: SPI master mode; SPI clock is fSYS/4  
001: SPI master mode; SPI clock is fSYS/16  
010: SPI master mode; SPI clock is fSYS/64  
011: SPI master mode; SPI clock is fTBC  
100: SPI master mode; SPI clock is TM0 CCRP match frequency/2  
101: SPI slave mode  
110: I2C slave mode  
111: Unused mode  
These bits setup the overall operating mode of the SIM function. As well as selecting if the I2C  
or SPI function, they are used to control the SPI Master/Slave selection and the SPI Master clock  
frequency. The SPI clock is a function of the system clock but can also be chosen to be sourced  
from the TM0. If the SPI Slave Mode is selected then the clock will be supplied by an external  
Master device.  
Bit 4  
PCKEN: PCK Output Pin Control  
0: Disable  
1: Enable  
Bit 3~2  
PCKP1, PCKP0: Select PCK output pin frequency  
00: fSYS  
01: fSYS/4  
10: fSYS/8  
11: TM0 CCRP match frequency/2  
Bit 1  
SIMEN: SIM Control  
0: Disable  
1: Enable  
The bit is the overall on/off control for the SIM interface. When the SIMEN bit is cleared to zero  
to disable the SIM interface, the SDI, SDO, SCK and SCS, or SDA and SCL lines will be in a  
floating condition and the SIM operating current will be reduced to a minimum value. When the bit  
is high the SIM interface is enabled. The SIM configuration option must have first enabled the  
SIM interface for this bit to be effective. If the SIM is configured to operate as an SPI interface via  
SIM2~SIM0 bits, the contents of the SPI control registers will remain at the previous settings  
when the SIMEN bit changes from low to high and should therefore be first initialised by the  
application program. If the SIM is configured to operate as an I2C interface via the SIM2~SIM0  
bits and the SIMEN bit changes from low to high, the contents of the I2C control bits such as HTX  
and TXAK will remain at the previous settings and should therefore be first initialised by the  
application program while the relevant I2C flags such as HCF, HAAS, HBB, SRW and RXAK will  
be set to their default states.  
Bit 0  
unimplemented, read as ²0²  
Rev. 1.60  
160  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
SIMC1 Register  
Bit  
Name  
R/W  
7
HCF  
R
6
HAAS  
R
5
HBB  
R
4
3
TXAK  
R/W  
0
2
SRW  
R
1
IAMWU  
R/W  
0
0
RXAK  
R
HTX  
R/W  
0
POR  
1
0
0
0
1
Bit 7  
HCF: I2C Bus data transfer completion flag  
0: Data is being transferred  
1: Completion of an 8-bit data transfer  
The HCF flag is the data transfer flag. This flag will be zero when data is being transferred.  
Upon completion of an 8-bit data transfer the flag will go high and an interrupt will be generated.  
Bit 6  
HAAS: I2C Bus address match flag  
0: Not address match  
1: Address match  
The HASS flag is the address match flag. This flag is used to determine if the slave device  
address is the same as the master transmit address. If the addresses match then this bit will be  
high, if there is no match then the flag will be low.  
Bit 5  
HBB: I2C Bus busy flag  
0: I2C Bus is not busy  
1: I2C Bus is busy  
The HBB flag is the I2C busy flag. This flag will be ²1² when the I2C bus is busy which will  
occur when a START signal is detected. The flag will be set to ²0² when the bus is free which will  
occur when a STOP signal is detected.  
Bit 4  
Bit 3  
HTX: Select I2C slave device is transmitter or receiver  
0: Slave device is the receiver  
1: Slave device is the transmitter  
TXAK: I2C Bus transmit acknowledge flag  
0: Slave send acknowledge flag  
1: Slave do not send acknowledge flag  
The TXAK bit is the transmit acknowledge flag. After the slave device receipt of 8-bits of data,  
this bit will be transmitted to the bus on the 9th clock from the slave device. The slave device  
must always set TXAK bit to ²0² before further data is received.  
Bit 2  
SRW: I2C Slave Read/Write flag  
0: Slave device should be in receive mode  
1: Slave device should be in transmit mode  
The SRW flag is the I2C Slave Read/Write flag. This flag determines whether the master  
device wishes to transmit or receive data from the I2C bus. When the transmitted address and  
slave address is match, that is when the HAAS flag is set high, the slave device will check the  
SRW flag to determine whether it should be in transmit mode or receive mode. If the SRW flag is  
high, the master is requesting to read data from the bus, so the slave device should be in transmit  
mode. When the SRW flag is zero, the master will write data to the bus, therefore the slave  
device should be in receive mode to read this data.  
Bit 1  
IAMWU: I2C Address Match Wake-up Control  
0: Disable  
1: Enable - must be cleared by the application program after wake-up  
This bit should be set to ²1² to enable the I2C address match wake up from the SLEEP or IDLE  
Mode. If the IAMWU bit has been set before entering either the SLEEP or IDLE mode to enable  
the I2C address match wake up, then this bit must be cleared by the application program after  
wake-up to ensure correction device operation.  
Bit 0  
RXAK: I2C Bus Receive acknowledge flag  
0: Slave receive acknowledge flag  
1: Slave do not receive acknowledge flag  
The RXAK flag is the receiver acknowledge flag. When the RXAK flag is ²0², it means that a  
acknowledge signal has been received at the 9th clock, after 8 bits of data have been  
transmitted. When the slave device in the transmit mode, the slave device checks the RXAK flag  
to determine if the master receiver wishes to receive the next byte. The slave transmitter will  
therefore continue sending out data until the RXAK flag is ²1². When this occurs, the slave  
transmitter will release the SDA line to allow the master to send a STOP signal to release the I2C  
Bus.  
Rev. 1.60  
161  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
The SIMD register is used to store the data being transmitted and received. The same register is used by both the SPI  
and I2C functions. Before the device writes data to the SPI bus, the actual data to be transmitted must be placed in the  
SIMD register. After the data is received from the SPI bus, the device can read it from the SIMD register. Any transmis-  
sion or reception of data from the SPI bus must be made via the SIMD register.  
·
SIMD Register  
Bit  
Name  
R/W  
7
D7  
R/W  
x
6
D6  
R/W  
x
5
D5  
R/W  
x
4
D4  
R/W  
x
3
D3  
R/W  
x
2
D2  
R/W  
x
1
D1  
R/W  
x
0
D0  
R/W  
POR  
x
²x² unknown  
·
SIMA Register  
Bit  
Name  
R/W  
7
IICA6  
R/W  
x
6
IICA5  
R/W  
x
5
IICA4  
R/W  
x
4
IICA3  
R/W  
x
3
IICA2  
R/W  
x
2
IICA1  
R/W  
x
1
IICA0  
R/W  
x
0
¾
¾
POR  
¾
²x² unknown  
Bit 7~1  
IICA6~ IICA0: I2C slave address  
IICA6~ IICA0 is the I2C slave address bit 6~ bit 0.  
The SIMA register is also used by the SPI interface but has the name SIMC2. The SIMA  
register is the location where the 7-bit slave address of the slave device is stored. Bits 7~ 1 of the  
SIMA register define the device slave address. Bit 0 is not defined.  
When a master device, which is connected to the I2C bus, sends out an address, which  
matches the slave address in the SIMA register, the slave device will be selected. Note that the  
SIMA register is the same register address as SIMC2 which is used by the SPI interface.  
Bit 0  
Undefined bit  
This bit can be read or written by user software program.  
D
a
t
a
B
u
s
2
I
C
D
a
t
a
R
S
e
a
g
v
i
e
s
t
e
A
r
d
d
r
e
s
s
R
e
g
i
s
t
e
r
(
S
I
M
D
)
(
S
I
M
A
)
A
d
d
r
e
A
s
d
s
d
r
e
s
s
M
a
t
c
h
2
I
C
I
n
t
C
o
m
p
a
r
H
a
A
t
A
o
S
r
B
i
t
H
T
X
B
i
t
D
i
r
e
c
t
i
o
n
C
o
n
t
r
o
l
S
C
L
P
i
n
e
D
b
o
u
n
c
e
D
a
t
a
i
n
L
S
B
S
D
A
P
C
i
n
i
r
c
u
i
t
r
y
S
h
i
f
t
R
e
g
e
i
a
s
t
e
r
R
d
/
w
r
i
t
e
S
l
a
v
e
D
a
t
a
O
u
t
M
S
B
M
S
R
W
B
i
t
U
E
n
a
b
n
l
e
/
D
i
s
a
b
l
e
A
c
k
n
o
w
l
e
d
g
e
C
o
n
f
i
g
u
r
a
t
i
o
X
O
p
t
i
o
n
s
8
-
b
i
t
D
a
t
a
C
o
m
p
l e  
t
t
e
H
C
F
B
i
T
r
a
n
s
m
i
t
/
R
e
c
e
i
v
e
D
e
t
e
c t  
t
S
t
a
r
t
o
r
S
t
o
p
C
o
n
t
r
o
l
U
n
i
H
B
B
B
i
t
I2C Block Diagram  
Rev. 1.60  
162  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
I2C Bus Communication  
I2C Bus Start Signal  
Communication on the I2C bus requires four separate  
steps, a START signal, a slave device address transmis-  
sion, a data transmission and finally a STOP signal.  
When a START signal is placed on the I2C bus, all de-  
vices on the bus will receive this signal and be notified of  
the imminent arrival of data on the bus. The first seven  
bits of the data will be the slave address with the first bit  
being the MSB. If the address of the slave device  
matches that of the transmitted address, the HAAS bit in  
the SIMC1 register will be set and an I2C interrupt will be  
generated. After entering the interrupt service routine,  
the slave device must first check the condition of the  
HAAS bit to determine whether the interrupt source orig-  
inates from an address match or from the completion of  
an 8-bit data transfer. During a data transfer, note that  
after the 7-bit slave address has been transmitted, the  
following bit, which is the 8th bit, is the read/write bit  
whose value will be placed in the SRW bit. This bit will  
be checked by the slave device to determine whether to  
go into transmit or receive mode. Before any transfer of  
data to or from the I2C bus, the microcontroller must in-  
itialise the bus, the following are steps to achieve this:  
The START signal can only be generated by the master  
device connected to the I2C bus and not by the slave de-  
vice. This START signal will be detected by all devices  
connected to the I2C bus. When detected, this indicates  
that the I2C bus is busy and therefore the HBB bit will be  
set. ASTART condition occurs when a high to low transi-  
tion on the SDA line takes place when the SCL line re-  
mains high.  
Slave Address  
The transmission of a START signal by the master will  
be detected by all devices on the I2C bus. To determine  
which slave device the master wishes to communicate  
with, the address of the slave device will be sent out im-  
mediately following the START signal. All slave devices,  
after receiving this 7-bit address data, will compare it  
with their own 7-bit slave address. If the address sent  
out by the master matches the internal address of the  
microcontroller slave device, then an internal I2C bus in-  
terrupt signal will be generated. The next bit following  
the address, which is the 8th bit, defines the read/write  
status and will be saved to the SRW bit of the SIMC1  
register. The slave device will then transmit an acknowl-  
edge bit, which is a low level, as the 9th bit. The slave  
device will also set the status flag HAAS when the ad-  
dresses match.  
Step 1  
Set the SIM2~SIM0 and SIMEN bits in the SIMC0 regis-  
ter to ²1² to enable the I2C bus.  
Step 2  
As an I2C bus interrupt can come from two sources,  
when the program enters the interrupt subroutine, the  
HAAS bit should be examined to see whether the inter-  
rupt source has come from a matching slave address or  
from the completion of a data byte transfer. When a  
slave address is matched, the device must be placed in  
either the transmit mode and then write data to the SIMD  
register, or in the receive mode where it must implement  
a dummy read from the SIMD register to release the  
SCL line.  
Write the slave address of the device to the I2C bus ad-  
dress register SIMA.  
Step 3  
Set the SIME and SIM Muti-Function interrupt enable bit  
of the interrupt control register to enable the SIM inter-  
rupt and Multi-function interrupt.  
S
t
a
r
t
I2C Bus Read/Write Signal  
S
E
T
S
I
M
[
2
:
0
]
=
1
1
0
S
E
T
S
I
M
E
N
The SRW bit in the SIMC1 register defines whether the  
slave device wishes to read data from the I2C bus or  
write data to the I2C bus. The slave device should exam-  
ine this bit to determine if it is to be a transmitter or a re-  
ceiver. If the SRW flag is ²1² then this indicates that the  
master device wishes to read data from the I2C bus,  
therefore the slave device must be setup to send data to  
the I2C bus as a transmitter. If the SRW flag is ²0² then  
this indicates that the master wishes to send data to the  
I2C bus, therefore the slave device must be setup to  
read data from the I2C bus as a receiver.  
W
r
i
t
e
S
l
a
v
e
A
d
d
r
e
s
s
t
o
S
I
M
A
2
N
o
C
I
B
u
s
Y
e
s
I
n
t
e
r
r
u
p
t
=
?
C
L
R
S
I
M
E
S
E
T
S
I
M
E
P
o
l
l
S
I
M
F
t
o
d
e
c
i
d
e
W
a
i
t
f
o
r
2
w
h
e
n
t
C
o
B
g
u
o
s
t
I
o
S
R
I
G
o
t
o
M
a
i
n
P
r
o
g
r
a
G
m
o
t
o
M
a
i
n
I2C Bus Slave Address Acknowledge Signal  
I2C Bus Initialisation Flow Chart  
After the master has transmitted a calling address, any  
slave device on the I2C bus, whose own internal address  
matches the calling address, must generate an ac-  
knowledge signal. The acknowledge signal will inform  
Rev. 1.60  
163  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
the master that a slave device has accepted its calling  
²0², before it can receive the next data byte. If the slave  
transmitter does not receive an acknowledge bit signal  
from the master receiver, then the slave transmitter will  
release the SDA line to allow the master to send a STOP  
signal to release the I2C Bus. The corresponding data  
will be stored in the SIMD register. If setup as a transmit-  
ter, the slave device must first write the data to be trans-  
mitted into the SIMD register. If setup as a receiver, the  
slave device must read the transmitted data from the  
SIMD register.  
address. If no acknowledge signal is received by the  
master then a STOP signal must be transmitted by the  
master to end the communication. When the HAAS flag  
is high, the addresses have matched and the slave de-  
vice must check the SRW flag to determine if it is to be a  
transmitter or a receiver. If the SRW flag is high, the  
slave device should be setup to be a transmitter so the  
HTX bit in the SIMC1 register should be set to ²1². If the  
SRW flag is low, then the microcontroller slave device  
should be setup as a receiver and the HTX bit in the  
SIMC1 register should be set to ²0².  
When the slave receiver receives the data byte, it must  
generate an acknowledge bit, known as TXAK, on the  
9th clock. The slave device, which is setup as a trans-  
mitter will check the RXAK bit in the SIMC1 register to  
determine if it is to send another data byte, if not then it  
will release the SDAline and await the receipt of a STOP  
signal from the master.  
I2C Bus Data and Acknowledge Signal  
The transmitted data is 8-bits wide and is transmitted af-  
ter the slave device has acknowledged receipt of its  
slave address. The order of serial bit transmission is the  
MSB first and the LSB last. After receipt of 8-bits of data,  
the receiver must transmit an acknowledge signal, level  
S
t
a
r
t
S
l
a
v
e
A
d
d
r
e
s
S
s
R
W
A
C
K
S
C
L
0
1
1
1
0
1
0
1
0
S
D
A
D
a
t
a
A
C
K
S
t
o
p
S
C
L
1
0
0
1
0
1
0
0
S
D
A
S
S
S
M
D
A
P
=
A
R
S
t
S
a
r
t
(
1
b
i
t
)
=
l
a
v
e
A
d
d
r
e
s
s
(
7
b
i
t
s
)
=
S
R
W
b
i
t
(
1
b
i
t
)
=
S
l
a
v
e
d
e
v
i
c
e
s
e
n
d
a
c
k
n
o
w
l
e
d
g
e
b
i
t
(
1
b
=
D
a
t
a
(
8
b
i
t
s
)
=
=
A
S
C
t
K
(
R
X
A
K
b
i
t
f
o
r
t
r
a
n
s
m
i
t
t
e
r
,
T
X
A
K
b
i
o
p
(
1
b
i
t
)
S
S
A
M
S
R
D
A
D
A
S
S
A
M
S
R
D
A
D
A
P
Note: * When a slave address is matched, the device must be placed in either the transmit mode and then write data  
to the SIMD register, or in the receive mode where it must implement a dummy read from the SIMD register to  
release the SCL line.  
I2C Communication Timing Diagram  
Rev. 1.60  
164  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
S
t
a
r
t
N
o
Y
e
s
H
A
A
S
=
1
?
Y
e
s
N
1
o
N
o
Y
1
e
s
S
R
W
=
H
T
X
=
?
?
R
e
a
d
f
r
o
m
S
I
M
D
t
o
r
e
l
e
a
s
e
C
L
R
H
T
X
S
E
T
H
T
X
S
C
L
l
i
n
e
C
L
R
T
X
A
K
D
u
m
m
y
r
e
a
d
R
E
T
I
W
r
i
t
e
d
a
t
a
t
o
S
I
M
D
S
I
M
D
t
o
r
e
l
e
t
o
r
e
l
e
a
s
e
S
C
L
L
i
n
e
S
C
L
L
i
n
e
Y
e
s
R
X
A
K
=
1
?
N
o
R
E
T
I
R
E
T
I
C
L
R
H
T
X
W
r
i
t
e
d
a
t
a
t
o
S
I
M
D
C
L
R
T
X
A
r
K
e
l
e
a
s
e
S
C
L
L
i
n
e
D
u
m
m
y
r
e
a
d
f
r
o
m
S
I
M
D
t
o
r
e
l
e
a
s
e
I
R
E
T
S
C
L
L
i
n
e
R
E
T
I
I2C Bus ISR Flow Chart  
Rev. 1.60  
165  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Peripheral Clock Output  
The Peripheral Clock Output allows the device to supply  
external hardware with a clock signal synchronised to  
the microcontroller clock.  
for the Peripheral Clock Output can originate from either  
the TM0 CCRP match frequency/2 or a divided ratio of  
the internal fSYS clock. The PCKEN bit in the SIMC0 reg-  
ister is the overall on/off control, setting PCKEN bit to  
²1² enables the Peripheral Clock, setting PCKEN bit to  
²0² disables it. The required division ratio of the system  
clock is selected using the PCKP1 and PCKP0 bits in  
the same register. If the device enters the SLEEP Mode  
this will disable the Peripheral Clock output.  
Peripheral Clock Operation  
As the peripheral clock output pin, PCK, is shared with  
I/O line, the required pin function is chosen via PCKEN  
in the SIMC0 register. The Peripheral Clock function is  
controlled using the SIMC0 register. The clock source  
·
SIMC0 Register  
Bit  
7
6
SIM1  
R/W  
1
5
SIM0  
R/W  
1
4
PCKEN  
R/W  
0
3
PCKP1  
R/W  
0
2
PCKP0  
R/W  
0
1
SIMEN  
R/W  
0
0
Name  
R/W  
SIM2  
R/W  
1
¾
¾
¾
POR  
Bit 7~5  
SIM2, SIM1, SIM0: SIM operating mode control  
000: SPI master mode; SPI clock is fSYS/4  
001: SPI master mode; SPI clock is fSYS/16  
010: SPI master mode; SPI clock is fSYS/64  
011: SPI master mode; SPI clock is fTBC  
100: SPI master mode; SPI clock is TM0 CCRP match frequency/2  
101: SPI slave mode  
110: I2C slave mode  
111: Unused mode  
These bits setup the overall operating mode of the SIM function. As well as selecting if the I2C  
or SPI function, they are used to control the SPI Master/Slave selection and the SPI Master clock  
frequency. The SPI clock is a function of the system clock but can also be chosen to be sourced  
from the TM0. If the SPI Slave Mode is selected then the clock will be supplied by an external  
Master device.  
Bit 4  
PCKEN: PCK output pin control  
0: Disable  
1: Enable  
Bit 3~2  
PCKP1, PCKP0: select PCK output pin frequency  
00: fSYS  
01: fSYS/4  
10: fSYS/8  
11: TM0 CCRP match frequency/2  
Bit 1  
SIMEN: SIM control  
0: Disable  
1: Enable  
The bit is the overall on/off control for the SIM interface. When the SIMEN bit is cleared to zero  
to disable the SIM interface, the SDI, SDO, SCK and SCS, or SDA and SCL lines will be in a  
floating condition and the SIM operating current will be reduced to a minimum value. When the bit  
is high the SIM interface is enabled. The SIM configuration option must have first enabled the  
SIM interface for this bit to be effective. Note that when the SIMEN bit changes from low to high  
the contents of the SPI control registers will be in an unknown condition and should therefore be  
first initialised by the application program.  
Bit 0  
unimplemented, read as ²0²  
Rev. 1.60  
166  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Interrupts  
Interrupts are an important part of any microcontroller  
system. When an external event or an internal function  
such as a Timer Module or an A/D converter requires  
microcontroller attention, their corresponding interrupt  
will enforce a temporary suspension of the main pro-  
gram allowing the microcontroller to direct attention to  
their respective needs. The device contains several ex-  
ternal interrupt and internal interrupts functions. The ex-  
ternal interrupts are generated by the action of the  
external INT0~INT3 and PINT pins, while the internal in-  
terrupts are generated by various internal functions  
such as the TMs, Comparators, Time Base, LVD,  
EEPROM, SIM and the A/D converter.  
indicate the presence of an interrupt request. The nam-  
ing convention of these follows a specific pattern. First is  
listed an abbreviated interrupt type, then the (optional)  
number of that interrupt followed by either an ²E² for en-  
able/disable bit or ²F² for request flag.  
Enable  
Bit  
Request  
Flag  
Function  
Global  
Notes  
EMI  
CPnE  
INTnE  
ADE  
¾
¾
n = 0 or 1  
n = 0~3  
¾
Comparator  
INTn Pin  
A/D Converter  
Multi-function  
Time Base  
SIM  
CPnF  
INTnF  
ADF  
MFnE  
TBnE  
SIME  
LVE  
MFnF  
TBnF  
SIMF  
LVF  
n = 0~5  
n = 0 or 1  
¾
Interrupt Registers  
Overall interrupt control, which basically means the set-  
ting of request flags when certain microcontroller condi-  
tions occur and the setting of interrupt enable bits by the  
application program, is controlled by a series of regis-  
ters, located in the Special Purpose Data Memory, as  
shown in the accompanying table. The number of regis-  
ters depends upon the device chosen but fall into three  
categories. The first is the INTC0~INTC3 registers  
which setup the primary interrupts, the second is the  
MFI0~MFI3 registers which setup the Multi-function in-  
terrupts. Finally there is an INTEG register to setup the  
external interrupt trigger edge type.  
LVD  
¾
EEPROM  
PINT Pin  
DEE  
DEF  
¾
XPE  
XPF  
¾
TnPE  
TnAE  
TnBE  
TnPF  
TnAF  
TnBF  
TM  
n = 0~3  
Interrupt Register Bit Naming Conventions  
Each register contains a number of enable bits to enable  
or disable individual registers as well as interrupt flags to  
·
Interrupt Register Contents  
¨
HT66F20  
Bit  
Name  
7
¾
6
5
4
3
INT1S1  
CP0E  
ADE  
MF3E  
¾
2
INT1S0  
INT1E  
MF1E  
TB1E  
¾
1
0
INTEG  
INTC0  
INTC1  
INTC2  
MFI0  
INT0S1  
INT0E  
MF0E  
TB0E  
T0AE  
T1AE  
XPE  
INT0S0  
EMI  
¾
¾
¾
CP0F  
MF1F  
TB1F  
¾
INT1F  
MF0F  
TB0F  
T0AF  
T1AF  
XPF  
INT0F  
CP1F  
MF2F  
T0PF  
T1PF  
SIMF  
¾
ADF  
MF3F  
¾
CP1E  
MF2E  
T0PE  
T1PE  
SIME  
MFI1  
¾
¾
¾
¾
MFI2  
DEF  
LVF  
DEE  
LVE  
Rev. 1.60  
167  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
¨
¨
HT66F30  
Bit  
Name  
7
¾
6
5
4
3
INT1S1  
CP0E  
ADE  
MF3E  
¾
2
1
0
INTEG  
INTC0  
INTC1  
INTC2  
MFI0  
INT1S0  
INT1E  
MF1E  
TB1E  
¾
INT0S1  
INT0E  
MF0E  
TB0E  
T0AE  
T1AE  
XPE  
INT0S0  
EMI  
¾
¾
¾
CP0F  
MF1F  
TB1F  
¾
INT1F  
MF0F  
TB0F  
T0AF  
T1AF  
XPF  
INT0F  
CP1F  
MF2F  
T0PF  
T1PF  
SIMF  
¾
ADF  
MF3F  
¾
CP1E  
MF2E  
T0PE  
T1PE  
SIME  
MFI1  
T1BF  
LVF  
T1BE  
LVE  
¾
¾
MFI2  
DEF  
DEE  
HT66F40  
Bit  
Name  
7
¾
6
5
4
3
2
1
0
INTEG  
INTC0  
INTC1  
INTC2  
MFI0  
INT1S1  
CP0E  
ADE  
INT1S0  
INT1E  
MF1E  
TB1E  
T2PE  
T1BE  
LVE  
INT0S1  
INT0E  
MF0E  
TB0E  
T0AE  
T1AE  
XPE  
INT0S0  
EMI  
¾
¾
¾
CP0F  
MF1F  
TB1F  
T2PF  
T1BF  
LVF  
INT1F  
MF0F  
TB0F  
T0AF  
T1AF  
XPF  
INT0F  
CP1F  
MF2F  
T0PF  
T1PF  
SIMF  
¾
ADF  
MF3F  
T2AF  
¾
CP1E  
MF2E  
T0PE  
T1PE  
SIME  
MF3E  
T2AE  
¾
MFI1  
MFI2  
DEF  
DEE  
HT66F50  
Bit  
Name  
7
¾
6
5
4
3
INT1S1  
CP0E  
ADE  
MF3E  
T2AE  
¾
2
1
0
INTEG  
INTC0  
INTC1  
INTC2  
MFI0  
INT1S0  
INT1E  
MF1E  
TB1E  
T2PE  
T1BE  
LVE  
INT0S1  
INT0E  
MF0E  
TB0E  
T0AE  
T1AE  
XPE  
INT0S0  
EMI  
¾
¾
¾
CP0F  
MF1F  
TB1F  
T2PF  
T1BF  
LVF  
¾
INT1F  
MF0F  
TB0F  
T0AF  
T1AF  
XPF  
INT0F  
CP1F  
MF2F  
T0PF  
T1PF  
SIMF  
T3PF  
¾
ADF  
MF3F  
T2AF  
¾
CP1E  
MF2E  
T0PE  
T1PE  
SIME  
T3PE  
MFI1  
MFI2  
DEF  
¾
DEE  
¾
MFI3  
T3AF  
T3AE  
¾
Rev. 1.60  
168  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F60  
Bit  
Name  
7
INT3S1  
¾
6
5
4
3
2
1
0
INTEG  
INTC0  
INTC1  
INTC2  
INTC3  
MFI0  
INT3S0  
INT2F  
CP1F  
MF3F  
TB1F  
T2PF  
T1BF  
LVF  
INT2S1  
INT1F  
CP0F  
MF2F  
TB0F  
T0AF  
T1AF  
XPF  
INT2S0  
INT0F  
INT3F  
MF1F  
MF4F  
T0PF  
T1PF  
SIMF  
T3PF  
INT1S1  
INT2E  
MF0E  
ADE  
MF5E  
T2AE  
¾
INT1S0  
INT1E  
CP1E  
MF3E  
TB1E  
T2PE  
T1BE  
LVE  
INT0S1  
INT0E  
CP0E  
MF2E  
TB0E  
T0AE  
T1AE  
XPE  
INT0S0  
EMI  
MF0F  
ADF  
MF5F  
T2AF  
¾
INT3E  
MF1E  
MF4E  
T0PE  
T1PE  
SIME  
T3PE  
MFI1  
MFI2  
DEF  
¾
DEE  
¾
MFI3  
T3AF  
T3AE  
¾
¾
·
INTEG Register  
¨
HT66F20/HT66F30/HT66F40/HT66F50  
Bit  
Name  
R/W  
7
6
5
4
3
INT1S1  
R/W  
0
2
INT1S0  
R/W  
0
1
INT0S1  
R/W  
0
0
INT0S0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~4  
Bit 3~2  
unimplemented, read as ²0²  
INT1S1, INT1S0: interrupt edge control for INT1 pin  
00: disable  
01: rising edge  
10: falling edge  
11: rising and falling edges  
Bit 1~0  
INT0S1, INT0S0: interrupt edge control for INT0 pin  
00: disable  
01: rising edge  
10: falling edge  
11: rising and falling edges  
Rev. 1.60  
169  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F60  
Bit  
Name  
R/W  
7
INT3S1  
R/W  
0
6
INT3S0  
R/W  
0
5
INT2S1  
R/W  
0
4
INT2S0  
R/W  
0
3
INT1S1  
R/W  
0
2
INT1S0  
R/W  
0
1
INT0S1  
R/W  
0
0
INT0S0  
R/W  
0
POR  
Bit 7~6  
INT3S1, INT3S0: Interrupt edge control for INT3 pin  
00: disable  
01: rising edge  
10: falling edge  
Bit 5~4  
INT2S1, INT2S0: interrupt edge control for INT2 pin  
00: disable  
01: rising edge  
10: falling edge  
11: rising and falling edges  
Bit 3~2  
Bit 1~0  
INT1S1, INT1S0: interrupt edge control for INT1 pin  
00: disable  
01: rising edge  
10: falling edge  
11: rising and falling edges  
INT0S1, INT0S0: interrupt edge control for INT0 pin  
00: disable  
01: rising edge  
10: falling edge  
11: rising and falling edges  
·
INTC0 Register  
¨
HT66F20/HT66F30/HT66F40/HT66F50  
Bit  
Name  
R/W  
7
6
CP0F  
R/W  
0
5
INT1F  
R/W  
0
4
INT0F  
R/W  
0
3
CP0E  
R/W  
0
2
INT1E  
R/W  
0
1
INT0E  
R/W  
0
0
EMI  
R/W  
0
¾
¾
¾
POR  
Bit 7  
Bit 6  
unimplemented, read as ²0²  
CP0F: Comparator 0 interrupt request flag  
0: no request  
1: interrupt request  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INT1F: INT1 interrupt request flag  
0: no request  
1: interrupt request  
INT0F: INT0 interrupt request flag  
0: no request  
1: interrupt request  
CP0E: Comparator 0 interrupt control  
0: disable  
1: enable  
INT1E: INT1 interrupt control  
0: disable  
1: enable  
INT0E: INT0 interrupt control  
0: disable  
1: enable  
EMI: Global interrupt control  
0: disable  
1: enable  
Rev. 1.60  
170  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F60  
Bit  
Name  
R/W  
7
6
INT2F  
R/W  
0
5
INT1F  
R/W  
0
4
INT0F  
R/W  
0
3
INT2E  
R/W  
0
2
INT1E  
R/W  
0
1
INT0E  
R/W  
0
0
EMI  
R/W  
0
¾
¾
¾
POR  
Bit 7  
Bit 6  
unimplemented, read as ²0²  
INT2F: INT2 interrupt request flag  
0: no request  
1: interrupt request  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INT1F: INT1 interrupt request flag  
0: no request  
1: interrupt request  
INT0F: INT0 interrupt request flag  
0: no request  
1: interrupt request  
INT2E: INT2 interrupt control  
0: disable  
1: enable  
INT1E: INT1 interrupt control  
0: disable  
1: enable  
INT0E: INT0 interrupt control  
0: disable  
1: enable  
EMI: Global interrupt control  
0: disable  
1: enable  
Rev. 1.60  
171  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
INTC1 Register  
¨
HT66F20/HT66F30/HT66F40/HT66F50  
Bit  
Name  
R/W  
7
6
MF1F  
R/W  
0
5
MF0F  
R/W  
0
4
CP1F  
R/W  
0
3
2
MF1E  
R/W  
0
1
MF0E  
R/W  
0
0
CP1E  
R/W  
0
ADF  
R/W  
0
ADE  
R/W  
0
POR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADF: A/D Converter Interrupt Request Flag  
0: no request  
1: interrupt request  
MF1F: Multi-function Interrupt 1 Request Flag  
0: no request  
1: interrupt request  
MF0F: Multi-function Interrupt 0 Request Flag  
0: no request  
1: interrupt request  
CP1F: Comparator 1 Interrupt Request Flag  
0: no request  
1: interrupt request  
ADE: A/D Converter Interrupt Control  
0: disable  
1: enable  
MF1E: Multi-function Interrupt 1 Control  
0: disable  
1: enable  
MF0E: Multi-function Interrupt 0 Control  
0: disable  
1: enable  
CP1E: Comparator 1 Interrupt Control  
0: Disable  
1: Enable  
Rev. 1.60  
172  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F60  
Bit  
Name  
R/W  
7
MF0F  
R/W  
0
6
CP1F  
R/W  
0
5
CP0F  
R/W  
0
4
INT3F  
R/W  
0
3
MF0E  
R/W  
0
2
CP1E  
R/W  
0
1
CP0E  
R/W  
0
0
INT3E  
R/W  
0
POR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MF0F: Multi-function Interrupt 0 Request Flag  
0: no request  
1: interrupt request  
CP1F: Comparator 1 Interrupt Request Flag  
0: no request  
1: interrupt request  
CP0F: Comparator 0 Interrupt Request Flag  
0: no request  
1: interrupt request  
INT3F: INT3 Interrupt Request Flag  
0: no request  
1: interrupt request  
MF0E: Multi-function Interrupt 0 Control  
0: disable  
1: enable  
CP1E: Comparator 1 Interrupt Control  
0: disable  
1: enable  
CP0E: Comparator 0 Interrupt Control  
0: disable  
1: enable  
INT3E: INT3 Interrupt Control  
0: disable  
1: enable  
Rev. 1.60  
173  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
INTC2 Register  
¨
HT66F20/HT66F30/HT66F40/HT66F50  
Bit  
Name  
R/W  
7
MF3F  
R/W  
0
6
TB1F  
R/W  
0
5
TB0F  
R/W  
0
4
MF2F  
R/W  
0
3
MF3E  
R/W  
0
2
TB1E  
R/W  
0
1
TB0E  
R/W  
0
0
MF2E  
R/W  
0
POR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MF3F: Multi-function Interrupt 3 Request Flag  
0: no request  
1: interrupt request  
TB1F: Time Base 1 Interrupt Request Flag  
0: no request  
1: interrupt request  
TB0F: Time Base 0 Interrupt Request Flag  
0: no request  
1: interrupt request  
MF2F: Multi-function Interrupt 2 Request Flag  
0: no request  
1: interrupt request  
MF3E: Multi-function Interrupt 3 Control  
0: disable  
1: enable  
TB1E: Time Base 1 Interrupt Control  
0: disable  
1: enable  
TB0E: Time Base 0 Interrupt Control  
0: disable  
1: enable  
MF2E: Multi-function Interrupt 2 Control  
0: disable  
1: enable  
Rev. 1.60  
174  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F60  
Bit  
Name  
R/W  
7
6
MF3F  
R/W  
0
5
MF2F  
R/W  
0
4
MF1F  
R/W  
0
3
2
MF3E  
R/W  
0
1
MF2E  
R/W  
0
0
MF1E  
R/W  
0
ADF  
R/W  
0
ADE  
R/W  
0
POR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADF: A/D Converter Interrupt Request Flag  
0: no request  
1: interrupt request  
MF3F: Multi-function Interrupt 3 Request Flag  
0: no request  
1: interrupt request  
MF2F: Multi-function Interrupt 2 Request Flag  
0: no request  
1: interrupt request  
MF1F: Multi-function Interrupt 1 Request Flag  
0: no request  
1: interrupt request  
ADE: A/D Converter Interrupt Control  
0: disable  
1: enable  
MF3E: Multi-function Interrupt 3 Control  
0: disable  
1: enable  
MF2E: Multi-function Interrupt 2 Control  
0: disable  
1: enable  
MF1E: Multi-function Interrupt 1 Control  
0: disable  
1: enable  
Rev. 1.60  
175  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
INTC3 Register  
¨
HT66F60  
Bit  
Name  
R/W  
7
MF5F  
R/W  
0
6
TB1F  
R/W  
0
5
TB0F  
R/W  
0
4
MF4F  
R/W  
0
3
MF5E  
R/W  
0
2
TB1E  
R/W  
0
1
TB0E  
R/W  
0
0
MF4E  
R/W  
0
POR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MF5F: Multi-function interrupt 5 request flag  
0: no request  
1: interrupt request  
TB1F: Time Base 1 interrupt request flag  
0: no request  
1: interrupt request  
TB0F: Time Base 0 interrupt request flag  
0: no request  
1: interrupt request  
MF4F: Multi-function interrupt 4 request flag  
0: no request  
1: interrupt request  
MF5E: Multi-function interrupt 5 control  
0: disable  
1: enable  
TB1E: Time Base 1 interrupt control  
0: disable  
1: enable  
TB0E: Time Base 0 interrupt control  
0: disable  
1: enable  
MF4E: Multi-function interrupt 4 control  
0: disable  
1: enable  
·
MFI0 Register  
¨
HT66F20/HT66F30  
Bit  
Name  
R/W  
7
6
5
T0AF  
R/W  
0
4
T0PF  
R/W  
0
3
2
1
T0AE  
R/W  
0
0
T0PE  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~6  
Bit 5  
unimplemented, read as ²0²  
T0AF: TM0 Comparator A match interrupt request flag  
0: no request  
1: interrupt request  
Bit 4  
T0PF: TM0 Comparator P match interrupt request flag  
0: no request  
1: interrupt request  
Bit 3~2  
Bit 1  
unimplemented, read as ²0²  
T0AE: TM0 Comparator A match interrupt control  
0: disable  
1: enable  
Bit 0  
T0PE: TM0 Comparator P match interrupt control  
0: disable  
1: enable  
Rev. 1.60  
176  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
T2AF  
R/W  
0
6
T2PF  
R/W  
0
5
T0AF  
R/W  
0
4
T0PF  
R/W  
0
3
T2AE  
R/W  
0
2
T2PE  
R/W  
0
1
T0AE  
R/W  
0
0
T0PE  
R/W  
0
POR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T2AF: TM2 Comparator A match interrupt request flag  
0: no request  
1: interrupt request  
T2PF: TM2 Comparator P match interrupt request flag  
0: no request  
1: interrupt request  
T0AF: TM0 Comparator A match interrupt request flag  
0: no request  
1: interrupt request  
T0PF: TM0 Comparator P match interrupt request flag  
0: no request  
1: interrupt request  
T2AE: TM2 Comparator A match interrupt control  
0: disable  
1: enable  
T2PE: TM2 Comparator P match interrupt control  
0: disable  
1: enable  
T0AE: TM0 Comparator A match interrupt control  
0: disable  
1: enable  
T0PE: TM0 Comparator P match interrupt control  
0: disable  
1: enable  
·
MFI1 Register  
¨
HT66F20  
Bit  
Name  
R/W  
7
6
5
T1AF  
R/W  
0
4
T1PF  
R/W  
0
3
2
1
T1AE  
R/W  
0
0
T1PE  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~6  
Bit 5  
unimplemented, read as ²0²  
T1AF: TM1 Comparator A match interrupt request flag  
0: no request  
1: interrupt request  
Bit 4  
T1PF: TM1 Comparator P match interrupt request flag  
0: no request  
1: interrupt request  
Bit 3~2  
Bit 1  
unimplemented, read as ²0²  
T1AE: TM1 Comparator A match interrupt control  
0: disable  
1: enable  
Bit 0  
T1PE: TM1 Comparator P match interrupt control  
0: disable  
1: enable  
Rev. 1.60  
177  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F30/HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
6
T1BF  
R/W  
0
5
T1AF  
R/W  
0
4
T1PF  
R/W  
0
3
2
T1BE  
R/W  
0
1
T1AE  
R/W  
0
0
T1PE  
R/W  
0
¾
¾
¾
¾
¾
¾
POR  
Bit 7  
Bit 6  
unimplemented, read as ²0²  
T1BF: TM1 Comparator B match interrupt request flag  
0: no request  
1: interrupt request  
Bit 5  
Bit 4  
T1AF: TM1 Comparator A match interrupt request flag  
0: no request  
1: interrupt request  
T1PF: TM1 Comparator P match interrupt request flag  
0: no request  
1: interrupt request  
Bit 3  
Bit 2  
unimplemented, read as ²0²  
T1BE: TM1 Comparator B match interrupt control  
0: disable  
1: enable  
Bit 1  
Bit 0  
T1AE: TM1 Comparator A match interrupt control  
0: disable  
1: enable  
T1PE: TM1 Comparator P match interrupt control  
0: disable  
1: enable  
·
MFI2 Register  
Bit  
Name  
R/W  
7
6
5
4
SIMF  
R/W  
0
3
2
1
0
SIME  
R/W  
0
DEF  
R/W  
0
LVF  
R/W  
0
XPF  
R/W  
0
DEE  
R/W  
0
LVE  
R/W  
0
XPE  
R/W  
0
POR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DEF: Data EEPROM interrupt request flag  
0: No request  
1: Interrupt request  
LVF: LVD interrupt request flag  
0: No request  
1: Interrupt request  
XPF: External peripheral interrupt request flag  
0: No request  
1: Interrupt request  
SIMF: SIM interrupt request flag  
0: No request  
1: Interrupt request  
DEE: Data EEPROM Interrupt Control  
0: Disable  
1: Enable  
LVE: LVD Interrupt Control  
0: Disable  
1: Enable  
XPE: External Peripheral Interrupt Control  
0: Disable  
1: Enable  
SIME: SIM Interrupt Control  
0: Disable  
1: Enable  
Rev. 1.60  
178  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
MFI3 Register  
¨
HT66F50/HT66F60  
Bit  
Name  
R/W  
7
6
5
T3AF  
R/W  
0
4
T3PF  
R/W  
0
3
2
1
T3AE  
R/W  
0
0
T3PE  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7~6  
Bit 5  
unimplemented, read as ²0²  
T3AF: TM3 Comparator A match interrupt request flag  
0: no request  
1: interrupt request  
Bit 4  
T3PF: TM3 Comparator P match interrupt request flag  
0: no request  
1: interrupt request  
Bit 3~2  
Bit 1  
unimplemented, read as ²0²  
T3AE: TM3 Comparator A match interrupt control  
0: disable  
1: enable  
Bit 0  
T3PE: TM3 Comparator P match interrupt control  
0: disable  
1: enable  
Interrupt Operation  
The various interrupt enable bits, together with their as-  
sociated request flags, are shown in the accompanying  
diagrams with their order of priority. Some interrupt  
sources have their own individual vector while others  
share the same multi-function interrupt vector. Once an  
interrupt subroutine is serviced, all the other interrupts  
will be blocked, as the global interrupt enable bit, EMI bit  
will be cleared automatically. This will prevent any fur-  
ther interrupt nesting from occurring. However, if other  
interrupt requests occur during this interval, although  
the interrupt will not be immediately serviced, the re-  
quest flag will still be recorded.  
When the conditions for an interrupt event occur, such  
as a TM Comparator P, Comparator A or Comparator B  
match or A/D conversion completion etc, the relevant in-  
terrupt request flag will be set. Whether the request flag  
actually generates a program jump to the relevant inter-  
rupt vector is determined by the condition of the interrupt  
enable bit. If the enable bit is set high then the program  
will jump to its relevant vector; if the enable bit is zero  
then although the interrupt request flag is set an actual  
interrupt will not be generated and the program will not  
jump to the relevant interrupt vector. The global interrupt  
enable bit, if cleared to zero, will disable all interrupts.  
If an interrupt requires immediate servicing while the  
program is already in another interrupt service routine,  
the EMI bit should be set after entering the routine, to al-  
low interrupt nesting. If the stack is full, the interrupt re-  
quest will not be acknowledged, even if the related  
interrupt is enabled, until the Stack Pointer is decre-  
mented. If immediate service is desired, the stack must  
be prevented from becoming full. In case of simulta-  
neous requests, the accompanying diagram shows the  
priority that is applied. All of the interrupt request flags  
when set will wake-up the device if it is in SLEEP or  
IDLE Mode, however to prevent a wake-up from occur-  
ring the corresponding flag should be set before the de-  
vice is in SLEEP or IDLE Mode.  
When an interrupt is generated, the Program Counter,  
which stores the address of the next instruction to be ex-  
ecuted, will be transferred onto the stack. The Program  
Counter will then be loaded with a new address which  
will be the value of the corresponding interrupt vector.  
The microcontroller will then fetch its next instruction  
from this interrupt vector. The instruction at this vector  
will usually be a ²JMP² which will jump to another sec-  
tion of program which is known as the interrupt service  
routine. Here is located the code to control the appropri-  
ate interrupt. The interrupt service routine must be ter-  
minated with a ²RETI², which retrieves the original  
Program Counter address from the stack and allows the  
microcontroller to continue with normal execution at the  
point where the interrupt occurred.  
Rev. 1.60  
179  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
EMI auto disabled in ISR  
Legend  
Interrupt Request  
Flags  
Enable  
Bits  
Master  
Enable  
Vector  
Request Flag – no auto reset in ISR  
xxF  
xxF  
xxE  
Priority  
High  
Name  
Request Flag – auto reset in ISR  
Enable Bit  
INT0 Pin  
INT0F  
INT0E  
INT1E  
EMI  
EMI  
04H  
08H  
INT1 Pin  
INT1F  
Comp. 0  
Comp. 1  
CP0F  
CP1F  
CP0E  
CP1E  
EMI  
EMI  
Interrupt Request  
Flags  
Enable  
Bits  
0CH  
10H  
Name  
TM0 P  
T0PF  
T0AF  
T0PE  
T0AE  
TM0 A  
M. Funct. 0 MF0F  
M. Funct. 1 MF1F  
MF0E  
MF1E  
ADE  
EMI  
EMI  
EMI  
14H  
18H  
1CH  
TM1 P  
TM1 A  
TM1 B  
T1PF  
T1AF  
T1BF  
T1PE  
T1AE  
T1BE  
A/D  
ADF  
SIM SIMF  
PINT Pin  
SIME  
XPE  
M. Funct. 2 MF2F  
MF2E  
EMI  
20H  
XPF  
Time Base 0 TB0F  
Time Base 1 TB1F  
TB0E  
TB1E  
EMI  
EMI  
24H  
28H  
LVD  
LVF  
LVE  
DEE  
EEPROM DEF  
M. Funct. 3 MF3F  
MF3E  
EMI  
2CH  
Low  
Interrupts contained within  
Multi-Function Interrupts  
HT66F30 only  
Interrupt Structure - HT66F20/HT66F30  
Rev. 1.60  
180  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
EMI auto disabled in ISR  
Legend  
Interrupt Request  
Flags  
Enable  
Bits  
Master  
Enable  
Vector  
Priority  
High  
Request Flag – no auto reset in ISR  
xxF  
xxF  
xxE  
Name  
Request Flag – auto reset in ISR  
Enable Bit  
INT0 Pin  
INT0F  
INT0E  
INT1E  
EMI  
EMI  
04H  
08H  
INT1 Pin  
INT1F  
Comp. 0  
Comp. 1  
CP0F  
CP1F  
CP0E  
CP1E  
EMI  
EMI  
0CH  
10H  
Interrupt Request  
Name Flags  
Enable  
Bits  
TM0 P TP0AF  
TM0 A TP0AF  
T0PE  
T0AE  
M. Funct. 0 MF0F  
MF0E  
EMI  
14H  
TM2 P  
TM2 A  
T2PF  
T2AF  
T2PE  
T2AE  
TM1 P  
TM1 A  
TM1 B  
T1PF  
T1AF  
T1BF  
T1PE  
T1AE  
T1BE  
M. Funct. 1 MF1F  
MF1E  
ADE  
EMI  
EMI  
18H  
1CH  
A/D  
ADF  
TM3 P  
TM3 A  
T3PF  
T3AF  
T3PE  
T3AE  
SIM SIMF  
PINT Pin XPF  
SIME  
XPE  
M. Funct. 2 MF2F  
Time Base 0 TB0F  
Time Base 1 TB1F  
M. Funct. 3 MF3F  
MF2E  
TB0E  
TB1E  
MF3E  
EMI  
EMI  
EMI  
EMI  
20H  
24H  
28H  
2CH  
LVD  
LVF  
LVE  
EEPROM DEF  
DEE  
Low  
Interrupts contained within  
Multi-Function Interrupts  
HT66F50 only  
Interrupt Structure - HT66F40/HT66F50  
Rev. 1.60  
181  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
EMI auto disabled in ISR  
Interrupt Request  
Flags  
Enable  
Bits  
Master  
Enable  
Vector  
04H  
Priority  
High  
Name  
Legend  
INT0 Pin  
INT0F  
INT0E  
INT1E  
INT2E  
INT3E  
EMI  
EMI  
EMI  
EMI  
Request Flag – no auto reset in ISR  
Request Flag – auto reset in ISR  
Enable Bit  
xxF  
xxF  
xxE  
INT1 Pin  
INT2 Pin  
INT3 Pin  
INT1F  
INT2F  
INT3F  
08H  
0CH  
10H  
Interrupt Request  
Flags  
Enable  
Bits  
Comp. 0  
Comp. 1  
CP0F  
CP1F  
CP0E  
CP1E  
EMI  
EMI  
14H  
18H  
Name  
TM0 P  
TM0 A  
T0PF  
T0PE  
1CH  
T0AF  
T0AE  
M. Funct. 0 MF0F  
M. Funct. 1 MF1F  
MF0E  
MF1E  
MF2E  
EMI  
EMI  
EMI  
TM1 P  
TM1 A  
TM1 B  
T1PF  
T1AF  
T1BF  
T1PE  
T1AE  
T1BE  
20H  
24H  
TM2 P  
TM2 A  
T2PF  
T2AF  
T2PE  
T2AE  
M. Funct. 2 MF2F  
M. Funct. 3 MF3F  
TM3 P  
TM3 A  
T3PF  
T3AF  
T3PE  
T3AE  
MF3E  
ADE  
EMI  
EMI  
EMI  
28H  
A/D  
ADF  
2CH  
30H  
SIM SIMF  
PINT Pin XPF  
SIME  
XPE  
M. Funct. 4 MF4F  
MF4E  
Time Base 0 TB0F  
Time Base 1 TB1F  
TB0E  
TB1E  
EMI  
EMI  
34H  
38H  
LVD  
LVF  
LVE  
EEPROM DEF  
DEE  
M. Funct. 5 MF5F  
MF5E  
EMI  
3CH  
Low  
Interrupts contained within  
Multi-Function Interrupts  
Interrupt Structure - HT66F60  
Rev. 1.60  
182  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
External Interrupt  
the TM Interrupts, SIM Interrupt, External Peripheral In-  
terrupt, LVD interrupt and EEPROM Interrupt.  
The external interrupts are controlled by signal transi-  
tions on the pins INT0~INT3. An external interrupt re-  
quest will take place when the external interrupt request  
flags, INT0F~INT3F, are set, which will occur when a  
transition, whose type is chosen by the edge select bits,  
appears on the external interrupt pins. To allow the pro-  
gram to branch to its respective interrupt vector ad-  
dress, the global interrupt enable bit, EMI, and  
respective external interrupt enable bit, INT0E~INT3E,  
must first be set. Additionally the correct interrupt edge  
type must be selected using the INTEG register to en-  
able the external interrupt function and to choose the  
trigger edge type. As the external interrupt pins are  
pin-shared with I/O pins, they can only be configured as  
external interrupt pins if their external interrupt enable  
bit in the corresponding interrupt register has been set.  
The pin must also be setup as an input by setting the  
corresponding bit in the port control register. When the  
interrupt is enabled, the stack is not full and the correct  
transition type appears on the external interrupt pin, a  
subroutine call to the external interrupt vector, will take  
place. When the interrupt is serviced, the external inter-  
rupt request flags, INT0F~INT3F, will be automatically  
reset and the EMI bit will be automatically cleared to dis-  
able other interrupts. Note that any pull-high resistor se-  
lections on the external interrupt pins will remain valid  
even if the pin is used as an external interrupt input.  
A Multi-function interrupt request will take place when  
any of the Multi-function interrupt request flags,  
MF0F~MF5F are set. The Multi-function interrupt flags  
will be set when any of their included functions generate  
an interrupt request flag. To allow the program to branch  
to its respective interrupt vector address, when the  
Multi-function interrupt is enabled and the stack is not  
full, and either one of the interrupts contained within  
each of Multi-function interrupt occurs, a subroutine call  
to one of the Multi-function interrupt vectors will take  
place. When the interrupt is serviced, the related  
Multi-Function request flag, will be automatically reset  
and the EMI bit will be automatically cleared to disable  
other interrupts.  
However, it must be noted that, although the  
Multi-function Interrupt flags will be automatically reset  
when the interrupt is serviced, the request flags from the  
original source of the Multi-function interrupts, namely  
the TM Interrupts, SIM Interrupt, External Peripheral In-  
terrupt, LVD interrupt and EEPROM Interrupt will not be  
automatically reset and must be manually reset by the  
application program.  
A/D Converter Interrupt  
The A/D Converter Interrupt is controlled by the termina-  
tion of an A/D conversion process. An A/D Converter In-  
terrupt request will take place when the A/D Converter  
Interrupt request flag, ADF, is set, which occurs when  
the A/D conversion process finishes. To allow the pro-  
gram to branch to its respective interrupt vector ad-  
dress, the global interrupt enable bit, EMI, and A/D  
Interrupt enable bit, ADE, must first be set. When the in-  
terrupt is enabled, the stack is not full and the A/D con-  
version process has ended, a subroutine call to the A/D  
Converter Interrupt vector, will take place. When the in-  
terrupt is serviced, the A/D Converter Interrupt flag,  
ADF, will be automatically cleared. The EMI bit will also  
be automatically cleared to disable other interrupts.  
The INTEG register is used to select the type of active  
edge that will trigger the external interrupt. A choice of  
either rising or falling or both edge types can be chosen  
to trigger an external interrupt. Note that the INTEG reg-  
ister can also be used to disable the external interrupt  
function.  
Comparator Interrupt  
The comparator interrupt is controlled by the two inter-  
nal comparators. A comparator interrupt request will  
take place when the comparator interrupt request flags,  
CP0F or CP1F, are set, a situation that will occur when  
the comparator output changes state. To allow the pro-  
gram to branch to its respective interrupt vector ad-  
dress, the global interrupt enable bit, EMI, and  
comparator interrupt enable bits, CP0E and CP1E, must  
first be set. When the interrupt is enabled, the stack is  
not full and the comparator inputs generate a compara-  
tor output transition, a subroutine call to the comparator  
interrupt vector, will take place. When the interrupt is  
serviced, the external interrupt request flags, will be au-  
tomatically reset and the EMI bit will be automatically  
cleared to disable other interrupts.  
Time Base Interrupts  
The function of the Time Base Interrupts is to provide reg-  
ular time signal in the form of an internal interrupt. They  
are controlled by the overflow signals from their respec-  
tive timer functions. When these happens their respec-  
tive interrupt request flags, TB0F or TB1F will be set. To  
allow the program to branch to their respective interrupt  
vector addresses, the global interrupt enable bit, EMI and  
Time Base enable bits, TB0E or TB1E, must first be set.  
When the interrupt is enabled, the stack is not full and the  
Time Base overflows, a subroutine call to their respective  
vector locations will take place. When the interrupt is ser-  
viced, the respective interrupt request flag, TB0F or  
TB1F, will be automatically reset and the EMI bit will be  
cleared to disable other interrupts.  
Multi-function Interrupt  
Within these devices there are up to six Multi-function  
interrupts. Unlike the other independent interrupts,  
these interrupts have no independent source, but rather  
are formed from other existing interrupt sources, namely  
Rev. 1.60  
183  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
The purpose of the Time Base Interrupt is to provide an interrupt signal at fixed time periods. Their clock sources origi-  
nate from the internal clock source fTB. This fTB input clock passes through a divider, the division ratio of which is se-  
lected by programming the appropriate bits in the TBC register to obtain longer interrupt periods whose value ranges.  
The clock source that generates fTB, which in turn controls the Time Base interrupt period, can originate from several  
different sources, as shown in the System Operating Mode section.  
·
TBC Register  
Bit  
Name  
R/W  
7
TBON  
R/W  
0
6
TBCK  
R/W  
0
5
TB11  
R/W  
1
4
TB10  
R/W  
1
3
LXTLP  
R/W  
0
2
TB02  
R/W  
1
1
TB01  
R/W  
1
0
TB00  
R/W  
1
POR  
Bit 7  
TBON: TB0 and TB1 Control  
0: Disable  
1: Enable  
Bit 6  
TBCK: Select fTB Clock  
0: fTBC  
1: fSYS/4  
Bit 5~4  
TB11~TB10: Select Time Base 1 Time-out Period  
00: 4096/fTB  
01: 8192/fTB  
10: 16384/fTB  
11: 32768/fTB  
Bit 3  
LXTLP: LXT Low Power Control  
0: Disable  
1: Enable  
Bit 2~0  
TB02~TB00: Select Time Base 0 Time-out Period  
000: 256/fTB  
001: 512/fTB  
010: 1024/fTB  
011: 2048/fTB  
100: 4096/fTB  
101: 8192/fTB  
110: 16384/fTB  
111: 32768/fTB  
T
B
0
2
~
T
B
0
0
f
S
Y
S
L
X
T
8
1
5
T
T
i
i
m
m
e
B
B
a
a
s
s
e
e
0
1
I
I
n
n
t
t
e
e
M
U
X
¸
2
~
2
M
U
X
f
T
B
f
T
B
C
L
I
R
C
1
2
1
5
e
¸
2
~
2
C
o
n
f
i
g
u
r
a
t
i
o
n
B
T
B
C
K
i
t
O
p
t
i
o
n
T
B
1
1
~
T
B
1
0
Time Base Interrupt  
Rev. 1.60  
184  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Serial Interface Module Interrupt  
must first be set. When the interrupt is enabled, the  
stack is not full and an EEPROM Write or Read cycle  
The Serial Interface Module Interrupt, also known as the  
SIM interrupt, is contained within the Multi-function In-  
terrupt. A SIM Interrupt request will take place when the  
SIM Interrupt request flag, SIMF, is set, which occurs  
when a byte of data has been received or transmitted by  
the SIM interface. To allow the program to branch to its  
respective interrupt vector address, the global interrupt  
enable bit, EMI, and the Serial Interface Interrupt enable  
bit, SIME, and Muti-function interrupt enable bits, must  
first be set. When the interrupt is enabled, the stack is  
not full and a byte of data has been transmitted or re-  
ceived by the SIM interface, a subroutine call to the re-  
spective Multi-function Interrupt vector, will take place.  
When the Serial Interface Interrupt is serviced, the EMI  
bit will be automatically cleared to disable other inter-  
rupts, however only the Multi-function interrupt request  
flag will be also automatically cleared. As the SIMF flag  
will not be automatically cleared, it has to be cleared by  
the application program.  
ends, a subroutine call to the respective Multi-function  
Interrupt vector, will take place. When the EEPROM In-  
terrupt is serviced, the EMI bit will be automatically  
cleared to disable other interrupts, however only the  
Multi-function interrupt request flag will be also automat-  
ically cleared. As the DEF flag will not be automatically  
cleared, it has to be cleared by the application program.  
LVD Interrupt  
The Low Voltage Detector Interrupt is contained within  
the Multi-function Interrupt. An LVD Interrupt request will  
take place when the LVD Interrupt request flag, LVF, is  
set, which occurs when the Low Voltage Detector func-  
tion detects a low power supply voltage. To allow the  
program to branch to its respective interrupt vector ad-  
dress, the global interrupt enable bit, EMI, Low Voltage  
Interrupt enable bit, LVE, and associated Multi-function  
interrupt enable bit, must first be set. When the interrupt  
is enabled, the stack is not full and a low voltage condi-  
tion occurs, a subroutine call to the Multi-function Inter-  
rupt vector, will take place. When the Low Voltage  
Interrupt is serviced, the EMI bit will be automatically  
cleared to disable other interrupts, however only the  
Multi-function interrupt request flag will be also automat-  
ically cleared. As the LVF flag will not be automatically  
cleared, it has to be cleared by the application program.  
External Peripheral Interrupt  
The External Peripheral Interrupt operates in a similar  
way to the external interrupt and is contained within the  
Multi-function Interrupt. A Peripheral Interrupt request  
will take place when the External Peripheral Interrupt re-  
quest flag, XPF, is set, which occurs when a negative  
edge transition appears on the PINT pin. To allow the  
program to branch to its respective interrupt vector ad-  
dress, the global interrupt enable bit, EMI, external pe-  
ripheral interrupt enable bit, XPE, and associated  
Multi-function interrupt enable bit, must first be set.  
When the interrupt is enabled, the stack is not full and a  
negative transition appears on the External Peripheral  
Interrupt pin, a subroutine call to the respective  
Multi-function Interrupt, will take place. When the Exter-  
nal Peripheral Interrupt is serviced, the EMI bit will be  
automatically cleared to disable other interrupts, how-  
ever only the Multi-function interrupt request flag will be  
also automatically cleared.  
TM Interrupts  
The Compact and Standard Type TMs have two inter-  
rupts each, while the Enhanced Type TM has three in-  
terrupts. All of the TM interrupts are contained within the  
Multi-function Interrupts. For each of the Compact and  
Standard Type TMs there are two interrupt request flags  
TnPF and TnAF and two enable bits TnPE and TnAE.  
For the Enhanced Type TM there are three interrupt re-  
quest flags TnPF, TnAF and TnBF and three enable bits  
TnPE, TnAE and TnBE. A TM interrupt request will take  
place when any of the TM request flags are set, a situa-  
tion which occurs when a TM comparator P, A or B  
match situation happens.  
As the XPF flag will not be automatically cleared, it has  
to be cleared by the application program. The external  
peripheral interrupt pin is pin-shared with several other  
pins with different functions. It must therefore be prop-  
erly configured to enable it to operate as an External Pe-  
ripheral Interrupt pin.  
To allow the program to branch to its respective interrupt  
vector address, the global interrupt enable bit, EMI, re-  
spective TM Interrupt enable bit, and relevant  
Multi-function Interrupt enable bit, MFnE, must first be  
set. When the interrupt is enabled, the stack is not full  
and a TM comparator match situation occurs, a subrou-  
tine call to the relevant Multi-function Interrupt vector lo-  
cations, will take place. When the TM interrupt is  
serviced, the EMI bit will be automatically cleared to dis-  
able other interrupts, however only the related MFnF  
flag will be automatically cleared. As the TM interrupt re-  
quest flags will not be automatically cleared, they have  
to be cleared by the application program.  
EEPROM Interrupt  
The EEPROM Interrupt, is contained within the  
Multi-function Interrupt. An EEPROM Interrupt request  
will take place when the EEPROM Interrupt request  
flag, DEF, is set, which occurs when an EEPROM Write  
or Read cycle ends. To allow the program to branch to  
its respective interrupt vector address, the global inter-  
rupt enable bit, EMI, EEPROM Interrupt enable bit,  
DEE, and associated Multi-function interrupt enable bit,  
Rev. 1.60  
185  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Interrupt Wake-up Function  
It is recommended that programs do not use the ²CALL²  
instruction within the interrupt service subroutine. Inter-  
Each of the interrupt functions has the capability of wak-  
ing up the microcontroller when in the SLEEP or IDLE  
Mode. A wake-up is generated when an interrupt re-  
quest flag changes from low to high and is independent  
of whether the interrupt is enabled or not. Therefore,  
even though the device is in the SLEEP or IDLE Mode  
and its system oscillator stopped, situations such as ex-  
ternal edge transitions on the external interrupt pins, a  
low power supply voltage or comparator input change  
may cause their respective interrupt flag to be set high  
and consequently generate an interrupt. Care must  
therefore be taken if spurious wake-up situations are to  
be avoided. If an interrupt wake-up function is to be dis-  
abled then the corresponding interrupt request flag  
should be set high before the device enters the SLEEP  
or IDLE Mode. The interrupt enable bits have no effect  
on the interrupt wake-up function.  
rupts often occur in an unpredictable manner or need to  
be serviced immediately. If only one stack is left and the  
interrupt is not well controlled, the original control se-  
quence will be damaged once a CALL subroutine is exe-  
cuted in the interrupt subroutine.  
Every interrupt has the capability of waking up the  
microcontroller when it is in SLEEP or IDLE Mode, the  
wake up being generated when the interrupt request  
flag changes from low to high. If it is required to prevent  
a certain interrupt from waking up the microcontroller  
then its respective request flag should be first set high  
before enter SLEEP or IDLE Mode.  
As only the Program Counter is pushed onto the stack,  
then when the interrupt is serviced, if the contents of the  
accumulator, status register or other registers are al-  
tered by the interrupt service program, their contents  
should be saved to the memory at the beginning of the  
interrupt service routine.  
Programming Considerations  
By disabling the relevant interrupt enable bits, a re-  
quested interrupt can be prevented from being serviced,  
however, once an interrupt request flag is set, it will re-  
main in this condition in the interrupt register until the  
corresponding interrupt is serviced or until the request  
flag is cleared by the application program.  
To return from an interrupt subroutine, either a RET or  
RETI instruction may be executed. The RETI instruction  
in addition to executing a return to the main program  
also automatically sets the EMI bit high to allow further  
interrupts. The RET instruction however only executes a  
return to the main program leaving the EMI bit in its  
present zero state and therefore disabling the execution  
of further interrupts.  
Where a certain interrupt is contained within a  
Multi-function interrupt, then when the interrupt service  
routine is executed, as only the Multi-function interrupt  
request flags, MF0F~MF5F, will be automatically  
cleared, the individual request flag for the function  
needs to be cleared by the application program.  
Rev. 1.60  
186  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Power Down Mode and Wake-up  
Entering the IDLE or SLEEP Mode  
Wake-up  
There is only one way for the device to enter the SLEEP  
or IDLE Mode and that is to execute the ²HALT² instruc-  
tion in the application program. When this instruction is  
executed, the following will occur:  
After the system enters the SLEEP or IDLE Mode, it can  
be woken up from one of various sources listed as follows:  
·
·
·
·
An external reset  
An external falling edge on Port A  
A system interrupt  
·
·
·
The system clock will be stopped and the application  
program will stop at the ²HALT² instruction.  
A WDT overflow  
The Data Memory contents and registers will maintain  
their present condition.  
If the system is woken up by an external reset, the de-  
vice will experience a full system reset, however, if the  
device is woken up by a WDT overflow, a Watchdog  
Timer reset will be initiated. Although both of these  
wake-up methods will initiate a reset operation, the ac-  
tual source of the wake-up can be determined by exam-  
ining the TO and PDF flags. The PDF flag is cleared by a  
system power-up or executing the clear Watchdog  
Timer instructions and is set when executing the ²HALT²  
instruction. The TO flag is set if a WDT time-out occurs,  
and causes a wake-up that only resets the Program  
Counter and Stack Pointer, the other flags remain in  
their original status.  
The WDT will be cleared and resume counting if the  
WDT clock source is selected to come from the fSUB  
clock source and the WDT is enabled. The WDT will  
stop if its clock source originates from the system clock.  
·
·
The I/O ports will maintain their present condition.  
In the status register, the Power Down flag, PDF, will be  
set and the Watchdog time-out flag, TO, will be cleared.  
Standby Current Considerations  
As the main reason for entering the SLEEP or IDLE  
Mode is to keep the current consumption of the device  
to as low a value as possible, perhaps only in the order  
of several micro-amps, there are other considerations  
which must also be taken into account by the circuit de-  
signer if the power consumption is to be minimised.  
Special attention must be made to the I/O pins on the  
device. All high-impedance input pins must be con-  
nected to either a fixed high or low level as any floating  
input pins could create internal oscillations and result in  
increased current consumption. This also applies to de-  
vices which have different package types, as there may  
be unbonbed pins. These must either be setup as out-  
puts or if setup as inputs must have pull-high resistors  
connected. Care must also be taken with the loads,  
which are connected to I/O pins, which are setup as out-  
puts. These should be placed in a condition in which  
minimum current is drawn or connected only to external  
circuits that do not draw current, such as other CMOS  
inputs. Also note that additional standby current will also  
be required if the configuration options have enabled  
the LIRC oscillator.  
Each pin on Port A can be setup using the PAWU regis-  
ter to permit a negative transition on the pin to wake-up  
the system. When a Port A pin wake-up occurs, the pro-  
gram will resume execution at the instruction following  
the ²HALT² instruction.  
If the system is woken up by an interrupt, then two possi-  
ble situations may occur. The first is where the related  
interrupt is disabled or the interrupt is enabled but the  
stack is full, in which case the program will resume exe-  
cution at the instruction following the ²HALT² instruction.  
In this situation, the interrupt which woke-up the device  
will not be immediately serviced, but will rather be ser-  
viced later when the related interrupt is finally enabled or  
when a stack level becomes free. The other situation is  
where the related interrupt is enabled and the stack is  
not full, in which case the regular interrupt response  
takes place. If an interrupt request flag is set high before  
entering the SLEEP or IDLE Mode, the wake-up func-  
tion of the related interrupt will be disabled.  
Rev. 1.60  
187  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Low Voltage Detector - LVD  
Each device has a Low Voltage Detector function, also  
known as LVD. This enabled the device to monitor the  
power supply voltage, VDD, and provide a warning signal  
should it fall below a certain level. This function may be  
especially useful in battery applications where the sup-  
ply voltage will gradually reduce as the battery ages, as  
it allows an early warning battery low signal to be gener-  
ated. The Low Voltage Detector also has the capability  
of generating an interrupt signal.  
fixed voltages below which a low voltage condition will  
be detemined. A low voltage condition is indicated when  
the LVDO bit is set. If the LVDO bit is low, this indicates  
that the VDD voltage is above the preset low voltage  
value. The LVDEN bit is used to control the overall  
on/off function of the low voltage detector. Setting the bit  
high will enable the low voltage detector. Clearing the bit  
to zero will switch off the internal low voltage detector  
circuits. As the low voltage detector will consume a cer-  
tain amount of power, it may be desirable to switch off  
the circuit when not in use, an important consideration in  
power sensitive battery powered applications.  
LVD Register  
The Low Voltage Detector function is controlled using a  
single register with the name LVDC. Three bits in this  
register, VLVD2~VLVD0, are used to select one of eight  
·
LVDC Register  
Bit  
Name  
R/W  
7
6
5
LVDO  
R
4
LVDEN  
R/W  
0
3
2
VLVD2  
R/W  
0
1
VLVD1  
R/W  
0
0
VLVD0  
R/W  
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
0
Bit 7~6  
Bit 5  
unimplemented, read as ²0²  
LVDO: LVD Output Flag  
0: No Low Voltage Detect  
1: Low Voltage Detect  
Bit  
LVDEN: Low Voltage Detector Control  
0: Disable  
1: Enable  
Bit 3  
unimplemented, read as ²0²  
Bit 2~0  
VLVD2 ~ VLVD0: Select LVD Voltage  
000: 2.0V  
001: 2.2V  
010: 2.4V  
011: 2.7V  
100: 3.0V  
101: 3.3V  
110: 3.6V  
111: 4.4V  
Rev. 1.60  
188  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
LVD Operation  
LCD Operation  
The Low Voltage Detector function operates by compar-  
ing the power supply voltage, VDD, with a pre-specified  
voltage level stored in the LVDC register. This has a  
range of between 2.0V and 4.4V. When the power sup-  
ply voltage, VDD, falls below this pre-determined value,  
the LVDO bit will be set high indicating a low power sup-  
ply voltage condition. The Low Voltage Detector func-  
tion is supplied by a reference voltage which will be  
automatically enabled. When the device is powered  
down the low voltage detector will remain active if the  
LVDEN bit is high. After enabling the Low Voltage De-  
tector, a time delay tLVDS should be allowed for the cir-  
cuitry to stabilise before reading the LVDO bit. Note also  
that as the VDD voltage may rise and fall rather slowly, at  
the voltage nears that of VLVD, there may be multiple bit  
LVDO transitions.  
An external LCD panel can be driven using this device  
by configuring the PC0~PC3 or PC0 ~ PC1, PC6 ~ PC7  
pins as common pins and using other output ports lines  
as segment pins. The LCD driver function is controlled  
using the SCOMC register which in addition to control-  
ling the overall on/off function also controls the bias volt-  
age setup function. This enables the LCD COM driver to  
generate the necessary VDD/2 voltage levels for LCD 1/2  
bias operation.  
The SCOMEN bit in the SCOMC register is the overall  
master control for the LCD driver, however this bit is  
used in conjunction with the COMnEN bits to select  
which Port C pins are used for LCD driving. Note that the  
Port Control register does not need to first setup the pins  
as outputs to enable the LCD driver operation.  
V
D
D
V
D
D
S
C
O
M
o
p
e
r
a
t
i
n
g
V
L
V
D
V
D
/
D
2
S
C
O
M
0
~
L
V
D
E
N
S
C
O
M
3
C
O
M
n
E
N
L
V
D
O
S
C
O
M
E
N
t
L
V
D
S
LVD Operation  
The Low Voltage Detector also has its own interrupt  
which is contained within one of the Multi-function inter-  
rupts, providing an alternative means of low voltage de-  
tection, in addition to polling the LVDO bit. The interrupt  
will only be generated after a delay of tLVD after the LVDO  
bit has been set high by a low voltage condition. When  
the device is powered down the Low Voltage Detector  
will remain active if the LVDEN bit is high. In this case,  
the LVF interrupt request flag will be set, causing an in-  
terrupt to be generated if VDD falls below the preset LVD  
voltage. This will cause the device to wake-up from the  
SLEEP or IDLE Mode, however if the Low Voltage De-  
tector wake up function is not required then the LVF flag  
should be first set high before the device enters the  
SLEEP or IDLE Mode.  
LCD COM Bias  
SCOMEN COMnEN Pin Function O/P Level  
0
1
1
X
0
1
I/O  
I/O  
0 or 1  
0 or 1  
SCOMn  
VDD/2  
Output Control  
LCD Bias Control  
The LCD COM driver enables a range of selections to  
be provided to suit the requirement of the LCD panel  
which is being used. The bias resistor choice is imple-  
mented using the ISEL1 and ISEL0 bits in the SCOMC  
register.  
SCOM Function for LCD  
The devices have the capability of driving external LCD  
panels. The common pins for LCD driving, SCOM0~  
SCOM3, are pin shared with certain pin on the PC0~  
PC3 or PC0 ~ PC1, PC6 ~ PC7 port. The LCD signals  
(COM and SEG) are generated using the application  
program.  
Rev. 1.60  
189  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
SCOMC Register  
¨
HT66F20  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
ISEL1  
R/W  
0
5
ISEL0  
R/W  
0
4
3
2
1
0
SCOMEN COM3EN COM2EN COM1EN COM0EN  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
POR  
Bit 7  
Reserved Bit  
0: Correct level - bit must be reset to zero for correct operation  
1: Unpredictable operation - bit must not be set high  
Bit 6~5  
ISEL1, ISEL0: ISEL1 ~ ISEL0: Select SCOM typical bias current (VDD=5V)  
00: 25mA  
01: 50mA  
10: 100mA  
11: 200mA  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SCOMEN: SCOM module Control  
0: Disable  
1: Enable  
COM3EN: PC3 or SCOM3 selection  
0: GPIO  
1: SCOM3  
COM2EN: PC2 or SCOM2 selection  
0: GPIO  
1: SCOM2  
COM1EN: PC1 or SCOM1 selection  
0: GPIO  
1: SCOM1  
COM0EN: PC0 or SCOM0 selection  
0: GPIO  
1: SCOM0  
Rev. 1.60  
190  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
¨
HT66F30/HT66F40/HT66F50/HT66F60  
Bit  
Name  
R/W  
7
D7  
R/W  
0
6
ISEL1  
R/W  
0
5
ISEL0  
R/W  
0
4
3
2
1
0
SCOMEN COM3EN COM2EN COM1EN COM0EN  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
POR  
Bit 7  
Reserved Bit  
0: Correct level - bit must be reset to zero for correct operation  
1: Unpredictable operation - bit must not be set high  
Bit 6~5  
ISEL1, ISEL0: Select SCOM typical bias current (VDD=5V)  
00: 25mA  
01: 50mA  
10: 100mA  
11: 200mA  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SCOMEN: SCOM module control  
0: disable  
1: enable  
COM3EN: PC7 or SCOM3 selection  
0: GPIO  
1: SCOM3  
COM2EN: PC6 or SCOM2 selection  
0: GPIO  
1: SCOM2  
COM1EN: PC1 or SCOM1 selection  
0: GPIO  
1: SCOM1  
COM0EN: PC0 or SCOM0 selection  
0: GPIO  
1: SCOM0  
Rev. 1.60  
191  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Configuration Options  
Configuration options refer to certain options within the MCU that are programmed into the device during the program-  
ming process. During the development process, these options are selected using the HT-IDE software development  
tools. As these options are programmed into the device using the hardware programming tools, once they are selected  
they cannot be changed later using the application program. All options must be defined for proper system function, the  
details of which are shown in the table.  
No.  
Options  
Oscillator Options  
High Speed System Oscillator Selection - fH:  
1. HXT  
2. ERC  
3. HIRC  
1
Low Speed System Oscillator Selection - fL:  
2
3
1. LXT  
2. LIRC  
WDT Clock Selection - fS:  
1. fSUB  
2. fSYS/4  
HIRC Frequency Selection:  
1. 4MHz  
4
2. 8MHz  
3. 12MHz  
Note: The fSUB and the fTBC clock source are LXT or LIRC selection by the fL configuration option.  
Reset Pin Options  
PB0/RES Pin Options:  
5
1. RES pin  
2. I/O pin  
Watchdog Options  
Watchdog Timer Function:  
6
7
1. Enable  
2. Disable  
CLRWDT Instructions Selection:  
1. 1 instructions  
2. 2 instructions  
LVR Options  
LVR Function:  
8
9
1. Enable  
2. Disable  
LVR Voltage Selection:  
1. 2.10V  
2. 2.55V  
3. 3.15V  
4. 4.20V  
Rev. 1.60  
192  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
No.  
Options  
SIM Options  
SIM Function:  
10  
11  
12  
1. Enable  
2. Disable  
SPI - WCOL bit:  
1. Enable  
2. Disable  
SPI - CSEN bit:  
1. Enable  
2. Disable  
I2C Debounce Time Selection:  
1. No debounce  
13  
2. 2 system clock debounce  
3. 4 system clock debounce  
Application Circuits  
V
D
D
0
.
m
0
F
1
*
*
V
D
D
R
e
s
e
t
1
W
0 ~ k  
C
i
r
c
u
i
t
1
0
W
0
k
1
N
4
1
4
8
*
0
m
. F 1  
R
E
S
A
N
0
~
A
N
1
1
3
0
W
* 0  
0
.
1
m
F
~
1
P
B
5
~
P
B
7
V
S
S
P
C
0
~
P
C
7
P
P
P
D
E
F
0
~
P
D
7
O
O
S
S
C
C
1
2
O
S
C
0
~
P
E
5
C
i
r
c
u
i
t
2
~
P
F
7
S
e
e
O
s
c
i
l
l
a
t
o
r
S
e
c
t
i
o
n
P
G
0
~
P
G
1
X
X
T
T
1
2
O
S
C
C
i
r
c
u
i
t
S
e
e
O
s
c
i
l
l
a
t
o
r
S
e
c
t
i
o
n
Note:  
²*² It is recommended that this component is added for added ESD protection.  
²**² It is recommended that this component is added in environments where power line noise is significant.  
Rev. 1.60  
193  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
UART Module Serial Interface  
-
UART Module Features  
Transmit and Receive Multiple Interrupt  
Generation Sources:  
·
·
Interconnected to Holtek MCU via SPI interface  
¨
¨
¨
¨
¨
Transmitter Empty  
Transmitter Idle  
Full-duplex, Universal Asynchronous Receiver and  
Transmitter (UART) communication  
Receiver Full  
-
-
-
-
-
-
-
-
-
8 or 9 bit character length  
Receiver Overrun  
Address Mode Detect  
Even, odd or no parity options  
One or two stop bits  
-
-
TX pin is high impedance when the UART transmit  
module is disabled  
Baud rate generator with 8-bit prescaler  
Parity, framing, noise and overrun error detection  
Support for interrupt on address detect  
Address Detect Interrupt - last character bit=1  
Transmitter and receiver enabled independently  
4-byte deep FIFO receiver data buffer  
RX pin is high impedance when the UART receive  
module is disabled  
·
CMOS clock input, CLKI, up to 20MHz at 5V  
operating voltage  
UART Module Overview  
The device contains a fully embedded full-duplex asyn-  
chronous serial communications UART interface that  
enables data transmission and data reception with ex-  
ternal devices. Possible applications could include data  
communication networks between microcontrollers,  
low-cost data links between PCs and peripheral  
devices, portable and battery operated device commu-  
nication, factory automation and process control to  
name but a few.  
UART Module Block Diagram  
U
A
R
T
M
o
d
u
l
e
S
D
I
S
D
O
T
R
X
S
C
K
U
A
R
T
S
P
I
I n  
e
t
e
r
f
a
c
e
I
n
t
e
r
f
a
c
V
D
D
X
S
C
S
V
D
D
C
L
K
I
G
N
D
I
N
T
Rev. 1.60  
194  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Pin Assignment  
P
A
0
/
C
0
X
/
T
1
2
3
4
5
6
7
8
9
1
1
1
P
0
_
0
/
P
P
P
P
P
P
P
P
R
T
N
N
A
A
A
A
A
A
A
A
B
N
1
2
3
4
5
6
7
5
0
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
P
C
1
A
/
A
N
1
2
2
2
2
2
1
1
1
1
1
1
1
4
3
2
1
0
9
8
7
6
5
4
3
V
S
S
&
A
V
S
S
K
0
/
C
0
+
/
A
N
2
P
P
B
B
4
3
/
/
X
X
T
T
2
1
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
3
3
3
3
3
3
1
2
3
3
3
4
3
5
4
6
7
8
9
0
C
K
1
/
A
N
4
1
2
3
4
5
6
7
8
9
1
3
2
2
2
2
2
2
2
2
2
0
9
8
7
6
5
4
3
2
1
N
N
P
P
P
P
P
P
P
P
C
P
B
5
/
S
C
S
/
V
R
E
F
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
1
X
/
S
D
O
/
A
N
5
C
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
6
D
C
C
I
K
S
/
S
D
A
/
A
N
6
D
D
C
C
C
C
E
E
4
5
6
7
0
1
/
/
/
/
/
/
[
[
[
[
T
T
T
T
T
T
P
P
P
P
2
0
0
1
_
_
_
A
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
P
A
5
/
C
1
X
/
S
D
O
5
V
D
D
&
A
V
D
D
/
/
S
V
C
R
L
E
/
A
N
7
H
T
0
6
6
F
U
4
4
0
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
P
B
0
/
R
E
S
F
4
Q
F
N
-
A
P
A
3
/
I
N
T
0
/
C
0
-
/
/
A
A
N
N
3
2
N
N
N
N
C
C
C
X
P
1
B
_
P
A
2
/
T
C
K
0
/
C
0
+
+
+
P
1
B
_
P
A
1
/
T
P
1
A
/
A
N
1
0
1
2
X
4
/
[
T
P
1
B
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
C
C
0
5
P
F
1
/
[
C
1
X
]
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
C
H
T
6
6
F
U
3
0
2
4
S
K
D
I
P
-
A
/
S
O
P
-
A
P
A
0
/
C
0
X
/
T
P
0
_
0
/
P
P
P
P
P
P
P
P
P
P
P
P
N
N
N
P
P
N
R
T
N
N
N
N
A
A
A
A
A
A
A
A
B
B
B
D
D
N
1
2
3
4
5
6
7
5
6
7
0
/
/
/
/
/
/
/
/
/
/
T
T
I
I
C
S
S
S
[
[
P
C
1
A
/
A
N
1
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
P
P
F
F
1
0
/
/
[
[
C
C
1
0
X
X
]
]
K
0
/
C
0
+
/
A
N
2
N
N
T
T
0
1
/
/
C
T
0
-
/
A
N
3
P
P
E
E
7
6
/
/
[
[
I
I
N
N
T
T
1
0
]
]
C
K
1
/
A
N
4
1
X
/
S
D
O
/
A
N
5
3
3
3
3
3
4
3
5
4
6
7
4
8
4
4
9
4
0
1
2
3
4
V
S
S
&
A
V
S
S
D
C
C
I
K
S
/
S
D
A
/
A
N
6
P
B
5
/
S
C
S
1
2
3
4
5
6
7
8
9
/
V
R
E
F
N
P
P
P
P
P
P
P
P
P
P
C
3
3
3
3
2
2
2
2
2
2
2
3
2
1
0
9
8
7
6
5
4
3
P
P
B
B
4
3
/
/
X
X
T
T
2
1
L
/
A
N
/
/
S
V
7
C
R
P
A
7
/
S
C
K
/
S
C
L
/
/
A
A
N
N
7
D
D
E
E
E
E
C
C
C
C
4
5
/
/
[
[
T
T
P
P
2
0
E
F
P
A
6
/
S
D
I
/
S
D
A
6
5
P
A
5
/
C
1
X
/
S
D
O
/
A
N
0
1
2
3
P
P
B
B
2
1
/
/
O
O
S
S
C
C
2
1
S
S
D
D
O
I
]
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
H
T
6
6
F
U
4
0
/
S
D
A
]
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
2
4
4
L
Q
F
P
-
A
V
D
D
&
A
V
D
D
6
7
/
/
[
[
S
S
C
C
K
S
/
]
S
C
L
]
P
A
2
/
T
C
K
0
/
C
0
/
A
N
P
A
1
/
T
P
1
A
/
A
N
1
6
7
0
1
/
/
/
/
[
[
T
T
T
T
P
P
0
1
P
B
0
/
R
E
S
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
P
E
5
C
C
C
P
P
F
F
1
0
/
/
[
[
1
C
C
0
1
0
X
X
]
]
P
1
B
P
E
4
/
[
T
P
1
B
_
2
]
P
1
B
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
P
P
C
C
1
0
/
/
T
T
P
P
1
1
B
B
_
_
1
0
/
/
S
S
C
C
O
O
M
M
1
0
C
C
2
3
/
/
T
P
C
K
/
P
/
C
K
/
C
1
+
N
C
I
N
T
T
P
2
_
0
/
C
1
-
P
C
7
/
[
T
P
1
A
]
/
S
C
O
C
M
3
P
C
6
/
[
T
P
0
_
0
]
/
S
C
O
X
M
2
P
P
P
E
E
E
3
2
1
X
C
C
C
C
N
N
C
C
H
T
6
6
F
U
4
0
4
8
S
S
O
P
-
A
4
8
4
4
6
7
4
4
4
4
5
4
3
2
4
4
0
1
3
3
3
8
9
7
1
2
3
4
5
6
7
8
9
3
3
3
3
3
3
3
2
2
2
2
2
6
5
4
3
2
1
0
9
8
7
6
5
N
P
P
P
P
P
P
P
P
N
P
P
C
N
C
D
D
E
E
E
E
C
C
4
5
/
/
[
[
T
T
P
P
2
0
P
B
5
/
S
C
S
/
V
R
E
F
P
A
7
/
S
C
K
/
S
C
L
/
/
A
A
N
N
7
0
1
2
3
P
A
6
/
S
D
I
/
S
D
A
6
5
P
A
5
/
C
1
X
/
S
D
O
/
A
N
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
F
H
T
6
6
U
4
0
4
8
Q
F
N
-
A
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
2
6
7
/
/
[
[
T
T
P
P
0
1
P
A
2
/
T
C
K
0
/
C
0
/
A
N
P
A
1
/
T
P
1
A
/
A
N
1
C
P
A
0
/
C
0
X
/
T
1
1
1
0
1
2
P
0
_
0
/
A
N
0
C
C
0
1
/
/
T
T
P
1
N
C
P
M
1
P
F
1
/
[
C
1
X
]
1
3
1
4
1
1
7
5
1
1
8
6
1
9
2
0
2
1
2
2
2
3
2
4
Rev. 1.60  
195  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
4
8
4
4
6
7
4
4
4
4
5
4
3
2
4
4
0
1
3
3
3
3
3
4
3
5
4
6
7
4
8
4
4
9
4
0
1
2
3
4
1
2
3
4
5
6
7
8
9
3
3
3
3
3
3
3
2
2
2
2
2
6
5
4
3
2
1
0
9
8
7
6
5
N
P
P
P
P
P
P
P
P
N
P
P
C
N
C
P
B
5
/
S
C
S
1
2
3
4
5
6
7
8
9
/
V
R
E
F
N
P
P
P
P
P
P
P
P
P
P
C
3
3
3
3
2
2
2
2
2
2
2
3
2
1
0
9
8
7
6
5
4
3
D
D
E
E
E
E
C
C
4
5
/
/
[
[
T
T
P
P
2
0
P
B
5
/
S
C
S
/
V
R
E
F
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
D
D
E
E
E
E
C
C
C
C
4
5
/
/
[
[
T
T
P
P
2
0
_
_
1
1
]
]
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
0
1
2
3
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
A
5
/
C
1
X
/
S
D
O
0
1
2
3
P
A
5
/
C
1
X
/
S
D
O
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
F
H
T
6
6
F
U
5
0
H
T
6
6
U
5
0
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
4
8
Q
F
N
-
A
/
[
T
P
3
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
4
4
L
Q
F
P
-
A
P
A
2
/
T
+
C
/
K
A
0
N
/
2
C
0
/
[
T
P
3
_
1
]
6
7
/
/
[
[
T
T
P
P
0
1
P
A
2
/
C
T
0
C
+
K
/
0
A
/
N
2
P
A
1
/
T
P
1
A
/
A
N
1
6
7
0
1
/
/
/
/
[
[
T
T
T
T
P
P
0
1
_
A
0
]
/
S
C
O
M
2
P
A
1
/
T
P
1
A
/
A
N
1
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
]
/
S
C
O
M
3
C
P
A
0
/
C
0
X
/
T
1
1
1
0
1
2
P
0
_
0
/
A
N
0
P
F
1
/
[
1
C
0
1
1
X
]
]
P
1
B
_
0
/
S
C
O
M
0
C
C
0
1
/
/
T
T
P
1
B
N
C
P
F
0
/
[
C
0
X
_
1
P
/
1
S
B
C
O
M
1
1
1
B
_
P
1
/
S
P
F
1
/
[
C
1
X
]
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
1
3
1
4
1
1
7
5
1
1
8
6
1
9
2
0
2
1
2
2
2
3
2
4
3
3
3
3
3
4
3
5
4
6
7
4
8
4
4
9
4
0
1
2
3
4
3
3
3
3
3
1
2
3
3
3
0
4
3
5
4
6
7
8
9
0
P
B
5
/
S
C
S
1
2
3
4
5
6
7
8
9
/
V
R
E
F
N
P
P
P
P
P
P
P
P
P
P
C
3
3
3
3
2
2
2
2
2
2
2
3
2
1
0
9
8
7
6
5
4
3
1
2
3
4
5
6
7
8
9
1
3
2
2
2
2
2
2
2
2
2
N
N
P
P
P
P
P
P
P
P
C
P
B
5
/
S
C
S
/
V
R
E
F
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
D
D
E
E
E
E
C
C
C
C
4
5
/
/
[
[
T
T
P
P
2
0
_
_
9
8
7
6
5
4
3
2
1
C
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
D
D
C
C
C
C
E
E
4
5
6
7
0
1
/
/
/
/
/
/
[
[
[
[
T
T
T
T
T
T
P
P
P
P
2
0
0
1
_
_
_
A
1
1
0
]
]
]
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
P
A
5
/
C
1
X
/
S
D
O
0
1
2
3
/
/
/
/
[
[
[
[
I
I
I
T
N
N
N
T
T
T
0
1
2
P
A
5
/
C
1
X
/
0
S
D
O
5
P
A
4
/
2
I
N
T
1
/
T
C
K
1
/
A
N
4
/
S
C
O
M
H
T
6
6
F U  
4
6
0
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
H
T
6
6
F
U
6
0
P
A
3
3
/
I
N
T
0
/
C
0
-
/
A
N
3
4
0
Q
F
3
N
-
A
]
/
S
C
O
M
P
A
3
/
I
N
T
/
C
0
-
/
A
N
4
4
L
Q
F
P
-
A
P
A
2
0
/
T
+
C
/
K
A
0
N
/
2
C
0
P
3
_
P
1
B
_
0
/
S
C
O
O
M
P
A
2
/
T
+
C
/
K
A
0
N
/
2
C
0
P A  
1
0
1
/
T
P
1
A
/
A
N
1
6
7
0
1
/
/
[
[
T
T
P
P
0
1
_
A
P
1
B
_
1
/
S
C
M
P
A
1
/
T
P
1
A
/
A
N
1
P
A
/
C
0
X
/
T
P
0
_
0
/
A
N
0
4
/
[
2
T
]
P
1
B
_
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
P
P
F
F
1
/
/
[
C
1
1
X
0
]
/
A
N
1
1
0
/
T
P
1
B
_
0
0
5
/
[
T
P
3
_
0
]
P
F
1
/
[
C
1
X
]
/
A
N
1
1
0
[
C
0
X
]
1
/
A
N
1
/
T
P
1
B
1
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
4
4
5
5
8
5
9
0
1
2
4
4
4
5
6
7
4
4
4
4
0
4
1
2
3
4
3
3
3
3
3
3
9
8
7
6
5
4
P
P
F
3
2
1
2
3
4
5
6
7
8
9
N
P
P
P
P
P
P
P
P
P
P
P
P
C
4
8
4
4
6
7
4
4
4
4
5
4
3
2
4
4
0
1
F
D
D
E
E
E
E
F
F
G
G
C
C
4
5
/
/
[
[
T
T
P
P
2
0
1
2
3
4
5
6
7
8
9
3
3
3
3
3
3
3
2
2
2
2
2
6
5
4
3
2
1
0
9
8
7
6
5
N
P
P
P
P
P
P
P
P
N
P
P
C
N
C
P
B
5
/
S
C
S
/
V
R
E
F
D
D
E
E
E
E
C
C
4
5
/
/
[
[
T
T
P
P
2
0
_
_
1
1
]
]
P
B
5
/
S
C
S
/
V
R
E
F
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
0
1
2
3
/
/
/
/
[
[
[
[
I
I
I
T
N
N
N
T
T
T
P
A
7
/
S
C
K
/
S
C
L
/
A
N
7
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
0
1
2
3
/
/
/
/
[
[
[
[
I
I
I
T
N
N
N
T
T
T
0
1
2
]
]
]
P
A
6
/
S
D
I
/
S
D
A
/
/
A
A
N
N
6
5
P
A
5
/
C
1
X
/
S
D
O
P
A
5
/
C
1
X
/
0
S
D
O
H
T
6
6
F
U
6
0
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
3
3
3
3
2
2
2
3
2
1
0
9
8
7
P
3
P
A
4
/
I
N
T
1
/
T
C
K
1
/
A
N
4
F
H
T
6
6
U
6
0
5
2
Q
F
P
-
A
P
A
3
/
I
N
T
0
/
C
0
-
/
A
N
3
6
4
8
L
Q
F
P
-
A
/
Q
F
N
-
A
P
3
_
1
]
P
A
3
/
I
N
T
/
C
0
-
/
A
N
3
P
A
C
2
/
K
T 0  
2
/
C
0
+
/
A
N
2
7
6
7
/
/
[
[
T
T
P
P
0
1
_
A
0
]
/
S
C
O
M
P
A
2
/
C
T
0
C
+
K
/
0
A
/
N
2
P
A
1
3
/
T
P
1
1
1
1
1
A
0
1
2
3
/
A
N
1
0
/
[
C
0
X
]
/
S
C
O
M
P
A
1
/
T
P
1
A
/
A
N
1
P
A
0
/
C
0
X
/
T
P
0
_
0
/
A
N
0
1
/
[
C
1
X
C
P
A
0
/
C
0
X
/
T
1
1
1
0
1
2
P
0
_
0
/
A
N
0
P
F
1
0
/
[
C
C
1
X
]
/
A
N
1
1
6
7
/
/
[
[
S
T
T
C
P
P
O
0
1
C
0
/
T
P
1
B
_
0
/
S
C
O
M
N
C
P
F
0 /  
1
[
0
X
]
/
A
N
1
0
C
1
/
T
P
1
B
_
1
/
S
C
O
M
P
F
1
/
[
C
1
X
]
/
A
N
1
1
1
4
1
5
1
6
1
7
2
1
3
8
2
1
4
9
2
2
5
0
2
2
6
1
2
2
1
3
1
4
1
1
7
5
1
1
8
6
1
9
2
0
2
1
2
2
2
3
2
4
Rev. 1.60  
196  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
UART Module Pin Description  
Pin Name  
I/O  
Description  
External UART RX serial data input pin  
RX  
I
If UARTEN=1 and RXEN=1, then RX is the UART serial data input  
If UARTEN=0 or RXEN=0, then RX is high impedance  
External UART TX serial data output pin  
TX  
O
If UARTEN=1 and TXEN=1, then TX is the UART serial data output  
If UARTEN=0 or TXEN=0, then TX is high impedance  
Internal Slave SPI Serial Data In Input Signal  
SDI  
I
O
I
Internally connected to the MCU Master SPI SDO output signal  
Internal Slave SPI Serial Data Out Output Signal  
SDO  
SCK  
Internally connected to the MCU Master SPI SDI input signal  
Internal Slave SPI Serial Clock Input Signal  
Internally connected to the MCU Master SPI SCK output signal  
Internal Slave SPI Device Select Input Signal  
SCS  
CLKI  
I
I
Internally connected to the MCU Master SPI SCS output signal -- connected to pull high  
resistor  
Internal Clock Input Signal  
Internally connected to the MCU Master PCK output signal  
Internal UART Interrupt Output Signal  
INT  
NC  
O
Internally connected to the MCU Master PINT input signal  
A UART related interrupt will generate a low pulse signal on this line  
¾
Implies that the pin is ²Not Connected² and can therefore not be used.  
Notes: The pin description for all pins with the exception of the UART TX and RX pins are described in the preceding  
MCU section.  
UART Module D.C. Characteristics  
Ta=25°C  
Test Conditions  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
fCLKI=12MHz, SCK=fCLKI/4,  
Output no load  
3.0V  
1.0  
2.0  
4.2  
4.8  
mA  
mA  
mA  
mA  
¾
¾
¾
¾
¾
¾
¾
¾
Operating Current *  
IDD1  
(SPI Enabled, UART disabled)  
f
CLKI=16MHz, SCK=fCLKI/4,  
5.0V  
2.2V  
5.0V  
Output no load  
fCLKI=6MHz, SCK=fCLKI/4,  
Output no load  
Operating Current *  
IDD2  
(SPI enabled, UART enabled)  
f
CLKI=12MHz, SCK=fCLKI/4,  
Output no load  
fCLKI=16MHz, SCK=fCLKI/4,  
SCS=VDD, UARTEN=0,  
TXEN=1, RXEN=1, SDI=H,  
RX=H, Output no load  
Standby Current *  
ISTB  
5.0V  
0.6  
¾
¾
mA  
(SPI disabled, UART disabled)  
VIL  
VIH  
0.3VDD  
VDD  
¾
Input Low Voltage for RX Ports  
Input High Voltage for RX Ports  
0
V
¾
¾
¾
¾
¾
0.7VDD  
2.5  
V
¾
3.0V  
5.0V  
3.0V  
5.0V  
5.0  
mA  
mA  
mA  
mA  
IOL  
VO=0.1VDD  
VO=0.9VDD  
TX Port Sink Current  
10.0  
-1.5  
-5.0  
25.0  
-3.0  
-8.0  
¾
¾
IOH  
RX Port Source Current  
¾
Rev. 1.60  
197  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Test Conditions  
Symbol  
RPH  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
3.0V  
5.0V  
Conditions  
20  
10  
60  
30  
100  
50  
kW  
kW  
Pull-high Resistance for SCS only  
¾
Note:  
²*² The operating current IDD1 listed here is the additional current consumed when the slave SPI interface in the  
UART module is enabled and the UART interface is disabled. Similarly, the operating current IDD2 here is the  
additional current consumed when both the slave SPI interface and UART interface are enabled. If the UART  
module is enabled, either IDD1 or IDD2 should be added to calculate the relevant operating current of the device  
for different conditions. To calculate the standby current for the whole device, the standby current shown above  
should be taken into account.  
UART Module A.C. Characteristics  
Ta=25°C  
Test Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
3.0V  
5.0V  
3.0V  
5.0V  
3.0V  
5.0V  
3.0V  
5.0V  
¾
Conditions  
62.5  
50.0  
28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
10  
10  
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
tCP  
SCK Period (tCH + tCL)  
tCH  
SCK High Time  
SCK Low Time  
22  
28  
tCL  
22  
500  
400  
100  
0
tCSW  
SCS High Pulse Width  
tCSS  
tCSH  
tSDS  
tSDH  
tR  
SCS to SCK Setup Time  
SCS to SCK Hold Time  
SDI to SCK Setup Time  
SDI to SCK Hold Time  
SPI Output Rise Time  
SPI Output Fall Time  
¾
100  
0
¾
¾
¾
¾
tF  
¾
¾
tW  
SPI Data Output Delay Time  
0
¾
Rev. 1.60  
198  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
UART Module Functional Description  
UART Module SPI Interface  
The embedded UART Module is full-duplex asynchron-  
ous serial communications UART interface that enables  
communication with external devices that contain a se-  
rial interface. The UART function has many features and  
can transmit and receive data serially by transferring a  
frame of data with eight or nine data bits per transmis-  
sion as well as being able to detect errors when the data  
is overwritten or incorrectly framed. Interconnection be-  
tween the MCU and the UART module is implemented  
by internally connecting the MCU Master SPI interface  
to the UART Slave SPI interface. All data transmissions  
and receptions between MCU and UART module in-  
cluding UART commands are conducted along this in-  
terconnected SPI interface. The UART function control  
is executed by the MCU using its SPI Master serial inter-  
face. The UART module contains its own independent  
interrupt which can be used to indicate when a data re-  
ception occurs or when a data transmission has termi-  
nated.  
The MCU communicates with the UART Module via an  
internal SPI interface. The SPI interface on this device is  
comprised of four signals: SCS (SPI Chip Select), SCK  
(SPI Clock), SDI (Serial Data Input) and SDO (Serial  
Data Output). The SPI master, which is the MCU, as-  
serts SCS by pulling it low to start the data transaction  
cycle. When the first 8 bits of data are transmitted, SCS  
should not return to a high level. Instead, SCS must re-  
main at a low level until the whole 16-bit data transaction  
is completed. If SCS is de-asserted, that is returned to a  
high level before the 16-bit data transaction is com-  
pleted, all data bits will be discarded by the UART Mod-  
ule SPI slave.  
SPI Timing  
Both read and write operations are conducted along the  
SPI common interface with the following format:  
·
Write Type Format: 8-bit command input + 8-bit data  
input  
UART Module Internal Signal  
·
Read Type Format: 8-bit command input + 8-bit data  
output  
In addition to the TX and RX external pins described  
above there are other MCU to UART Module intercon-  
necting lines that are described in the following table.  
Note that these lines are internal to the device and are  
not bonded to external pins.  
To initiate a data transaction, the MCU master SPI  
needs to pull SCS to a low level first and then also pull  
SCK low. The input data bit on SDI should be stable be-  
fore the next SCK rising edge, as the device will latch  
the SDI status on the next SCK rising edge. Regarding  
the SDO line, the output data bit will be updated on the  
SCK falling edge. The master needs to obtain the line  
status before the next SCK falling edge.  
V
D
D
V
D
D
V
D
D
There are 16 bits of data transmitted and/or received by  
the SPI interface for each transaction. Each transaction  
consists of a command phase and a data phase. When  
SCS is high, the SPI interface is disabled and SDO will  
be set to a high impedance state.  
S
S
S
S
I
C
C
D
D
C
K
I
O
S
S
C
K
R
X
S
D
O
S
D
I
M
C
U
U
A
R
T
M
o
d
u
l
e
S
C
S
After a complete transaction has been implemented,  
which requires 16 SCK clock cycles, the master needs  
to set SCS to a high level in preparation for the next data  
transaction.  
T
X
P
I
N
T
N
T
P
C
K
L
K
I
G
N
D
G
N
D
For write operations, the device will begin to execute the  
command only after it receives a 16-bit serial data se-  
quence and when the SCS has been set high again by  
the master.  
MCU to UART Internal Connection  
Rev. 1.60  
199  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
For read operations, the device will begin to execute the  
to the TXR register by the application program. The data  
will then be transferred to the Transmitter Shift Register  
named TSR from where it will be shifted out, LSB first,  
onto the TX pin at a rate controlled by the Baud Rate  
Generator. Only the TXR register is accessible to the  
application program, the Transmitter Shift Register is  
not mapped into the Data Memory area and is inacces-  
sible to the application program.  
command only after it receives an 8-bit read command  
after which it will be ready to output data. If necessary,  
the master can de-assert the SCS pin to abort the trans-  
action at any time which will cause any data transac-  
tions to be abandoned.  
UART Module External Pin Interfacing  
Data to be received by the UART is accepted on the ex-  
ternal RX pin, from where it is shifted in, LSB first, to the  
Receiver Shift Register named RSR at a rate controlled  
by the Baud Rate Generator. When the shift register is  
full, the data will then be transferred from the shift regis-  
ter to the internal RXR register, where it is buffered and  
can be manipulated by the application program. Only  
the RXR register is accessible to the application pro-  
gram, the Receiver Shift Register is not mapped into the  
Data Memory area and is inaccessible to the application  
program. It should be noted that the actual register for  
data transmission and reception, although referred to in  
the text, and in application programs, as separate TXR  
and RXR registers, only exists as a single shared regis-  
ter physically. This shared register known as the  
TXR/RXR register is used for both data transmission  
and data reception.  
To communicate with an external serial interface, the in-  
ternal UART has two external pins known as TX and RX.  
The TX pin is the UART transmitter serial data output pin  
if the corresponding control bits named UARTEN in  
UCR1 register and TXEN in UCR2 register are set to 1.  
If the control bit UARTEN or TXEN is equal to zero, the  
TX pin is in the state of high impedance. Similarly, the  
RX pin is the UART receiver serial data input pin if the  
corresponding control bits named UARTEN and RXEN  
in UCR1 and UCR2 registers are set to 1. If the control  
bit UARTEN or RXEN is equal to zero, the RX pin is in  
the state of high impedance.  
UART Data Transfer Scheme  
The following block diagram shows the overall data  
transfer structure arrangement for the UART. The actual  
data to be transmitted from the MCU is first transferred  
SCS  
SCK  
SDI  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
Writing Type Format: 8-bit Command Input + 8-bit Data Input  
SCS  
SCK  
SDI  
tw  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
SDO  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reading Type Format: 8-bit Command Input + 8-bit Data Output  
Transmitter Shift Register (TSR)  
MSB LSB  
Receiver Shift Register (RSR)  
MSB LSB  
TX Pin  
RX Pin  
Buffer 3  
Buffer 2  
Buffer 1  
Baud Rate  
Generator  
TX Register (TXR)  
RX Register (RXR)  
Data received  
Data to be transmitted  
UART Data Transfer Scheme  
Rev. 1.60  
200  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
UART Commands  
There are both read and write commands for the UART Module. For reading and writing to registers both command and  
address information is contained within a single byte. The format for reading and writing is shown in the following table.  
Command Type  
Read FIFO  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
X
Bit 1  
X
Bit 0  
X
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
1
Read Register  
Write FIFO  
A2  
X
A1  
X
A0  
X
Write Register  
A2  
A1  
A0  
Note: ²X² here stands for ²don¢t care²  
UART Status and Control Registers  
There are six registers associated with the UART function. The USR, UCR1, UCR2 and UCR3 registers control the  
overall function of the UART module, while the BRG register controls the Baud rate. The actual data to be transmitted  
and received on the serial interface is managed through the TXR/RXR data register.  
A[2:0] Name  
Reset  
Bit 7  
PERR  
UARTEN  
TXEN  
Bit 6  
NF  
Bit 5  
FERR  
PREN  
Bit 4  
OERR RIDLE  
PRT STOPS TXBRK  
Bit 3  
Bit 2  
Bit 1  
TIDLE  
RX8  
Bit 0  
TXIF  
TX8  
00H  
01H  
02H  
03H  
04H  
USR  
0000 1011  
0000 0X00  
0000 0000  
XXXX XXXX  
0--- ----  
RXIF  
UCR1  
UCR2  
BRG  
BNO  
RXEN BRGH ADDEN WAKE  
RIE  
BRG2  
¾
TIIE  
TEIE  
BRG7  
BRG6 BRG5  
BRG4  
BRG3  
BRG1 BRG0  
UCR3  
URST  
¾
¾
¾
¾
¾
¾
05H~  
07H  
Unused  
Reserved  
UART Register Summary  
---- ----  
·
USR Register  
The USR register is the status register for the UART, which can be read by the application program to determine the  
present status of the UART. All flags within the USR register are read only. Further explanation on each of the flags is  
given below:  
Bit  
Name  
R/W  
7
PERR  
R
6
NF  
R
5
FERR  
R
4
OERR  
R
3
RIDLE  
R
2
RXIF  
R
1
TIDLE  
R
0
TXIF  
R
POR  
0
0
0
0
1
0
1
1
Bit 7  
PERR: Parity error flag  
0: no parity error is detected  
1: parity error is detected  
The PERR flag is the parity error flag. When this read only flag is ²0², it indicates a parity error  
has not been detected. When the flag is ²1², it indicates that the parity of the received word is  
incorrect. This error flag is applicable only if Parity mode (odd or even) is selected. The flag can  
also be cleared by a software sequence which involves a read to the status register USR  
followed by an access to the RXR data register.  
Bit 6  
NF: Noise flag  
0: no noise is detected  
1: noise is detected  
The NR flag is the noise flag. When this read only flag is ²0², it indicates no noise condition.  
When the flag is ²1², it indicates that the UART has detected noise on the receiver input.  
The NF flag is set during the same cycle as the RXIF flag but will not be set in the case of as  
overrun. The NF flag can be cleared by a software sequence which will involve a read to the  
status register USR followed by an access to the RXR data register.  
Rev. 1.60  
201  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Bit 5  
FERR: Framing error flag  
0: no framing error is detected  
1: framing error is detected  
The FERR flag is the framing error flag. When this read only flag is ²0², it indicates that there  
is no framing error. When the flag is ²1², it indicates that a framing error has been detected  
for the current character. The flag can also be cleared by a software sequence which will involve  
a read to the status register USR followed by an access to the RXR data register.  
Bit 4  
OERR: Overrun error flag  
0: no overrun error is detected  
1: overrun error is detected  
The OERR flag is the overrun error flag which indicates when the receiver buffer has overflowed.  
When this read only flag is ²0², it indicates that there is no overrun error. When the flag is  
²1², it indicates that an overrun error occurs which will inhibit further transfers to the RXR  
receive data register. The flag is cleared by a software sequence, which is a read to the status  
register USR followed by an access to the RXR data register.  
Bit 3  
RIDLE: Receiver status  
0: data reception is in progress (data being received)  
1: no data reception is in progress (receiver is idle)  
The RIDLE flag is the receiver status flag. When this read only flag is ²0², it indicates that the  
receiver is between the initial detection of the start bit and the completion of the stop bit. When  
the flag is ²1², it indicates that the receiver is idle. Between the completion of the stop bit and  
the detection of the next start bit, the RIDLE bit is ²1² indicating that the UART receiver is idle  
and the RX pin stays in logic high condition.  
Bit 2  
RXIF: Receive RXR data register status  
0: RXR data register is empty  
1: RXR data register has available data  
The RXIF flag is the receive data register status flag. When this read only flag is ²0², it indicates  
that the RXR read data register is empty. When the flag is ²1², it indicates that the RXR read data  
register contains new data. When the contents of the shift register are transferred to the RXR  
register, an interrupt is generated if RIE=1 in the UCR2 register. If one or more errors are  
detected in the received word, the appropriate receive-related flags NF, FERR, and/or PERR are  
set within the same clock cycle. The RXIF flag is cleared when the USR register is read with  
RXIF set, followed by a read from the RXR register, and if the RXR register has no data  
available.  
Bit 1  
TIDLE: Transmission idle  
0: data transmission is in progress (data being transmitted)  
1: no data transmission is in progress (transmitter is idle)  
The TIDLE flag is known as the transmission complete flag. When this read only flag is ²0², it  
indicates that a transmission is in progress. This flag will be set to ²1² when the TXIF flag is  
²1² and when there is no transmit data or break character being transmitted. When TIDLE is  
equal to ²1², the TX pin becomes idle with the pin state in logic high condition. The TIDLE flag is  
cleared by reading the USR register with TIDLE set and then writing to the TXR register. The flag  
is not generated when a data character or a break is queued and ready to be sent.  
Bit 0  
TXIF: Transmit TXR data register status  
0: character is not transferred to the transmit shift register  
1: character has transferred to the transmit shift register (TXR data register is empty)  
The TXIF flag is the transmit data register empty flag. When this read only flag is ²0², it  
indicates that the character is not transferred to the transmitter shift register. When the flag is  
²1², it indicates that the transmitter shift register has received a character from the TXR data  
register. The TXIF flag is cleared by reading the UART status register (USR) with TXIF set and  
then writing to the TXR data register. Note that when the TXEN bit is set, the TXIF flag bit will  
also be set since the transmit data register is not yet full.  
Rev. 1.60  
202  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
UCR1 register  
The UCR1 register together with the UCR2 register are the two UART control registers that are used to set the vari-  
ous options for the UART function such as overall on/off control, parity control, data transfer bit length, etc. Further  
explanation on each of the bits is given below:  
Bit  
Name  
R/W  
7
UARTEN  
R/W  
6
5
PREN  
R/W  
0
4
3
STOPS  
R/W  
0
2
TXBRK  
R/W  
0
1
RX8  
R
0
BNO  
R/W  
0
PRT  
R/W  
0
TX8  
W
POR  
0
X
0
²x² unknown  
Bit 7  
UARTEN: UART function enable control  
0: disable UART. TX and RX pins are in the state of high impedance  
1: enable UART. TX and RX pins function as UART pins  
The UARTEN bit is the UART enable bit. When this bit is equal to ²0², the UART will be  
disabled and the RX pin as well as the TX pin will be in the state of high impedance. When the  
bit is equal to ²1², the UART will be enabled and the TX and RX pins will function as defined by  
the TXEN and RXEN enable control bits. When the UART is disabled, it will empty the buffer so  
any character remaining in the buffer will be discarded. In addition, the value of the baud rate  
counter will be reset. If the UART is disabled, all error and status flags will be reset. Also the  
TXEN, RXEN, TXBRK, RXIF, OERR, FERR, PERR and NF bits will be cleared, while the TIDLE,  
TXIF and RIDLE bits will be set. Other control bits in UCR1, UCR2 and BRG registers will remain  
unaffected. If the UART is active and the UARTEN bit is cleared, all pending transmissions and  
receptions will be terminated and the module will be reset as defined above. When the UART is  
re-enabled, it will restart in the same configuration.  
Bit 6  
BNO: Number of data transfer bits selection  
0: 8-bit data transfer  
1: 9-bit data transfer  
This bit is used to select the data length format, which can have a choice of either 8-bit or 9-bit  
format. When this bit is equal to ²1², a 9-bit data length format will be selected. If the bit is  
equal to ²0², then an 8-bit data length format will be selected. If 9-bit data length format is  
selected, then bits RX8 and TX8 will be used to store the 9th bit of the received and transmitted  
data respectively.  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
PREN: Parity function enable control  
0: parity function is disabled  
1: parity function is enabled  
This is the parity enable bit. When this bit is equal to ²1², the parity function will be enabled. If  
the bit is equal to ²0², then the parity function will be disabled.  
PRT: Parity type selection bit  
0: even parity for parity generator  
1: odd parity for parity generator  
This bit is the parity type selection bit. When this bit is equal to ²1², odd parity type will be  
selected. If the bit is equal to ²0², then even parity type will be selected.  
STOPS: Number of Stop bits selection  
0: one stop bit format is used  
1: two stop bits format is used  
This bit determines if one or two stop bits are to be used. When this bit is equal to ²1², two  
stop bits are used. If this bit is equal to ²0², then only one stop bit is used.  
TXBRK: Transmit break character  
0: no break character is transmitted  
1: break characters transmit  
The TXBRK bit is the Transmit Break Character bit. When this bit is ²0², there are no break  
characters and the TX pin operates normally. When the bit is ²1², there are transmit break  
characters and the transmitter will send logic zeros. When this bit is equal to ²1², after the  
buffered data has been transmitted, the transmitter output is held low for a minimum of a 13-bit  
length and until the TXBRK bit is reset.  
Rev. 1.60  
203  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Bit 1  
Bit 0  
RX8: Receive data bit 8 for 9-bit data transfer format (read only)  
This bit is only used if 9-bit data transfers are used, in which case this bit location will store the  
9th bit of the received data known as RX8. The BNO bit is used to determine whether data  
transfers are in 8-bit or 9-bit format.  
TX8: Transmit data bit 8 for 9-bit data transfer format (write only)  
This bit is only used if 9-bit data transfers are used, in which case this bit location will store the  
9th bit of the transmitted data known as TX8. The BNO bit is used to determine whether data  
transfers are in 8-bit or 9-bit format.  
·
UCR2 register  
The UCR2 register is the second of the UART control registers and serves several purposes. One of its main func-  
tions is to control the basic enable/disable operation if the UART Transmitter and Receiver as well as enabling the  
various UART interrupt sources. The register also serves to control the baud rate speed, receiver wake-up function  
enable and the address detect function enable. Further explanation on each of the bits is given below:  
Bit  
Name  
R/W  
7
TXEN  
R/W  
0
6
RXEN  
R/W  
0
5
BRGH  
R/W  
0
4
ADDEN  
R/W  
0
3
WAKE  
R/W  
1
2
RIE  
R/W  
0
1
TIIE  
R
0
TEIE  
W
POR  
1
1
Bit 7  
TXEN: UART Transmitter enable control  
0: UART transmitter is disabled  
1: UART transmitter is enabled  
The bit named TXEN is the Transmitter Enable Bit. When this bit is equal to ²0², the transmitter  
will be disabled with any pending data transmissions being aborted. In addition the buffers will be  
reset. In this situation the TX pin will be in the state of high impedance. If the TXEN bit is equal to  
²1² and the UARTEN bit is also equal to ²1², the transmitter will be enabled and the TX pin will  
be controlled by the UART. Clearing the TXEN bit during a transmission will cause the data  
transmission to be aborted and will reset the transmitter. If this situation occurs, the TX pin will  
be in the state of high impedance.  
Bit 6  
RXEN: UART Receiver enable control  
0: UART receiver is disabled  
1: UART receiver is enabled  
The bit named RXEN is the Receiver Enable Bit. When this bit is equal to ²0², the receiver will  
be disabled with any pending data receptions being aborted. In addition the receive buffers will  
be reset. In this situation the RX pin will be in the state of high impedance. If the RXEN bit is  
equal to ²1² and the UARTEN bit is also equal to ²1², the receiver will be enabled and the RX pin  
will be controlled by the UART. Clearing the RXEN bit during a reception will cause the data  
reception to be aborted and will reset the receiver. If this situation occurs, the RX pin will be in the  
state of high impedance.  
Bit 5  
BRGH: Baud Rate speed selection  
0: low speed baud rate  
1: high speed baud rate  
The bit named BRGH selects the high or low speed mode of the Baud Rate Generator. This bit,  
together with the value placed in the baud rate register BRG, controls the Baud Rate of the  
UART. If this bit is equal to ²1², the high speed mode is selected. If the bit is equal to ²0²,  
the low speed mode is selected.  
Bit 4  
ADDEN: Address detect function enable control  
0: address detect function is disabled  
1: address detect function is enabled  
The bit named ADDEN is the address detect function enable control bit. When this bit is equal to  
²1², the address detect function is enabled. When it occurs, if the 8th bit, which corresponds to  
RX7 if BNO=0 or the 9th bit, which corresponds to RX8 if BNO=1, has a value of ²1²,  
then the received word will be identified as an address, rather than data. If the corresponding  
interrupt is enabled, an interrupt request will be generated each time the received word has the  
address bit set, which is the 8th or 9th bit depending on the value of BNO. If the address bit  
known as the 8th or 9th bit of the received word is ²0² with the address detect function being  
enabled, an interrupt will not be generated and the received data will be discarded.  
Rev. 1.60  
204  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WAKE: RX pin falling edge wake-up function enable control  
0: RX pin wake-up function is disabled  
1: RX pin wake-up function is enabled  
This bit enables or disables the receiver wake-up function. If this bit is equal to ²1² and the  
MCU is in IDLE or SLEEP mode, a falling edge on the RX input pin will wake-up  
the device. If this bit is equal to ²0² and the MCU is in IDLE or SLEEP mode,  
any edge transitions on the RX pin will not wake-up the device.  
RIE: Receiver interrupt enable control  
0: receiver related interrupt is disabled  
1: receiver related interrupt is enabled  
This bit enables or disables the receiver interrupt. If this bit is equal to ²1² and when the  
receiver overrun flag OERR or receive data available flag RXIF is set, the UART interrupt request  
flag will be set. If this bit is equal to ²0², the UART interrupt request flag will not be influenced  
by the condition of the OERR or RXIF flags.  
TIIE: Transmitter Idle interrupt enable control  
0: transmitter idle interrupt is disabled  
1: transmitter idle interrupt is enabled  
This bit enables or disables the transmitter idle interrupt. If this bit is equal to ²1² and when  
the transmitter idle flag TIDLE is set, due to a transmitter idle condition, the UART interrupt  
request flag will be set. If this bit is equal to ²0², the UART interrupt request flag will not be  
influenced by the condition of the TIDLE flag.  
TEIE: Transmitter Empty interrupt enable control  
0: transmitter empty interrupt is disabled  
1: transmitter empty interrupt is enabled  
This bit enables or disables the transmitter empty interrupt. If this bit is equal to ²1² and when  
the transmitter empty flag TXIF is set, due to a transmitter empty condition, the UART interrupt  
request flag will be set. If this bit is equal to ²0², the UART interrupt request flag will not be  
influenced by the condition of the TXIF flag.  
·
UCR3 register  
The UCR3 register is the last of the UART control registers and controls the software reset operation of the UART  
module. The only one available bit named URST in the UART control register UCR3 is the UART software reset con-  
trol bit. When this bit is equal to ²0², the UART operates normally. If this bit is equal to ²1², the whole UART module  
will be reset. When this situation occurs, the transmitter and receiver will be reset. The UART registers including the  
status register and control registers will keep the POR states shown in the above UART registers table after the reset  
condition occurs.  
Bit  
Name  
R/W  
7
URST  
R/W  
0
6
5
4
3
2
1
0
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
POR  
Bit 7  
URST: UART software reset  
0: no action  
1: UART reset occurs  
Bit 6~0  
unimplemented, read as ²0²  
Rev. 1.60  
205  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Baud Rate Generator  
·
Calculating the baud rate and error values  
For a clock frequency of 4MHz, and with BRGH set to  
²0² determine the BRG register value N, the actual  
baud rate and the error value for a desired baud rate  
of 4800.  
To setup the speed of the serial data communication,  
the UART function contains its own dedicated baud rate  
generator. The baud rate is controlled by its own internal  
free running 8-bit timer, the period of which is deter-  
mined by two factors. The first of these is the value  
placed in the baud rate register BRG and the second is  
the value of the BRGH bit with the control register  
UCR2. The BRGH bit decides if the baud rate generator  
is to be used in a high speed mode or low speed mode,  
which in turn determines the formula that is used to cal-  
culate the baud rate. The value N in the BRG register  
which is used in the following baud rate calculation for-  
mula determines the division factor. Note that N is the  
decimal value placed in the BRG register and has a  
range of between 0 and 255.  
From the above table the desired baud rate BR =  
fCLKI  
[64 (N+1)]  
fCLKI  
(BRx64)  
Re-arranging this equation gives N =  
- 1  
4000000  
Giving a value for N =  
- 1 = 12.0208  
(4800x64)  
To obtain the closest value, a decimal value of 12 should  
be placed into the BRG register. This gives an actual or  
4000000  
calculated baud rate value of BR=  
= 4808  
[64(12+1)]  
UCR2 BRGH Bit  
0
1
fCLKI  
fCLKI  
Baud Rate (BR)  
4
8
-
0
4
8
8
0
[64 (N+1)]  
[16 (N+1)]  
Therefore the error is equal to  
= 0.16%  
0
4
8
0
By programming the BRGH bit which allows selection of  
the related formula and programming the required value  
in the BRG register, the required baud rate can be  
setup. Note that because the actual baud rate is deter-  
mined using a discrete value, N, placed in the BRG reg-  
ister, there will be an error associated between the  
actual and requested value. The following example  
shows how the BRG register value N and the error value  
can be calculated.  
The following tables show the actual values of baud rate and error values for the two value of BRGH.  
Baud Rates for BRGH=0  
Baud  
Rate  
fCLKI=4MHz  
fCLKI=3.579545MHz  
fCLKI=7.159MHz  
Kbaud Error (%)  
K/BPS  
BRG  
207  
51  
25  
12  
6
Kbaud Error (%)  
BRG Kbaud Error (%)  
BRG  
¾
92  
46  
22  
11  
5
0.3  
1.2  
0.300  
1.202  
2.404  
4.808  
8.929  
20.833  
¾
0.16  
0.16  
0.16  
0.16  
-6.99  
8.51  
¾
185  
46  
22  
11  
5
0.300  
1.190  
2.432  
4.661  
9.321  
18.643  
¾
0.00  
-0.83  
1.32  
-2.90  
-2.90  
-2.90  
¾
¾
¾
1.203  
0.23  
2.4  
2.380  
-0.83  
1.32  
4.8  
4.863  
9.6  
9.322  
-2.90  
-2.90  
-2.90  
-2.90  
-2.90  
19.2  
38.4  
57.6  
115.2  
2
2
18.643  
32.286  
55.930  
111.859  
2
¾
0
¾
0
62.500  
¾
8.51  
¾
55.930  
¾
1
-2.90  
¾
0
¾
¾
Baud Rates and Error Values for BRGH = 0  
Rev. 1.60  
206  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Baud Rates for BRGH=1  
Baud  
Rate  
fCLKI=4MHz  
fCLKI=3.579545MHz  
BRG Kbaud Error (%)  
fCLKI=7.159MHz  
Kbaud Error (%)  
K/BPS  
BRG  
¾
Kbaud Error (%)  
BRG  
¾
0.3  
1.2  
¾
¾
0.16  
0.16  
0.16  
0.16  
0.16  
-6.99  
8.51  
8.51  
0
¾
185  
92  
46  
22  
11  
5
¾
¾
¾
¾
¾
207  
103  
51  
25  
12  
6
1.202  
2.404  
4.808  
9.615  
19.231  
35.714  
62.5  
1.203  
2.406  
4.76  
0.23  
0.23  
-0.83  
1.32  
-2.90  
-2.90  
-2.90  
-2.90  
¾
¾
¾
2.4  
185  
92  
46  
22  
11  
7
2.406  
4.811  
9.520  
19.454  
37.286  
55.930  
111.86  
0.23  
0.23  
4.8  
9.6  
9.727  
18.643  
37.286  
55.930  
111.86  
¾
-0.83  
1.32  
19.2  
38.4  
57.6  
115.2  
250  
-2.90  
-2.90  
-2.90  
¾
3
3
1
125  
1
3
0
250  
¾
¾
¾
Baud Rates and Error Values for BRGH = 1  
·
BRG Register  
Bit  
Name  
R/W  
7
BRG7  
R/W  
x
6
5
BRG5  
R/W  
x
4
BRG4  
R/W  
x
3
BRG3  
R/W  
x
2
1
BRG1  
R/W  
x
0
BRG0  
R/W  
BRG6  
R/W  
x
BRG2  
R/W  
x
POR  
x
²x²: unknown  
Bit 7~0  
BRG7~BRG0: Baud Rate values  
By programming the BRGH bit in UCR2 Register which allows selection of the related formula  
described above and programming the required value in the BRG register, the required baud rate  
can be setup.  
Rev. 1.60  
207  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
UART Module Setup and Control  
For data transfer, the UART function utilizes a  
non-return-to-zero, more commonly known as NRZ, for-  
mat. This is composed of one start bit, eight or nine data  
bits and one or two stop bits. Parity is supported by the  
UART hardware and can be setup to be even, odd or no  
parity. For the most common data format, 8 data bits  
along with no parity and one stop bit, denoted as 8, N, 1,  
is used as the default setting, which is the setting at  
power-on. The number of data bits and stop bits, along  
with the parity, are setup by programming the corre-  
sponding BNO, PRT, PREN and STOPS bits in the  
UCR1 register. The baud rate used to transmit and re-  
ceive data is setup using the internal 8-bit baud rate  
generator, while the data is transmitted and received  
LSB first. Although the transmitter and receiver of the  
UART are functionally independent, they both use the  
same data format and baud rate. In all cases stop bits  
will be used for data transmission.  
then all pending transmissions and receptions will be  
immediately suspended and the UART will be reset to  
a condition as defined above. If the UART is then sub-  
sequently re-enabled, it will restart again in the same  
configuration.  
·
Data, parity and stop bit selection  
The format of the data to be transferred is composed  
of various factors such as data bit length, parity on/off,  
parity type, address bits and the number of stop bits.  
These factors are determined by the setup of various  
bits within the UCR1 register. The BNO bit controls the  
number of data bits which can be set to either 8 or 9.  
The PRT bit controls the choice if odd or even parity.  
The PREN bit controls the parity on/off function. The  
STOPS bit decides whether one or two stop bits are to  
be used. The following table shows various formats  
for data transmission. The address detect mode con-  
trol bit identifies the frame as an address character.  
The number of stop bits, which can be either one or  
two, is independent of the data length.  
·
Enabling/Disabling the UART  
Start  
Bit  
Data  
Bits  
Address Parity  
Stop  
Bit  
The basic on/off function of the internal UART function  
is controlled using the UARTEN bit in the UCR1 regis-  
ter. If the UARTEN, TXEN and RXEN bits are set, then  
these two UART pins will act as normal TX output pin  
and RX input pin respectively. If no data is being trans-  
mitted on the TX pin, then it will default to a logic high  
value.  
Bits  
Bits  
Example of 8-bit Data Formats  
1
1
1
8
7
7
0
0
1
0
1
0
1
1
1
Clearing the UARTEN bit will disable the TX and RX  
pins and these two pins will be in the state of high im-  
pedance. When the UART function is disabled, the  
buffer will be reset to an empty condition, at the same  
time discarding any remaining residual data. Dis-  
abling the UART will also reset the enable control, the  
error and status flags with bits TXEN, RXEN, TXBRK,  
RXIF, OERR, FERR, PERR and NF being cleared  
while bits TIDLE, TXIF and RIDLE will be set. The re-  
maining control bits in the UCR1, UCR2 and BRG reg-  
isters will remain unaffected. If the UARTEN bit in the  
UCR1 register is cleared while the UART is active,  
Example of 9-bit Data Formats  
1
1
1
9
8
8
0
0
1
0
1
0
1
1
1
Transmitter Receiver Data Format  
The following diagram shows the transmit and receive  
waveforms for both 8-bit and 9-bit data formats.  
N
e
t
x
t
P
a
r
i
t
y
B
i
S
t
a
r
t
S
t
a
r
t
B
i
t
B 0  
B
i
t
i
t
B
1
i
t
B
2
i
t
B
3
i
t
B
4
i
t
B
5
i
t
B
6
i
t
7
B
i
t
i t  
S
t
o
p
B
8
-
B
i
t
D
a
t
a
F
o
r
m
a
t
N
e
t
x
t
P
a
r
i
t
y
B
i
S
t
a
r
t
S
t
a
r
t
B
i
t
B 0  
B
i
t
i
t
B
1
i
t
B
2
i
t
B
3
i
t
B
4
i
t
B
5
i
t
B
6
i
t
B
7
i
t
8
B
i
t
i t  
S
t
o
p
B
9
-
B
i
t
D
a
t
a
F
o
r
m
a
t
Rev. 1.60  
208  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
UART transmitter  
This sequence of events can now be repeated to send  
additional data.  
Data word lengths of either 8 or 9 bits can be selected  
by programming the BNO bit in the UCR1 register.  
When BNO bit is set, the word length will be set to 9  
bits. In this case the 9th bit, which is the MSB, needs  
to be stored in the TX8 bit in the UCR1 register. At the  
transmitter core lies the Transmitter Shift Register,  
more commonly known as the TSR, whose data is ob-  
tained from the transmit data register, which is known  
as the TXR register. The data to be transmitted is  
loaded into this TXR register by the application pro-  
gram. The TSR register is not written to with new data  
until the stop bit from the previous transmission has  
been sent out. As soon as this stop bit has been trans-  
mitted, the TSR can then be loaded with new data  
from the TXR register, if it is available. It should be  
noted that the TSR register, unlike many other regis-  
ters, is not directly mapped into the Data Memory area  
and as such is not available to the application program  
for direct read/write operations. An actual transmis-  
sion of data will normally be enabled when the TXEN  
bit is set, but the data will not be transmitted until the  
TXR register has been loaded with data and the baud  
rate generator has defined a shift clock source. How-  
ever, the transmission can also be initiated by first  
loading data into the TXR register, after which the  
TXEN bit can be set. When a transmission of data be-  
gins, the TSR is normally empty, in which case a  
transfer to the TXR register will result in an immediate  
transfer to the TSR. If during a transmission the TXEN  
bit is cleared, the transmission will immediately cease  
and the transmitter will be reset. The TX output pin will  
then return to the high impedance state.  
It should be noted that when TXIF=0, data will be in-  
hibited from being written to the TXR register. Clear-  
ing the TXIF flag is always achieved using the  
following software sequence:  
1. A USR register access  
2. A TXR register write execution  
The read-only TXIF flag is set by the UART hardware  
and if set indicates that the TXR register is empty and  
that other data can now be written into the TXR regis-  
ter without overwriting the previous data. If the TEIE  
bit is set, then the TXIF flag will generate an interrupt.  
During a data transmission, a write instruction to the  
TXR register will place the data into the TXR register,  
which will be copied to the shift register at the end of  
the present transmission. When there is no data  
transmission in progress, a write instruction to the  
TXR register will place the data directly into the shift  
register, resulting in the commencement of data trans-  
mission, and the TXIF bit being immediately set.  
When a frame transmission is complete, which hap-  
pens after stop bits are sent or after the break frame,  
the TIDLE bit will be set. To clear the TIDLE bit the fol-  
lowing software sequence is used:  
1. A USR register access  
2. A TXR register write execution  
Note that both the TXIF and TIDLE bits are cleared by  
the same software sequence.  
·
Transmitting break  
If the TXBRK bit is set, then the break characters will  
be sent on the next transmission. Break character  
transmission consists of a start bit, followed by 13´N  
²0² bits, where N=1, 2, etc. if a break character is to be  
transmitted, then the TXBRK bit must be first set by  
the application program and then cleared to generate  
the stop bits. Transmitting a break character will not  
generate a transmit interrupt. Note that a break condi-  
tion length is at least 13 bits long. If the TXBRK bit is  
continually kept at a logic high level, then the transmit-  
ter circuitry will transmit continuous break characters.  
After the application program has cleared the TXBRK  
bit, the transmitter will finish transmitting the last break  
character and subsequently send out one or two stop  
bits. The automatic logic high at the end of the last  
break character will ensure that the start bit of the next  
frame is recognized.  
·
Transmitting data  
When the UART is transmitting data, the data is  
shifted on the TX pin from the shift register, with the  
least significant bit LSB first. In the transmit mode, the  
TXR register forms a buffer between the internal bus  
and the transmitter shift register. It should be noted  
that if 9-bit data format has been selected, then the  
MSB will be taken from the TX8 bit in the UCR1 regis-  
ter. The steps to initiate a data transfer can be sum-  
marized as follows:  
¨
Make the correct selection of the BNO, PRT, PREN  
and STOPS bits to define the required word length,  
parity type and number of stop bits.  
¨
¨
Setup the BRG register to select the desired baud  
rate.  
Set the TXEN bit to ensure that the UART transmit-  
ter is enabled and the TX pin is used as a UART  
transmitter pin.  
¨
Access the USR register and write the data that is to  
be transmitted into the TXR register. Note that this  
step will clear the TXIF bit.  
Rev. 1.60  
209  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
UART receiver  
The RXIF bit can be cleared using the following soft-  
ware sequence:  
The UART is capable of receiving word lengths of ei-  
ther 8 or 9 bits can be selected by programming the  
BNO bit in the UCR1 register. When BNO bit is set, the  
word length will be set to 9 bits. In this case the 9th bit,  
which is the MSB, will be stored in the RX8 bit in the  
UCR1 register. At the receiver core lies the Receiver  
Shift Register more commonly known as the RSR.  
The data which is received on the RX external input  
pin is sent to the data recovery block. The data recov-  
ery block operating speed is 16 times that of the baud  
rate, while the main receive serial shifter operates at  
the baud rate. After the RX pin is sampled for the stop  
bit, the received data in RSR is transferred to the re-  
ceive data register, if the register is empty. The data  
which is received on the external RX input pin is sam-  
pled three times by a majority detect circuit to deter-  
mine the logic level that has been placed onto the RX  
pin. It should be noted that the RSR register, unlike  
many other registers, is not directly mapped into the  
Data Memory area and as such is not available to the  
application program for direct read/write operations.  
1. A USR register access  
2. A RXR register read execution  
·
Receiving break  
Any break character received by the UART will be  
managed as a framing error. The receiver will count  
and expect a certain number of bit times as specified  
by the values programmed into the BNO and STOPS  
bits. If the break is much longer than 13 bit times, the  
reception will be considered as complete after the  
number of bit times specified by BNO and STOPS.  
The RXIF bit is set, FERR is set, zeros are loaded into  
the receive data register, interrupts are generated if  
appropriate and the RIDLE bit is set. If a long break  
signal has been detected and the receiver has re-  
ceived a start bit, the data bits and the invalid stop bit,  
which sets the FERR flag, the receiver must wait for a  
valid stop bit before looking for the next start bit. The  
receiver will not make the assumption that the break  
condition on the line is the next start bit. A break is re-  
garded as a character that contains only zeros with  
the FERR flag set. The break character will be loaded  
into the buffer and no further data will be received until  
stop bits are received. It should be noted that the  
RIDLE read only flag will go high when the stop bits  
have not yet been received. The reception of a break  
character on the UART registers will result in the fol-  
lowing:  
·
Receiving data  
When the UART receiver is receiving data, the data is  
serially shifted in on the external RX input pin to the  
shift register, with the least significant bit LSB first.  
The RXR register is a four byte deep FIFO data buffer,  
where four bytes can be held in the FIFO while the 5th  
byte can continue to be received. Note that the appli-  
cation program must ensure that the data is read from  
RXR before the 5th byte has been completely shifted  
in, otherwise the 5th byte will be discarded and an  
overrun error OERR will be subsequently indicated.  
The steps to initiate a data transfer can be summa-  
rized as follows:  
¨
¨
¨
The framing error flag, FERR, will be set.  
The receive data register, RXR, will be cleared.  
The OERR, NF, PERR, RIDLE or RXIF flags will  
possibly be set.  
·
Idle status  
¨
Make the correct selection of the BNO, PRT, PREN  
and STOPS bits to define the required word length,  
parity type and number of stop bits.  
When the receiver is reading data, which means it will  
be in between the detection of a start bit and the read-  
ing of a stop bit, the receiver status flag in the USR  
register, otherwise known as the RIDLE flag, will have  
a zero value. In between the reception of a stop bit  
and the detection of the next start bit, the RIDLE flag  
will have a high value, which indicates the receiver is  
in an idle condition.  
¨
¨
Setup the BRG register to select the desired baud  
rate.  
Set the RXEN bit to ensure that the UART receiver  
is enabled and the RX pin is used as a UART re-  
ceiver pin.  
At this point the receiver will be enabled which will be-  
gin to look for a start bit.  
·
Receiver interrupt  
The read only receive interrupt flag RXIF in the USR  
register is set by an edge generated by the receiver.  
An interrupt is generated if RIE=1, when a word is  
transferred from the Receive Shift Register, RSR, to  
the Receive Data Register, RXR. An overrun error can  
also generate an interrupt if RIE=1.  
When a character is received, the following sequence  
of events will occur:  
¨
¨
¨
The RXIF bit in the USR register will be set then  
RXR register has data available, at least three more  
character can be read.  
When the contents of the shift register have been  
transferred to the RXR register and if the RIE bit is  
set, then an interrupt will be generated.  
If during reception, a frame error, noise error, parity  
error or an overrun error has been detected, then  
the error flags can be set.  
Rev. 1.60  
210  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Managing Receiver Errors  
UART Module Interrupt Structure  
Several types of reception errors can occur within the  
UART module, the following section describes the vari-  
ous types and how they are managed by the UART.  
Several individual UART conditions can generate a  
UART interrupt. When these conditions exist, a low  
pulse will be generated on the INT line to get the atten-  
tion of the microcontroller. These conditions are a trans-  
mitter data register empty, transmitter idle, receiver data  
available, receiver overrun, address detect and an RX  
pin wake-up. When any of these conditions are created,  
if its corresponding interrupt control is enabled and the  
stack is not full, the program will jump to its correspond-  
ing interrupt vector where it can be serviced before re-  
turning to the main program. Four of these conditions  
have the corresponding USR register flags which will  
generate a UART interrupt if its associated interrupt en-  
able control bit in the UCR2 register is set. The two  
transmitter interrupt conditions have their own corre-  
sponding enable control bits, while the two receiver in-  
terrupt conditions have a shared enable control bit.  
These enable bits can be used to mask out individual  
UART interrupt sources.  
·
Overrun Error - OERR flag  
The RXR register is composed of a four byte deep  
FIFO data buffer, where four bytes can be held in the  
FIFO register, while a 5th byte can continue to be re-  
ceived. Before the 5th byte has been entirely shifted  
in, the data should be read from the RXR register. If  
this is not done, the overrun error flag OERR will be  
consequently indicated.  
In the event of an overrun error occurring, the follow-  
ing will happen:  
¨
¨
¨
¨
The OERR flag in the USR register will be set.  
The RXR contents will not be lost.  
The shift register will be overwritten.  
An interrupt will be generated if the RIE bit is set.  
The OERR flag can be cleared by an access to the  
USR register followed by a read to the RXR register.  
The address detect condition, which is also a UART in-  
terrupt source, does not have an associated flag, but will  
generate a UART interrupt when an address detect con-  
dition occurs if its function is enabled by setting the  
ADDEN bit in the UCR2 register. An RX pin wake-up,  
which is also a UART interrupt source, does not have an  
associated flag, but will generate a UART interrupt if the  
microcontroller is woken up by a falling edge on the RX  
pin, if the WAKE and RIE bits in the UCR2 register are  
set. Note that in the event of an RX wake-up interrupt  
occurring, there will be a certain period of delay, com-  
monly known as the System Start-up Time, for the oscil-  
lator to restart and stabilize before the system resumes  
normal operation.  
·
Noise Error - NF flag  
Over-sampling is used for data recovery to identify  
valid incoming data and noise. If noise is detected  
within a frame, the following will occur:  
¨
¨
¨
The read only noise flag, NF, in the USR register  
will be set on the rising edge of the RXIF bit.  
Data will be transferred from the shift register to the  
RXR register.  
No interrupt will be generated. However this bit  
rises at the same time as the RXIF bit which itself  
generates an interrupt.  
Note that the NF flag is reset by a USR register read  
operation followed by an RXR register read operation.  
·
Framing Error - FERR flag  
Note that the USR register flags are read only and can-  
not be cleared or set by the application program, neither  
will they be cleared when the program jumps to the cor-  
responding interrupt servicing routine, as is the case for  
some of the other interrupts. The flags will be cleared  
automatically when certain actions are taken by the  
UART, the details of which are given in the UART regis-  
ter section. The overall UART interrupt can be disabled  
or enabled by the related interrupt enable control bits in  
the interrupt control registers of the microcontroller to  
decide whether the interrupt requested by the UART  
module is masked out or allowed.  
The read only framing error flag, FERR, in the USR  
register, is set if a zero is detected instead of stop bits.  
If two stop bits are selected, both stop bits must be  
high. Otherwise the FERR flag will be set. The FERR  
flag is buffered along with the received data and is  
cleared in any reset.  
·
Parity Error - PERR flag  
The read only parity error flag, PERR, in the USR reg-  
ister, is set if the parity of the received word is incor-  
rect. This error flag is only applicable if the parity  
function is enabled, PREN=1, and if the parity type,  
odd or even, is selected. The read only PERR flag is  
buffered along with the received data bytes. It is  
cleared on any reset, it should be noted that the FERR  
and PERR flags are buffered along with the corre-  
sponding word and should be read before reading the  
data word.  
Rev. 1.60  
211  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
U
S
R
R
e
g
i
s
t
e
r
U
C
R
2
R
e
g
i
s
t
e
r
0
1
T
y
E
I
E
T
r
a
n
s
m
i
t
t
e
r
E
m
p
t
F
l
a
g
T
X
I
F
I
N
T
0
1
T
I
I
E
T
r
a
n
s
m
i
t
t
e
r
I
d
l
e
T
o
M
C
U
P
I
N
T
i
n
F
l
a
g
T
I
D
L
E
0
1
R
I
E
R
e
c
e
i
v
e
r
O
v
e
r
r
u
n
O
R
F
l
a
g
O
E
R
R
0
1
R
e
c
e
i
v
e
r
D
a
t
a
D
A
D
E
N
A
v
a
i
l
a
b
l
e
R
X
I
F
0
1
0
1
W
n
A
K
E
R
X
P
i
W
a
k
e
-
u
p
R
X
7
i
f
B
N
O
=
0
R
X
8
i
f
B
N
O
=
1
U
C
R
2
R
e
g
i
s
t
e
r
UART Module Interrupt Structure  
·
Address detect mode  
UART Module Power-down and Wake-up  
Setting the Address Detect function enable control bit,  
ADDEN, in the UCR2 register, enables this special  
function. If this bit is set to ²1², then an additional qual-  
ifier will be placed on the generation of a Receiver  
Data Available interrupt, which is requested by the  
RXIF flag. If the ADDEN bit is equal to ²1², then when  
the data is available, an interrupt will only be gener-  
ated, if the highest received bit has a high value. Note  
that the related interrupt enable control bit and the  
EMI bit of the microcontroller must also be enabled for  
correct interrupt generation. The highest address bit is  
the 9th bit if the bit BNO=1 or the 8th bit if the bit  
BNO=0. If the highest bit is high, then the received  
word will be defined as an address rather than data. A  
Data Available interrupt will be generated every time  
the last bit of the received word is set. If the ADDEN bit  
is equal to ²0², then a Receive Data Available interrupt  
will be generated each time the RXIF flag is set, irre-  
spective of the data last but status. The address de-  
tect and parity functions are mutually exclusive  
functions. Therefore if the address detect function is  
enabled, then to ensure correct operation, the parity  
function should be disabled by resetting the parity  
function enable bit PREN to zero.  
The MCU and UART Module are powered down inde-  
pendently of each other. The method of powering down  
the MCU is covered in the previous MCU section of the  
datasheet. The UART Module must be powered down  
before the MCU is powered down. This is implemented  
by first clearing the UARTEN bit in the UCR1 register to  
disable the UART Module circuitry after which the SCS  
internal line can be set high to disable the SPI interface  
circuits. When the UART and SPI interfaces are pow-  
ered down, the SCK and CLKI clock sources to the  
UART module will be disabled. The UART Module can  
be powered up by the MCU by first clearing the SCS line  
to zero and then setting the UARTEN bit. If the UART  
circuits is powered down while a transmission is still in  
progress, then the transmission will be terminated and  
the external TX transmit pin will be forced to a logic high  
level. In a similar way, if the UART circuits is powered  
down while receiving data, then the reception of data will  
likewise be terminated. When the UART circuits is pow-  
ered down, note that the USR, UCR1, UCR2, UCR3,  
transmit and receive registers, as well as the BRG regis-  
ter will not be affected.  
Bit 9 if BNO=1, UART Interrupt  
ADDEN  
The UART Module contains a receiver RX pin wake-up  
function, which is enabled or disabled by the WAKE bit  
in the UCR2 register. If this bit, along with the UART en-  
able bit named UARTEN, the receiver enable bit named  
RXEN and the receiver interrupt enable bit named RIE,  
are all set before the MCU and UART module are is  
powered down, then a falling edge on the RX pin will  
wake up the MCU from its power down condition. Note  
Bit 8 if BNO=0  
Generated  
0
1
0
1
Ö
Ö
X
Ö
0
1
ADDEN Bit Function  
Rev. 1.60  
212  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
The SIM operating mode control bits SIM2~SIM0, in  
the SIMC0 register have to be configured to enable  
the SIM to operate in the SPI master mode with a dif-  
ferent SPI clock frequency.  
that as it takes a certain period of time known as the  
System Start-up Time for oscillator to restart and stabi-  
lize after a wake-up, any data received during this time  
on the RX pin will be ignored.  
¨
SIM operating mode control bits SIM2~SIM0 in the  
SIMC0 Register  
For a UART wake-up interrupt to occur, in addition to the  
bits for the wake-up enable control and Receive inter-  
rupt enable control being set, the global interrupt enable  
control and the related interrupt enable control bits must  
also be set. If these two bits are not set, then only a  
wake-up event will occur and no interrupt will be ser-  
viced. Note also that as it takes a period of delay after a  
wake-up before normal microcontroller resumes, the  
relevant UART interrupt will not be serviced until this pe-  
riod of delay time has elapsed.  
Bit  
Name  
value  
7
6
5
SIM2  
SIM1  
SIM0  
100, 011, 010, 001 or 000  
000: SPI master mode; SPI clock is fSYS/4  
001: SPI master mode; SPI clock is fSYS/16  
010: SPI master mode; SPI clock is fSYS/64  
011: SPI master mode; SPI clock is fTBC  
100: SPI master mode; SPI clock is TM0 CCRP  
match frequency/2  
Using the UART Function  
101~111: must not be used  
To use the UART function, several important steps must  
be implemented to ensure that the UART module oper-  
ates normally:  
·
The PCK control bit is set to 1 to enable the PCK out-  
put as the clock source for the UART baud rate gener-  
ator with various PCK output frequencies determined  
by the PCKP1 and PCKP0 bits in the SIMC0 Register.  
·
The SPI pin-remapping function must be properly  
configured when the SPI functional pins of the  
microcontroller are used to control the UART module  
and for data transmission and data reception.  
¨
PCK output frequency selection bits  
PCKP1~PCKP0 in the SIMC0 Register  
To correctly connect the MCU Master SPI to the UART  
Module Slave SPI, the SIM pin-remapping settings for  
PCK and PINTB in the MCU PRM0 register should be  
the same as the values listed in the following table.  
Bit  
3
2
Name  
Value  
PCKP1  
PCKP0  
11, 10, 01 or 00  
¨
¨
¨
HT66FU30  
PRM0 Register - PCK and PINT pin-remap setup  
00: PCK output frequency is fSYS  
01: PCK output frequency is fSYS/4  
10: PCK output frequency is fSYS/8  
Bit  
Name  
Setting value  
1
SIMPS0  
1
0
PCKPS  
1
11: PCK output frequency is TM0 CCRP match  
frequency/2  
¨
PCK output enable control bit PCKEN in the  
SIMC0 Register  
HT66FU40/HT66FU50  
PRM0 Register - PCK and PINT pin-remap setup  
Bit  
4
PCKEN  
1
Bit  
Name  
2
1
0
Name  
Value  
SIMPS1 SIMPS0 PCKPS  
Setting value  
0
1
1
0: Disable PCK output  
1: Enable PCK output  
HT66FU60  
PRM0 Register - PCK and PINT pin-remap setup  
After the above setup conditions have been imple-  
mented, the MCU can enable the SIM interface by set-  
ting the SIMEN bit high. The MCU can then begin  
communication with external UART connected devices  
using its SPI interface. The detailed MCU Master SPI  
functional description is provided within the Serial Inter-  
face Module section of the MCU datasheet.  
Bit  
Name  
Setting value  
2
1
0
SIMPS1 SIMPS0 PCKPS  
1
1
1
Rev. 1.60  
213  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Application Circuit with UART Module  
V
D
D
0
.
m
0
F
1
*
*
V
D
D
R
e
s
e
t
1
W
0 ~ k  
C
i
r
c
u
i
t
1
0
W
0
k
1
N
4
1
4
8
*
0
m
. F 1  
R
E
S
A
N
x
3
0
W
* 0  
0
.
1
m
F
~
1
I
/
O
P
o
r
t
s
V
S
S
R
S
2
3
2
O
O
S
S
C
C
1
2
O
S
C
T
r
a
n
s
c
e
i
v
e
r
C
i
r
c
u
i
t
T
I
N
U
T
X
S
e
e
O
s
c
i
l
l
a
t
o
r
T
o
/
F
r
o
m
S
e
c
t
i
o
n
R
O
T
R
X
X
X
T
T
1
2
O
S
C
C
i
r
c
u
i
t
S
e
e
O
s
c
i
l
l
a
t
o
r
S
e
c
t
i
o
n
Note:  
²*² It is recommended that this component is added for added ESD protection.  
²**² It is recommended that this component is added in environments where power line noise is significant.  
Rev. 1.60  
214  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Instruction Set  
Introduction  
sure correct handling of carry and borrow data when re-  
sults exceed 255 for addition and less than 0 for sub-  
Central to the successful operation of any  
microcontroller is its instruction set, which is a set of pro-  
gram instruction codes that directs the microcontroller to  
perform certain operations. In the case of Holtek  
microcontroller, a comprehensive and flexible set of  
over 60 instructions is provided to enable programmers  
to implement their application with the minimum of pro-  
gramming overheads.  
traction. The increment and decrement instructions  
INC, INCA, DEC and DECA provide a simple means of  
increasing or decreasing by a value of one of the values  
in the destination specified.  
Logical and Rotate Operations  
The standard logical operations such as AND, OR, XOR  
and CPL all have their own instruction within the Holtek  
microcontroller instruction set. As with the case of most  
instructions involving data manipulation, data must pass  
through the Accumulator which may involve additional  
programming steps. In all logical data operations, the  
zero flag may be set if the result of the operation is zero.  
Another form of logical data manipulation comes from  
the rotate instructions such as RR, RL, RRC and RLC  
which provide a simple means of rotating one bit right or  
left. Different rotate instructions exist depending on pro-  
gram requirements. Rotate instructions are useful for  
serial port programming applications where data can be  
rotated from an internal register into the Carry bit from  
where it can be examined and the necessary serial bit  
set high or low. Another application where rotate data  
operations are used is to implement multiplication and  
division calculations.  
For easier understanding of the various instruction  
codes, they have been subdivided into several func-  
tional groupings.  
Instruction Timing  
Most instructions are implemented within one instruc-  
tion cycle. The exceptions to this are branch, call, or ta-  
ble read instructions where two instruction cycles are  
required. One instruction cycle is equal to 4 system  
clock cycles, therefore in the case of an 8MHz system  
oscillator, most instructions would be implemented  
within 0.5ms and branch or call instructions would be im-  
plemented within 1ms. Although instructions which re-  
quire one more cycle to implement are generally limited  
to the JMP, CALL, RET, RETI and table read instruc-  
tions, it is important to realize that any other instructions  
which involve manipulation of the Program Counter Low  
register or PCL will also take one more cycle to imple-  
ment. As instructions which change the contents of the  
PCL will imply a direct jump to that new address, one  
more cycle will be required. Examples of such instruc-  
tions would be ²CLR PCL² or ²MOV PCL, A². For the  
case of skip instructions, it must be noted that if the re-  
sult of the comparison involves a skip operation then  
this will also take one more cycle, if no skip is involved  
then only one cycle is required.  
Branches and Control Transfer  
Program branching takes the form of either jumps to  
specified locations using the JMP instruction or to a sub-  
routine using the CALL instruction. They differ in the  
sense that in the case of a subroutine call, the program  
must return to the instruction immediately when the sub-  
routine has been carried out. This is done by placing a  
return instruction RET in the subroutine which will cause  
the program to jump back to the address right after the  
CALL instruction. In the case of a JMP instruction, the  
program simply jumps to the desired location. There is  
no requirement to jump back to the original jumping off  
point as in the case of the CALL instruction. One special  
and extremely useful set of branch instructions are the  
conditional branches. Here a decision is first made re-  
garding the condition of a certain data memory or indi-  
vidual bits. Depending upon the conditions, the program  
will continue with the next instruction or skip over it and  
jump to the following instruction. These instructions are  
the key to decision making and branching within the pro-  
gram perhaps determined by the condition of certain in-  
put switches or by the condition of internal data bits.  
Moving and Transferring Data  
The transfer of data within the microcontroller program  
is one of the most frequently used operations. Making  
use of three kinds of MOV instructions, data can be  
transferred from registers to the Accumulator and  
vice-versa as well as being able to move specific imme-  
diate data directly into the Accumulator. One of the most  
important data transfer applications is to receive data  
from the input ports and transfer data to the output ports.  
Arithmetic Operations  
The ability to perform certain arithmetic operations and  
data manipulation is a necessary feature of most  
microcontroller applications. Within the Holtek  
microcontroller instruction set are a range of add and  
subtract instruction mnemonics to enable the necessary  
arithmetic to be carried out. Care must be taken to en-  
Rev. 1.60  
215  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Bit Operations  
Other Operations  
The ability to provide single bit operations on Data Mem-  
ory is an extremely flexible feature of all Holtek  
microcontrollers. This feature is especially useful for  
output port bit programming where individual bits or port  
pins can be directly set high or low using either the ²SET  
[m].i² or ²CLR [m].i² instructions respectively. The fea-  
ture removes the need for programmers to first read the  
8-bit output port, manipulate the input data to ensure  
that other bits are not changed and then output the port  
with the correct new data. This read-modify-write pro-  
cess is taken care of automatically when these bit oper-  
ation instructions are used.  
In addition to the above functional instructions, a range  
of other instructions also exist such as the ²HALT² in-  
struction for Power-down operations and instructions to  
control the operation of the Watchdog Timer for reliable  
program operations under extreme electric or electro-  
magnetic environments. For their relevant operations,  
refer to the functional related sections.  
Instruction Set Summary  
The following table depicts a summary of the instruction  
set categorised according to function and can be con-  
sulted as a basic instruction reference using the follow-  
ing listed conventions.  
Table Read Operations  
Table conventions:  
Data storage is normally implemented by using regis-  
ters. However, when working with large amounts of  
fixed data, the volume involved often makes it inconve-  
nient to store the fixed data in the Data Memory. To over-  
come this problem, Holtek microcontrollers allow an  
area of Program Memory to be setup as a table where  
data can be directly stored. A set of easy to use instruc-  
tions provides the means by which this fixed data can be  
referenced and retrieved from the Program Memory.  
x: Bits immediate data  
m: Data Memory address  
A: Accumulator  
i: 0~7 number of bits  
addr: Program memory address  
Mnemonic  
Arithmetic  
Description  
Cycles Flag Affected  
ADD A,[m]  
ADDM A,[m]  
ADD A,x  
Add Data Memory to ACC  
1
1Note  
1
Z, C, AC, OV  
Z, C, AC, OV  
Z, C, AC, OV  
Z, C, AC, OV  
Z, C, AC, OV  
Z, C, AC, OV  
Z, C, AC, OV  
Z, C, AC, OV  
Z, C, AC, OV  
Z, C, AC, OV  
C
Add ACC to Data Memory  
Add immediate data to ACC  
ADC A,[m]  
ADCM A,[m]  
SUB A,x  
Add Data Memory to ACC with Carry  
1
1Note  
Add ACC to Data memory with Carry  
Subtract immediate data from the ACC  
Subtract Data Memory from ACC  
1
SUB A,[m]  
SUBM A,[m]  
SBC A,[m]  
SBCM A,[m]  
DAA [m]  
1
1Note  
Subtract Data Memory from ACC with result in Data Memory  
Subtract Data Memory from ACC with Carry  
Subtract Data Memory from ACC with Carry, result in Data Memory  
Decimal adjust ACC for Addition with result in Data Memory  
1
1Note  
1Note  
Logic Operation  
AND A,[m]  
OR A,[m]  
XOR A,[m]  
ANDM A,[m]  
ORM A,[m]  
XORM A,[m]  
AND A,x  
Logical AND Data Memory to ACC  
Logical OR Data Memory to ACC  
Logical XOR Data Memory to ACC  
Logical AND ACC to Data Memory  
Logical OR ACC to Data Memory  
Logical XOR ACC to Data Memory  
Logical AND immediate Data to ACC  
Logical OR immediate Data to ACC  
Logical XOR immediate Data to ACC  
Complement Data Memory  
1
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
1
1Note  
1Note  
1Note  
1
OR A,x  
1
XOR A,x  
1
1Note  
CPL [m]  
CPLA [m]  
Complement Data Memory with result in ACC  
1
Increment & Decrement  
INCA [m]  
INC [m]  
Increment Data Memory with result in ACC  
1
Z
Z
Z
Z
Increment Data Memory  
1Note  
DECA [m]  
DEC [m]  
Decrement Data Memory with result in ACC  
Decrement Data Memory  
1
1Note  
Rev. 1.60  
216  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Mnemonic  
Rotate  
Description  
Cycles Flag Affected  
RRA [m]  
RR [m]  
Rotate Data Memory right with result in ACC  
Rotate Data Memory right  
1
1Note  
1
None  
None  
C
RRCA [m]  
RRC [m]  
RLA [m]  
RL [m]  
Rotate Data Memory right through Carry with result in ACC  
Rotate Data Memory right through Carry  
Rotate Data Memory left with result in ACC  
Rotate Data Memory left  
1Note  
C
1
None  
None  
C
1Note  
1
RLCA [m]  
RLC [m]  
Rotate Data Memory left through Carry with result in ACC  
Rotate Data Memory left through Carry  
1Note  
C
Data Move  
MOV A,[m]  
MOV [m],A  
MOV A,x  
Move Data Memory to ACC  
Move ACC to Data Memory  
Move immediate data to ACC  
1
1Note  
1
None  
None  
None  
Bit Operation  
CLR [m].i  
SET [m].i  
Clear bit of Data Memory  
Set bit of Data Memory  
1Note  
1Note  
None  
None  
Branch  
JMP addr  
SZ [m]  
Jump unconditionally  
2
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Skip if Data Memory is zero  
1Note  
1note  
1Note  
1Note  
1Note  
1Note  
1Note  
1Note  
2
SZA [m]  
SZ [m].i  
SNZ [m].i  
SIZ [m]  
Skip if Data Memory is zero with data movement to ACC  
Skip if bit i of Data Memory is zero  
Skip if bit i of Data Memory is not zero  
Skip if increment Data Memory is zero  
Skip if decrement Data Memory is zero  
Skip if increment Data Memory is zero with result in ACC  
Skip if decrement Data Memory is zero with result in ACC  
Subroutine call  
SDZ [m]  
SIZA [m]  
SDZA [m]  
CALL addr  
RET  
Return from subroutine  
2
RET A,x  
RETI  
Return from subroutine and load immediate data to ACC  
Return from interrupt  
2
2
Table Read  
TABRD [m]  
Read table to TBLH and Data Memory  
2note  
2Note  
None  
None  
TABRDL [m]  
Read table (last page) to TBLH and Data Memory  
Miscellaneous  
NOP  
No operation  
1
1Note  
1Note  
1
None  
None  
CLR [m]  
Clear Data Memory  
SET [m]  
Set Data Memory  
None  
CLR WDT  
CLR WDT1  
CLR WDT2  
SWAP [m]  
SWAPA [m]  
HALT  
Clear Watchdog Timer  
TO, PDF  
TO, PDF  
TO, PDF  
None  
Pre-clear Watchdog Timer  
Pre-clear Watchdog Timer  
Swap nibbles of Data Memory  
Swap nibbles of Data Memory with result in ACC  
Enter power down mode  
1
1
1Note  
1
None  
1
TO, PDF  
Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,  
if no skip takes place only one cycle is required.  
2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.  
3. For the ²CLR WDT1² and ²CLR WDT2² instructions the TO and PDF flags may be affected by  
the execution status. The TO and PDF flags are cleared after both ²CLR WDT1² and  
²CLR WDT2² instructions are consecutively executed. Otherwise the TO and PDF flags  
remain unchanged.  
Rev. 1.60  
217  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Instruction Definition  
ADC A,[m]  
Add Data Memory to ACC with Carry  
Description  
The contents of the specified Data Memory, Accumulator and the carry flag are added. The  
result is stored in the Accumulator.  
Operation  
ACC ¬ ACC + [m] + C  
Affected flag(s)  
OV, Z, AC, C  
ADCM A,[m]  
Add ACC to Data Memory with Carry  
Description  
The contents of the specified Data Memory, Accumulator and the carry flag are added. The  
result is stored in the specified Data Memory.  
Operation  
[m] ¬ ACC + [m] + C  
Affected flag(s)  
OV, Z, AC, C  
ADD A,[m]  
Add Data Memory to ACC  
Description  
The contents of the specified Data Memory and the Accumulator are added. The result is  
stored in the Accumulator.  
Operation  
ACC ¬ ACC + [m]  
Affected flag(s)  
OV, Z, AC, C  
ADD A,x  
Add immediate data to ACC  
Description  
The contents of the Accumulator and the specified immediate data are added. The result is  
stored in the Accumulator.  
Operation  
ACC ¬ ACC + x  
Affected flag(s)  
OV, Z, AC, C  
ADDM A,[m]  
Add ACC to Data Memory  
Description  
The contents of the specified Data Memory and the Accumulator are added. The result is  
stored in the specified Data Memory.  
Operation  
[m] ¬ ACC + [m]  
Affected flag(s)  
OV, Z, AC, C  
AND A,[m]  
Logical AND Data Memory to ACC  
Description  
Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-  
eration. The result is stored in the Accumulator.  
Operation  
ACC ¬ ACC ²AND² [m]  
Affected flag(s)  
Z
AND A,x  
Logical AND immediate data to ACC  
Description  
Data in the Accumulator and the specified immediate data perform a bitwise logical AND  
operation. The result is stored in the Accumulator.  
Operation  
ACC ¬ ACC ²AND² x  
Affected flag(s)  
Z
ANDM A,[m]  
Logical AND ACC to Data Memory  
Description  
Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-  
eration. The result is stored in the Data Memory.  
Operation  
[m] ¬ ACC ²AND² [m]  
Affected flag(s)  
Z
Rev. 1.60  
218  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
CALL addr  
Subroutine call  
Description  
Unconditionally calls a subroutine at the specified address. The Program Counter then in-  
crements by 1 to obtain the address of the next instruction which is then pushed onto the  
stack. The specified address is then loaded and the program continues execution from this  
new address. As this instruction requires an additional operation, it is a two cycle instruc-  
tion.  
Operation  
Stack ¬ Program Counter + 1  
Program Counter ¬ addr  
Affected flag(s)  
None  
CLR [m]  
Clear Data Memory  
Description  
Operation  
Each bit of the specified Data Memory is cleared to 0.  
[m] ¬ 00H  
Affected flag(s)  
None  
CLR [m].i  
Clear bit of Data Memory  
Description  
Operation  
Bit i of the specified Data Memory is cleared to 0.  
[m].i ¬ 0  
Affected flag(s)  
None  
CLR WDT  
Description  
Operation  
Clear Watchdog Timer  
The TO, PDF flags and the WDT are all cleared.  
WDT cleared  
TO ¬ 0  
PDF ¬ 0  
Affected flag(s)  
TO, PDF  
CLR WDT1  
Pre-clear Watchdog Timer  
Description  
The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-  
tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-  
petitively executing this instruction without alternately executing CLR WDT2 will have no  
effect.  
Operation  
WDT cleared  
TO ¬ 0  
PDF ¬ 0  
Affected flag(s)  
TO, PDF  
CLR WDT2  
Pre-clear Watchdog Timer  
Description  
The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-  
tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-  
petitively executing this instruction without alternately executing CLR WDT1 will have no  
effect.  
Operation  
WDT cleared  
TO ¬ 0  
PDF ¬ 0  
Affected flag(s)  
TO, PDF  
Rev. 1.60  
219  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
CPL [m]  
Complement Data Memory  
Description  
Each bit of the specified Data Memory is logically complemented (1¢s complement). Bits  
which previously contained a 1 are changed to 0 and vice versa.  
Operation  
[m] ¬ [m]  
Affected flag(s)  
Z
CPLA [m]  
Complement Data Memory with result in ACC  
Description  
Each bit of the specified Data Memory is logically complemented (1¢s complement). Bits  
which previously contained a 1 are changed to 0 and vice versa. The complemented result  
is stored in the Accumulator and the contents of the Data Memory remain unchanged.  
Operation  
ACC ¬ [m]  
Affected flag(s)  
Z
DAA [m]  
Decimal-Adjust ACC for addition with result in Data Memory  
Description  
Convert the contents of the Accumulator value to a BCD ( Binary Coded Decimal) value re-  
sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or  
if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble  
remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of  
6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-  
ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C  
flag may be affected by this instruction which indicates that if the original BCD sum is  
greater than 100, it allows multiple precision decimal addition.  
Operation  
[m] ¬ ACC + 00H or  
[m] ¬ ACC + 06H or  
[m] ¬ ACC + 60H or  
[m] ¬ ACC + 66H  
Affected flag(s)  
C
DEC [m]  
Decrement Data Memory  
Description  
Operation  
Data in the specified Data Memory is decremented by 1.  
[m] ¬ [m] - 1  
Affected flag(s)  
Z
DECA [m]  
Decrement Data Memory with result in ACC  
Description  
Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-  
mulator. The contents of the Data Memory remain unchanged.  
Operation  
ACC ¬ [m] - 1  
Affected flag(s)  
Z
HALT  
Enter power down mode  
Description  
This instruction stops the program execution and turns off the system clock. The contents  
of the Data Memory and registers are retained. The WDT and prescaler are cleared. The  
power down flag PDF is set and the WDT time-out flag TO is cleared.  
Operation  
TO ¬ 0  
PDF ¬ 1  
Affected flag(s)  
TO, PDF  
Rev. 1.60  
220  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
INC [m]  
Increment Data Memory  
Description  
Operation  
Data in the specified Data Memory is incremented by 1.  
[m] ¬ [m] + 1  
Affected flag(s)  
Z
INCA [m]  
Increment Data Memory with result in ACC  
Description  
Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-  
lator. The contents of the Data Memory remain unchanged.  
Operation  
ACC ¬ [m] + 1  
Affected flag(s)  
Z
JMP addr  
Jump unconditionally  
Description  
The contents of the Program Counter are replaced with the specified address. Program  
execution then continues from this new address. As this requires the insertion of a dummy  
instruction while the new address is loaded, it is a two cycle instruction.  
Operation  
Program Counter ¬ addr  
Affected flag(s)  
None  
MOV A,[m]  
Description  
Operation  
Move Data Memory to ACC  
The contents of the specified Data Memory are copied to the Accumulator.  
ACC ¬ [m]  
Affected flag(s)  
None  
MOV A,x  
Move immediate data to ACC  
Description  
Operation  
The immediate data specified is loaded into the Accumulator.  
ACC ¬ x  
Affected flag(s)  
None  
MOV [m],A  
Description  
Operation  
Move ACC to Data Memory  
The contents of the Accumulator are copied to the specified Data Memory.  
[m] ¬ ACC  
Affected flag(s)  
None  
NOP  
No operation  
Description  
Operation  
Affected flag(s)  
No operation is performed. Execution continues with the next instruction.  
No operation  
None  
OR A,[m]  
Logical OR Data Memory to ACC  
Description  
Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-  
ation. The result is stored in the Accumulator.  
Operation  
ACC ¬ ACC ²OR² [m]  
Affected flag(s)  
Z
Rev. 1.60  
221  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
OR A,x  
Logical OR immediate data to ACC  
Description  
Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-  
eration. The result is stored in the Accumulator.  
Operation  
ACC ¬ ACC ²OR² x  
Affected flag(s)  
Z
ORM A,[m]  
Logical OR ACC to Data Memory  
Description  
Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-  
ation. The result is stored in the Data Memory.  
Operation  
[m] ¬ ACC ²OR² [m]  
Affected flag(s)  
Z
RET  
Return from subroutine  
Description  
The Program Counter is restored from the stack. Program execution continues at the re-  
stored address.  
Operation  
Program Counter ¬ Stack  
Affected flag(s)  
None  
RET A,x  
Return from subroutine and load immediate data to ACC  
Description  
The Program Counter is restored from the stack and the Accumulator loaded with the  
specified immediate data. Program execution continues at the restored address.  
Operation  
Program Counter ¬ Stack  
ACC ¬ x  
Affected flag(s)  
None  
RETI  
Return from interrupt  
Description  
The Program Counter is restored from the stack and the interrupts are re-enabled by set-  
ting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending  
when the RETI instruction is executed, the pending Interrupt routine will be processed be-  
fore returning to the main program.  
Operation  
Program Counter ¬ Stack  
EMI ¬ 1  
Affected flag(s)  
None  
RL [m]  
Rotate Data Memory left  
Description  
The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit  
0.  
Operation  
[m].(i+1) ¬ [m].i; (i = 0~6)  
[m].0 ¬ [m].7  
Affected flag(s)  
None  
RLA [m]  
Rotate Data Memory left with result in ACC  
Description  
The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit  
0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-  
main unchanged.  
Operation  
ACC.(i+1) ¬ [m].i; (i = 0~6)  
ACC.0 ¬ [m].7  
Affected flag(s)  
None  
Rev. 1.60  
222  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
RLC [m]  
Rotate Data Memory left through Carry  
Description  
The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7  
replaces the Carry bit and the original carry flag is rotated into bit 0.  
Operation  
[m].(i+1) ¬ [m].i; (i = 0~6)  
[m].0 ¬ C  
C ¬ [m].7  
Affected flag(s)  
C
RLCA [m]  
Rotate Data Memory left through Carry with result in ACC  
Description  
Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces  
the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in  
the Accumulator and the contents of the Data Memory remain unchanged.  
Operation  
ACC.(i+1) ¬ [m].i; (i = 0~6)  
ACC.0 ¬ C  
C ¬ [m].7  
Affected flag(s)  
C
RR [m]  
Rotate Data Memory right  
Description  
The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into  
bit 7.  
Operation  
[m].i ¬ [m].(i+1); (i = 0~6)  
[m].7 ¬ [m].0  
Affected flag(s)  
None  
RRA [m]  
Rotate Data Memory right with result in ACC  
Description  
Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-  
tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data  
Memory remain unchanged.  
Operation  
ACC.i ¬ [m].(i+1); (i = 0~6)  
ACC.7 ¬ [m].0  
Affected flag(s)  
None  
RRC [m]  
Rotate Data Memory right through Carry  
Description  
The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0  
replaces the Carry bit and the original carry flag is rotated into bit 7.  
Operation  
[m].i ¬ [m].(i+1); (i = 0~6)  
[m].7 ¬ C  
C ¬ [m].0  
Affected flag(s)  
C
RRCA [m]  
Rotate Data Memory right through Carry with result in ACC  
Description  
Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-  
places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is  
stored in the Accumulator and the contents of the Data Memory remain unchanged.  
Operation  
ACC.i ¬ [m].(i+1); (i = 0~6)  
ACC.7 ¬ C  
C ¬ [m].0  
Affected flag(s)  
C
Rev. 1.60  
223  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SBC A,[m]  
Subtract Data Memory from ACC with Carry  
Description  
The contents of the specified Data Memory and the complement of the carry flag are sub-  
tracted from the Accumulator. The result is stored in the Accumulator. Note that if the result  
of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or  
zero, the C flag will be set to 1.  
Operation  
ACC ¬ ACC - [m] - C  
Affected flag(s)  
OV, Z, AC, C  
SBCM A,[m]  
Subtract Data Memory from ACC with Carry and result in Data Memory  
Description  
The contents of the specified Data Memory and the complement of the carry flag are sub-  
tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-  
sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is  
positive or zero, the C flag will be set to 1.  
Operation  
[m] ¬ ACC - [m] - C  
Affected flag(s)  
OV, Z, AC, C  
SDZ [m]  
Skip if decrement Data Memory is 0  
Description  
The contents of the specified Data Memory are first decremented by 1. If the result is 0 the  
following instruction is skipped. As this requires the insertion of a dummy instruction while  
the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program  
proceeds with the following instruction.  
Operation  
[m] ¬ [m] - 1  
Skip if [m] = 0  
Affected flag(s)  
None  
SDZA [m]  
Skip if decrement Data Memory is zero with result in ACC  
Description  
The contents of the specified Data Memory are first decremented by 1. If the result is 0, the  
following instruction is skipped. The result is stored in the Accumulator but the specified  
Data Memory contents remain unchanged. As this requires the insertion of a dummy in-  
struction while the next instruction is fetched, it is a two cycle instruction. If the result is not  
0, the program proceeds with the following instruction.  
Operation  
ACC ¬ [m] - 1  
Skip if ACC = 0  
Affected flag(s)  
None  
SET [m]  
Set Data Memory  
Description  
Operation  
Each bit of the specified Data Memory is set to 1.  
[m] ¬ FFH  
Affected flag(s)  
None  
SET [m].i  
Set bit of Data Memory  
Description  
Operation  
Bit i of the specified Data Memory is set to 1.  
[m].i ¬ 1  
Affected flag(s)  
None  
Rev. 1.60  
224  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SIZ [m]  
Skip if increment Data Memory is 0  
Description  
The contents of the specified Data Memory are first incremented by 1. If the result is 0, the  
following instruction is skipped. As this requires the insertion of a dummy instruction while  
the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program  
proceeds with the following instruction.  
Operation  
[m] ¬ [m] + 1  
Skip if [m] = 0  
Affected flag(s)  
None  
SIZA [m]  
Skip if increment Data Memory is zero with result in ACC  
Description  
The contents of the specified Data Memory are first incremented by 1. If the result is 0, the  
following instruction is skipped. The result is stored in the Accumulator but the specified  
Data Memory contents remain unchanged. As this requires the insertion of a dummy in-  
struction while the next instruction is fetched, it is a two cycle instruction. If the result is not  
0 the program proceeds with the following instruction.  
Operation  
ACC ¬ [m] + 1  
Skip if ACC = 0  
Affected flag(s)  
None  
SNZ [m].i  
Skip if bit i of Data Memory is not 0  
Description  
If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-  
quires the insertion of a dummy instruction while the next instruction is fetched, it is a two  
cycle instruction. If the result is 0 the program proceeds with the following instruction.  
Operation  
Skip if [m].i ¹ 0  
Affected flag(s)  
None  
SUB A,[m]  
Subtract Data Memory from ACC  
Description  
The specified Data Memory is subtracted from the contents of the Accumulator. The result  
is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will  
be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.  
Operation  
ACC ¬ ACC - [m]  
Affected flag(s)  
OV, Z, AC, C  
SUBM A,[m]  
Subtract Data Memory from ACC with result in Data Memory  
Description  
The specified Data Memory is subtracted from the contents of the Accumulator. The result  
is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will  
be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.  
Operation  
[m] ¬ ACC - [m]  
Affected flag(s)  
OV, Z, AC, C  
SUB A,x  
Subtract immediate data from ACC  
Description  
The immediate data specified by the code is subtracted from the contents of the Accumu-  
lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-  
tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will  
be set to 1.  
Operation  
ACC ¬ ACC - x  
Affected flag(s)  
OV, Z, AC, C  
Rev. 1.60  
225  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SWAP [m]  
Description  
Operation  
Swap nibbles of Data Memory  
The low-order and high-order nibbles of the specified Data Memory are interchanged.  
[m].3~[m].0 « [m].7 ~ [m].4  
Affected flag(s)  
None  
SWAPA [m]  
Swap nibbles of Data Memory with result in ACC  
Description  
The low-order and high-order nibbles of the specified Data Memory are interchanged. The  
result is stored in the Accumulator. The contents of the Data Memory remain unchanged.  
Operation  
ACC.3 ~ ACC.0 ¬ [m].7 ~ [m].4  
ACC.7 ~ ACC.4 ¬ [m].3 ~ [m].0  
Affected flag(s)  
None  
SZ [m]  
Skip if Data Memory is 0  
Description  
If the contents of the specified Data Memory is 0, the following instruction is skipped. As  
this requires the insertion of a dummy instruction while the next instruction is fetched, it is a  
two cycle instruction. If the result is not 0 the program proceeds with the following instruc-  
tion.  
Operation  
Skip if [m] = 0  
None  
Affected flag(s)  
SZA [m]  
Skip if Data Memory is 0 with data movement to ACC  
Description  
The contents of the specified Data Memory are copied to the Accumulator. If the value is  
zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-  
tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the  
program proceeds with the following instruction.  
Operation  
ACC ¬ [m]  
Skip if [m] = 0  
Affected flag(s)  
None  
SZ [m].i  
Skip if bit i of Data Memory is 0  
Description  
If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-  
quires the insertion of a dummy instruction while the next instruction is fetched, it is a two  
cycle instruction. If the result is not 0, the program proceeds with the following instruction.  
Operation  
Skip if [m].i = 0  
None  
Affected flag(s)  
TABRD [m]  
Read table to TBLH and Data Memory  
Description  
The program code addressed by the table pointer (TBHP and TBLP) is moved to the speci-  
fied Data Memory and the high byte moved to TBLH.  
Operation  
[m] ¬ program code (low byte)  
TBLH ¬ program code (high byte)  
Affected flag(s)  
None  
TABRDL [m]  
Read table (last page) to TBLH and Data Memory  
Description  
The low byte of the program code (last page) addressed by the table pointer (TBLP) is  
moved to the specified Data Memory and the high byte moved to TBLH.  
Operation  
[m] ¬ program code (low byte)  
TBLH ¬ program code (high byte)  
Affected flag(s)  
None  
Rev. 1.60  
226  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
XOR A,[m]  
Logical XOR Data Memory to ACC  
Description  
Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-  
eration. The result is stored in the Accumulator.  
Operation  
ACC ¬ ACC ²XOR² [m]  
Affected flag(s)  
Z
XORM A,[m]  
Logical XOR ACC to Data Memory  
Description  
Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-  
eration. The result is stored in the Data Memory.  
Operation  
[m] ¬ ACC ²XOR² [m]  
Affected flag(s)  
Z
XOR A,x  
Logical XOR immediate data to ACC  
Description  
Data in the Accumulator and the specified immediate data perform a bitwise logical XOR  
operation. The result is stored in the Accumulator.  
Operation  
ACC ¬ ACC ²XOR² x  
Affected flag(s)  
Z
Rev. 1.60  
227  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Package Information  
Note that the package information provided here is for consultation purposes only. As this information may be updated at regu-  
lar intervals users are reminded to consult the Holtek website (http://www.holtek.com.tw/english/literature/package.pdf) for  
the latest version of the package information.  
16-pin DIP (300mil) Outline Dimensions  
A
A
9
8
1
6
9
8
1
6
B
B
1
1
H
H
C
D
C
D
G
G
E
E
I
I
F
F
Fig1. Full Lead Packages  
Fig2. 1/2 Lead Packages  
·
MS-001d (see fig1)  
Dimensions in inch  
Symbol  
Min.  
0.780  
0.240  
0.115  
0.115  
0.014  
0.045  
¾
Nom.  
¾
Max.  
0.880  
0.280  
0.195  
0.150  
0.022  
0.070  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
0.100  
0.300  
¾
0.325  
0.430  
¾
¾
Dimensions in mm  
Symbol  
Min.  
19.81  
6.10  
2.92  
2.92  
0.36  
1.14  
¾
Nom.  
¾
Max.  
22.35  
7.11  
4.95  
3.81  
0.56  
1.78  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
2.54  
7.62  
¾
8.26  
10.92  
¾
¾
Rev. 1.60  
228  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
MS-001d (see fig2)  
Dimensions in inch  
Symbol  
Min.  
0.735  
0.240  
0.115  
0.115  
0.014  
0.045  
¾
Nom.  
¾
Max.  
0.775  
0.280  
0.195  
0.150  
0.022  
0.070  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
0.100  
¾
0.300  
¾
0.325  
0.430  
¾
Dimensions in mm  
Symbol  
Min.  
18.67  
6.10  
2.92  
2.92  
0.36  
1.14  
¾
Nom.  
¾
Max.  
19.69  
7.11  
4.95  
3.81  
0.56  
1.78  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
2.54  
7.62  
¾
8.26  
10.92  
¾
¾
Rev. 1.60  
229  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
MO-095a (see fig2)  
Dimensions in inch  
Symbol  
Min.  
0.745  
0.275  
0.120  
0.110  
0.014  
0.045  
¾
Nom.  
¾
Max.  
0.785  
0.295  
0.150  
0.150  
0.022  
0.060  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
0.100  
¾
0.300  
¾
0.325  
0.430  
¾
Dimensions in mm  
Symbol  
Min.  
18.92  
6.99  
3.05  
2.79  
0.36  
1.14  
¾
Nom.  
¾
Max.  
19.94  
7.49  
3.81  
3.81  
0.56  
1.52  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
2.54  
7.62  
¾
8.26  
10.92  
¾
¾
Rev. 1.60  
230  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
16-pin NSOP (150mil) Outline Dimensions  
1
6
9
8
A
B
1
C
C
'
G
H
D
a
F
E
·
MS-012  
Dimensions in inch  
Symbol  
Min.  
0.228  
0.150  
0.012  
0.386  
¾
Nom.  
¾
Max.  
0.244  
0.157  
0.020  
0.402  
0.069  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.050  
¾
¾
0.004  
0.016  
0.007  
0°  
0.010  
0.050  
0.010  
8°  
G
H
a
¾
¾
¾
Dimensions in mm  
Symbol  
Min.  
5.79  
3.81  
0.30  
9.80  
¾
Nom.  
¾
Max.  
6.20  
3.99  
0.51  
10.21  
1.75  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
1.27  
¾
0.10  
0.41  
0.18  
0°  
0.25  
1.27  
0.25  
8°  
¾
¾
¾
¾
G
H
a
Rev. 1.60  
231  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
16-pin SSOP (150mil) Outline Dimensions  
1
6
9
A
B
1
8
C
C
'
G
H
D
a
E
F
Dimensions in inch  
Symbol  
Min.  
Nom.  
¾
Max.  
0.244  
0.157  
0.012  
0.197  
0.060  
¾
A
B
C
C¢  
D
E
F
0.228  
0.150  
0.008  
0.189  
0.054  
¾
¾
¾
¾
¾
0.025  
¾
0.004  
0.022  
0.007  
0°  
0.010  
0.028  
0.010  
8°  
G
H
a
¾
¾
¾
Dimensions in mm  
Symbol  
Min.  
5.79  
3.81  
0.20  
4.80  
1.37  
¾
Nom.  
¾
Max.  
6.20  
3.99  
0.30  
5.00  
1.52  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.64  
0.10  
0.56  
0.18  
0°  
0.25  
0.71  
0.25  
8°  
¾
¾
¾
¾
G
H
a
Rev. 1.60  
232  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
20-pin DIP (300mil) Outline Dimensions  
A
A
2
0
1
1
1
0
2
0
1
1
1
0
B
B
1
1
H
H
C
D
C
D
I
I
E
F
G
E
F
G
Fig1. Full Lead Packages  
Fig2. 1/2 Lead Packages  
·
MS-001d (see fig1)  
Dimensions in inch  
Symbol  
Min.  
0.980  
0.240  
0.115  
0.115  
0.014  
0.045  
¾
Nom.  
¾
Max.  
1.060  
0.280  
0.195  
0.150  
0.022  
0.070  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
0.100  
0.300  
¾
0.325  
¾
¾
0.430  
Dimensions in mm  
Symbol  
Min.  
24.89  
6.10  
2.92  
2.92  
0.36  
1.14  
¾
Nom.  
¾
Max.  
26.92  
7.11  
4.95  
3.81  
0.56  
1.78  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
2.54  
7.62  
¾
8.26  
¾
¾
10.92  
Rev. 1.60  
233  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
MO-095a (see fig2)  
Dimensions in inch  
Symbol  
Min.  
0.945  
0.275  
0.120  
0.110  
0.014  
0.045  
¾
Nom.  
¾
Max.  
0.985  
0.295  
0.150  
0.150  
0.022  
0.060  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
0.100  
¾
0.300  
¾
0.325  
¾
0.430  
Dimensions in mm  
Symbol  
Min.  
24.00  
6.99  
3.05  
2.79  
0.36  
1.14  
¾
Nom.  
¾
Max.  
25.02  
7.49  
3.81  
3.81  
0.56  
1.52  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
2.54  
7.62  
¾
8.26  
¾
¾
10.92  
Rev. 1.60  
234  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
20-pin SOP (300mil) Outline Dimensions  
2
0
1
1
A
B
1
1
0
C
C
'
G
H
D
a
E
F
·
MS-013  
Dimensions in inch  
Symbol  
Min.  
0.393  
0.256  
0.012  
0.496  
¾
Nom.  
¾
Max.  
0.419  
0.300  
0.020  
0.512  
0.104  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.050  
¾
¾
0.004  
0.016  
0.008  
0°  
0.012  
0.050  
0.013  
8°  
G
H
a
¾
¾
¾
Dimensions in mm  
Symbol  
Min.  
9.98  
6.50  
0.30  
12.60  
¾
Nom.  
¾
Max.  
10.64  
7.62  
0.51  
13.00  
2.64  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
1.27  
¾
0.10  
0.41  
0.20  
0°  
0.30  
1.27  
0.33  
8°  
¾
¾
¾
¾
G
H
a
Rev. 1.60  
235  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
20-pin SSOP (150mil) Outline Dimensions  
2
0
1
1
0
A
B
1
1
C
C
'
G
H
D
a
E
F
Dimensions in inch  
Symbol  
Min.  
0.228  
0.150  
0.008  
0.335  
0.049  
¾
Nom.  
¾
Max.  
0.244  
0.158  
0.012  
0.347  
0.065  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.025  
¾
0.004  
0.015  
0.007  
0°  
0.010  
0.050  
0.010  
8°  
G
H
a
¾
¾
¾
Dimensions in mm  
Symbol  
Min.  
5.79  
3.81  
0.20  
8.51  
1.24  
¾
Nom.  
¾
Max.  
6.20  
4.01  
0.30  
8.81  
1.65  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.64  
0.10  
0.38  
0.18  
0°  
0.25  
1.27  
0.25  
8°  
¾
¾
¾
¾
G
H
a
Rev. 1.60  
236  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
24-pin SKDIP (300mil) Outline Dimensions  
A
A
2
4
1
1
3
2
1
1
3
2
2
4
B
B
1
1
H
H
C
D
C
D
I
I
E
F
G
E
F
G
Fig2. 1/2 Lead Packages  
Fig1. Full Lead Packages  
·
MS-001d (see fig1)  
Dimensions in inch  
Symbol  
Min.  
1.230  
0.240  
0.115  
0.115  
0.014  
0.045  
¾
Nom.  
¾
Max.  
1.280  
0.280  
0.195  
0.150  
0.022  
0.070  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
0.100  
0.300  
¾
0.325  
¾
¾
0.430  
Dimensions in mm  
Symbol  
Min.  
31.24  
6.10  
2.92  
2.92  
0.36  
1.14  
¾
Nom.  
¾
Max.  
32.51  
7.11  
4.95  
3.81  
0.56  
1.78  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
2.54  
7.62  
¾
8.26  
¾
¾
10.92  
Rev. 1.60  
237  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
MS-001d (see fig2)  
Dimensions in inch  
Symbol  
Min.  
1.160  
0.240  
0.115  
0.115  
0.014  
0.045  
¾
Nom.  
¾
Max.  
1.195  
0.280  
0.195  
0.150  
0.022  
0.070  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
0.100  
¾
0.300  
¾
0.325  
¾
0.430  
Dimensions in mm  
Symbol  
Min.  
29.46  
6.10  
2.92  
2.92  
0.36  
1.14  
¾
Nom.  
¾
Max.  
30.35  
7.11  
4.95  
3.81  
0.56  
1.78  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
2.54  
7.62  
¾
8.26  
¾
¾
10.92  
Rev. 1.60  
238  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
·
MO-095a (see fig2)  
Dimensions in inch  
Symbol  
Min.  
1.145  
0.275  
0.120  
0.110  
0.014  
0.045  
¾
Nom.  
¾
Max.  
1.185  
0.295  
0.150  
0.150  
0.022  
0.060  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
0.100  
¾
0.300  
¾
0.325  
¾
0.430  
Dimensions in mm  
Symbol  
Min.  
29.08  
6.99  
3.05  
2.79  
0.36  
1.14  
¾
Nom.  
¾
Max.  
30.10  
7.49  
3.81  
3.81  
0.56  
1.52  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
2.54  
7.62  
¾
8.26  
¾
¾
10.92  
Rev. 1.60  
239  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
24-pin SOP (300mil) Outline Dimensions  
2
4
1
3
B
2
A
1
1
C
C
'
G
H
D
a
E
F
·
MS-013  
Dimensions in inch  
Symbol  
Min.  
0.393  
0.256  
0.012  
0.598  
¾
Nom.  
¾
Max.  
0.419  
0.300  
0.020  
0.613  
0.104  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.050  
¾
¾
0.004  
0.016  
0.008  
0°  
0.012  
0.050  
0.013  
8°  
G
H
a
¾
¾
¾
Dimensions in mm  
Symbol  
Min.  
9.98  
6.50  
0.30  
15.19  
¾
Nom.  
¾
Max.  
10.64  
7.62  
0.51  
15.57  
2.64  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
1.27  
¾
0.10  
0.41  
0.20  
0°  
0.30  
1.27  
0.33  
8°  
¾
¾
¾
¾
G
H
a
Rev. 1.60  
240  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
24-pin SSOP (150mil) Outline Dimensions  
2
4
1
3
A
B
1
1
2
C
C
'
G
H
D
a
E
F
Dimensions in inch  
Symbol  
Min.  
0.228  
0.150  
0.008  
0.335  
0.054  
¾
Nom.  
¾
Max.  
0.244  
0.157  
0.012  
0.346  
0.060  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.025  
0.004  
0.022  
0.007  
0°  
0.010  
0.028  
0.010  
8°  
¾
¾
¾
¾
G
H
a
Dimensions in mm  
Symbol  
Min.  
5.79  
3.81  
0.20  
8.51  
1.37  
¾
Nom.  
¾
Max.  
6.20  
3.99  
0.30  
8.79  
1.52  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.64  
0.10  
0.56  
0.18  
0°  
0.25  
0.71  
0.25  
8°  
¾
¾
¾
¾
G
H
a
Rev. 1.60  
241  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
28-pin SKDIP (300mil) Outline Dimensions  
A
1
1
5
4
2
8
B
1
H
C
D
I
E
F
G
Dimensions in inch  
Symbol  
Min.  
1.375  
0.278  
0.125  
0.125  
0.016  
0.050  
¾
Nom.  
¾
Max.  
1.395  
0.298  
0.135  
0.145  
0.020  
0.070  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
0.100  
0.295  
¾
0.315  
¾
¾
0.375  
Dimensions in mm  
Symbol  
Min.  
34.93  
7.06  
3.18  
3.18  
0.41  
1.27  
¾
Nom.  
¾
Max.  
35.43  
7.57  
3.43  
3.68  
0.51  
1.78  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
¾
¾
2.54  
7.49  
¾
8.00  
¾
¾
9.53  
Rev. 1.60  
242  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
28-pin SOP (300mil) Outline Dimensions  
2
8
1
5
A
B
1
1
4
C
C
'
G
H
D
a
E
F
·
MS-013  
Dimensions in inch  
Symbol  
Min.  
0.393  
0.256  
0.012  
0.697  
¾
Nom.  
¾
Max.  
0.419  
0.300  
0.020  
0.713  
0.104  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.050  
¾
0.004  
0.016  
0.008  
0°  
0.012  
0.050  
0.013  
8°  
¾
¾
¾
¾
G
H
a
Dimensions in mm  
Symbol  
Min.  
9.98  
6.50  
0.30  
17.70  
¾
Nom.  
¾
Max.  
10.64  
7.62  
0.51  
18.11  
2.64  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
1.27  
¾
0.10  
0.41  
0.20  
0°  
0.30  
1.27  
0.33  
8°  
¾
¾
¾
¾
G
H
a
Rev. 1.60  
243  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
28-pin SSOP (150mil) Outline Dimensions  
2
8
1
1
5
4
A
B
1
C
C
'
G
H
D
a
E
F
Dimensions in inch  
Symbol  
Min.  
0.228  
0.150  
0.008  
0.386  
0.054  
¾
Nom.  
¾
Max.  
0.244  
0.157  
0.012  
0.394  
0.060  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.025  
0.004  
0.022  
0.007  
0°  
0.010  
0.028  
0.010  
8°  
¾
¾
¾
¾
G
H
a
Dimensions in mm  
Symbol  
Min.  
5.79  
3.81  
0.20  
9.80  
1.37  
¾
Nom.  
¾
Max.  
6.20  
3.99  
0.30  
10.01  
1.52  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.64  
0.10  
0.56  
0.18  
0°  
0.25  
0.71  
0.25  
8°  
¾
¾
¾
¾
G
H
a
Rev. 1.60  
244  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SAW Type 32-pin (5mm´ 5mm) QFN Outline Dimensions  
D
D
2
2
5
3
2
2
4
1
b
E
E
2
e
1
7
8
1
6
9
A
A
1
3
L
K
A
·
ASECL  
Dimensions in inch  
Symbol  
Min.  
0.028  
0.000  
¾
Nom.  
¾
Max.  
0.031  
0.002  
¾
A
A1  
A3  
b
0.001  
0.008  
0.010  
0.197  
0.197  
0.020  
0.007  
¾
0.012  
¾
D
E
¾
¾
e
¾
¾
D2  
E2  
L
0.122  
0.122  
0.014  
0.008  
0.130  
0.130  
0.018  
¾
¾
¾
0.016  
¾
K
Dimensions in mm  
Symbol  
Min.  
0.70  
0.00  
¾
Nom.  
¾
Max.  
0.80  
0.05  
¾
A
A1  
A3  
b
0.02  
0.20  
0.25  
5.00  
5.00  
0.50  
0.18  
¾
0.30  
¾
D
E
¾
¾
e
¾
¾
D2  
E2  
L
3.10  
3.10  
0.35  
0.20  
3.30  
3.30  
0.45  
¾
¾
¾
0.40  
¾
K
Rev. 1.60  
245  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SAW Type 40-pin (6mm´ 6mm for 0.75mm) QFN Outline Dimensions  
D
D
2
3
1
4
0
3
0
1
b
E
E
2
e
2
1
1
0
2
0
1
1
A
A
1
L
K
3
A
·
GTK  
Dimensions in inch  
Nom.  
Symbol  
Min.  
0.028  
0.000  
¾
Max.  
A
A1  
A3  
b
0.030  
0.031  
0.002  
¾
0.001  
0.008  
0.007  
¾
0.010  
0.012  
¾
D
0.236  
E
0.236  
¾
¾
e
0.020  
¾
¾
D2  
E2  
L
0.173  
0.173  
0.014  
0.008  
0.177  
0.179  
0.179  
0.018  
¾
0.177  
0.016  
K
¾
Dimensions in mm  
Symbol  
Min.  
0.70  
0.00  
¾
Nom.  
0.75  
0.02  
0.20  
0.25  
6.00  
6.00  
0.50  
4.50  
4.50  
0.40  
¾
Max.  
0.80  
0.05  
¾
A
A1  
A3  
b
0.18  
¾
0.30  
¾
D
E
¾
¾
e
¾
¾
D2  
E2  
L
4.40  
4.40  
0.35  
0.20  
4.55  
4.55  
0.45  
¾
K
Rev. 1.60  
246  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
44-pin LQFP (10mm´ 10mm) (FP3.2mm) Outline Dimensions  
C
H
D
G
3
3
2
3
I
3
4
2
2
F
A
B
E
1
2
4
4
a
K
J
1
1
1
Dimensions in inch  
Symbol  
Min.  
0.512  
0.390  
0.512  
0.390  
¾
Nom.  
0.520  
0.394  
0.520  
0.394  
0.031  
0.012  
0.055  
¾
Max.  
0.528  
0.398  
0.528  
0.398  
¾
A
B
C
D
E
F
G
H
I
¾
¾
0.053  
¾
0.057  
0.063  
0.010  
0.053  
0.008  
0.004  
0.041  
0.004  
¾
J
0.047  
¾
K
a
0°  
¾
7°  
Dimensions in mm  
Symbol  
Min.  
13.00  
9.90  
13.00  
9.90  
¾
Nom.  
13.20  
10.00  
13.20  
10.00  
0.80  
0.30  
1.40  
¾
Max.  
13.40  
10.10  
13.40  
10.10  
¾
A
B
C
D
E
F
G
H
I
¾
¾
1.35  
¾
1.45  
1.60  
0.25  
1.35  
0.25  
0.10  
1.05  
0.10  
¾
J
1.20  
¾
K
a
0°  
¾
7°  
Rev. 1.60  
247  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
48-pin SSOP (300mil) Outline Dimensions  
4
8
2
2
5
4
A
B
1
C
C
'
G
H
D
a
E
F
Dimensions in inch  
Symbol  
Min.  
0.395  
0.291  
0.008  
0.613  
0.085  
¾
Nom.  
¾
Max.  
0.420  
0.299  
0.012  
0.637  
0.099  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.025  
0.004  
0.025  
0.004  
0°  
0.010  
0.035  
0.012  
8°  
¾
¾
¾
¾
G
H
a
Dimensions in mm  
Symbol  
Min.  
10.03  
7.39  
0.20  
15.57  
2.16  
¾
Nom.  
¾
Max.  
10.67  
7.59  
0.30  
16.18  
2.51  
¾
A
B
C
C¢  
D
E
F
¾
¾
¾
¾
0.64  
0.10  
0.64  
0.10  
0°  
0.25  
0.89  
0.30  
8°  
¾
¾
¾
¾
G
H
a
Rev. 1.60  
248  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SAW Type 48-pin (7mm´ 7mm) QFN Outline Dimensions  
D
D
2
3
7
4
8
1
b
3
6
E
E
2
e
2
5
1
2
1
3
2
4
A
A
1
L
K
3
A
·
ASECL  
Dimensions in inch  
Nom.  
Symbol  
Min.  
0.031  
0.000  
¾
Max.  
0.035  
0.002  
¾
A
A1  
A3  
b
0.033  
0.001  
0.008  
0.007  
¾
0.010  
0.012  
¾
D
0.276  
E
0.276  
¾
¾
e
0.020  
¾
¾
D2  
E2  
L
0.219  
0.219  
0.014  
0.222  
0.226  
0.226  
0.018  
0.222  
0.016  
Dimensions in mm  
Nom.  
Symbol  
Min.  
0.800  
0.000  
¾
Max.  
0.900  
0.050  
¾
A
A1  
A3  
b
0.850  
0.035  
0.203  
0.180  
¾
0.250  
0.300  
¾
D
7.000  
E
7.000  
¾
¾
e
0.500  
¾
¾
D2  
E2  
L
5.550  
5.550  
0.350  
5.650  
5.750  
5.750  
0.450  
5.650  
0.400  
Rev. 1.60  
249  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
48-pin LQFP (7mm´ 7mm) Outline Dimensions  
C
H
D
G
3
6
2
5
I
3
7
2
4
F
A
B
E
4
8
1
3
a
K
J
1
1
2
Dimensions in inch  
Symbol  
Min.  
0.350  
0.272  
0.350  
0.272  
¾
Nom.  
¾
Max.  
0.358  
0.280  
0.358  
0.280  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
0.020  
0.008  
¾
¾
0.053  
¾
0.057  
0.063  
¾
¾
¾
0.004  
¾
¾
J
0.018  
0.004  
0°  
0.030  
0.008  
7°  
K
a
¾
¾
Dimensions in mm  
Symbol  
Min.  
8.90  
6.90  
8.90  
6.90  
¾
Nom.  
¾
Max.  
9.10  
7.10  
9.10  
7.10  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
0.50  
0.20  
¾
¾
1.35  
¾
1.45  
1.60  
¾
¾
¾
0.10  
¾
¾
J
0.45  
0.10  
0°  
0.75  
0.20  
7°  
K
a
¾
¾
Rev. 1.60  
250  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
52-pin QFP (14mm´ 14mm) Outline Dimensions  
C
H
D
G
3
9
2
7
I
4
0
2
6
F
A
B
E
1
4
5
2
K
J
1
1
3
Dimensions in inch  
Symbol  
Min.  
0.681  
0.547  
0.681  
0.547  
¾
Nom.  
¾
Max.  
0.689  
0.555  
0.689  
0.555  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
0.039  
0.016  
¾
¾
0.098  
¾
0.122  
0.134  
¾
¾
¾
0.004  
¾
¾
J
0.029  
0.004  
0°  
0.041  
0.008  
7°  
K
a
¾
¾
Dimensions in mm  
Symbol  
Min.  
17.30  
13.90  
17.30  
13.90  
¾
Nom.  
¾
Max.  
17.50  
14.10  
17.50  
14.10  
¾
A
B
C
D
E
F
G
H
I
¾
¾
¾
1.00  
0.40  
¾
¾
2.50  
¾
3.10  
3.40  
¾
¾
¾
0.10  
¾
¾
J
0.73  
0.10  
0°  
1.03  
0.20  
7°  
K
a
¾
¾
Rev. 1.60  
251  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Product Tape and Reel Specifications  
Reel Dimensions  
D
T
2
C
A
B
T
1
SOP 16N (150mil)  
Symbol  
Description  
Dimensions in mm  
330.0±1.0  
A
B
Reel Outer Diameter  
Reel Inner Diameter  
Spindle Hole Diameter  
Key Slit Width  
100.0±1.5  
+0.5/-0.2  
13.0  
C
D
2.0±0.5  
+0.3/-0.2  
16.8  
T1  
T2  
Space Between Flange  
Reel Thickness  
22.2±0.2  
SOP 20W, SOP 24W, SOP 28W (300mil)  
Symbol  
Description  
Dimensions in mm  
330.0±1.0  
A
B
Reel Outer Diameter  
Reel Inner Diameter  
Spindle Hole Diameter  
Key Slit Width  
100.0±1.5  
+0.5/-0.2  
13.0  
C
D
2.0±0.5  
+0.3/-0.2  
24.8  
T1  
T2  
Space Between Flange  
Reel Thickness  
30.2±0.2  
Rev. 1.60  
252  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SSOP 16S  
Symbol  
Description  
Reel Outer Diameter  
Dimensions in mm  
330.0±1.0  
A
B
Reel Inner Diameter  
Spindle Hole Diameter  
Key Slit Width  
100.0±1.5  
+0.5/-0.2  
13.0  
C
D
2.0±0.5  
+0.3/-0.2  
12.8  
T1  
T2  
Space Between Flange  
Reel Thickness  
18.2±0.2  
SSOP 20S (150mil), SSOP 24S (150mil), SSOP 28S (150mil)  
Symbol  
Description  
Reel Outer Diameter  
Dimensions in mm  
330.0±1.0  
A
B
Reel Inner Diameter  
Spindle Hole Diameter  
Key Slit Width  
100.0±1.5  
+0.5/-0.2  
13.0  
C
D
2.0±0.5  
+0.3/-0.2  
16.8  
T1  
T2  
Space Between Flange  
Reel Thickness  
22.2±0.2  
SSOP 48W  
Symbol  
Description  
Dimensions in mm  
330.0±1.0  
A
B
Reel Outer Diameter  
Reel Inner Diameter  
Spindle Hole Diameter  
Key Slit Width  
100.0±0.1  
+0.5/-0.2  
13.0  
C
D
2.0±0.5  
+0.3/-0.2  
32.2  
T1  
T2  
Space Between Flange  
Reel Thickness  
38.2±0.2  
Rev. 1.60  
253  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Carrier Tape Dimensions  
P
0
P
1
t
D
E
F
W
B
0
C
D
1
P
K
0
A
0
R
e
e
l
H
o
l
e
I
C
p
a
c
k
a
g
e
p
i
n
1
a
n
a
r
e
l
o
c
a
t
e
d
o
n
t
h
e
s
SOP 16N (150mil)  
Symbol  
Description  
Dimensions in mm  
16.0±0.3  
W
P
Carrier Tape Width  
Cavity Pitch  
8.0±0.1  
E
Perforation Position  
1.75±0.1  
F
Cavity to Perforation (Width Direction)  
Perforation Diameter  
Cavity Hole Diameter  
Perforation Pitch  
7.5±0.1  
+0.10/-0.00  
1.55  
D
+0.25/-0.00  
1.50  
D1  
P0  
P1  
A0  
B0  
K0  
t
4.0±0.1  
2.0±0.1  
Cavity to Perforation (Length Direction)  
Cavity Length  
6.5±0.1  
Cavity Width  
10.3±0.1  
2.1±0.1  
Cavity Depth  
Carrier Tape Thickness  
Cover Tape Width  
0.30±0.05  
13.3±0.1  
C
SOP 20W  
Symbol  
Description  
Carrier Tape Width  
Dimensions in mm  
+0.3/-0.1  
24.0  
W
P
Cavity Pitch  
12.0±0.1  
1.75±0.10  
11.5±0.1  
E
Perforation Position  
Cavity to Perforation (Width Direction)  
Perforation Diameter  
Cavity Hole Diameter  
Perforation Pitch  
F
+0.1/-0.0  
1.5  
D
+0.25/-0.00  
1.50  
D1  
P0  
P1  
A0  
B0  
K0  
t
4.0±0.1  
2.0±0.1  
Cavity to Perforation (Length Direction)  
Cavity Length  
10.8±0.1  
13.3±0.1  
3.2±0.1  
Cavity Width  
Cavity Depth  
Carrier Tape Thickness  
Cover Tape Width  
0.30±0.05  
21.3±0.1  
C
Rev. 1.60  
254  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SOP 24W  
Symbol  
Description  
Carrier Tape Width  
Dimensions in mm  
24.0±0.3  
W
P
Cavity Pitch  
12.0±0.1  
E
Perforation Position  
1.75±0.1  
F
Cavity to Perforation (Width Direction)  
Perforation Diameter  
Cavity Hole Diameter  
Perforation Pitch  
11.5±0.1  
+0.10/-0.00  
D
1.55  
1.50  
+0.25/-0.00  
D1  
P0  
P1  
A0  
B0  
K0  
t
4.0±0.1  
Cavity to Perforation (Length Direction)  
Cavity Length  
2.0±0.1  
10.9±0.1  
15.9±0.1  
3.1±0.1  
Cavity Width  
Cavity Depth  
Carrier Tape Thickness  
Cover Tape Width  
0.35±0.05  
21.3±0.1  
C
SOP 28W (300mil)  
Symbol  
Description  
Carrier Tape Width  
Cavity Pitch  
Dimensions in mm  
24.0±0.3  
W
P
12.0±0.1  
E
Perforation Position  
Cavity to Perforation (Width Direction)  
Perforation Diameter  
Cavity Hole Diameter  
Perforation Pitch  
1.75±0.10  
F
11.5±0.1  
+0.1/-0.0  
D
1.5  
+0.25/-0.00  
D1  
P0  
P1  
A0  
B0  
K0  
t
1.50  
4.0±0.1  
2.0±0.1  
Cavity to Perforation (Length Direction)  
Cavity Length  
10.85±0.10  
18.34±0.10  
2.97±0.10  
0.35±0.01  
21.3±0.1  
Cavity Width  
Cavity Depth  
Carrier Tape Thickness  
Cover Tape Width  
C
Rev. 1.60  
255  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SSOP 16S  
Symbol  
Description  
Carrier Tape Width  
Dimensions in mm  
+0.3/-0.1  
12.0  
W
P
Cavity Pitch  
8.0±0.1  
E
Perforation Position  
1.75±0.10  
F
Cavity to Perforation (Width Direction)  
Perforation Diameter  
Cavity Hole Diameter  
Perforation Pitch  
5.5±0.1  
D
1.55±0.10  
+0.25/-0.00  
1.50  
D1  
P0  
P1  
A0  
B0  
K0  
t
4.0±0.1  
2.0±0.1  
6.4±0.1  
5.2±0.1  
2.1±0.1  
0.30±0.05  
9.3±0.1  
Cavity to Perforation (Length Direction)  
Cavity Length  
Cavity Width  
Cavity Depth  
Carrier Tape Thickness  
Cover Tape Width  
C
SSOP 20S (150mil)  
Symbol  
Description  
Carrier Tape Width  
Dimensions in mm  
+0.3/-0.1  
16.0  
W
P
Cavity Pitch  
8.0±0.1  
1.75±0.10  
7.5±0.1  
E
Perforation Position  
Cavity to Perforation (Width Direction)  
Perforation Diameter  
Cavity Hole Diameter  
Perforation Pitch  
F
+0.1/-0.0  
1.5  
D
+0.25/-0.00  
1.50  
D1  
P0  
P1  
A0  
B0  
K0  
t
4.0±0.1  
2.0±0.1  
6.5±0.1  
9.0±0.1  
2.3±0.1  
0.30±0.05  
13.3±0.1  
Cavity to Perforation (Length Direction)  
Cavity Length  
Cavity Width  
Cavity Depth  
Carrier Tape Thickness  
Cover Tape Width  
C
Rev. 1.60  
256  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
SSOP 24S (150mil)  
Symbol  
Description  
Carrier Tape Width  
Dimensions in mm  
16.0+0.3/-0.1  
W
P
Cavity Pitch  
Perforation Position  
8.0±0.1  
E
1.75±0.10  
F
Cavity to Perforation (Width Direction)  
Perforation Diameter  
Cavity Hole Diameter  
Perforation Pitch  
7.5±0.1  
1.5+0.1/-0.0  
1.50+0.25/-0.00  
4.0±0.1  
D
D1  
P0  
P1  
A0  
B0  
K0  
t
Cavity to Perforation (Length Direction)  
Cavity Length  
2.0±0.1  
6.5±0.1  
Cavity Width  
9.5±0.1  
Cavity Depth  
2.1±0.1  
Carrier Tape Thickness  
Cover Tape Width  
0.30±0.05  
13.3±0.1  
C
SSOP 28S (150mil)  
Symbol  
Description  
Carrier Tape Width  
Dimensions in mm  
16.0±0.3  
W
P
Cavity Pitch  
8.0±0.1  
E
Perforation Position  
Cavity to Perforation (Width Direction)  
Perforation Diameter  
Cavity Hole Diameter  
Perforation Pitch  
1.75±0.1  
F
7.5±0.1  
+0.10/-0.00  
D
1.55  
+0.25/-0.00  
D1  
P0  
P1  
A0  
B0  
K0  
t
1.50  
4.0±0.1  
2.0±0.1  
Cavity to Perforation (Length Direction)  
Cavity Length  
6.5±0.1  
Cavity Width  
10.3±0.1  
2.1±0.1  
Cavity Depth  
Carrier Tape Thickness  
Cover Tape Width  
0.30±0.05  
13.3±0.1  
C
Rev. 1.60  
257  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Carrier Tape Dimensions  
P
0
P
1
t
D
E
F
B
0
W
C
K
1
D
1
P
K
2
A
0
R
e
e
l
H
o
l
e
(
C
i
r
c
l
e
)
I
C
p
a
c
k
a
g
e
p
i
n
1
a
n
d
t
h
e
r
e
a
r
e
l
o
c
a
t
e
d
o
n
t
h
e
s
a
m
e
s
i
d
R
e
e
l
H
o
l
e
(
E
l
l
i
p
s
e
)
SSOP 48W  
Symbol  
Description  
Dimensions in mm  
32.0±0.3  
W
P
Carrier Tape Width  
Cavity Pitch  
16.0±0.1  
E
Perforation Position  
1.75±0.10  
14.2±0.1  
F
Cavity to Perforation (Width Direction)  
Perforation Diameter  
D
2 Min.  
+0.25/-0.00  
D1  
P0  
P1  
A0  
B0  
K1  
K2  
t
Cavity Hole Diameter  
1.50  
Perforation Pitch  
4.0±0.1  
2.0±0.1  
Cavity to Perforation (Length Direction)  
Cavity Length  
12.0±0.1  
16.2±0.1  
2.4±0.1  
Cavity Width  
Cavity Depth  
Cavity Depth  
3.2±0.1  
Carrier Tape Thickness  
Cover Tape Width  
0.35±0.05  
25.5±0.1  
C
Rev. 1.60  
258  
September 9, 2011  
HT66F20/HT66F30/HT66F40/HT66F50/HT66F60  
HT66FU30/HT66FU40/HT66FU50/HT66FU60  
Holtek Semiconductor Inc. (Headquarters)  
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan  
Tel: 886-3-563-1999  
Fax: 886-3-563-1189  
http://www.holtek.com.tw  
Holtek Semiconductor Inc. (Taipei Sales Office)  
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan  
Tel: 886-2-2655-7070  
Fax: 886-2-2655-7373  
Fax: 886-2-2655-7383 (International sales hotline)  
Holtek Semiconductor Inc. (Shenzhen Sales Office)  
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057  
Tel: 86-755-8616-9908, 86-755-8616-9308  
Fax: 86-755-8616-9722  
Holtek Semiconductor (USA), Inc. (North America Sales Office)  
46729 Fremont Blvd., Fremont, CA 94538, USA  
Tel: 1-510-252-9880  
Fax: 1-510-252-9885  
http://www.holtek.com  
Copyright Ó 2011 by HOLTEK SEMICONDUCTOR INC.  
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek as-  
sumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used  
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable  
without further modification, nor recommends the use of its products for application that may present a risk to human life  
due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices  
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,  
please visit our web site at http://www.holtek.com.tw.  
Rev. 1.60  
259  
September 9, 2011  

相关型号:

HT66FU60(48LQFP-A)

Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PQFP48
HOLTEK

HT66FU60(48QFN-A)

Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PQCC48
HOLTEK

HT66FU60A

Enhanced A/D Flash Type 8-Bit MCU with EEPROM and UART Interface
HOLTEK

HT6720

13.56MHz RFID Transponder
HOLTEK

HT672A

13.56MHz RFID Transponder
HOLTEK

HT672A_07

13.56MHz RFID Transponder
HOLTEK

HT672B

13.56MHz RFID Transponder
HOLTEK

HT672B(8DIP-A)

Analog Circuit
HOLTEK

HT6730

Industrial Control IC
ETC

HT6740

13.56MHz RFID Transponder
HOLTEK

HT6740(8DIP-A)

Analog Circuit
HOLTEK

HT6740_07

13.56MHz RFID Transponder
HOLTEK