HI-5002PCI [HOLTIC]

1Mbps CAN Transceiver with Low Power Standby Mode; 1Mbps的CAN与低功耗待机模式收发器
HI-5002PCI
型号: HI-5002PCI
厂家: HOLT INTEGRATED CIRCUITS    HOLT INTEGRATED CIRCUITS
描述:

1Mbps CAN Transceiver with Low Power Standby Mode
1Mbps的CAN与低功耗待机模式收发器

文件: 总13页 (文件大小:83K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI-5000, HI-5001, HI-5002  
1Mbps CAN Transceiver with  
Low Power Standby Mode  
September 2011  
PIN CONFIGURATIONS (Top Views)  
GENERALDESCRIPTION  
TXD - 1  
GND - 2  
VDD - 3  
RXD - 4  
8 - STB  
The HI-5000 is a 1 Mbps Controller Area Network (CAN)  
transceiver. It interfaces between a CAN protocol con-  
troller and the physical wires of the bus in a CAN network.  
Differential output amplitude and current drive capability  
are specifically enhanced to meet the needs of long cable  
runs typical in many applications such as industrial auto-  
mation.  
7 - CANH  
6 - CANL  
5 - SPLIT  
HI-5000PSI  
TXD - 1  
GND - 2  
VDD - 3  
RXD - 4  
8 - STB  
7 - CANH  
6 - CANL  
5 - VIO  
HI-5001PSI  
The HI-5000 supports two modes of operation: Normal  
Mode and Standby Mode. The Standby Mode is a very  
low-current mode which continues to monitor bus activity  
and allows an external controller to manage wake-up.  
8 - PIN PLASTIC NARROW BODY SOIC  
Superior common-mode receiver performance makes  
the device especially suitable for applications where  
ground reference voltages may vary from point to point  
over long distances along the CAN bus. In addition, the  
HI-5000 provides a SPLIT pin to give an output reference  
voltage of VDD/2 which can be used for stabilizing the re-  
cessive bus level when the split termination technique is  
used to terminate the bus.  
GND  
GND  
VDD  
VDD  
1
2
3
4
12 CANH  
11 CANH  
10 CANL  
HI-5002PCI  
9
CANL  
A TXD dominant time-out feature also protects the bus  
from being driven into a permanent dominant state (so-  
called “babbling idiot”) if pin TXD becomes permanently  
low due to application failure.  
16 - PIN PLASTIC 4 x 4mm QFN  
The device also has short circuit protection to +/-58V on  
CANH, CANL and SPLIT pins and ESD protection to  
+/- 6kV on all pins.  
FEATURES  
The HI-5001 is identical to the HI-5000 except the SPLIT  
pin is substituted with a VIO supply voltage pin. This al-  
lows the HI-5001 to interface directly with controllers with  
2.5V or 3.3V supply voltages.  
· Compatible with ISO 11898-5 standard.  
· Signaling rates up to 1Mbit/s.  
· Internal VDD/2 voltage source available to stabilize the  
recessive bus level if split termination is used (HI-5000  
SPLIT pin).  
· VIO input on HI-5001 allows for direct interfacing with 2.5V  
or 3.3V controllers.  
· Detection of permanent dominant on TXD pin (babbling  
idiot protection).  
The HI-5002 provides both the SPLIT and VIO supply  
voltage pins in a compact 16-pin QFN.  
All three devices are available in industrial -40oC to +85oC  
temperature ranges. “RoHS compliant” lead-free options  
are also available.  
· High impedance allows connection of up to 120 nodes.  
· CANH, CANLand SPLITpins short-circuit proof to +/-58V.  
· Will not disturb the bus if unpowered.  
HOLT INTEGRATED CIRCUITS  
www.holtic.com  
(DS5000 Rev. B)  
09/11  
HI-5000, HI-5001, HI-5002  
PIN DESCRIPTIONS  
SIGNAL  
TXD  
FUNCTION  
INPUT  
DESCRIPTION  
100kOhm internal pull-up. Transmit Data Input.  
Chip 0V supply  
GND  
POWER  
POWER  
OUTPUT  
BUS I/O  
BUS I/O  
INPUT  
VDD  
Positive supply, 5V +/-5%. Bypass with 0.1uF ceramic capacitor.  
Receive Data Output.  
RXD  
CANL  
CANH  
STB  
CAN Bus Line Low.  
CAN Bus Line High.  
100kOhm internal pull-up. Standby Mode selection input. Drive STB low or connect to GND  
for Normal operation. Drive STB high to select low-current Standby Mode.  
Supplies a VDD/2 output to provide recessive bus level stabilization when a split termination  
is used to terminate the bus.  
SPLIT  
(HI-5000)  
VIO  
INPUT  
INPUT  
Connect to a 2.5V or 3.3V supply to allow compatibility of all digital I/O (RXD, TXD, STB)  
with a low voltage controller input.  
(HI-5001)  
BLOCK DIAGRAM  
VDD  
SPLIT  
V Split  
(HI-5000)  
CANH  
TXD  
Dominant  
Detect  
CANL  
TXD  
STB  
Driver  
Standby  
Control  
VIO  
(HI-5001)  
Main  
Receiver  
RXD  
GND  
MUX  
Low power  
Standby Rx  
Figure 1. HI-5000 Functional Block Diagram  
HOLT INTEGRATED CIRCUITS  
2
HI-5000, HI-5001, HI-5002  
FUNCTIONAL DESCRIPTION  
due to an unpowered node with high leakage from the bus  
lines to ground), the split circuit will force the recessive  
voltage to VDD/2.  
OPERATING MODES  
The HI-5000 provides two modes of operation which are  
selectable via the STB pin. Table 1 summarizes the modes.  
INTERNAL PROTECTION FEATURES  
Table 1 - Operating Modes  
Short-circuit protection  
MODE  
STB pin  
Short-circuit protection is provided on the CANH, CANL and  
SPLIT pins. These pins are protected from ESD to over 6KV  
(HBM) and from shorts between -58V and +58V continuous,  
as specified in ISO 11898-5. The short circuit current is limited  
to less than 200mAtypical.  
Normal  
LOW  
HIGH  
Standby  
TXD permanent dominant time-out  
Normal Mode  
A timer circuit prevents the bus lines being driven into a  
permanent dominant state, which would result in a situation  
blocking all bus traffic. This could happen in the case of the  
TXD pin becoming permanently low due to a hardware or  
application failure. The timer is triggered by a negative edge  
on the TXD pin (start of dominant state). If the TXD pin is not  
set high (recessive state) after a typical time of 2ms, the  
transmitter outputs will be disabled, putting the bus lines into  
the recessive state. The timer is reset by a positive edge on  
the TXD pin. Note that the minimum TXD dominant time-out  
time, tdom = 300μs, defines the minimum possible bit rate of  
40kbit/s (the CAN protocol specifies a maximum of 11  
successive dominant bits − 5 successive dominant bits  
immediately followed by an error frame).  
Normal mode is selected by setting the STB pin to a LOW  
logic level (GND). In this mode, the transceiver transmits and  
receives data in the usual way from the CANH and CANLbus  
lines. The differential receiver converts the analog bus data  
to digital data which is output on the RXD pin (Note: the RXD  
output on HI-5001 is compatible with 2.5V or 3.3V controllers  
if the VIO pin is connected to a 2.5V or 3.3V supply).  
Standby Mode  
Standby Mode is selected by setting the STB pin to a HIGH  
logic level. In this mode, the transmitter is switched off and a  
low power differential receiver monitors the bus lines for  
activity. A dominant signal of more than 3ms will be reflected  
on the RXD pin as a logic LOW, where it may be detected by  
the host as a wake-up request. The device will not leave  
standby mode until the host forces the STB pin to a logic low.  
Fail-safe features  
Pin TXD has a pull up in order to set a recessive level if pin  
TXD is left open.  
Pins TXD and STB will become floating if power is lost. This  
will prevent reverse currents via these pins.  
SPLIT Circuit  
The SPLIT pin provides a stable VDD/2 DC voltage. This  
pin can be used to stabilize the recessive common mode  
voltage by connecting the SPLIT pin to the center tap of the  
split termination (see figure 7). In the case of a recessive  
bus voltage dropping below the ideal value of VDD/2 (e.g.  
HOLT INTEGRATED CIRCUITS  
3
HI-5000, HI-5001, HI-5002  
TIMING DIAGRAMS  
Timing Delays  
HIGH  
LOW  
TXD  
CANH  
CANL  
Dominant  
Recessive  
0.9V  
V
DIFF(BUS) =  
V
CANH - VCANL  
0.5V  
HIGH  
LOW  
RXD  
50%  
50%  
tdr(TXD)  
tdf(TXD)  
tdr(RXD)  
tdf(RXD)  
tProp1  
tProp2  
TXD dominant time-out feature  
transmitter  
enabled  
tRdom  
tdom(TXD)  
recessive  
HIGH  
LOW  
TXD  
dominant  
transmitter disabled  
CANH  
CANL  
HOLT INTEGRATED CIRCUITS  
4
HI-5000, HI-5001, HI-5002  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to GND = 0V)  
Supply Voltage, VDD, VIO : .....................................................................7V Operating Temperature Range:(Industrial).........................-40°C to +85°C  
Current at Input pins ......................................................-100mA to +100mA  
Maximum Junction Temperature2 ......................................................175°C  
DC Voltages at TXD, RXD and STB ..............................-0.5V to VDD +0.5V  
DC Voltages at CANH, CANL and SPLIT: ...............................-58V to +58V  
Internal Power Dissipation: ..............................................................900mW  
Storage Temperature Range: -65°C to +150°C  
Soldering Temperature:  
(Ceramic)......................60 sec. at +300°C  
(Plastic - leads).............10 sec. at +280°C  
(Plastic - body) .....................+260°C Max.  
Electrostatic Discharge (ESD)1, All pins ..........................................+/- 6kV  
NOTES:  
1. Human Body Model (HBM).  
2. Junction Temperature TJ is defined as TJ = TAMB + P × Rth, where TAMB is the ambient or operating temperature, P is the power dissipation and Rth is  
a fixed thermal resistance value which depends on the package and circuit board mounting conditions.  
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional  
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
VDD = 5V±5%, Operating temperature range (unless otherwise noted). Positive currents flow into the IC.  
LIMITS  
PARAMETER  
SUPPLY CURRENT  
SYMBOL  
CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
VDD Supply Current  
IDD  
IIO  
Recessive: VTXD = VDD  
Dominant: VTXD = 0 V  
Standby Mode: VTXD = VDD  
6
50  
15  
10  
70  
30  
100  
mA  
mA  
μA  
VIO Supply Current  
μA  
DIGITAL INPUTS (Pins TXD, STB)  
HIGH-level input voltage (see Note 1)  
LOW-level input voltage  
VIH  
VIL  
70%VDD  
− 0.5  
VDD + 0.5  
30%VDD  
V
V
HIGH-level input current  
LOW-level input current  
IIH  
IIL  
VTXD = VDD or VIO  
VTXD = 0 V  
− 5  
0
− 50  
+ 5  
− 150  
μA  
μA  
DIGITAL OUTPUTS  
HIGH-level output voltage (RXD Pin) (see Note 1)  
LOW-level output voltage (RXD Pin)  
VOH  
VOL  
IOH = 1mA  
IOL = 1mA  
90%VDD  
0
V
V
0.1  
10%VDD  
Output voltage (SPLIT Pin)  
Standby leakage current (SPLIT Pin)  
VSPLIT  
ISTB  
− 100 μA < ISPLIT < 100 μA  
0.45VDD 0.5VDD 0.55VDD  
V
μA  
-5  
+5  
DRIVER  
CANH dominant output voltage  
CANL dominant output voltage  
VO(CANH)  
VO(CANL)  
VTXD = 0 V  
VTXD = 0 V (See Fig. 2)  
3
0.5  
3.6  
1.4  
4.25  
1.75  
V
V
Recessive output voltage  
VCANH(r),  
VCANL(r)  
VTXD = VDD, RL = 0 (See Fig. 2)  
VTXD = VDD, RL = 0 (See Fig. 2)  
2
0.5VDD  
3
V
V
Bus output voltage in standby  
VSTB  
-0.1  
0.1  
Dominant differential output voltage  
Recessive differential output voltage  
VDIFF(d)(o)  
VDIFF(r)(o)  
VTXD = 0 V, 45 Ω < RL < 65 Ω  
VTXD = VDD, no load (See Fig. 2)  
1.5  
− 50  
1.8  
0
3
50  
V
mV  
Matching of dominant output voltage,  
VDD − VO(CANH) − VO(CANL)  
VOM  
(See Fig. 4)  
− 100  
2
-40  
150  
3
mV  
V
Steady state common mode output voltage  
VOC(ss)  
VSTB = 0V, RL = 60 Ω (See Fig. 5)  
0.5VDD  
NOTE:  
1. When VIO is connected (HI-5001 or HI-5002), limits are referenced wrt VIO rather than VDD.  
HOLT INTEGRATED CIRCUITS  
5
HI-5000, HI-5001, HI-5002  
DC ELECTRICAL CHARACTERISTICS (cont.)  
VDD = 5V±5%, Operating temperature range. Positive currents flow into the IC.  
LIMITS  
TYP  
PARAMETER  
SYMBOL  
CONDITIONS  
UNIT  
MIN  
MAX  
Short-circuit steady-state output current  
IOS(ss)  
VCANH = +58V, VCANL open  
VCANH = -58V, VCANL openV  
VCANL = +58V, VCANH open  
-20  
-200  
100  
-20  
20  
100  
200  
20  
mA  
mA  
mA  
mA  
VCANL = -58V, VCANH open (See Fig. 6)  
RECEIVER  
Differential receiver threshold voltage  
Differential hysteresis voltage  
Differential hysteresis voltage in Standby mode  
VTh(Rx)(diff)  
VHys(Rx)(diff)  
VHys(Stb)(diff)  
− 12 V < VCANH, VCANL < + 12 V  
− 12 V < VCANH, VCANL < + 12 V  
− 12 V < VCANH, VCANL < + 12 V  
500  
50  
500  
700  
120  
900  
200  
1150  
mV  
mV  
mV  
Input leakage current, unpowered node  
Differential input resistance  
ICANH, ICANL  
RIN(DIFF)  
VDD = VIO 0 V  
VCANH = VCANL = 5V  
− 200  
25  
+ 200  
75  
μA  
kΩ  
VTXD = VDD  
− 12 V < VCANH, VCANL < + 12 V  
50  
30  
Common mode input resistance  
RIN(CM)  
VTXD = VDD  
− 12 V < VCANH, VCANL < + 12 V  
15  
45  
kΩ  
%
Deviation between common mode input resistance  
between CANH and CANL  
RIN(CM)(m)  
VCANH = VCANL  
− 3  
+ 3  
AC ELECTRICAL CHARACTERISTICS  
VDD = 5V±5%, Operating temperature range. Positive currents flow into the IC.  
LIMITS  
TYP  
PARAMETER  
SYMBOL  
CONDITIONS  
UNIT  
MIN  
MAX  
Bit time  
Bit rate  
tBit  
fBit  
1
40  
25  
1000  
μs  
kHz  
Common mode input capacitance3  
Differential input capacitance3  
CIN(CM)  
CDIFF(CM)  
VTXD = VDD, 1Mbit/s data rate  
VTXD = VDD, 1Mbit/s data rate  
20  
10  
pF  
pF  
Delay TXD to bus active  
Delay TXD to bus inactive  
Delay bus active to RXD  
Delay bus inactive to RXD  
tdr(TXD)  
tdf(TXD)  
tdf(RXD)  
tdr(RXD)  
40  
40  
30  
70  
90  
90  
70  
150  
ns  
ns  
ns  
ns  
See Timing Diagrans  
Propagation delay TXD to RXD (recessive to dominant)  
Propagation delay TXD to RXD (dominant to recessive)  
tProp1  
tProp2  
70  
110  
160  
240  
ns  
ns  
TXD permanent dominant time-out  
TXD permanent dominant timer reset time  
tdom  
tRdom  
VTXD = 0 V  
Rising edge on TXD while in  
permanent dominant state  
0.3  
0.5  
2
6
1
ms  
μs  
Dominant time required on bus for standby receiver  
detection  
twake  
3
5
μs  
NOTES:  
1. All currents into the device pins are positive; all currents out of the device pins are negative.  
2. All typicals are given for VDD = 5V, TA = 25°C.  
3. Guaranteed by design but not tested.  
HOLT INTEGRATED CIRCUITS  
6
HI-5000, HI-5001, HI-5002  
Application and Test Information  
Transceiver  
TXD  
VDIFF(d)(o)  
RL  
VO(CANH)  
VO(CANL)  
STB  
Dominant  
~3.5V: VO(CANH)  
~2.5V  
Recessive  
~1.5V: VO(CANL)  
Figure 2. CAN Bus Driver Circuit  
300 W +/- 1%  
Transceiver  
TXD  
CANH  
0V  
VDIFF(d)(o)  
RL  
+
-12V <= VTEST <= +12V  
_
CANL  
300 W +/- 1%  
STB  
Figure 3. CAN Bus Driver (Dominant) Test Circuit  
Transceiver  
TXD  
VDIFF(d)(o)  
RL  
VO(CANH)  
V1  
VO(CANL)  
VOM = VDD - VO(CANH) + VO(CANL)  
STB  
Figure 4. Driver Output Symmetry Test.  
HOLT INTEGRATED CIRCUITS  
7
HI-5000, HI-5001, HI-5002  
Application and Test Information  
Transceiver  
TXD  
VDIFF(d)(o)  
RL  
V1  
VO(CANH)  
VO(CANL)  
VOC(ss) = VO(CANH) + VO(CANL)  
2
STB  
Figure 5. Common Mode Output Voltage Test.  
Transceiver  
CANH  
TXD  
+
-58V or +58V  
_
CANL  
V1  
Figure 6. CAN Bus Driver Short-Circuit Test. (Note: V1 is a pulse from 0V to VDD with duty cycle  
of 99% such that permanent dominant time-out is avoided).  
HOLT INTEGRATED CIRCUITS  
8
HI-5000, HI-5001, HI-5002  
Application and Test Information  
VBAT  
5V  
Regulator  
VDD  
TXD  
RXD  
3
CANH  
SPLIT  
VDD  
1
4
TXD  
RXD  
7
5
RL/2  
RL/2  
HI-5000  
Controller  
GND  
(optional)  
STB  
CANL  
8
6
2
GND  
5V  
VBAT  
3.3V  
Regulator  
VDD  
7
VIO  
1
TXD  
RXD  
3
5
CANH  
VDD  
TXD  
RXD  
4
RL  
HI-5001  
Controller  
STB  
CANL  
8
6
GND  
2
GND  
Figure 7. Typical Application Connections  
HOLT INTEGRATED CIRCUITS  
9
HI-5000, HI-5001, HI-5002  
ORDERING INFORMATION  
HI - 500x xxx x  
LEAD  
PART  
NUMBER  
FINISH  
Tin / Lead (Sn / Pb) Solder  
Blank  
F
100% Matte Tin (Pb-free, RoHS compliant)  
PART  
NUMBER  
PACKAGE  
DESCRIPTION  
PSI  
PCI  
CRI  
8 PIN PLASTIC NARROW BODY SOIC (8HN) (HI-5000 or HI-5001 only)  
16 PIN PLASTIC 4 x 4 mm QFN (16PCS) (HI-5002 only)  
8 PIN CERDIP (8D) not available Pb-free (HI-5000 or HI-5001 only)  
PART  
NUMBER  
DESCRIPTION  
SPLIT pin option  
VIO pin option  
5000  
5001  
Both SPLIT and VIO pins available  
5002  
HOLT INTEGRATED CIRCUITS  
10  
HI-5000, HI-5001, HI-5002  
REVISION HISTORY  
P/N  
Rev  
Date  
Description of Change  
DS5000 NEW 04/01/11 Initial Release  
A
B
04/29/11 Corrected heat-sink note on QFN package drawing.  
09/16/11 Update pad and heat-sink dimensions for 16-lead QFN package (16PCS)  
HOLT INTEGRATED CIRCUITS  
11  
PACKAGE DIMENSIONS  
8-PIN PLASTIC SMALL OUTLINE (SOIC) - NB  
(Narrow Body)  
inches (millimeters)  
Package Type: 8HN  
.194 .004  
(4.92 .09)  
.0085 .0015  
(.216 .038)  
.236 .008  
(5.99 .21)  
.154 .004  
(3.90 .09)  
PIN 1  
See Detail A  
.0165 .003  
(.419 .089)  
.055 .005  
(1.397 .127)  
0° to 8°  
.0069 .003  
(.1753 .074)  
.050  
(1.27)  
.033 .017  
(.838 .432)  
BSC = “Basic Spacing between Centers”  
is theoretical true position dimension and  
has no tolerance. (JEDEC Standard 95)  
BSC  
Detail A  
16-PIN PLASTIC CHIP-SCALE PACKAGE  
millimeters  
Package Type: 16PCS  
Electrically isolated metal  
heat sink on bottom of  
package  
Connect to any ground or  
power plane for optimum  
thermal dissipation  
2.80 .10  
4.00 BSC  
0.65 BSC  
Bottom  
View  
Top View  
4.00 BSC  
2.80 .10  
0.30 .05  
0.40 .05  
1.00 max  
0.20 typ  
BSC = “Basic Spacing between Centers”  
is theoretical true position dimension and  
has no tolerance. (JEDEC Standard 95)  
HOLT INTEGRATED CIRCUITS  
12  
PACKAGE DIMENSIONS  
inches (millimeters)  
8-PIN CERDIP  
Package Type: 8D  
.380 ±.004  
(9.652 ±.102)  
.005 min  
(.127 min)  
.248 ±.003  
(6.299 ±.076)  
.039 ±.006  
(.991 ±.154)  
.100  
(2.54)  
BSC  
.314 ±.003  
(7.976 ±.076)  
.015 min  
(.381min)  
.200 max  
(5.080 max)  
Base Plane  
.010 ±.006  
(.254 ±.152)  
Seating Plane  
.018 ±.006  
(.457 ±.152)  
.163 ±.037  
(4.140 ±.940)  
.350 ±.030  
(8.890 ±.762)  
.056 ±.006  
(1.422 ±.152)  
BSC = “Basic Spacing between Centers”  
is theoretical true position dimension and  
has no tolerance. (JEDEC Standard 95)  
HOLT INTEGRATED CIRCUITS  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY