HX6228TSNT [HONEYWELL]

128K x 8 STATIC RAM-SOI HX6228; 128K x 8静态RAM - SOI HX6228
HX6228TSNT
型号: HX6228TSNT
厂家: Honeywell    Honeywell
描述:

128K x 8 STATIC RAM-SOI HX6228
128K x 8静态RAM - SOI HX6228

文件: 总12页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Military & Space Products  
128K x 8 STATIC RAM—SOI  
HX6228  
FEATURES  
RADIATION  
OTHER  
• Fabricated with RICMOS™ IV Silicon on Insulator (SOI) • Read/Write Cycle Times  
16 ns (Typical)  
25 ns (-55 to 125°C)  
0.7 µm Process (Leff = 0.55 µm)  
• Total Dose Hardness through 1x106 rad(SiO2)  
• Neutron Hardness through 1x1014 cm-2  
• Typical Operating Power <25 mW/MHz  
• Asynchronous Operation  
• Dynamic and Static Transient Upset Hardness  
through 1x1011 rad (Si)/s  
• CMOS or TTL Compatible I/O  
• Single 5 V 10% Power Supply  
• Packaging Options  
• Dose Rate Survivability through <1x1012 rad(Si)/s  
• Soft Error Rate of <1x10-10 upsets/bit-day in  
Geosynchronous Orbit  
- 32-Lead Flat Pack (0.820 in. x 0.600 in.)  
- 40-Lead Flat Pack (0.775 in. x 0.710 in.)  
• No Latchup  
GENERAL DESCRIPTION  
The 128K x 8 Radiation Hardened Static RAM is a high  
performance 131,072 word x 8-bit static random access  
memory with industry-standard functionality. It is fabricated  
with Honeywell’s radiation hardened technology, and is  
designed for use in systems operating in radiation environ-  
ments. The RAM operates over the full military temperature  
rangeandrequiresonlyasingle5V 10%powersupply.The  
RAM is wire bond programmable for either TTL or CMOS  
compatible I/O. Power consumption is typically less than 25  
mW/MHz in operation, and less than 5 mW in the low power  
disabled mode. The RAM read operation is fully asynchro-  
nous, with an associated typical access time of 15 ns at 5V.  
Honeywell’senhancedSOIRICMOS™IV(RadiationInsen-  
sitive CMOS) technology is radiation hardened through the  
useofadvancedandproprietarydesign,layoutandprocess  
hardening techniques. The RICMOS™ IV process is an  
advanced 5-volt, SIMOX CMOS technology with a 150 Å  
gate oxide and a minimum feature size of 0.7 µm (0.55 µm  
effective gate length—Leff). Additional features include  
Honeywell’sproprietarySHARPplanarizationprocess, and  
a lightly doped drain (LDD) structure for improved short  
channelreliability.A7transistor(7T)memorycellisusedfor  
superior single event upset hardening, while three layer  
metal power bussing and the low collection volume SIMOX  
substrate provide improved dose rate hardening.  
HX6228  
FUNCTIONAL DIAGRAM  
131,072 x 8  
Memory  
Array  
A:3-7,12,14-16  
Row  
Decoder  
9
CE  
NCS  
8
Column Decoder  
Data Input/Output  
DQ:0-7  
8
NWE  
NOE  
WE • CS • CE  
1 = enabled  
Signal  
NWE • CS • CE • OE  
(0 = high Z)  
Signal  
#
All controls must be  
enabled for a signal to  
pass. (#: number of  
buffers, default = 1)  
A:0-2, 8-11, 13  
8
SIGNAL DEFINITIONS  
A: 0-16  
DQ: 0-7  
Address input pins which select a particular eight-bit word within the memory array.  
Bidirectional data pins which serve as data outputs during a read operation and as data inputs during a write  
operation.  
NCS  
Not chip select, when at a low level allows normal operation. When at a high level NCS forces the SRAM to  
a precharge condition, holds the data output drivers in a high impedance state and disables all the input  
buffers except CE. If this signal is not used it must be connected to VSS.  
NWE  
NOE  
Negative write enable, when at a low level activates a write operation and holds the data output drivers in  
a high impedance state. When at a high level NWE allows normal read operation.  
Negative output enable, when at a high level holds the data output drivers in a high impedance state. When  
at a low level, the data output driver state is defined by NCS, NWE and CE. If this signal is not used it must  
be connected to VSS.  
CE  
Chip enable, when at a high level allows normal operation. When at a low level CE forces the SRAM to a  
prechargecondition, holdsthedataoutputdriversinahighimpedancestateanddisablesalltheinputbuffers  
except the NCS input buffer. If this signal is not used it must be connected to VDD.  
TRUTH TABLE  
CE  
NCS  
NWE  
NOE  
MODE  
DQ  
H
H
X
L
L
L
H
L
L
Read  
Write  
Data Out  
Data In  
Notes:  
X
X: VI=VIH or VIL  
XX: VSSVIVDD  
NOE=H: High Z output state maintained  
for NCS=X, CE=X, NWE=X  
H
X
XX  
XX  
XX  
XX  
Deselected High Z  
Disabled High Z  
2
HX6228  
RADIATION CHARACTERISTICS  
Total Ionizing Radiation Dose  
The SRAM will meet any functional or electrical specifica-  
tion after exposure to a radiation pulse up to the transient  
dosesurvivabilityspecification,whenappliedunderrecom-  
mended operating conditions. Note that the current con-  
ducted during the pulse by the RAM inputs, outputs, and  
power supply may significantly exceed the normal operat-  
ing levels. The application design must accommodate  
these effects.  
The SRAM will meet all stated functional and electrical  
specifications over the entire operating temperature range  
afterthespecifiedtotalionizingradiationdose. Allelectrical  
and timing performance parameters will remain within  
specifications after rebound at VDD = 5.5 V and T =125°C  
extrapolatedtotenyearsofoperation. Totaldosehardness  
isassuredbywaferleveltestingofprocessmonitortransis-  
tors and RAM product using 10 KeV X-ray and Co60  
radiation sources. Transistor gate threshold shift correla-  
tions have been made between 10 KeV X-rays applied at  
a dose rate of 1x105 rad(SiO2)/min at T = 25°C and gamma  
rays (Cobalt 60 source) to ensure that wafer level X-ray  
testing is consistent with standard military radiation test  
environments.  
Neutron Radiation  
The SRAM will meet any functional or timing specification  
after exposure to the specified neutron fluence under  
recommended operating or storage conditions. This as-  
sumes an equivalent neutron energy of 1 MeV.  
Soft Error Rate  
Transient Pulse Ionizing Radiation  
The SRAM is capable of meeting the specified Soft Error  
Rate (SER), under recommended operating conditions.  
This hardness level is defined by the Adams 90% worst  
case cosmic ray environment for geosynchronous orbits.  
The SRAM is capable of writing, reading, and retaining  
storeddataduringandafterexposuretoatransientionizing  
radiation pulse up to the specified transient dost rate upset  
specification, when applied under recommended operat-  
ing conditions. To ensure validity of all specified perfor-  
mance parameters before, during, and after radiation (tim-  
ing degradation during transient pulse radiation is 20%),  
it is suggested that stiffening capacitance be placed on or  
near the package VDD and VSS, with a maximum induc-  
tance between the package (chip) and stiffening capaci-  
tance of 0.7 nH per part. If there are no operate-through or  
valid stored data requirements, typical circuit board  
mounted de-coupling capacitors are recommended.  
Latchup  
TheSRAMwillnotlatchupduetoanyoftheaboveradiation  
exposure conditions when applied under recommended  
operating conditions. Fabrication with the SIMOX sub-  
strate material provides oxide isolation between adjacent  
PMOS and NMOS transistors and eliminates any potential  
SCR latchup structures. Sufficient transistor body tie con-  
nections to the p- and n-channel substrates are made to  
ensure no source/drain snapback occurs.  
RADIATION HARDNESS RATINGS (1)  
Test Conditions  
Limits (2)  
Units  
Parameter  
Total Dose  
1x106  
1x1011  
1x1012  
<1x10-10  
1x1014  
rad(SiO2)  
rad(Si)/s  
TA=25°C  
Pulse width 1 µs  
Transient Dose Rate Upset (3)  
Transient Dose Rate Survivability  
Soft Error Rate  
Pulse width 50 ns, X-ray,  
VDD=6.0 V, TA=25°C  
rad(Si)/s  
TA=125°C, Adams 90%  
upsets/bit-day  
N/cm2  
worst case environment  
1 MeV equivalent energy,  
Unbiased, TA=25°C  
Neutron Fluence  
(1) Device will not latch up due to any of the specified radiation exposure conditions.  
(2) Operating conditions (unless otherwise specified): VDD=4.5 V to 5.5 V, -55°C to 125°C.  
(3) Applies to 40-lead flat pack only. Assume 1x1009 rad(Si))/s for 32-lead flat pack. Stiffening capacitance is suggested for optimum expected  
dose rate upset performance as stated above.  
3
HX6228  
ABSOLUTE MAXIMUM RATINGS (1)  
Rating  
Symbol  
Parameter  
Units  
Min  
-0.5  
-0.5  
-65  
Max  
6.5  
VDD  
Supply Voltage Range (2)  
V
V
VPIN  
Voltage on Any Pin (2)  
VDD+0.5  
150  
TSTORE  
TSOLDER  
PD  
Storage Temperature (Zero Bias)  
Soldering Temperature (5 Seconds)  
Maximum Power Power Dissipation (3)  
DC or Average Output Current  
ESD Input Protection Voltage (4)  
Thermal Resistance (Jct-to-Case)  
Junction Temperature  
°C  
°C  
W
270  
2.5  
IOUT  
25  
mA  
V
VPROT  
ΘJC  
1500  
2
°C/W  
°C  
TJ  
175  
(1) Stresses in excess of those listed above may result in permanent damage. These are stress ratings only, and operation at these levels is not  
implied. Frequent or extended exposure to absolute maximum conditions may affect device reliability.  
(2) Voltage referenced to VSS.  
(3) RAM power dissipation (IDDSB + IDDOP) plus RAM output driver power dissipation due to external loading must not exceed this specification.  
(4) Class 1 electrostatic discharge (ESD) input protection. Tested per MIL-STD-883, Method 3015 by DESC certified lab.  
RECOMMENDED OPERATING CONDITIONS  
Description  
Parameter  
Symbol  
Units  
Min  
4.5  
Typ  
5.0  
25  
Max  
5.5  
VDD  
TA  
Supply Voltage (referenced to VSS)  
Ambient Temperature  
V
°C  
V
-55  
-0.3  
125  
VPIN  
Voltage on Any Pin (referenced to VSS)  
VDD+0.3  
CAPACITANCE (1)  
Worst Case  
Symbol  
Parameter  
Test Conditions  
Typical  
Units  
Max  
Min  
CI  
Input Capacitance  
Output Capacitance  
6
8
7
9
pF  
pF  
VI=VDD or VSS, f=1 MHz  
VIO=VDD or VSS, f=1 MHz  
CO  
(1) This parameter is tested during initial design characterization only.  
DATA RETENTION CHARACTERISTICS  
Worst Case (2)  
Typical  
(1)  
Symbol  
Parameter  
Test Conditions  
Units  
Max  
Min  
NCS=VDR  
VDR  
IDR  
Data Retention Voltage (3)  
Data Retention Current  
2.5  
V
VI=VDR or VSS  
NCS=VDD=VDR  
VI=VDR or VSS  
200  
1.0  
mA  
(1) Typical operating conditions: TA= 25°C, pre-radiation.  
(2) Worst case operating conditions: TA= -55°C to +125°C, past total dose at 25°C.  
(3) To maintain valid data storage during transient radiation, VDD must be held within the recommended operating range.  
4
HX6228  
DC ELECTRICAL CHARACTERISTICS  
Worst Case (2)  
Typical  
Symbol  
Parameter  
Units  
Test Conditions  
(1)  
Min  
Max  
VIH=VDD, IO=0,  
VIL=VSS, f=0MHz  
NCS=VDD, IO=0,  
f=40 MHz,  
IDDSB  
Static Supply Current  
0.4  
0.4  
4.5  
2.8  
2.0  
mA  
mA  
mA  
mA  
µA  
IDDSBMF Standby Supply Current - Deselected  
IDDOPW Dynamic Supply Current, Selected (Write)  
IDDOPR Dynamic Supply Current, Selected (Read)  
2.0  
6.0  
4.5  
+5  
f=1 MHz, IO=0, CE=VIH=VDD  
NCS=VIL=VSS (3)  
f=1 MHz, IO=0, CE=VIH=VDD  
NCS=VIL=VSS (3)  
VSSVIVDD  
II  
Input Leakage Current  
Output Leakage Current  
Low-Level Input Voltage  
-5  
VSSVIOVDD  
IOZ  
VIL  
-10  
+10  
µA  
Output=high Z  
CMOS  
TTL  
1.7  
3.2  
0.3xVDD  
V
V
March Pattern  
VDD = 4.5V  
0.8  
CMOS  
TTL  
0.7xVDD  
V
V
March Pattern  
VDD = 5.5V  
VIH  
High-Level Input Voltage  
2.2  
0.3  
0.005  
0.4  
0.1  
V
V
VDD = 4.5V, IOL = 10 mA  
VOL  
VOH  
Low-Level Output Voltage  
High-Level Output Voltage  
VDD = 4.5V, IOL = 200 µA  
4.3  
4.5 VDD-0.1  
4.2  
V
V
VDD = 4.5V, IOH = -5 mA  
VDD = 4.5V, IOH = -200 µA  
(1) Typical operating conditions: VDD= 5.0 V,TA=25°C, pre-radiation.  
(2) Worst case operating conditions: VDD=4.5 V to 5.5 V, -55°C to +125°C, post total dose at 25°C.  
(3) All inputs switching. DC average current.  
2.9 V  
Valid high  
output  
+
-
Vref1  
Vref2  
249  
+
-
Valid low  
output  
DUT  
output  
C >50 pF*  
L
*C = 5 pF for TWLQZ, TSHQZ, TELQZ, and TGHQZ  
L
Tester Equivalent Load Circuit  
5
HX6228  
READ CYCLE AC TIMING CHARACTERISTICS (1)  
Worst Case (3)  
Symbol  
Parameter  
Typical  
(2)  
-55 to 125°C  
Units  
Min  
Max  
TAVAVR Address Read Cycle Time  
16  
15  
12  
16  
12  
5
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TAVQV  
TAXQX  
TSLQV  
TSLQX  
TSHQZ  
TEHQV  
TEHQX  
TELQZ  
TGLQV  
TGLQX  
TGHQZ  
Address Access Time  
25  
25  
Address Change to Output Invalid Time  
Chip Select Access Time  
3
5
Chip Select Output Enable Time  
Chip Select Output Disable Time  
Chip Enable Access Time  
10  
25  
16  
12  
6
Chip Enable Output Enable Time  
Chip Enable Output Disable Time  
Output Enable Access Time  
5
2
10  
9
4
Output Enable Output Enable Time  
Output Enable Output Disable Time  
4
4
9
(1) Test conditions: input switching levels VIL/VIH=0.5V/VDD-0.5V (CMOS), VIL/VIH=0V/3V (TTL), input rise and fall times <1 ns/V, input and  
output timing reference levels shown in the Tester AC Timing Characteristics table, capacitive output loading CL >50 pF, or equivalent  
capacitive output loading CL=5 pF for TSHQZ, TELQZ TGHQZ. For CL >50 pF, derate access times by 0.02 ns/pF (typical).  
(2) Typical operating conditions: VDD=5.0 V, TA=25°C, pre-radiation.  
(3) Worst case operating conditions: VDD=4.5 V to 5.5 V, -55°C to 125°C, post total dose at 25°C.  
TAVAVR  
ADDRESS  
TAVQV  
TSLQV  
TAXQX  
NCS  
TSLQX  
TSHQZ  
HIGH  
IMPEDANCE  
DATA OUT  
DATA VALID  
TEHQX  
TEHQV  
TELQZ  
CE  
TGLQX  
TGLQV  
TGHQZ  
NOE  
(NWE = high)  
6
HX6228  
WRITE CYCLE AC TIMING CHARACTERISTICS (1)  
Worst Case (3)  
-55 to 125°C  
Symbol  
Parameter  
Typical  
(2)  
Units  
Min  
Max  
TAVAVW Write Cycle Time (4)  
13  
9
25  
20  
20  
15  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TWLWH Write Enable Write Pulse Width  
TSLWH  
TDVWH  
TAVWH  
TWHDX  
TAVWL  
TWHAX  
TWLQZ  
Chip Select to End of Write Time  
12  
9
Data Valid to End of Write Time  
Address Valid to End of Write Time  
Data Hold Time after End of Write Time  
Address Valid Setup to Start of Write Time  
Address Valid Hold after End of Write Time  
Write Enable to Output Disable Time  
10  
0
0
0
0
0
5
0
9
TWHQX Write Disable to Output Enable Time  
TWHWL Write Recovery Time  
12  
4
5
5
TEHWH  
Chip Enable to End of Write Time  
11  
20  
(1) Test conditions: input switching levels VIL/VIH=0.5V/VDD-0.5V (CMOS), VIL/VIH=0V/3V (TTL), input rise and fall times <1 ns/V, input and  
output timing reference levels shown in the Tester AC Timing Characteristics table, capacitive output loading >50 pF, or equivalent capacitive  
load of 5 pF for TWLQZ.  
(2) Typical operating conditions: VDD=5.0 V, TA=25°C, pre-radiation.  
(3) Worst case operating conditions: VDD=4.5 V to 5.5 V, -55 to 125°C, post total dose at 25°C.  
(4) TAVAVW = TWLWH + TWHWL.  
T
AVAVW  
ADDRESS  
T
AVWH  
TWHAX  
T
AVWL  
T
WHWL  
TWLWH  
NWE  
T
WLQZ  
T
WHQX  
DATA OUT  
DATA IN  
HIGH  
IMPEDANCE  
T
DVWH  
TWHDX  
DATA VALID  
T
SLWH  
NCS  
CE  
T
EHWH  
7
HX6228  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Read Cycle  
Write Cycle  
The RAM is asynchronous in operation, allowing the read  
cycletobecontrolledbyaddress, chipselect(NCS), orchip  
enable (CE) (refer to Read Cycle timing diagram). To  
perform a valid read operation, both chip select and output  
enable (NOE) must be low and chip enable and write  
enable (NWE) must be high. The output drivers can be  
controlled independently by the NOE signal. Consecutive  
read cycles can be executed with NCS held continuously  
low, and with CE held continuously high, and toggling the  
addresses.  
The write operation is synchronous with respect to the  
address bits, and control is governed by write enable  
(NWE), chip select (NCS), or chip enable (CE) edge  
transitions (refer to Write Cycle timing diagrams). To per-  
form a write operation, both NWE and NCS must be low,  
and CE must be high. Consecutive write cycles can be  
performed with NWE or NCS held continuously low, or CE  
held continuously high. At least one of the control signals  
must transition to the opposite state between consecutive  
write operations.  
For an address activated read cycle, NCS and CE must be  
valid prior to or coincident with the activating address edge  
transition(s). Any amount of toggling or skew between ad-  
dress edge transitions is permissible; however, data outputs  
will become valid TAVQV time following the latest occurring  
address edge transition. The minimum address activated  
read cycle time is TAVAV. When the RAM is operated at the  
minimum address activated read cycle time, the data out-  
puts will remain valid on the RAM I/O until TAXQX time  
following the next sequential address transition.  
The write mode can be controlled via three different control  
signals: NWE, NCS, and CE. All three modes of control are  
similar except the NCS and CE controlled modes actually  
disable the RAM during the write recovery pulse. Both CE  
and NCS fully disable the RAM decode logic and input  
buffers for power savings. Only the NWE controlled mode  
is shown in the table and diagram on the previous page for  
simplicity; however, each mode of control provides the  
same write cycle timing characteristics. Thus, some of the  
parameter names referenced below are not shown in the  
write cycle table or diagram, but indicate which control pin  
is in control as it switches high or low.  
To control a read cycle with NCS, all addresses and CE  
must be valid prior to or coincident with the enabling NCS  
edge transition. Address or CE edge transitions can occur  
later than the specified setup times to NCS, however, the  
valid data access time will be delayed. Any address edge  
transition, which occurs during the time when NCS is low,  
will initiate a new read access, and data outputs will not  
become valid until TAVQV time following the address edge  
transition. Data outputs will enter a high impedance state  
TSHQZ time following a disabling NCS edge transition.  
TowritedataintotheRAM,NWEandNCSmustbeheldlow  
and CE must be held high for at least TWLWH/TSLSH/  
TEHEL time. Any amount of edge skew between the  
signals can be tolerated, and any one of the control signals  
can initiate or terminate the write operation. For consecu-  
tivewriteoperations, writepulsesmustbeseparatedbythe  
minimumspecifiedTWHWL/TSHSL/TELEHtime.Address  
inputs must be valid at least TAVWL/TAVSL/TAVEH time  
before the enabling NWE/NCS/CE edge transition, and  
must remain valid during the entire write time. A valid data  
overlapofwritepulsewidthtimeofTDVWH/TDVSH/TDVEL,  
and an address valid to end of write time of TAVWH/  
TAVSH/TAVEL also must be provided for during the write  
operation. Hold times for address inputs and data inputs  
with respect to the disabling NWE/NCS/CE edge transition  
must be a minimum of TWHAX/TSHAX/TELAX time and  
TWHDX/TSHDX/TELDX time, respectively. The minimum  
write cycle time is TAVAV.  
To control a read cycle with CE, all addresses and NCS  
must be valid prior to or coincident with the enabling CE  
edgetransition.AddressorNCSedgetransitionscanoccur  
later than the specified setup times to CE; however, the  
valid data access time will be delayed. Any address edge  
transition which occurs during the time when CE is high will  
initiate a new read access, and data outputs will not  
become valid until TAVQV time following the address edge  
transition. Data outputs will enter a high impedance state  
TELQZ time following a disabling CE edge transition.  
8
HX6228  
TESTER AC TIMING CHARACTERISTICS  
TTL I/O Configuration  
CMOS I/O Configuration  
3 V  
VDD-0.5 V  
1.5 V  
VDD/2  
Input  
Levels*  
0 V  
0.5 V  
1.5 V  
VDD/2  
Output  
Sense  
Levels  
VDD-0.4V  
0.4 V  
VDD-0.4V  
High Z  
High Z  
0.4 V  
3.4 V  
2.4 V  
3.4 V  
2.4 V  
High Z  
High Z  
High Z = 2.9V  
High Z = 2.9V  
* Input rise and fall times <1 ns/V  
QUALITY AND RADIATIONHARDNESS  
ASSURANCE  
Honeywellmaintainsahighlevelofproductintegritythrough  
process control, utilizing statistical process control, a com-  
plete “Total Quality Assurance System,” a computer data  
base process performance tracking system, and a radia-  
tion hardness assurance strategy.  
procurement by eliminating the need to create detailed  
specifications and offer benefits of improved quality and  
cost savings through standardization.  
RELIABILITY  
The radiation hardness assurance strategy starts with a  
technology that is resistant to the effects of radiation.  
Radiation hardness is assured on every wafer by irradiat-  
ing test structures as well as SRAM product, and then  
monitoring key parameters which are sensitive to ionizing  
radiation. Conventional MIL-STD-883 TM 5005 Group E  
testing, which includes total dose exposure with Cobalt 60,  
may also be performed as required. This Total Quality  
approach ensures our customers of a reliable product by  
engineering in reliability, starting with process develop-  
ment and continuing through product qualification and  
screening.  
Honeywell understands the stringent reliability require-  
ments that space and defense systems require and has  
extensive experience in reliability testing on programs of  
this nature. This experience is derived from comprehen-  
sive testing of VLSI processes. Reliability attributes of the  
RICMOS™ process were characterized by testing spe-  
cially designed irradiated and non-irradiated test struc-  
tures from which specific failure mechanisms were evalu-  
ated. These specific mechanisms included, but were not  
limited to, hot carriers, electromigration and time depend-  
ent dielectric breakdown. This data was then used to make  
changes to the design models and process to ensure more  
reliable products.  
SCREENING LEVELS  
In addition, the reliability of the RICMOS™ process and  
product in a military environment was monitored by testing  
irradiated and non-irradiated circuits in accelerated dy-  
namic life test conditions. Packages are qualified for prod-  
uct use after undergoing Groups B & D testing as outlined  
in MIL-STD-883, TM 5005, Class S. The product is quali-  
fied by following a screening and testing flow to meet the  
customer’s requirements. Quality conformance testing is  
performed as an option on all production lots to ensure the  
ongoing reliability of the product.  
Honeywell offers several levels of device screening to  
meet your system needs. “Engineering Devices” are avail-  
able with limited performance and screening for bread-  
boarding and/or evaluation testing. Hi-Rel Level B and S  
devices undergo additional screening per the require-  
ments of MIL-STD-883. As a QML supplier, Honeywell  
also offers QML Class Q and V devices per MIL-PRF-  
38535 and are available per the applicable Standard  
Microcircuits Drawing (SMD). QML devices offer ease of  
9
HX6228  
PACKAGING  
The 128K x 8 SOI SRAM is offered in a custom 32-lead or  
40-leadFlatPack.Thepackageisconstructedofmultilayer  
ceramic (Al2O3) and features internal power and ground  
planes.  
board packing density. These capacitors effectively attach  
to the internal package power and ground planes. This  
design minimizes resistance and inductance of the bond  
wire and package, both of which are critical in a transient  
radiation environment. All NC (no connect) pins should be  
connected to VSS to prevent charge build up in the  
radiation environment.  
Ceramicchipcapacitorscanbemountedtothepackageby  
theusertomaximizesupplynoisedecouplingandincrease  
32-LEAD FLAT PACK PINOUT  
40-LEAD FLAT PACK PINOUT  
NC  
A16  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DQ0  
DQ1  
DQ2  
VSS  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VDD  
A15  
CE  
NWE  
A13  
A8  
A15  
VSS  
VDD  
NWE  
CE  
A13  
A8  
A16  
VSS  
VDD  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DQ0  
DQ1  
DQ2  
NC  
VDD  
VSS  
NC  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
2
2
3
3
4
4
5
5
6
6
7
7
A9  
Top  
View  
A9  
8
8
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VDD  
VSS  
NC  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
Top  
View  
32-LEAD FLAT PACK  
All dimensions in inches  
Optional capacitors  
in cutout  
VDD VSS VDD  
A
b
C
D
e
0.135 ± 0.015  
0.017 ± 0.002  
0.004 to 0.009  
0.820 ± 0.008  
0.050 ± 0.005 [1]  
0.600 ± 0.008  
E
22018533-001  
1
1
Z
b
(width)  
E
E2 0.500 ± 0.008  
E3 0.040 ref  
TOP  
VIEW  
BOTTOM  
VIEW  
D
F
F
L
0.750 ± 0.005 [2]  
0.295 min [3]  
0.026 to 0.045  
0.035 ± 0.010  
0.080 ref  
e
(pitch)  
Q
S
U
V
W
X
Y
Z
S
U
0.380 ref  
L
Y
X
W
0.050 ref  
0.075 ref  
Kovar  
Lid [4]  
Cutout  
Area  
Ceramic  
Body  
0.010 ref  
A
Lead  
Alloy 42  
Q
C
0.135 ref  
[1] BSC - Basic lead spacing between centers  
[2] Where lead is brazed to package  
[3] Parts delivered with leads unformed  
[4] Lid connected to VSS  
V
E2  
E3  
10  
HX6228  
40-LEAD FLAT PACK  
E
S
1
40  
Top  
View  
b
D
(width)  
21  
20  
e
(pitch)  
L
All dimensions are in inches  
Ceramic Body  
Kovar Lid [3]  
A
b
c
D
E
e
F
G
H
I
L
N
S
T
U
V
W
X
Z
0.131 ± .015  
0.008 ± 0.002  
0.006 ± 0.0015  
0.710 ±0.010  
0.775 ± 0.007  
0.025 ± 0.004  
0.475 ± 0.005  
0.760 ± 0.008  
0.135 ± 0.005  
0.030 ± 0.005  
0.285 ± 0.015  
0.050 ± 0.004  
0.1175 ref  
I
C
X
A
N
(Pedestal)  
Capacitor Pads  
Non-Conductive  
Tie-Bar  
0.064 ref  
0.006 ref  
0.028 ref  
0.125 ref  
0.500 ± 0.005  
0.140 ref  
[1] Parts delivered with leads unformed  
[2] At tie bar  
[3] Lid tied to VSS  
Bottom  
View  
F
G
W
H
Z
V
T
U
11  
HX6228  
DYNAMIC BURN-IN DIAGRAM*  
STATIC BURN-IN DIAGRAM*  
VDD  
VDD  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
VDD  
A15  
CE  
NWE  
A13  
A8  
NC  
A16  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DQ0  
DQ1  
DQ2  
VSS  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
NC  
A16  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DQ0  
DQ1  
DQ2  
VSS  
NC  
VDD  
A15  
CE  
NWE  
A13  
A8  
R
R
F18  
F19  
F0  
F15  
F12  
F11  
F10  
F19  
F9  
F19  
F1  
F1  
F1  
F1  
R
R
R
R
R
F17  
F16  
F7  
F6  
F5  
F4  
F3  
F2  
F8  
F13  
F14  
F1  
F1  
F1  
R
3
R
R
R
R
3
R
R
R
R
4
R
R
R
R
4
5
5
6
6
R
R
R
R
7
A9  
7
R
R
R
R
R
A9  
8
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
R
R
8
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
9
9
R
R
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
F1  
VDD = 5.6V, R 10 K, VIH = VDD, VIL = VSS  
Ambient Temperature 125 °C, F0 100 KHz Sq Wave  
Frequency of F1 = F0/2, F2 = F0/4, F3 = F0/8, etc.  
VDD = 5.5V, R 10 KΩ  
Ambient Temperature 125 °C  
*40-Lead Flat Pack burn-in diagrams have similar connections and are available upon request.  
ORDERING INFORMATION (1)  
6228  
H
X
T
S
C
R
SCREEN LEVEL  
V=QML Class V  
Q=QML Class Q  
S=Level S  
B=Level B  
E=Engr Device (2)  
PART NUMBER  
PROCESS  
X=SOI  
TOTAL DOSE  
HARDNESS  
SOURCE  
H=HONEYWELL  
PACKAGE DESIGNATION  
T=32-Lead FP  
A=40-Lead FP  
K=Known Good Die  
- =Bare die (No Package)  
INPUT  
BUFFER TYPE  
C=CMOS Level  
T=TTL Level  
R=1x105 rad(SiO2)  
F=3x105 rad(SiO2)  
H=1x106 rad(SiO2)  
N=No Level Guaranteed  
(1) Orders may be faxed to 612-954-2051. For technical assistance, contact our Customer Logistics Department at 612-954-2888.  
(2) Engineering Device description: Parameters are tested from -55 to 125°C, 24 hr burn-in, IDDSB = 10mA, no radiation guaranteed.  
Contact Factory with other needs.  
To lea r n m or e a bou t Hon eyw ell Solid Sta te Electr on ics Cen ter ,  
visit ou r w eb site a t h ttp ://w w w .ssec.h on eyw ell.com  
Honeywell reserves the right to make changes to any products or technology herein to improve reliability, function or design. Honeywell does not assume any liability  
arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Helping You Control Your World  
900156  
2/97  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY