RFM119SW [HOPERF]

Embedded EEPROM;
RFM119SW
型号: RFM119SW
厂家: HOPERF    HOPERF
描述:

Embedded EEPROM

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总19页 (文件大小:763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W
RFM119W/RFM119SW  
Featurs  
„
Embedded EEPROM  
y Very Easy Development with RFPDK  
y All Features Programmable  
Frequency Range: 240 to 960 MHz  
FSK, GFSK and OOK Modulation  
Symbol Rate:  
„
„
„
0.5 to 100 ksps (FSK/GFSK)  
0.5 to 30 ksps (OOK)  
„
„
Deviation: 1.0 to 200 kHz  
Two-wire Interface for Registers Accessing and  
EEPROM Programming  
„
„
„
„
„
„
Output Power: -10 to +13 dBm  
Supply Voltage: 1.8 to 3.6 V  
Sleep Current: < 20 nA  
FCC/ETSI Compliant  
RFM119W  
RoHS Compliant  
Module Size:17.8*12.8*5.0mm (RFM119W)  
16*16*5.0mm (RFM119SW)  
Descriptios  
The RFM119W/RFM119SW is a high performance,  
highly  
flexible, low-cost, single-chip (G)FSK/OOK  
transmitter for various,240 to 960 MHz wireless  
applications. It is a part of the HOPERF NextGenRFTM  
family, which includes a complete line of transmitters,  
receivers and transceivers. The RFM119W/RFM119SW  
provides the simplest way to control the data  
transmission. The transmission is started when an  
effective level turnover is detected on the DATA pin,  
while the transmission action will stop after the DATA pin  
holding level low for a defined time window, or after a  
two-wire interface (TWI) command is issued. The chip  
features can be configured in two different ways: setting  
the configuration registers through the TWI, or  
programming the embedded  
RFM119SW  
Applications  
RFPDK. The device operates from a supply voltage of 1.8  
V to 3.6 V, consumes 27.6 mA (FSK @ 868.35 MHz)  
when transmitting +10 dBm output power, and only leak  
„ Low-Cost Consumer Electronics Applications  
Home and Building Automation  
„
„ Remote Fan Controllers  
20 nA when  
it  
is  
in  
sleep  
state.  
The  
„ Infrared Transmitter Replacements  
„ Industrial Monitoring and Controls  
„ Remote Lighting Control  
RFM119W/RFM119SW transmitter together with the  
CMT2219A receiver enables a robust RF link.  
„ Wireless Alarm and Security Systems  
„ Remote Keyless Entry (RKE)  
E-mail:sales@hoperf.com  
Rev 1.0 | Page 1 /19  
www.hoperf.com  
W
RFM119W/RFM119SW  
Abbreviations  
Abbreviations used in this data sheet are described below  
AN  
Application Notes  
PA  
Power Amplifier  
BOM  
BSC  
Bill of Materials  
PC  
Personal Computer  
Printed Circuit Board  
Phase Noise  
Basic Spacing between Centers  
PCB  
EEPROM  
Electrically Erasable Programmable Read-Only PN  
Memory  
RCLK  
Reference Clock  
ESD  
ESR  
ETSI  
Electro-Static Discharge  
Equivalent Series Resistance  
European Telecommunications Standards  
Institute  
RF  
Radio Frequency  
RF Product Development Kit  
Restriction of Hazardous Substances  
Receiving, Receiver  
Small-Outline Transistor  
Symbol Rate  
RFPDK  
RoHS  
Rx  
FCC  
FSK  
GFSK  
Max  
Federal Communications Commission  
Frequency Shift Keying  
Gauss Frequency Shift Keying  
Maximum  
SOT  
SR  
TWI  
Two-wire Interface  
Transmission, Transmitter  
Typical  
Tx  
MCU  
Min  
Microcontroller Unit  
Typ  
Minimum  
USB  
XO/XOSC  
XTAL  
PA  
Universal Serial Bus  
Crystal Oscillator  
Crystal  
MOQ  
NP0  
Minimum Order Quantity  
Negative-Positive-Zero  
Occupied Bandwidth  
On-Off Keying  
OBW  
OOK  
Power Amplifier  
Rev 1.0 | Page 2 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
Table of Contents  
1. Electrical Characteristics............................................................................................................................................ 4  
1.1 Recommended Operating Conditions ................................................................................................................... 4  
1.2 Absolute Maximum Ratings................................................................................................................................... 4  
1.3 Transmitter Specifications..................................................................................................................................... 5  
2. Pin Descriptions .......................................................................................................................................................... 6  
3. Typical Performance Characteristics......................................................................................................................... 7  
4. Typical Application Schematics ................................................................................................................................. 8  
5. Functional Descriptions.............................................................................................................................................. 9  
5.1 Overview............................................................................................................................................................. 9  
5.2 Modulation, Frequency, Deviation and Symbol Rate .......................................................................................... 9  
5.3 Embedded EEPROM and RFPDK ...................................................................................................................... 10  
5.4 Power Amplifier................................................................................................................................................... 11  
5.5 PA Ramping........................................................................................................................................................ 12  
5.6. Working States and Transmission Control Interface ....................................................................................... 13  
5.6.1 Working States................................................................................................................................................. 14  
5.6.2 Transmission Control Interface ........................................................................................................................ 14  
5.6.2.1 Tx Enabled by DATA Pin Rising Edge................................................................................................... 14  
5.6.2.2 Tx Enabled by DATA Pin Falling Edge...................................................................................................14  
5 6.2.3 Two-wire Interface ................................................................................................................................14  
6. Ordering Information................................................................................................................................................. 17  
7. Package Outline......................................................................................................................................................... 18  
8. Contact Information .................................................................................................................................................... 19  
Rev 1.0 | Page 3 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
1. Electrical Characteristics  
VDD = 3.3 V, TOP = 25 , FRF = 868.35 MHz, FSK modulation, output power is +10 dBm terminated in a matched 50  
impedance, unless otherwise noted.  
1.1 Recommended Operating Conditions  
Table 2. Recommended Operation Conditions  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Operation Voltage Supply  
Operation Temperature  
VDD  
TOP  
1.8  
-40  
3.6  
85  
V
Supply Voltage Slew Rate  
1
mV/us  
1.2 Absolute Maximum Ratings  
Table 3. Absolute Maximum Ratings[1]  
Conditions  
Min  
Parameter  
Supply Voltage  
Symbol  
VDD  
Max  
3.6  
Unit  
V
-0.3  
-0.3  
-40  
-50  
Interface Voltage  
VIN  
VDD + 0.3  
125  
V
Junction Temperature  
Storage Temperature  
Soldering Temperature  
ESD Rating  
TJ  
kV  
mA  
TSTG  
TSDR  
150  
Lasts at least 30 seconds  
Human Body Model (HBM)  
@ 85 ℃  
255  
-2  
2
Latch-up Current  
-100  
100  
Note:  
[1]. Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating  
conditions for extended periods may affect device reliability.  
Caution! ESD sensitive device. Precaution should be used when handling the device in order  
to prevent permanent damage.  
Rev 1.0 | Page 4 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
1.3 Transmitter Specifications  
Table 4. Transmitter Specifications  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Frequency Range[1]  
FRF  
240  
960  
MHz  
Hz  
FRF 480 MHz  
FRF > 480 MHz  
FSK/GFSK  
OOK  
198  
397  
Synthesizer Frequency  
Resolution  
FRES  
SR  
Hz  
0.5  
0.5  
100  
30  
ksps  
ksps  
Symbol Rate  
(G)FSK Modulation  
FDEV  
1
-
200  
-
kHz  
Deviation Range  
Bandwidth-Time Product  
Maximum Output Power  
Minimum Output Power  
Output Power Step Size  
OOK PA Ramping Time[2]  
BT  
GFSK modulation  
0.5  
+13  
-10  
1
-
dBm  
dBm  
dB  
POUT(Max)  
POUT(Min)  
PSTEP  
tRAMP  
0
1024  
us  
OOK, 0 dBm, 50% duty cycle  
OOK, +10 dBm, 50% duty cycle  
OOK, +13 dBm, 50% duty cycle  
FSK, 0 dBm, 9.6 ksps  
6.7  
13.4  
17.4  
10.5  
23.5  
32.5  
8.0  
mA  
mA  
mA  
Current Consumption  
@ 433.92 MHz  
IDD-433.92  
mA  
mA  
FSK, +10 dBm, 9.6 ksps  
FSK, +13 dBm, 9.6 ksps  
mA  
OOK, 0 dBm, 50% duty cycle  
OOK, +10 dBm, 50% duty cycle  
OOK, +13 dBm, 50% duty cycle  
FSK, 0 dBm, 9.6 ksps  
mA  
mA  
15.5  
19.9  
12.3  
27.6  
36.1  
20  
mA  
Current Consumption  
@ 868.35 MHz  
IDD-868.35  
mA  
mA  
FSK, +10 dBm, 9.6 ksps  
FSK, +13 dBm, 9.6 ksps  
mA  
Sleep Current  
ISLEEP  
nA  
Frequency Tune Time  
tTUNE  
370  
-80  
us  
100 kHz offset from FRF  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBm  
dBm  
dBm  
dBm  
dB  
Phase Noise @ 433.92  
MHz  
PN433.92  
600 kHz offset from FRF  
-98  
1.2 MHz offset from FRF  
-107  
-74  
100 kHz offset from FRF  
Phase Noise @ 868.35  
MHz  
PN868.35  
600 kHz offset from FRF  
-92  
1.2 MHz offset from FRF  
-101  
-52  
H2433.92  
H3433.92  
H2868.35  
H3868.35  
2nd harm @ 867.84 MHz, +13 dBm POUT  
3rd harm @ 1301.76 MHz, +13 dBm POUT  
2nd harm @ 1736.7 MHz, +13 dBm POUT  
3rd harm @ 2605.05 MHz, +13 dBm POUT  
Harmonics Output for  
433.92 MHz[3]  
-60  
-67  
Harmonics Output for  
868.35 MHz [3]  
-55  
OOK Extinction Ration  
60  
Notes:  
[1]. The frequency range is continuous over the specified range.  
[2]. 0 and 2n us, n = 0 to 10, when set to “0”, the PA output power will ramp to its configured value in the shortest possible  
time.  
[3]. The harmonics output is measured with the application shown as Figure 10.  
Rev 1.0 | Page 5 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
2. Pin Descriptions  
RFM119W. Pin Diagram  
RFM119SW. Pin Diagram  
Table 6. RFM119W/RFM119SW Pin Descriptions  
Pin Number  
Name  
I/O  
Descriptions  
RFM119W RFM119SW  
1
2
1
4
ANT  
VDD  
O
I
Transmitter RF Output  
Power Supply 1.8V to 3.6V  
Data input to be transmitted or  
Data pin to access the embedded EEPROM  
3
8
DATA  
I/O  
4
5
6
7
2,7,9,14  
3,5,6,  
11  
GND  
NC  
I
---  
I
Ground  
Connect to GND  
CLK  
GND  
Clock pin to access the embedded EEPROM  
Ground  
I
8
10,12,13  
NC  
---  
Connect to GND  
Rev 1.0 | Page 6 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
3. Typical Performance Characteristics  
Phase Noise @ 868.35 MHz  
Phase Noise @ 433.92 MHz  
15  
5
13.0 dBm  
@ 868.35 MHz  
20  
10  
13.4 dBm  
@ 433.92 MHz  
5  
0
10  
20  
30  
40  
50  
60  
70  
15  
25  
35  
45  
55  
65  
-55.9 dBm  
@ 869.55 MHz  
56.7 dBm  
@ 435.12 MHz  
432.42 432.67 432.92 433.17 433.42 433.67 433.92 434.17 434.42 434.67 434.92 435.17 435.42  
866.85 867.1 867.35 867.6 867.85 868.1 868.35 868.6 868.85 869.1 869.35 869.6 869.85  
Frequency (MHz) (RBW=10 kHz)  
Frequency (MHz) (RBW = 10 kHz)  
Figure 3. Phase Noise, FRF = 433.92 MHz,  
POUT = +13 dBm, Unmodulated  
Figure 4. Phase Noise, FRF = 868.35 MHz,  
POUT = +13 dBm, Unmodulated  
OOK Spectrum, SR = 9.6 ksps  
FSK vs. GFSK  
20  
10  
10  
0
10  
20  
30  
40  
50  
0
FSK  
-10  
GFSK  
-20  
-30  
-40  
-50  
433.18  
433.37  
433.55  
433.74  
433.92  
434.11  
434.29  
434.48  
434.66  
433.62  
433.72  
433.82  
433.92  
434.02  
434.12  
434.22  
Frequency (MHz)  
Frequency (MHz)  
Figure 5. OOK Spectrum, SR = 9.6 ksps,  
POUT = +10 dBm, tRAMP = 32 us  
Figure 6. FSK/GFSK Spectrum,  
SR = 9.6 ksps, FDEV = 15 kHz  
Spectrum of Various PA Ramping  
Options  
POUT vs.  
VDD  
10  
0
14  
12  
10  
8
1024 us  
512 us  
256 us  
128 us  
64 us  
32 us  
SR = 1.2 ksps  
10  
0
dBm  
+10 dB  
+13 dB  
m
m
4
2
30  
40  
50  
0
2  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
433.17  
433.37  
433.57  
433.77  
433.97  
434.17  
434.37  
434.57  
Supply Voltage VDD (V)  
Frequency (MHz)  
Figure 7. Spectrum of PA Ramping,  
SR = 1.2 ksps, POUT = +10 dBm  
Figure 8. Output Power vs. Supply  
Voltages, FRF = 433.92 MHz  
Rev 1.0 | Page 7 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
4. Typical Application Schematics  
RFM119W  
RFM119SW  
Figure 9: Typical Application Schematic  
E-mail:sales@hoperf.com  
Rev 1.0 | Page 8 /19  
www.hoperf.com  
W
RFM119W/RFM119SW  
5. Functional Descriptions  
VDD  
GND  
VCO  
XOSC  
XTAL  
PFD/CP  
Loop Filter  
RFO  
PA  
Fractional-N  
DIV  
Ramp  
Control  
Modulator  
EEPROM  
CLK  
Interface and Digital Logic  
DATA  
Figure 11. RFM119W/RFM119SW Functional Block Diagram  
5.1 Overview  
The RFM119W/RFM119SW is a high performance, highly flexible, low-cost, single-chip (G)FSK/OOK transmitter for various 240  
to 960  
MHz wireless applications. It is part of the HOPERF NextGenRFTM family, which includes a complete line of transmitters,  
receivers and transceivers. The chip is optimized for the low system cost, low power consumption, battery powered application  
with its highly integrated and low power design.  
The functional block diagram of the RFM119W/RFM119SW is shown in the figure above. The RFM119W/RFM119SW is  
based on direct synthesis of the RF frequency, and the frequency is generated by a low-noise fractional-N frequency  
synthesizer. It uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip to minimize  
the number of external components. Every analog block is calibrated on each Power-on Reset (POR) to the internal voltage  
reference. The calibration can help the chip to finely work under different temperatures and supply voltages. The  
RFM119W/RFM119SW uses the DATA pin for the host MCU to send in the data. The input data will be modulated and sent  
out by a highly efficient PA, which output power can be configured from -10 to +13 dBm in 1 dB step size  
The user can directly use the RFM119W/RFM119SW default configuration for immediate demands. If that cannot meet the  
system requirement, on-line register configuration and off-line EEPROM programming configuration are available for the user  
to customize the chip features. The on-line configuration means there is an MCU available in the application to configure the  
chip registers through the 2-wire interface, while the off-line configuration is done by the HOPERF USB Programmer and the  
RFPDK. After the configuration is done, only the DATA pin is required for the host MCU to send in the data and control the  
transmission. The RFM119W/RFM119SW operates from 1.8 to 3.6 V so that it can finely work with most batteries to their  
useful power limits. It only consumes 15.5 mA (OOK @ 868.35 MHz) / 27.6 mA (FSK @ 868.35 MHz) when transmitting +10  
dBm power under 3.3 V supply voltage.  
5.2 Modulation, Frequency, Deviation and Symbol Rate  
The RFM119W/RFM119SW supports GFSK/FSK modulation with the symbol rate up to 100 ksps, as well as OOK modulation  
with the symbol rate up to 30 ksps. The supported deviation of the (G)FSK modulation ranges from 1 to 200 kHz. The  
RFM119W/RFM119SW continuously covers the frequency range from 240 to 960 MHz, including the license free ISM  
frequency band around 315 MHz,  
433.92 MHz, 868.35 MHz and 915 MHz. The device contains a high spectrum purity low power fractional-N frequency  
synthesizer with output frequency resolution better than 198 Hz when the frequency is less than 480 MHz, and is about 397 Hz  
Rev 1.0 | Page 9 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
when the frequency is larger than 480 MHz. See the table below for the modulation, frequency and symbol rate specifications.  
Table 9. Modulation, Frequency and Symbol Rate  
Parameter  
Value  
(G)FSK/OOK  
240 to 960  
1 to 200  
198  
Unit  
-
Modulation  
Frequency  
Deviation  
MHz  
kHz  
Hz  
Frequency Resolution (FRF 480 MHz)  
Frequency Resolution (FRF > 480 MHz)  
Symbol Rate (FSK/GFSK)  
397  
Hz  
0.5 to 100  
0.5 to 30  
ksps  
ksps  
Symbol Rate (OOK)  
5.3 Embedded EEPROM and RFPDK  
The RFPDK (RF Products Development Kit) is a very user-friendly software tool delivered for the user configuring the  
RFM119W/RFM119SW in the most intuitional way. The user only needs to fill in/select the proper value of each parameter  
and click the “Burn” button to complete the chip configuration. See the figure below for the accessing of the EEPROM and  
Table 10 for the  
summary of all the configurable parameters of the RFM119W/RFM119SW in the RFPDK.  
RFM119W/S  
RFPDK  
EEPROM  
CLK  
HOPERF USB  
Programmer  
Interface  
DATA  
Figure 12. Accessing Embedded EEPROM  
For more details of the HOPERF USB Programmer and the RFPDK, please refer to “AN103 CMT211xA-221xA One-Way RF  
Link Development Kits Users Guide”. For the detail of RFM119W/RFM119SW configurations with the RFPDK, please refer to  
“AN122  
CMT2113/19A Configuration Guideline”.  
Rev 1.0 | Page 10 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
Table 10. Configurable Parameters in RFPDK  
Category  
Parameters  
Descriptions  
Default  
Mode  
To input a desired transmitting radio frequency in  
the range from 240 to 960 MHz. The step size is  
0.001 MHz.  
Basic  
Frequency  
868.35 MHz  
Advanced  
Basic  
Advanced  
Basic  
Modulation  
Deviation  
The option is FSK or GFSK and OOK.  
FSK  
The FSK frequency deviation. The range is from  
1 to 100 kHz.  
35 kHz  
Advanced  
The GFSK symbol rate. The user does not need  
to specify symbol rate for FSK and OOK  
modulation.  
Basic  
Symbol Rate  
2.4 ksps  
Advanced  
To select a proper transmitting output power from  
-10 dBm to +14 dBm, 1 dB margin is given above  
+13 dBm.  
Basic  
RF Settings  
Tx Power  
Xtal Load  
Data  
+13 dBm  
15 pF  
Advanced  
On-chip XOSC load capacitance options: from 10  
to 22 pF. The step size is 0.33 pF.  
To select whether the frequency “Fo + Fdev”  
represent data 0 or 1. The options are:  
Basic Advanced  
Advanced  
0: F-low  
Representation 0: F-high 1: F-low, or  
0: F-low 1: F-high.  
1: F-high  
To control PA output power ramp up/down time  
PA Ramping  
for OOK transmission, options are 0 and 2n us (n  
0 us  
Advanced  
from 0 to 10).  
Start condition of a transmitting cycle, by Data  
Pin Rising/Falling Edge.  
Data Pin Rising  
Edge  
Start by  
Stop by  
Advanced  
Advanced  
Transmitting  
Settings  
Data Pin  
Stop condition of a transmitting cycle, by Data  
Pin Holding Low for 2 to 90 ms.  
Holding Low for  
20 ms  
5.4 Power Amplifier  
A highly efficient single-ended Power Amplifier (PA) is integrated in the RFM119W/RFM119SW to transmit the modulated  
signal out. Depending on the application, the user can design a matching network for the PA to exhibit optimum efficiency at  
the desired output power for a wide range of antennas, such as loop or monopole antenna. Typical application schematics  
and the required BOM are shown in “Chapter 4 Typical Application Schematic”. For the schematic, layout guideline and the  
other detailed information please refer to “AN101 CMT211xA Schematic and PCB Layout Design Guideline”.  
The output power of the PA can be configured by the user within the range from -10 dBm to +13 dBm in 1 dB step size using  
the HOPERF USB Programmer and RFPDK.  
Rev 1.0 | Page 11 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
5.5 PA Ramping  
When the PA is switched on or off quickly, its changing input impedance momentarily disturbs the VCO output frequency. This  
process is called VCO pulling, and it manifests as spectral splatter or spurs in the output spectrum around the desired carrier  
frequency. By gradually ramping the PA on and off, PA transient spurs are minimized. The RFM119W/S has built-in PA  
ramping configurability with options of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 us, as shown in Figure 13. These  
options are only available when the modulation type is OOK. When the option is set to “0”, the PA output power will ramp up  
to its configured value in the shortest possible time. The ramp down time is identical to the ramp up time in the same  
configuration.  
HOPERF recommends that the maximum symbol rate should be no higher than 1/2 of the PA ramping “rate”, as shown in the  
formula below.  
1
)
SRMax 0.5 *  
(
tRAMP  
In which the PA ramping “rate” is given by (1/tRAMP). In other words, by knowing the maximum symbol rate in the application,  
the PA ramping time can be calculated by formula below.  
1
tRAMP 0.5 *  
(
)
SRMAX  
The user can select one of the values of the tRAMP in the available options that meet the above requirement. If somehow the  
RAMP is set to be longer than “0.5 * (1/SRMax)”, it will possibly bring additional challenges to the OOK demodulation of the Rx  
device. For more detail of calculating tRAMP, please refer to “AN122 CMT2113/19A Configuration Guideline”.  
t
0
1
2
4
8
us  
us  
us  
us  
us  
512 us  
1024 us  
Time  
Time  
Logic 1  
Logic 0  
Figure 13. PA Ramping Time  
Rev 1.0 | Page 12 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
5.6. Working States and Transmission Control Interface  
The RFM119W/S has following 4 different working states: SLEEP, XO-STARTUP, TUNE and TRANSMIT.  
SLEEP  
When the RFM119W/RFM119SW is in the SLEEP state, all the internal blocks are turned off and the current consumption is  
minimized to  
20 nA typically.  
XO-STARTUP  
After detecting a valid control signal on DATA pin, the RFM119W/RFM119SW goes into the XO-STARTUP state, and the  
internal XO starts to work. The valid control signal can be a rising or falling edge on the DATA pin, which can be configured on  
host MCU has to wait for the tXTAL to allow the XO to get stable. The tXTAL is to a large degree crystal  
the RFPDK. The  
dependent. A typical value of tXTAL is provided in the Table 11.  
TUNE  
The frequency synthesizer will tune the RFM119W/RFM119SW to the desired frequency in the time tTUNE. The PA can be  
turned on to  
See Figure  
transmit the incoming data only after the TUNE state is done, before that the incoming data will not be transmitted.  
16 and Figure 17 for the details.  
TRANSMIT  
The RFM119W/RFM119SW starts to modulate and transmit the data coming from the DATA pin. The transmission can be  
methods: firstly, driving the DATA pin low for tSTOP time, where the tSTOP can be configured from 20 to 90 ms on the  
ended in 2  
RFPDK;  
secondly, issuing SOFT_RST command over the two-wire interface, this will stop the transmission in 1 ms. See  
Section 6.2.3 for details of the two-wire interface.  
Table 11.Timing in Different Working States  
Parameter  
Symbol  
tXTAL  
Min  
Typ  
400  
370  
Max  
Unit  
us  
XTAL Startup Time [1]  
Time to Tune to Desired Frequency  
Hold Time After Rising Edge  
tTUNE  
us  
tHOLD  
10  
2
ns  
Time to Stop the Transmission[2]  
tSTOP  
90  
ms  
Notes:  
[1]. This parameter is to a large degree crystal dependent.  
[2]. Configurable from 2 to 9 in 1 ms step size and 20 to 90 ms in 10 ms step size.  
Rev 1.0 | Page 13 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
5.6.1 Tx Enabled by DATA Pin Rising Edge  
As shown in the figure below, once the RFM119W/RFM119SW detects a rising edge on the DATA pin, it goes into the XO-  
The user has to pull the DATA pin high for at least 10 ns (tHOLD) after detecting the rising edge, as well as wait  
STARTUP state.  
for the sum of tXTAL and tTUNE before sending any useful information (data to be transmitted) into the chip on the DATA pin. The  
logic state of the DATA pin is “Don't Care” from the end of tHOLD till the end of tTUNE. In the TRANSMIT state, PA sends out the  
input data after  
they are modulated. The user has to pull the DATA pin low for tSTOP in order to end the transmission.  
SLEEP  
SLEEP  
XO-STARTUP TUNE  
TRANSMIT  
STATE  
t
TUNE  
t
XTAL  
t
STOP  
0
Rising Edge  
0
Don’t Care  
Valid Transmitted Data  
RF Signals  
DATA pin  
PA out  
1
t
HOLD  
Figure 16. Transmission Enabled by DATA Pin Rising Edge  
5.6.2 Tx Enabled by DATA Pin Falling Edge  
As shown in the figure below, once the RFM119W/RFM119SW detects a falling edge on the DATA pin, it goes into XO-  
STARTUP state and the XO starts to work. During the XO-STARTUP state, the DATA pin needs to be pulled low. After the XO  
is settled, the RFM119W/RFM119SW goes to the TUNE state. The logic state of the DATA pin is “Don't Care” during the TUNE  
state, PA sends out the input data after they are modulated. The user has to pull the DATA pin low for  
state. In the TRANSMIT  
STOP in order to end the  
transmission. Before starting the next transmit cycle, the user has to pull the DATA pin back to high.  
t
TRANSMIT  
SLEEP  
SLEEP XO-STARTUP TUNE  
STATE  
t
TUNE  
t
STOP  
0
t
XTAL  
0
Falling Edge  
Don’t Care  
1
Valid Transmitted Data  
RF Signals  
1
DATA pin  
PA out  
Figure 17. Transmission Enabled by DATA Pin Falling Edge  
5.6.3 Two-wire Interface  
For power-saving and reliable transmission purposes, the RFM119W/RFM119SW is recommended to communicate with  
the host MCU over a two-wire interface (TWI): DATA and CLK. The TWI is designed to operate at a maximum of 1 MHz.  
The timing requirement and data transmission control through the TWI are shown in this section.  
Rev 1.0 | Page 14 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
Table 12. TWI Requirements  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Digital Input Level High  
Digital Input Level Low  
CLK Frequency  
VIH  
VIL  
0.8  
VDD  
VDD  
kHz  
ns  
0.2  
FCLK  
tCH  
10  
1,000  
CLK High Time  
500  
500  
CLK Low Time  
tCL  
ns  
CLK delay time for the first falling edge of the  
TWI_RST command, see Figure 20  
The data delay time from the last CLK rising  
edge of the TWI command to the time DATA  
return to default state  
CLK Delay Time  
tCD  
20  
15,000  
15,000  
ns  
DATA Delay Time  
tDD  
ns  
DATA Setup Time  
DATA Hold Time  
tDS  
tDH  
From DATA change to CLK falling edge  
From CLK falling edge to DATA change  
20  
ns  
ns  
200  
CLK  
tCH  
tCL  
t
DS DH  
t
DATA  
Figure 18. Two-wire Interface Timing Diagram  
Once the device is powered up, TWI_RST and SOFT_RST should be issued to make sure the device works in SLEEP state  
robustly. On every transmission, TWI_RST and TWI_OFF should be issued before the transmission to make sure the TWI  
circuit functions correctly. TWI_RST and SOFT_RST should be issued again after the transmission for the device going back to  
SLEEP state reliably till the next transmission. The operation flow with TWI is shown as the figure below.  
Reset TWI  
One Transmission Cycle  
One Transmission Cycle  
(1) TWI_RST  
(2) SOFT_RST  
(1) TWI_RST  
(2) TWI_OFF  
(1) TWI_RST  
(2) SOFT_RST  
(1) TWI_RST  
(2) TWI_OFF  
(1) TWI_RST  
(2) SOFT_RST  
TRANSMISSION  
TRANSMISSION  
Figure 19. RFM119W/S Operation Flow with  
TWI  
Table 13. TWI Commands Descriptions  
Descriptions  
Command  
Implemented by pulling the DATA pin low for 32 clock cycles and clocking in 0x8D00, 48 clock cycles in total.  
It only resets the TWI circuit to make sure it functions correctly. The DATA pin cannot detect the  
Rising/Falling edge to trigger transmission after this command, until the TWI_OFF command is issued.  
TWI_RST  
Notes:  
1.  
2.  
Please ensure the DATA pin is firmly pulled low during the first 32 clock cycles.  
When the device is configured as Transmission Enabled by DATA Pin Falling Edge, in order to issue  
the TWI_RST command correctly, the first falling edge of the CLK should be sent tCD after the DATA  
falling edge, which should be longer than the minimum DATA setup time 20 ns, and shorter than 15 us,  
Rev 1.0 | Page 15 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
Command  
Descriptions  
as shown in Figure 20.  
3.  
When the device is configured as Transmission Enabled by DATA Pin Rising Edge, the default state of  
the DATA is low, there is no tCD requirement, as shown in Figure 21.  
Implemented by clocking in 0x8D02, 16 clock cycles in total.  
TWI_OFF  
It turns off the TWI circuit, and the DATA pin is able to detect the Rising/Falling edge to trigger transmission  
after this command, till the TWI_RST command is issued. The command is shown as Figure 22.  
Implemented by clocking in 0xBD01, 16 clock cycles in total.  
It resets all the other circuits of the chip except the TWI circuit. This command will trigger internal calibration  
for getting the optimal device performance. After issuing the SOFT_RST command, the host MCU should  
wait 1 ms before sending in any new command. After that, the device goes to SLEEP state. The command is  
shown as Figure 23.  
SOFT_RST  
32 clock cycles  
16 clock cycles  
CLK  
t
CD  
t
DD  
DATA  
1
0
0x8D00  
1
Figure 20. TWI_RST Command When Transmission Enabled by DATA Pin Falling Edge  
32 clock cycles  
16 clock cycles  
CLK  
0
0x8D00  
0
DATA  
Figure 21. TWI_RST Command When Transmission Enabled by DATA Pin Rising Edge  
16 clock cycles  
16 clock cycles  
CLK  
CLK  
tDD  
t
DD  
Default  
State  
Default  
State  
DATA  
0xBD01 (SOFT_RST)  
DATA  
0x8D02 (TWI_OFF)  
Figure 22. TWI_OFF Command  
Figure 23. SOFT_RST Command  
The DATA is generated by the host MCU on the rising edge of CLK, and is sampled by the device on the falling edge. The CLK  
should be pulled up by the host MCU during the TRANSMISSION shown in Figure 19. The TRANSMISSION process should  
refer to Figure 16 or Figure 17 for its timing requirement, depending on the “Start By” setting configured on the RFPDK.  
The device will go to SLEEP state by driving the DATA low for tSTOP, or issuing SOFT_RST command. A helpful practice for the  
device to go to SLEEP is to issue TWI_RST and SOFT_RST commands right after the useful data is transmitted, instead of  
waiting the tSTOP, this can save power significantly.  
Rev 1.0 | Page 16 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
6. Ordering Information  
RFM119W-433 S1  
Package  
Operation Band  
Mode Type  
P/N: RFM119W-315S1  
RFM119W module at 315MHz band,SMD Package  
P/N: RFM119SW-433S1  
RFM119SW module at 433.92MHz band ,SMD Package  
Rev 1.0 | Page 17 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
7. Package Outline  
Figure 18  
S1 Package Outline Drawing  
Rev 1.0 | Page 18 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  
W
RFM119W/RFM119SW  
8.Contact Information  
HOPE MICROELECTRONICS CO.,LTD  
Add: 2/F, Building 3, Pingshan Private Enterprise Science and Technology Park, Lishan Road, XiLi Town, Nanshan  
District, Shenzhen, Guangdong, China  
Tel: 86-755-82973805  
Fax: 86-755-82973550  
Email: sales@hoperf.com  
Website: http://www.hoperf.com  
http://www.hoperf.cn  
This document may contain preliminary information and is subject to  
change by Hope Microelectronics without notice. Hope Microelectronics  
assumes no responsibility or liability for any use of the information  
contained herein. Nothing in this document shall operate as an express or  
HOPE MICROELECTRONICS CO.,LTD  
Add: 2/F, Building 3, Pingshan Private  
Enterprise Science and Technology  
Park, Lishan Road, XiLi Town, Nanshan  
District, Shenzhen, Guangdong, China  
Tel: 86-755-82973805  
implied license or indemnity under the intellectual property rights of Hope  
Microelectronics or third parties. The products described in this document  
are not intended for use in implantation or other direct life support  
applications where malfunction may result in the direct physical harm or  
injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT  
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY  
OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS  
DOCUMENT.  
Fax: 86-755-82973550  
Email: sales@hoperf.com  
Website: http://www.hoperf.com  
http://www.hoperf.cn  
©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.  
Rev 1.0 | Page 19 /19  
www.hoperf.com  
E-mail:sales@hoperf.com  

相关型号:

RFM119SW-433S1

Embedded EEPROM
HOPERF

RFM119W

Embedded EEPROM
HOPERF

RFM119W-315S1

Embedded EEPROM
HOPERF

RFM12

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE
HOPERF

RFM12-433-D

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE
HOPERF

RFM12-433-D/S

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE
HOPERF

RFM12-868-S1

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE
HOPERF

RFM12B

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE
HOPERF

RFM12B-433-D

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE
HOPERF

RFM12B-433D

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE
ETC

RFM12B-433DP

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE
ETC

RFM12B-433S1

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE
ETC