RFM210LW-433S1 [HOPERF]

Wireless applications;
RFM210LW-433S1
型号: RFM210LW-433S1
厂家: HOPERF    HOPERF
描述:

Wireless applications

无线
文件: 总17页 (文件大小:1092K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RFM210LW  
Features  
Frequency Range: 315 /433.92 MHz  
Symbol Rate: 0.1 to 3.4 kbps  
Sensitivity: -108dBm at 2.4 kbps, 0.1% BER  
Receiver Bandwidth: 200 kHz  
Image Rejection Ratio: 25 dB  
Large Signal Handling:10 dBm  
Supply Voltage: 1.8 to 3.6 V  
Low Power Consumption: 3.8 Ma  
3.3 mA @ 315 MHz  
3.8 mA @ 433.92 MHz  
Low Sleep Current  
RoHS Compliant  
Module Size:32*11*5.0mm  
RFM210LW  
Descriptions  
Applications  
The RFM210LW is an ultra low-cost, low power,  
high performance OOK stand-alone RF receiver for  
315/433.92MHz wireless applications. It is part of  
the CMOSTEK NextGenRFTM family, which  
includes a complete line of transmitters, receivers  
and transceivers. The RFM210LW is a true plug-  
and- run device, no register configuration and  
manually- tune is required. The RFM210LW  
operates from  
z
z
z
Low-Cost Consumer Electronics Applications  
Home and Building Automation  
Infrared Receiver Replacements  
z
Industrial Monitoring and Controls  
Remote Automated Meter Reading  
Remote LightingControl System  
Wireless Alarm and Security Systems  
Remote Keyless Entry (RKE)  
z
z
z
z
1.8  
V
to3.6 V, finely work till the end of most  
batteries’ power. It consumes 3.3 mA current while  
achieving -109 dBm receiving sensitivity at 315  
MHz  
and  
consumes 3.8 mA current while  
achieving -108 dBm receiving sensitivity at433.92  
MHz.  
Rev 1.0 | Page 1 / 17  
RFM210LW  
Abbreviations  
Abbreviations used in this data sheet are described below  
AGC  
AN  
Automatic Gain Control  
Application Notes  
Bit Error Rate  
PC  
Personal Computer  
PCB  
PLL  
PN9  
POR  
PUP  
QFN  
Printed Circuit Board  
Phase Lock Loop  
BER  
BOM  
BSC  
BW  
Bill of Materials  
Pseudorandom Noise 9  
Power On Reset  
Basic Spacing between Centers  
Bandwidth  
Power Up  
Direct Current  
Quad Flat No-lead  
DC  
EEPROM Electrically  
Erasable  
Programmable RF  
Radio Frequency  
Read-Only Memory  
RF Products Development Kit  
Restriction of Hazardous Substances  
Received Signal Strength Indicator  
Receiving, Receiver  
Successive Approximation Register  
Serial Port Interface  
Threshold  
RFPDK  
RoHS  
RSSI  
Rx  
ESD  
ESR  
Ext  
Electro-Static Discharge  
Equivalent Series Resistance  
Extended  
IF  
Intermediate Frequency  
Low Noise Amplifier  
Local Oscillator  
SAR  
SPI  
LNA  
LO  
TH  
LPOSC  
Max  
MCU  
Min  
Low Power Oscillator  
Maximum  
Tx  
Transmission, Transmitter  
Typical  
Typ  
Microcontroller Unit  
Minimum  
USB  
VCO  
WOR  
XOSC  
Universal Serial Bus  
Voltage Controlled Oscillator  
Wake On Radio  
MOQ  
NP0  
NC  
Minimum Order Quantity  
Negative-Positive-Zero  
Not Connected  
Crystal Oscillator  
XTAL/Xtal Crystal  
OOK  
On-Off Keying  
Rev 1.0 | Page 2 / 17  
RFM210LW  
Table of Contents  
1. Electrical Characteristics .................................................................................................................................4  
1.1 Recommended Operation Conditions....................................................................................................4  
1.2 Absolute Maximum Ratings ...................................................................................................................4  
1.3 Receiver Specifications..........................................................................................................................5  
1.4 Crystal Oscillator ....................................................................................................................................6  
1.5 LPOSC ...................................................................................................................................................6  
2. Pin Descriptions .................................................................................................................................................7  
3. Typical Performance Characteristics .............................................................................................................8  
4. Typical Application Schematic ......................................................................................................................9  
5. Functional Descriptions..................................................................................................................................10  
5.1 Overview ..............................................................................................................................................10  
5.2 Modulation, Frequency and Symbol Rate............................................................................................10  
5.3 Main Configration.......................................................................................................11  
5.4 Internal Blocks Description ..................................................................................................................12  
5.4.1 RF Front-end and AGC................................................................................................................ 12  
5.4.2 IF Filter........................................................................................................................................ 12  
5.4.3 RSSI ........................................................................................................................................... 12  
5.4.4 SAR ADC ..................................................................................................................................... 12  
5.4.5 Crystal Oscillator ......................................................................................................................... 12  
5.4.6 Frequency Synthesizer ............................................................................................................... 12  
5.7.7 LPOSC........................................................................................................................................ 12  
5.5 Operation States ...................................................................................................................................13  
5.6Dutycycle receive mode..........................................................................................................................14  
6. Ordering Information .......................................................................................................................................15  
7. Package Outline ...............................................................................................................................................16  
8. Contact Information ..........................................................................................................................................17  
Rev 1.0 | Page 3 / 17  
RFM210LW  
1. Electrical Characteristics  
VDD = 3.3 V, TOP = 25 , FRF = 433.92 MHz, sensitivities are measured in receiving a PN9 sequence and matching  
to 50 Ω impedance, with the BER of 0.1%. All measurements are performed using the board RFM210LW-EM V1.0,  
unless otherwise noted.  
1.1 Recommended Operation Conditions  
1.2 Absolute Maximum Ratings  
Table 3. Absolute Maximum Ratings[1]  
Parameter  
Supply Voltage  
Symbol  
VDD  
Condi  
ti  
ons  
Min  
-0.3  
Max  
3.6  
Unit  
V
InterfaceVoltage  
VIN  
-0.3  
-40  
-50  
VDD + 0.3  
125  
V
Junction Temperature  
Storage Temperature  
Soldering Temperature  
ESD Rating[2]  
TJ  
TSTG  
TSDR  
150  
Lasts at least 30 seconds  
Human Body Model (HBM)  
255  
-2  
2
kV  
Latch-up Current  
-100  
100  
mA  
@ 85  
Notes:  
[1]. Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device under these conditions is not implied.  
Exposure to maximum rating conditions for extended periods may affect device reliability.  
[2]. The RFM210LW is high-performance RF integrated circuits with VCON/P pins having an ESD rating < 2  
kV HBM. Handling and assembly of this device should only be done at ESD-protected workstations.  
Caution! ESD sensitive device. Precaution should be used when  
handling the device in order to prevent permanent damage.  
Rev 1.0 | Page 4 / 17  
E‐mail:sales@hoperf.com  
website://www.hoperf.com  
RFM210LW  
1.3 Receiver Specifications  
Table 4. Receiver Specifications  
Condi ons  
Parameter  
Frequency Range  
Symbol Rate  
Symbol  
FRF  
ti  
Min  
300  
0.1  
Typ  
Max  
480  
3.4  
Unit  
MHz  
kbps  
SR  
FRF = 315 MHz, SR = 2.4 kbps, BER =  
S315  
S433.92  
PLVL  
-109  
-108  
10  
dBm  
dBm  
dBm  
0.1%  
Sensitivity  
FRF = 433.92 MHz, SR = 1 kbps, BER =  
0.1%  
Saturation Input Signal  
Level  
FRF = 315 MHz  
3.5  
3.8  
60  
mA  
mA  
nA  
Working Current  
Sleep Current  
IDD  
FRF = 433.92 MHz  
When sleep timer is off  
ISLEEP  
Frequency Resolution  
Frequency Synthesizer  
Settle Time  
FRES  
24.8  
150  
Hz  
us  
TLOCK  
From XOSC settled  
SR = 1 kbps, ±1 MHz offset, CW  
interference  
52  
74  
dB  
dB  
SR = 1 kbps, ±2 MHz offset, CW  
interference  
BlockingImmunity  
BI  
SR = 1 kbps, ±10 MHz offset, CW  
interference  
75  
35  
dB  
dB  
Image Rejection Ratio  
IMR  
IIP3  
IF = 280 kHz  
Two tone test at 1 MHz and 2 MHz  
offset frequency. Maximum system  
gain settings  
Input 3rd Order Intercept  
Point  
-25  
dBm  
Receiver Bandwidth  
BW  
kHz  
ms  
200  
From power up to receive  
Receiver Start-up Time  
TSTART-UP  
7.3  
Rev 1.0 | Page 5 / 17  
E‐mail:sales@hoperf.com  
website://www.hoperf.com  
RFM210LW  
1.4 Crystal Oscillator  
Parameter  
Symbol  
FXTAL315  
Conditions  
FRF = 315 MHz  
FRF = 433.92 MHz  
Min  
Typ  
Max  
Unit  
18.8744  
MHz  
Crystal Frequency[1]  
FXTAL433.92  
26  
MHz  
ppm  
Crystal Tolerance[2]  
Load Capacitance  
±20  
10  
15  
20  
60  
pF  
CLOAD  
Rm  
Crystal ESR  
Drive Level  
100  
uw  
Aging Per Year  
ppm  
us  
±
2
XTAL Startup Time[3]  
400  
tXTAL  
Notes:  
[1]. The RFM210LW can directly work with external reference clock input to XIN pin (a coupling capacitor is required)  
with peak-to-peak amplitude of 0.3 to 0.7 V.  
[2]. This is the total tolerance including (1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature dependence.  
The acceptable crystal tolerance depends on RF frequency and channel spacing/bandwidth.  
[3]. This parameter is to a large degree crystal dependent.  
Rev 1.0 | Page 6 / 17  
E‐mail:sales@hoperf.com  
website://www.hoperf.com  
RFM210LW  
2. Pin Descriptions  
Figure 2. Pin Diagram  
Table 6. RFM210LW Pin Descriptions  
Pin Number  
Name  
I/O  
Descriptions  
I
Ground  
1
GND  
O
I
Received data output  
Power supply input  
2
3
DATA  
VDD  
I
3-wire SPI clock input for EEPROM programming  
4
5
C
LK  
3-wire SPI data input and output for EEPROM  
programming  
I/O  
I
S
DA  
3-wire SPI chip select input for EEPROM  
programming I  
6
7
C
SB  
I
I
I
GND  
ANT  
GND  
Ground  
RF signal input to the LNA  
8
9
G
round  
round  
10  
I
GND  
G
Rev 1.0 | Page 7 / 17  
E‐mail:sales@hoperf.com  
website://www.hoperf.com  
RFM210LW  
3. Typical Performance Characteristics  
Current vs. Supply Voltage  
Current vs. Temperature  
3.90  
4.8  
4.6  
3.80  
3.70  
3.60  
3.50  
3.40  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
3.3  
1.8  
3.6  
V
V
V
433.92 MHz  
3.20  
315 MHz  
3.10  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
1.80  
2.05  
2.30  
2.55  
2.80  
3.05  
3.30  
3.55  
3.80  
Temperature  
()  
Supply Voltage (  
V
)
Figure 3.1 Current vs. Voltage, FRF = 315  
433.92 MHz, SR = 1 kbps  
/
Figure 3.2 Current vs. Temperature, FRF  
433.92 MHz, SR = 1 kbps  
=
Sensitivity vs. Supply Voltage  
Sensitivity vs. Temperature  
-112.2  
-112.6  
-113.0  
-113.4  
-113.8  
-114.2  
-114.6  
-115.0  
-110.4  
-111.2  
-112.0  
-112.8  
-113.6  
-114.4  
-115.2  
-116.0  
433.92MHz  
315 MHz  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
3.4  
3.7  
4.0  
-40  
-20  
0
20  
40  
60  
80  
100  
Supply Voltage (V)  
Temperature ()  
Figure 3.3 Sensitivity vs. Supply Voltage,  
SR = 1 kbps, BER = 0.1%  
Figure 3.4 Sensitivity vs. Temperature, FRF  
=
433.92  
MHz, VDD = 3.3 V, SR = 1 kbps, BER = 0.1%  
Sensitivity vs. BER  
Sensitivity vs. Symbol Rate  
-112.5  
-101  
-113.0  
-113.5  
-114.0  
-114.5  
-115.0  
-115.5  
-116.0  
-116.5  
-103  
-105  
-107  
-109  
-111  
-113  
-115  
0
4
8
12  
16  
20  
24  
s)  
28  
32  
36  
40  
0.01%  
0.10%  
1.00%  
10.00%  
Symbol Rate (kb  
p
BER  
Figure 3.5 Sensitivity vs. SR, FRF  
=
433.92  
Figure 3.6 Sensitivity vs. BER, FRF  
= 433.92  
MHz, VDD = 3.3 V, BER = 0.1%  
MHz, VDD = 3.3 V, SR = 1 kbps  
Rev 1.0 | Page 8 / 17  
RFM210LW  
Figure 9: Typical Application Schematic  
Rev 1.0 | Page 9 / 17  
RFM210LW  
5. Functional Descriptions  
AGC  
I-LMT  
I-MXR  
OOK  
CSB  
DEMOD  
Image  
RFI  
Rejection  
Band-pass  
Filter  
Radio  
Controller  
LNA  
RSSI  
SAR  
3-wire SPI  
SCL  
SDA  
GND  
AFC & AGC  
Q-MXR  
Q-LMT  
VCO  
26 MHz  
Loop  
Filter  
LO GEN  
PFD/CP  
EEPROM  
LDOs  
Bandgap  
POR  
CLKO  
DOUT  
DIVIDER  
LPOSC  
XOSC  
VDD  
GND  
AFC & Σ-Δ Modulator  
XIN XOUT  
VCON VCOP  
nRSTO  
Figure 5. Functional Block Diagram  
5.1 Overview  
The RFM210LW is an ultra low power, high performance, low-cost OOK stand-alone RF receiver for various 300 /  
480 MHz wireless applications. It is part of the CMOSTEK NextGenRFTM family, which includes a complete line of  
transmitters, receivers and transceivers. The chip is based on a fully integrated, low-IF receiverarchitecture. The  
low-IF architecture facilitates a very low external component count and does not suffer from powerline - induced  
interference problems. The synthesizer contains a VCO and a low noise fractional-N PLL with an output frequency  
resolution of 24.8 Hz. The VCO operates at 2x the Local Oscillator (LO) frequency to reduce spurious emissions.  
Every analog block is calibrated on each Power-on Reset (POR) to the internal reference voltage. The calibration  
helps the device to finely work under different temperatures and supply voltages. The baseband filtering and  
demodulation is done by the digital demodulator. The demodulated signal is output to the external MCU via the  
DOUT pin. No external MCU control is needed in the applications.  
The 3-wire SPI interface is only used for configuring the device. The configuration can be done with the RFPDK and  
the USB Programmer. The RF Frequency, symbol rate and other product features are all configurable. This saves  
the cost and simplifies the design, developmentand manufacture. Alternatively, in stock products of 315/433.92  
MHz are available for immediate demands with no need of EEPROM programming. The RFM210LW operates from  
1.8 to 3.6 V so that it can finely work with most batteries to their useful power limits. The receive current is only 3.8  
mA. The RFM210LW receiver together with the CMT211x transmitter enables an ultra low cost RF link.  
5.2 Modulation, Frequency and Symbol Rate  
The RFM210LW supports OOK demodulation with the symbol rate from 0.1 to 40 kbps. It continuously covers the  
frequency range from 300 to 480 MHz, including the license free ISM frequency band around 315 MHz and 433.92  
MHz. The internal frequency synthesizer contains a high-purity VCO and a low noise fractional-N PLL with an  
output frequency resolution of 24.8 Hz. See Table 9 for the demodulation, frequency and symbol rate information.  
Rev 1.0 | Page 10 / 17  
RFM210LW  
Table 7. Modulation, Frequency and Symbol Rate  
Parameter  
Demodulation  
Value  
OOK  
U
ni  
t
-
Frequency  
300 to 480  
24.8  
MHz  
Hz  
Frequency Resolution  
Symbol Rate  
0.1 to 3.4  
kbps  
5.3 Main Configurations  
Unlike other NextGenRFTM receivers, the RFM210LW does not need any register control or manufacturing programming. The  
configuration of the device is fixed in order to save the development effort, reduce system cost and simplify the manufacturing  
process. The main configurations are listed in the table below. Please note that if more flexibility is needed in the system, the user  
can use other NextGenRFTM receivers like CMT2210A and etc. For those products, an embedded EEPROM is available on chip  
for the user to configure all the product features.  
5.4 Internal Blocks Description  
5.4.1 RF Front-end and AGC  
The RFM210LW features a low-IF receiver. The RF front-end of the receiver consists of a Low Noise Amplifier (LNA), I/Q  
mixer and a wide-band power detector. Only a low-cost inductor and a capacitor are required for matching the LNA to any 50  
Ω antennas. The input RF signal induced on the antenna is amplified and down-converted to the IF frequency for further  
processing.  
By means of the wide-band power detector and the attenuation networks built around the LNA, the Automatic Gain Control (AGC)  
loop regulates the RF front-end’s gain to get the best system linearity, selectivity and sensitivity performance, even though the  
receiver suffers from strong out-of-band interference.  
5.4.2 IF Filter  
The signals coming from the RF front-end are filtered by the fully integrated 3rd-order band-pass image rejection IF filter which  
E‐mail:sales@hoperf.com  
website://www.hoperf.com  
Rev 1.0 | Page 11 / 17  
RFM210LW  
achieves over 25 dB image rejection ratio typically. The IF center frequency is dynamically adjusted to enable the IF filter to  
locate to the right frequency band, thus the receiver sensitivity and out-of-band interference attenuation performance are kept  
optimal despite the manufacturing process tolerances. The IF bandwidth is fixed at 200 kHz.  
5.4.3 RSSI  
The subsequent multistage I/Q Log amplifiers enhance the output signal from IF filter before it is fed for demodulation. Receive  
Signal Strength Indicator (RSSI) generators are included in both Log amplifiers which produce DC voltages that are directly  
proportional to the input signal level in both of I and Q path. The resulting RSSI is a sum of both these two paths. Extending from  
the nominal sensitivity level, the RSSI achieves dynamic range over 66 dB.  
The RFM210LW integrates a patented DC-offset cancellation engine. The receiver sensitivity performance benefits a lot from  
the novel, fast and accurate DC-offset removal implementation.  
5.4.4 SAR ADC  
The on-chip 8-bit SAR ADC digitalizes the RSSI for OOK demodulation.  
5.4.5 Crystal Oscillator  
The crystal oscillator is used as the reference clock for the PLL frequency synthesizer and system clock for the digital blocks. A  
crystal should be used with appropriate loading capacitors (C2 and C3 in Figure 9 of Page 9). The values of the loading  
capacitors depend on the total load capacitance CL specified for the crystal. The total load capacitance seen between the XIN  
and XOUT pin should equal CL for the crystal to oscillate at desired frequency.  
1
CL  
=
+ Cparasitic  
1
C
1
C
3
+
2
The parasitic capacitance is constituted by the input capacitance and PCB tray capacitance. The ESR of the crystal should be  
within the specification in order to ensure a reliable start-up. An external signal source can easily be used in place of a  
conventional XTAL and should be connected to the XIN pin. The incoming clock signal is recommended to have a peak-to-peak  
swing in the range of 300 mV to 700 mV and AC-coupled to the XIN pin.  
5.4.6 Frequency Synthesizer  
A fractional-N frequency synthesizer is used to generate the LO frequency for the down conversion I/Q mixer. The frequency  
synthesizer is fully integrated except the VCO tank inductor which enables the ultra low-power receiver system design. Using the  
26 MHz reference clock provided by the crystal oscillator or the external clock source, it can generate receive frequencies of 315  
and 433.92 MHz with a frequency resolution of 24.8 Hz.  
The VCO always operates at 2x of LO frequency. A high Q (at VCO frequency) tank inductor should be chosen to ensure the  
VCO oscillates at any conditions meanwhile burns less power and gets better phase noise performance. In addition, properly  
layout the inductor matters a lot of achieving a good phase noise performance and less spurious emission. The recommended  
VCO inductors for different LO frequency bands are shown as bellow.  
Table 9. VCO Inductor for 315/433.92 MHz Frequency Band  
LO Frequency Band (MHz)  
VCO Inductor (nH)  
315  
433.92  
33  
22  
Multiple subsystem calibrations are performed dynamically to ensure the frequency synthesizer operates reliably in any  
working condition  
E‐mail:sales@hoperf.com  
website://www.hoperf.com  
Rev 1.0 | Page 12 / 17  
RFM210LW  
5.5 Operation States  
As the RFM210LW is operating in duty cycle receiving mode,the device will go through the states shown as  
the figure below after the power up.  
Power Up (PUP) State  
Once the device is powered up, the device will go through the Power Up (PUP) sequence which includes the task of releasing the  
Power-On Reset (POR), turning on the crystal and calibrating the internal blocks. The PUP takes about 4 ms to finish in the  
always receive mode. The average current of the PUP sequence is about 0.9 mA.  
SLEEP State  
In this state, all the internal blocks are powered down except the sleep timer. The sleep time is fixed at 3 ms. The sleep current is  
about 60 nA.  
XTAL State  
Once the device wakes up from the SLEEP State, the crystal oscillator restarts to work. The current consumption in this state is  
about 520 uA.  
TUNE State  
The device is tuned to the desired frequency and ready to receive. It usually takes approximately 300 us to complete the tuning  
sequence. The current consumption in this state is about 2 mA.  
RX State  
The device receives the incoming signals and outputs the demodulated data on the DOUT pin. The current in this state is about  
3.3 mA (315 MHz) or 3.8 mA (433.92 MHz).  
E‐mail:sales@hoperf.com  
website://www.hoperf.com  
Rev 1.0 | Page 13 / 17  
RFM210LW  
5.6 Duty Cycle Receive Mode  
In the duty-cycle mode, after the PUP the device will automatically repeat the sequence of SLEEP, XTAL, TUNE and RX until the  
device is powered down. This allows the device to re-tune the synthesizer regularly to adept to the changeable environment and  
therefore remain its highest performance. The device will continuously receive any incoming signals during the RX state and  
send out the demodulated data on the DOUT pin. The PUP sequence consumes about 4 ms. See the figure below for the timing  
and current consumption of the duty cycle receive mode  
The advantages of the duty-cycle receive mode are listed below.  
Maintaining the highest performance of the device by regular frequency re-tune.  
Increasing the system stability by regular sleep (resetting most of the blocks).  
If more current saving is required in the application, or other parameter need to be configured, the user can also use CMT2210A  
or other NextGenRFTM receivers with embedded EEPROM built-in and all product features configurable. For the more details,  
please refer to the “AN108 CMT2210A Configuration Guideline”.  
E‐mail:sales@hoperf.com  
website://www.hoperf.com  
Rev 1.0 | Page 14 / 17  
RFM210LW  
6. Ordering Information  
RFM210LW-433 S1  
Package  
Operation Band  
Mode Type  
P/N: RFM210LW-315S1  
RFM210LW module at 315MHz band,SMD Package  
P/N: RFM210LW-433S1  
RFM210LW module at 433MHz band,SMD Package  
Rev 1.0 | Page 15 / 17  
RFM210LW  
7. Package Outline  
Figure 13  
S1 Package Outline Drawi  
Rev 1.0 | Page 16 / 17  
RFM210LW  
8. Contact Informatio  
n
HOPE MICROELECTRONICS CO.,LTD  
Add: 2/F, Building 3, Pingshan Private Enterprise Science and Technology Park, Lishan Road, XiLi Town, Nanshan  
District, Shenzhen, Guangdong, China  
Tel: 86-755-82973805  
Fax: 86-755-82973550  
Email: sales@hoperf.com  
Website: http://www.hoperf.com  
http://www.hoperf.cn  
This document may contain preliminary information and is subject to  
change by Hope Microelectronics without notice. Hope Microelectronics  
assumes no responsibility or liability for any use of the information  
contained herein. Nothing in this document shall operate as an express or  
implied license or indemnity under the intellectual property rights of Hope  
Microelectronics or third parties. The products described in this document  
are not intended for use in implantationor other direct life support  
applications where malfunctionmay result in the direct physical harm or  
injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT  
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY  
OR FITNESS FOR A ARTICULARPURPOSE, ARE OFFERED IN THIS  
DOCUMENT.  
HOPE MICROELECTRONICS CO.,LTD Add:  
2/F, Building 3, Pingshan Private  
Enterprise Science and Technology  
Park, Lishan Road, XiLi Town, Nanshan  
District, Shenzhen, Guangdong, China  
Tel: 86-755-82973805  
Fax: 86-755-82973550  
Email: sales@hoperf.com  
Website: http://www.hoperf.com  
http://www.hoperf.cn  
©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.  
Rev 1.0 | Page 17 / 17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY