RFM65CW-433S2 [HOPERF]

ISM RECEIVER MODULE;
RFM65CW-433S2
型号: RFM65CW-433S2
厂家: HOPERF    HOPERF
描述:

ISM RECEIVER MODULE

ISM频段
文件: 总71页 (文件大小:1272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RFM65CW  
RFM65CW ISM RECEIVER MODULE V1.1  
GENERAL DESCRIPTION  
`
The RFM65CW is a low cost receiver module capable  
of operation in 315,433,868 and 915 MHz license-free  
ISM (Industry Scientific and Medical) frequency bands. All  
major RF communication parameters are programmable  
and most of them can be dynamically set. The RFM65CW  
offers the unique advantage of programmable narrow-band  
and wide-band communication modes. The RFM65CW is  
optimized for low power consumption while offering high  
sensitivity and channelized operation. Compliance ETSI and  
FCC regulations.  
In order to better use RFM65CW modules, this specification  
RFM65CW  
also involves a large number of the parameters and  
functions of its core chip RF65's, including those IC pins  
which are not leaded out. All of these can help customers  
gain a better understanding of the performance of  
RFM65CW modules, and enhance the application skills.  
KEY PRODUCT FEATURES  
APPLICATIONS  
z
z
z
High Sensitivity: down to -120 dBm at 1.2 kbps  
z
z
z
z
z
Automated Meter Reading  
Wireless Sensor Networks  
Home and Building Automation  
High Selectivity: 16-tap FIR Channel Filter  
Bullet-proof front end: IIP3 = -18 dBm, IIP2 = +35 dBm,  
80 dB Blocking Immunity, no Image Frequency  
response  
Wireless Alarm and Security Systems  
Industrial Monitoring and Control  
z
z
Low current: Rx = 16 mA, 100nA register retention  
Constant RF performance over voltage range of  
module  
z
z
z
z
z
z
z
z
FSK Bit rates up to 300 kb/s  
Fully integrated synthesizer with a resolution of 61 Hz  
FSK, GFSK, MSK, GMSK and OOK demodulation  
Built-in Bit Synchronizer performing Clock Recovery  
Incoming Sync Word Recognition  
115 dB+ Dynamic Range RSSI  
Automatic RF Sense with ultra-fast AFC  
Packet engine with CRC, AES-128 encryption and 66-  
byte FIFO  
z
z
Built-in temperature sensor and Low Battery indicator  
Module size:16X16mm  
Page 1  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
Table of Contents  
DATASHEET  
Page  
1.  
General Description .................................................................................................................................................  
1.1. Simplified Block Diagram .................................................................................................................................  
8
8
1.2. Pin Diagram................................................................................................................................... ……..……….9  
1.3. Pin Description...............................................................................................................................................10  
Electrical Characteristics.......................................................................................................................................... 11  
2.1. ESD Notice....................................................................................................................................................... 11  
2.2. Absolute Maximum Ratings .......................................................................................................................... 11  
2.3. Operating Range.............................................................................................................................................. 11  
2.4. Chip Specification ................................................................................................................................ 12  
2.4.1. Power Consumption................................................................................................................................. 12  
2.4.2. Frequency Synthesis................................................................................................................................ 12  
2.4.3. Receiver ..................................................................................................................................................... 13  
2.4.4. Digital Specification .................................................................................................................................. 14  
Chip Description...................................................................................................................................................... 15  
3.1. Power Supply Strategy..................................................................................................................................... 15  
3.2. Low Battery Detector........................................................................................................................................ 15  
3.3. Frequency Synthesis........................................................................................................................................ 15  
3.3.1. Reference Oscillator................................................................................................................................. 15  
3.3.2. CLKOUT Output .......................................................................................................................................16  
3.3.3. PLL Architecture....................................................................................................................................... .16  
3.3.4. Lock Time .................................................................................................................................................17  
3.3.5. Lock Detect Indicator................................................................................................................................. 17  
3.4. Receiver Description...............................................................................................................................17  
3.4.1. Block Diagram ........................................................................................................................................... 17  
3.4.2. LNA - Single to Differential Buffer .............................................................................................................18  
3.4.3. Automatic Gain Control ............................................................................................................................. 18  
3.4.4. Continuous-Time DAGC............................................................................................................................ 20  
3.4.5. Quadrature Mixer - ADCs - Decimators..................................................................................................... 20  
3.4.6. Channel Filter............................................................................................................................................20  
3.4.7. DC Cancellation ........................................................................................................................................21  
3.4.8. Complex Filter - OOK ................................................................................................................................22  
3.4.9. RSSI............................................................................................................................................................ 22  
3.4.10. Cordic ........................................................................................................................................................ 22  
3.4.11. Bit Rate Setting .......................................................................................................................................22  
3.4.12. FSK Demodulator....................................................................................................................................23  
3.4.13. OOK Demodulator ..................................................................................................................................24  
3.4.14. Bit Synchronizer .................................................................................................................................... 26  
3.4.15. Frequency Error Indicator....................................................................................................................... 26  
3.4.16. Automatic Frequency Correction............................................................................................................ 27  
3.4.17. Optimized Setup for Low Modulation Index Systems............................................................................. 28  
2.  
3.  
Page 2  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
3.4.18. Temperature Sensor ............................................................................................................................29  
3.4.19. Timeout Function.................................................................................................................................... 29  
Operating Modes .................................................................................................................................................. 30  
4.1. Basic Modes.................................................................................................................................................. 30  
4.2. Automatic Sequencer and Wake-Up Times.................................................................................................30  
4.2.1. Receiver Startup Time.............................................................................................................................30  
4.2.2. Rx Start Procedure..................................................................................................................................32  
4.2.3. Optimized Frequency Hopping Sequences..............................................................................................32  
4.3. Listen Mode ................................................................................................................................................... 33  
4.3.1. Timings..................................................................................................................................................... 33  
4.3.2. Criteria...................................................................................................................................................... 34  
4.3.3. End of Cycle Actions ............................................................................................................................... 34  
4.3.4. RC Timer Accuracy ..................................................................................................................................35  
4.4. AutoModes .................................................................................................................................................... .36  
Data Processing.................................................................................................................................................... . 37  
5.1. Overview ......................................................................................................................................................... 37  
5.1.1. Block Diagram ..........................................................................................................................................37  
5.1.2. Data Operation Modes .............................................................................................................................37  
5.2. Control Block Description.............................................................................................................................. 38  
5.2.1. SPI Interface.............................................................................................................................................. 38  
5.2.2. FIFO .......................................................................................................................................................... 39  
5.2.3. Sync Word Recognition............................................................................................................................ 40  
5.2.4. Packet Handler......................................................................................................................................... 41  
5.2.5. Control........................................................................................................................................................ 41  
5.3. Digital IO Pins Mapping ................................................................................................................................... 42  
5.3.1. DIO Pins Mapping in Continuous Mode ................................................................................................... 42  
5.3.2. DIO Pins Mapping in Packet Mode .......................................................................................................... 42  
5.4. Continuous Mode ............................................................................................................................................ 43  
5.4.1. General Description.................................................................................................................................. 43  
5.4.2. Rx Processing .......................................................................................................................................... 43  
5.5. Packet Mode ................................................................................................................................................. 44  
5.5.1. General Description.................................................................................................................................. 44  
5.5.2. Packet Format .......................................................................................................................................... 44  
5.5.3. Processing (without AES)......................................................................................................................... 47  
5.5.4. AES .......................................................................................................................................................... 47  
5.5.5. Handling Large Packets ........................................................................................................................... 48  
5.5.6. Packet Filtering......................................................................................................................................... 48  
5.5.7. DC-Free Data Mechanisms...................................................................................................................... 50  
Configuration and Status Registers ...................................................................................................................... 52  
4.  
5.  
6.  
6.1.  
6.2.  
6.3.  
General Description ...................................................................................................................................... 52  
Common Configuration Registers................................................................................................................. 55  
Receiver Registers ........................................................................................................................................58  
Page 3  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.4.  
6.5.  
6.6.  
6.7.  
IRQ and Pin Mapping Registers .................................................................................................................... 60  
Packet Engine Registers............................................................................................................................... 62  
Temperature Sensor Registers..................................................................................................................... 65  
Test Registers............................................................................................................................................... 65  
7.  
Application Information ......................................................................................................................................... 66  
7.1.  
7.2.  
Crystal Resonator Specification.................................................................................................................... 66  
Reset of the Chip .......................................................................................................................................... 66  
7.2.1. POR............................................................................................................................................................ 66  
7.2.2. Manual Reset ...........................................................................................................................................67  
7.3. Reference Design ......................................................................................................................................... 67  
Packaging Information ...........................................................................................................................................68  
8.  
9.  
8.1.  
Package Outline Drawing.............................................................................................................................. 68  
Chip Revisions........................................................................................................................................................ 69  
9.1. RC Oscillator Calibration............................................................................................................................... 69  
9.2. Listen Mode...................................................................................................................................................  
69  
9.2.1. Resolutions............................................................................................................................................... 69  
9.2.2. Exiting Listen Mode .................................................................................................................................. 70  
9.3.  
OOK Floor Threshold Default Setting ........................................................................................................... 70  
9.4. AFC Control .................................................................................................................................................. 70  
9.4.1. AfcAutoClearOn ....................................................................................................................................... 70  
9.4.2. AfcLowBetaOn and LowBetaAfcOffset..................................................................................................... 70  
9.5. ContinuousDagc............................................................................................................................................ 70  
10. Ordering Information ...............................................................................................................................................71  
Page 4  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
Index of Figures  
DATASHEET  
Page  
Figure 1. Block Diagram ................................................................................................................................................  
Figure 2. Pin Diagram ....................................................................................................................................................  
Figure 3. Marking Diagram ............................................................................................................................................  
8
9
9
Figure 4. TBD  
................................................................................................................................... 15  
Figure 5. Receiver Block Diagram ............................................................................................................................... 17  
Figure 6. AGC Thresholds Settings ............................................................................................................................. 19  
Figure 7. Cordic Extraction .......................................................................................................................................... 22  
Figure 8. OOK Peak Demodulator Description ............................................................................................................ 24  
Figure 9. Floor Threshold Optimization ....................................................................................................................... 25  
Figure 10. Bit Synchronizer Description ...................................................................................................................... 26  
Figure 11. FEI Process ................................................................................................................................................ 27  
Figure 12. Optimized Afc (AfcLowBetaOn=1) .............................................................................................................. 28  
Figure 13. Temperature Sensor Response ................................................................................................................. 29  
Figure 14. Rx Startup - No AGC, no AFC .................................................................................................................... 31  
Figure 15. Rx Startup - AGC, no AFC ......................................................................................................................... 31  
Figure 16. Rx Startup - AGC and AFC ........................................................................................................................ 31  
Figure 17. Listen Mode Sequence (no wanted signal is received) .............................................................................. 33  
Figure 18. Listen Mode Sequence (wanted signal is received) ................................................................................... 35  
Figure 19. Auto Modes of Packet Handler ................................................................................................................... 36  
Figure 20. RFM65CW Data Processing Conceptual View .................................................................................. .........37  
Figure 21. SPI Timing Diagram (single access) .......................................................................................................... 38  
Figure 22. FIFO and Shift Register (SR) ..................................................................................................................... 39  
Figure 23. FifoLevel IRQ Source Behavior .................................................................................................................. 40  
Figure 24. Sync Word Recognition .............................................................................................................................. 41  
Figure 25. Continuous Mode Conceptual View ........................................................................................................... 43  
Figure 26. Rx Processing in Continuous Mode ........................................................................................................... 43  
Figure 27. Packet Mode Conceptual View ................................................................................................................... 44  
Figure 28. Fixed Length Packet Format ...................................................................................................................... 45  
Figure 29. Variable Length Packet Format .................................................................................................................. 46  
Figure 30. Unlimited Length Packet Format ................................................................................................................ 46  
Figure 31. CRC Implementation .................................................................................................................................. 50  
Figure 32. Manchester Decoding ................................................................................................................................ 50  
Figure 33. Data De-Whitening ..................................................................................................................................... 51  
Figure 34. POR Timing Diagram ................................................................................................................................. 66  
Figure 35. Manual Reset Timing Diagram ................................................................................................................... 67  
Figure 36. Application Schematic ................................................................................................................................ 67  
Figure 37. Package Outline Drawing ........................................................................................................................... 68  
Figure 38. Listen Mode Resolutions, V2a ................................................................................................................... 69  
Figure 39. Listen Mode Resolution, V2b ..................................................................................................................... 69  
Page 5  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Figure 40. RegTestOok Description ............................................................................................................................... 70  
Index of Tables  
Page  
Table 1. RFM65CW Pinouts ..............................................................................................................................................10  
Table 2. Absolute Maximum Ratings ............................................................................................................................... 11  
Table 3. Operating Range ............................................................................................................................................... 11  
Table 4. Power Consumption Specification ..................................................................................................................... 12  
Table 5. Frequency Synthesizer Specification ................................................................................................................. 12  
Table 6. Receiver Specification ....................................................................................................................................... 13  
Table 7. Digital Specification ........................................................................................................................................... 14  
Table 8. LNA Gain Settings ............................................................................................................................................. 18  
Table 9. Receiver Performance Summary ....................................................................................................................... 19  
Table 10. Available RxBw Settings .................................................................................................................................. 21  
Table 11. Bit Rate Examples ........................................................................................................................................... 23  
Table 12. Basic Receiver Modes ..................................................................................................................................... 30  
Table 13. Range of Durations in Listen Mode ................................................................................................................. 33  
Table 14. Signal Acceptance Criteria in Listen Mode ...................................................................................................... 34  
Table 15. End of Listen Cycle Actions ............................................................................................................................. 34  
Table 16. Status of FIFO when Switching Between Different Modes of the Chip ............................................................ 40  
Table 17. DIO Mapping, Continuous Mode ..................................................................................................................... 42  
Table 18. DIO Mapping, Packet Mode ............................................................................................................................ 42  
Table 19. Registers Summary ......................................................................................................................................... 52  
Table 20. Common Configuration Registers .................................................................................................................... 55  
Table 21. Receiver Registers .......................................................................................................................................... 58  
Table 22. IRQ and Pin Mapping Registers ...................................................................................................................... 60  
Table 23. Packet Engine Registers ................................................................................................................................. 62  
Table 24. Temperature Sensor Registers ........................................................................................................................ 65  
Table 25. Test Registers ................................................................................................................................................. 65  
Table 26. Crystal Specification ........................................................................................................................................ 66  
Table 27. Chip Identification ............................................................................................................................................ 69  
Page 6  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
Acronyms  
DATASHEET  
BOM  
BR  
Bill Of Materials  
Bit Rate  
LSB  
MSB  
NRZ  
OOK  
Least Significant Bit  
Most Significant Bit  
Non Return to Zero  
On Off Keying  
BW  
Bandwidth  
CCITT Comité Consultatif International  
Téléphonique et Télégraphique - ITU  
CRC  
DAC  
ETSI  
Cyclic Redundancy Check  
PA  
Power Amplifier  
Digital to Analog Converter  
PCB  
PLL  
Printed Circuit Board  
Phase-Locked Loop  
European Telecommunications Standards  
Institute  
FCC  
Fdev  
FIFO  
FIR  
FS  
Federal Communications Commission  
POR  
RBW  
RF  
Power On Reset  
Frequency Deviation  
Resolution BandWidth  
Radio Frequency  
First In First Out  
Finite Impulse Response  
Frequency Synthesizer  
Frequency Shift Keying  
Graphical User Interface  
Integrated Circuit  
RSSI  
Rx  
Received Signal Strength Indicator  
Receiver  
FSK  
GUI  
IC  
SAW  
SPI  
SR  
Surface Acoustic Wave  
Serial Peripheral Interface  
Shift Register  
ID  
IDentificator  
Stby  
Tx  
Standby  
IF  
Intermediate Frequency  
Interrupt ReQuest  
Transmitter  
IRQ  
ITU  
LFSR  
LNA  
LO  
uC  
Microcontroller  
International Telecommunication Union  
Linear Feedback Shift Register  
Low Noise Amplifier  
VCO  
XO  
Voltage Controlled Oscillator  
Crystal Oscillator  
eXclusive OR  
XOR  
Local Oscillator  
Page 7  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
This product datasheet contains a detailed description of the RFM65CW performance and functionality.  
.
1. General Description  
The RFM65CW is a receiver module ideally suited for today's high performance ISM band RF applications. It is intended  
for use as high-performance, low-cost FSK and OOK RF receiver for robust frequency agile RF links, and where stable  
and constant RF performance is required over the full operating range of the device down to 1.8V.  
The RFM65CW is intended for applications over a wide frequency range, including the 315MHz,433 MHz ,868 MHz and  
915 MHz ISM bands. Coupled with a very aggressive sensitivity, the advanced system features of the RFM65CW include a  
66 byte RX FIFO, configurable automatic packet handler, listen mode, temperature sensor and configurable DIOs which  
greatly enhance system flexibility whilst at the same time significantly reducing MCU requirements.  
The RFM65CW complies with both ETSI and FCC regulatory requirements  
1.1. Simplified Block Diagram  
VBAT1&2  
VR_ANA  
VR_DIG  
RC  
Oscillator  
Power Distribution System  
Σ/Δ  
LNA  
Mixers  
Modulators  
Single to  
Differential  
RFIN  
RESET  
SPI  
RSSI  
AFC  
GND  
Division by  
2, 4 or  
6
DIO0  
DIO1  
DIO2  
DIO3  
DIO4  
Tank  
Inductor  
Loop  
Filter  
Frac-N PLL  
Synthesizer  
NC  
NC  
NC  
XO  
32 MHz  
XTAL  
GND  
Control Blocks  
Frequency Synthesis  
Receiver Blocks  
Primarily Analog  
Primarily Digital  
Figure 1. Block Diagram  
Page 8  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
1.2. Pin Diagram  
DATASHEET  
Figure 2. Pin Diagram  
Page 9  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
1.3. Pin Description  
Table 1 RFM65CW Pinouts  
Number  
Name  
ANT  
Type  
Description  
RF signal output/input.  
1
2
VDD  
-
-
Supply voltage  
Ground  
3
GND  
DIO4  
MOSI  
SCK  
4
I/O  
I
Digital I/O, software configured  
SPI Data input  
5
6
I
SPI Clock input  
7
NSS  
I
SPI Chip select input  
SPI Data output  
8
MISO  
DIO0  
DIO2  
DIO1  
DIO3  
RESET  
GND  
O
I/O  
I/O  
I/O  
I/O  
I/O  
-
9
Digital I/O, software configured  
Digital I/O, software configured  
Digital I/O, software configured  
Digital I/O, software configured  
Reset trigger input  
10  
11  
12  
13  
14  
Ground  
Page 10  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
2. Electrical Characteristics  
2.2. Absolute Maximum Ratings  
Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for  
extended periods may affect device reliability.  
Table 2 Absolute Maximum Ratings  
Symbol  
Description  
Min  
Max  
Unit  
VDDmr  
Tmr  
Tj  
Supply Voltage  
Temperature  
-0.5  
3.9  
+115  
+125  
+6  
V
-55  
° C  
Junction temperature  
RF Input Level  
-
-
° C  
Pmr  
dBm  
2.3. Operating Range  
Table 3 Operating Range  
Symbol  
Description  
Min  
Max  
Unit  
VDDop  
Top  
Supply voltage  
1.8  
-40  
-
3.6  
+85  
25  
V
Operational temperature range  
Load capacitance on digital ports  
RF Input Level  
°C  
Clop  
ML  
pF  
dBm  
-
0
Page 11  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
2.4. Chip Specification  
DATASHEET  
The tables below give the electrical specifications of the receiver under the following conditions: Supply voltage VBAT1=  
VBAT2=VDD=3.3 V, temperature = 25 °C, 2-level FSK modulation without pre-filtering, Bit Rate = 4.8 kb/s and terminated  
in a matched 50 Ohm impedance, unless otherwise specified.  
Note Unless otherwise specified, the performances in the other frequency bands are similar or better.  
2.4.1. Power Consumption  
Table 4 Power Consumption Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
uA  
Supply current in sleep mode  
Supply current in Idle mode  
Supply current in standby mode  
-
-
-
-
0.1  
1.2  
1.25  
9
1
-
IDDSL  
IDDIDLE  
IDDST  
IDDFS  
RC oscillator enabled  
uA  
Crystal oscillator enabled  
1.5  
-
mA  
mA  
Supply current in synthesizer  
mode  
IDDR  
Supply current in receive mode  
-
16  
-
mA  
2.4.2. Frequency Synthesis  
Table 5 Frequency Synthesizer Specification  
Symbol Description  
Conditions  
Min  
Typ  
Max  
Unit  
315MHz Module  
MHz  
MHz  
MHz  
MHz  
FR  
Synthesizer Frequency Range  
290  
424  
862  
890  
340  
510  
890  
433MHz Module  
868MHz Module  
915MHz Module  
1020  
FXOSC Crystal oscillator frequency  
TS_OSC Crystal oscillator wake-up time  
For All Module  
-
32  
-
MHz  
us  
-
250  
500  
TS_FS  
Frequency synthesizer wake-up time to PllLock  
signal  
From Standby  
mode  
-
80  
150  
us  
TS_HOP Frequency synthesizer hop time at most 10 kHz  
away from the target  
-
-
-
-
-
-
-
20  
20  
50  
50  
80  
80  
80  
-
-
-
-
-
-
-
us us us us us  
us us  
200 kHz step  
1 MHz step  
5 MHz step  
7 MHz step  
12 MHz step  
20 MHz step  
25 MHz step  
FSTEP Frequency synthesizer step  
-
61.0  
-
Hz  
FSTEP =  
FXOSC/2  
19  
FRC  
BRF  
BRO  
RC Oscillator frequency  
Bit rate, FSK  
After calibration  
Programmable  
Programmable  
-
62.5  
-
kHz  
1.2  
1.2  
-
-
300  
kbps  
Bit rate, OOK  
32.768 kbps  
Page 12  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
2.4.3. Receiver  
All receiver tests are performed with RxBw = 10 kHz (Single Side Bandwidth) as programmed in RegRxBw, receiving a  
PN15 sequence with a BER of 0.1% (Bit Synchronizer is enabled), unless otherwise specified. The LNA impedance is set  
to 200 Ohms, by setting bit LnaZin in RegLna to 1. Blocking tests are performed with an unmodulated interferer. The  
wanted signal power for the Blocking Immunity, ACR, IIP2, IIP3 and AMR tests is set 3 dB above the nominal sensitivity  
level.  
Table 6 Receiver Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
RFS_F  
FSK sensitivity, highest LNA gain  
-
-
-
-118  
-114  
-105  
-
-
-
dBm  
dBm  
dBm  
FDA = 5 kHz, BR = 1.2 kb/s  
FDA = 5 kHz, BR = 4.8 kb/s  
FDA = 40 kHz, BR = 38.4 kb/s  
-
-
-120  
-112  
-
dBm  
dBm  
FDA = 5 kHz, BR = 1.2 kb/s*  
BR = 4.8 kb/s  
RFS_O  
OOK sensitivity, highest LNA gain  
-109  
CCR  
ACR  
Co-Channel Rejection  
-13  
-10  
-
dB  
Adjacent Channel Rejection  
-
37  
42  
42  
-
-
dB  
dB  
Offset = +/- 25 kHz  
Offset = +/- 50 kHz  
BI  
Blocking Immunity  
-
-
-
-45  
-40  
-32  
-
-
-
dBm  
dBm  
dBm  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
Blocking Immunity  
Wanted signal at sensitivity  
+16dB  
-
-
-
-36  
-33  
-25  
-
-
-
dBm  
dBm  
dBm  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
AMR  
AM Rejection , AM modulated  
interferer with 100% modulation  
depth, fm = 1 kHz, square  
-
-
-
-45  
-40  
-32  
-
-
-
dBm  
dBm  
dBm  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
IIP2  
IIP3  
2nd order Input Intercept Point  
Unwanted tones are 20 MHz  
above the LO  
-
-
+75  
+35  
-
-
dBm  
dBm  
Lowest LNA gain  
Highest LNA gain  
3rd order Input Intercept point  
Unwanted tones are 1MHz and  
1.995 MHz above the LO  
-
+20  
-18  
-
-
dBm  
dBm  
Lowest LNA gain  
Highest LNA gain  
-23  
BW_SSB  
IMR_OOK  
TS_RE  
Single Side channel filter BW  
Image rejection in OOK mode  
Programmable  
2.6  
27  
-
500  
-
kHz  
dB  
Wanted signal level = -106 dBm  
30  
Receiver wake-up time, from PLL  
locked state to RxReady  
-
-
1.7  
96  
-
-
ms  
us  
RxBw = 10 kHz, BR = 4.8 kb/s  
RxBw = 200 kHz, BR = 100 kb/s  
TS_RE_AGC Receiver wake-up time, from PLL  
locked state, AGC enabled  
-
3.0  
163  
ms  
us  
RxBw= 10 kHz, BR = 4.8 kb/s  
RxBw = 200 kHz, BR = 100 kb/s  
TS_RE_AGC Receiver wake-up time, from PLL  
4.8  
265  
ms  
us  
RxBw= 10 kHz, BR = 4.8 kb/s  
RxBw = 200 kHz, BR = 100 kb/s  
&AFC  
lock state, AGC and AFC enabled  
Page 13  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
FEI sampling time  
Receiver is ready  
Receiver is ready  
Receiver is ready  
AGC enabled  
-
-
-
4.T  
4.T  
2.T  
-
-
-
TS_FEI  
-
-
-
bit  
bit  
bit  
TS_AFC  
TS_RSSI  
DR_RSSI  
AFC Response Time  
RSSI Response Time  
RSSI Dynamic Range  
Min  
Max  
-
-
-115  
0
-
-
dBm  
dBm  
* Set SensitivityBoost in RegTestLna to 0x2D to reduce the noise floor in the receiver  
2.4.4. Digital Specification  
Conditions: Temp = 25°C, VDD = 3.3V, FXOSC = 32 MHz, unless otherwise specified.  
Table 7 Digital Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
V
Digital input level high  
Digital input level low  
Digital output level high  
Digital output level low  
SCK frequency  
0.8  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
MHz  
ns  
IH  
V
V
V
0.2  
IL  
Imax = 1 mA  
Imax = -1 mA  
0.9  
-
-
-
0.1  
10  
-
OH  
OL  
SCK  
-
F
-
-
t
t
t
t
t
SCK high time  
50  
50  
-
-
ch  
SCK low time  
-
-
ns  
cl  
SCK rise time  
5
5
-
-
ns  
rise  
fall  
SCK fall time  
-
-
ns  
MOSI setup time  
from MOSI change to SCK rising  
edge  
30  
-
ns  
setup  
t
t
t
t
MOSI hold time  
NSS setup time  
NSS hold time  
from SCK rising edge to MOSI  
change  
60  
30  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
hold  
from NSS falling edge to SCK rising  
edge  
nsetup  
nhold  
nhigh  
from SCK falling edge to NSS rising  
edge, normal mode  
30  
NSS high time between SPI  
accesses  
20  
T_DATA  
DATA hold and setup time  
250  
Page 14  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
3. Chip Description  
DATASHEET  
This section describes in depth the architecture of the RFM65CW low-power, highly integrated  
receiver.  
3.1. Power Supply Strategy  
The RFM65CW employs an advanced power supply scheme, which provides stable operating characteristics over the  
full temperature and voltage range of operation.  
The RFM65CW can be powered from any low-noise voltage source via pins VBAT1 and VBAT2. Decoupling capacitors  
should be connected, as suggested in the reference design on VR_DIG and VR_ANA pins to ensure a correct operation  
of the built-in voltage regulators.  
3.2. Low Battery Detector  
A low battery detector is also included allowing the generation of an interrupt signal in response to passing a  
programmable threshold adjustable through the register RegLowBat. The interrupt signal can be mapped to any of the DIO  
pins, through the programmation of RegDioMapping.  
3.3. Frequency Synthesis  
The LO generation on the RFM65CW is based on a state-of-the-art fractional-N PLL. The PLL is fully integrated with  
automatic calibration.  
3.3.1. Reference Oscillator  
The crystal oscillator is the main timing reference of the RFM65CW. It is used as a reference for the frequency  
synthesizer and as a clock for the digital processing.  
The XO startup time, TS_OSC, depends on the actual XTAL being connected on pins XTA and XTB. When using the built-  
in sequencer, the RFM65CW optimizes the startup time and automatically triggers the PLL when the XO signal is stable.  
To manually control the startup time, the user should either wait for TS_OSC max, or monitor the signal CLKOUT which  
will only be made available on the output buffer when a stable XO oscillation is achieved.  
XTA  
XTB  
Figure 4. TBD  
Page 15  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
3.3.2. CLKOUT Output  
The reference frequency, or a fraction of it, can be provided on DIO5 pin by modifying bits ClkOut in RegDioMapping2. Two  
typical applications of the CLKOUT output include:  
z
To provide a clock output for a companion processor, thus saving the cost of an additional oscillator. CLKOUT can be  
made available in any operation mode except Sleep mode and is automatically enabled at power on reset.  
z
To provide an oscillator reference output. Measurement of the CLKOUT signal enables simple software trimming of the  
initial crystal tolerance.  
Note to minimize the current consumption of the RFM65CW, please ensure that the CLKOUT signal is disabled when  
not required.  
3.3.3. PLL Architecture  
The frequency synthesizer generating the LO frequency for the receiver is a fractional-N sigma-delta PLL. The PLL  
incorporates a third order loop capable of fast auto-calibration, and it has a fast switching-time. The VCO and the loop filter  
are both fully integrated, removing the need for an external tight-tolerance, high-Q inductor in the VCO tank circuit.  
3.3.3.1. VCO  
The VCO runs at 2, 4 or 6 times the RF frequency (respectively in the 915, 434 and 315 MHz bands) to reduce any LO  
leakage in receiver mode, to improve the quadrature precision of the receiver.  
The VCO calibration is fully automated. A coarse adjustment is carried out at power on reset, and a fine tuning is  
performed each time the RFM65CW PLL is activated. Automatic calibration times are fully transparent to the end-user, as  
their processing time is included in the TS_RE specifications.  
3.3.3.2. PLL Bandwidth  
The bandwidth of the RFM65CW Fractional-N PLL is wide enough to allow for very fast PLL lock times, enabling both  
short startup and fast hop times required for frequency agile applications.  
3.3.3.3. Carrier Frequency and Resolution  
The RFM65CW PLL embeds a 19-bit sigma-delta modulator and its frequency resolution, constant over the whole  
frequency range, and is given by:  
FXOS  
----------------  
C
F
=
STE  
P
219  
The carrier frequency is programmed through RegFrf, split across addresses 0x07 to 0x09:  
FRF = FSTEP  
Frf(23,0)  
Note The Frf setting is split across 3 bytes. A change in the center frequency will only be taken into account when the  
least significant byte FrfLsb in RegFrfLsb is written.  
Page 16  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
3.3.4. Lock Time  
PLL lock time TS_FS is a function of a number of technical factors, such as synthesized frequency, frequency step, etc.  
When using the built-in sequencer, the RFM65CW optimizes the startup time and automatically starts the receiver when  
the PLL has locked. To manually control the startup time, the user should either wait for TS_FS max given in the  
specification, or monitor the signal PLL lock detect indicator, which is set when the PLL has is within its locking range.  
When performing an AFC, which usually corrects very small frequency errors, the PLL response time is approximately:  
In a frequency hopping scheme, the timings TS_HOP given in the table of specifications give an order of magnitude for the  
expected lock times.  
3.3.5. Lock Detect Indicator  
A lock indication signal can be made available on some of the DIO pins, and is toggled high when the PLL reaches its  
locking range. Please refer to Table 17 and Table 18 to map this interrupt to the desired pins.  
3.4. Receiver Description  
The RFM65CW features a digital receiver with the analog to digital conversion process being performed directly following  
the LNA-Mixers block. The zero-IF receiver is able to handle (G)FSK and (G)MSK modulation. ASK and OOK modulation  
is, however, demodulated by a low-IF architecture. All the filtering, demodulation, gain control, synchronization and  
packet handling is performed digitally, which allows a very wide range of bit rates and frequency deviations to be selected.  
The receiver is also capable of automatic gain calibration in order to improve precision on RSSI measurements.  
3.4.1. Block Diagram  
Rx Calibration  
Reference  
Σ/  
Δ
LNA  
CORDIC  
Modulators  
Mixers  
DC  
Cancellation  
Single to  
Differential  
Channel  
Filter  
Complex  
Filter  
Phase  
Output  
FSK  
Demodulator  
RFIN  
Module  
Output  
OOK  
Demodulator  
RSSI  
Bypassed  
in FSK  
Local  
Oscillator  
AFC  
AGC  
Figure 5. Receiver Block Diagram  
The following sections give a brief description of each of the receiver blocks.  
Page 17  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
3.4.2. LNA - Single to Differential Buffer  
The LNA uses a common-gate topology, which allows for a flat characteristic over the whole frequency range. It is  
designed to have an input impedance of 50 Ohms or 200 Ohms (as selected with bit LnaZin in RegLna), and the parasitic  
capacitance at the LNA input port is cancelled with the external RF choke. A single to differential buffer is implemented to  
improve the second order linearity of the receiver.  
The LNA gain, including the single-to-differential buffer, is programmable over a 48 dB dynamic range, and control is either  
manual or automatic with the embedded AGC function.  
Note In the specific case where the LNA gain is manually set by the user, the receiver will not be able to properly handle  
FSK signals with a modulation index smaller than 2 at an input power greater than the 1dB compression point,  
tabulated in section 3.4.3.  
Table 8 LNA Gain Settings  
LnaGainSelect  
LNA Gain  
Any of the below, set by the AGC loop  
Max gain  
Gain Setting  
000  
001  
010  
011  
100  
101  
110  
111  
-
G1  
G2  
G3  
G4  
G5  
G6  
-
Max gain - 6 dB  
Max gain - 12 dB  
Max gain - 24 dB  
Max gain - 36 dB  
Max gain - 48 dB  
Reserved  
3.4.3. Automatic Gain Control  
By default (LnaGainSelect = 000), the LNA gain is controlled by a digital AGC loop in order to obtain the optimal sensitivity/  
linearity trade-off.  
Regardless of the data transfer mode (Packet or Continuous), the following series of events takes place when the receiver  
is enabled:  
z
The receiver stays in WAIT mode, until RssiValue exceeds RssiThreshold for two consecutive samples. Its power  
consumption is the receiver power consumption.  
z
z
z
When this condition is satisfied, the receiver automatically selects the most suitable LNA gain, optimizing the sensitivity/  
linearity trade-off.  
The programmed LNA gain, read-accessible with LnaCurrentGain in RegLna, is carried on for the whole duration of the  
packet, until one of the following conditions is fulfilled:  
Packet mode: if AutoRxRestartOn = 0, the LNA gain will remain the same for the reception of the following packet. If  
AutoRxRestartOn = 1, after the controller has emptied the FIFO the receiver will re-enter the WAIT mode described  
above, after a delay of InterPacketRxDelay, allowing for the distant transmitter to ramp down, hence avoiding a false  
RSSI detection. In both cases (AutoRxRestartOn=0 or AutoRxRestartOn=1), the receiver can also re-enter the WAIT  
mode by setting RestartRx bit to 1. The user can decide to do so, to manually launch a new AGC procedure.  
z
Continuous mode: upon reception of valid data, the user can decide to either leave the receiver enabled with the same  
LNA gain, or to restart the procedure, by setting RestartRx bit to 1, resuming the WAIT mode of the receiver, described  
above.  
Notes - the AGC procedure must be performed while receiving preamble in FSK mode  
- in OOK mode, the AGC will give better results if performed while receiving a constant “1” sequence  
Page 18  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
The following figure illustrates the AGC behavior::  
Towards  
-125 dBm  
16dB  
7dB  
11dB  
9dB  
11dB  
Pin [dBm]  
G1  
G2  
G3  
G4  
G5  
G6  
Higher Sensitivity  
Lower Linearity  
Lower Sensitivity  
Higher Linearity  
Lower Noise Figure  
Higher Noise Figure  
Figure 6. AGC Thresholds Settings  
The following table summarizes the performance (typical figures) of the complete receiver:  
Table 9 Receiver Performance Summary  
Input Power  
Pin  
Gain  
Setting  
Receiver Performance (typ)  
P-1dB  
[dBm]  
-37  
NF  
IIP3  
IIP2  
[dBm]  
[dB]  
[dBm]  
Pin < AgcThresh1  
G1  
G2  
G3  
G4  
G5  
G6  
7
-18  
-15  
-8  
+35  
+40  
+48  
+62  
+68  
+75  
AgcThresh1 < Pin < AgcThresh2  
AgcThresh2 < Pin < AgcThresh3  
AgcThresh3 < Pin < AgcThresh4  
AgcThresh4 < Pin < AgcThresh5  
AgcThresh5 < Pin  
-31  
13  
18  
27  
36  
44  
-26  
-14  
-1  
>-6  
+13  
+20  
>0  
3.4.3.1. RssiThreshold Setting  
For correct operation of the AGC, RssiThreshold in RegRssiThresh must be set to the sensitivity of the receiver. The  
receiver will remain in WAIT mode until RssiThreshold is exceeded.  
Note When AFC is enabled and performed automatically at the receiver startup, the channel filter used by the receiver  
during the AFC and the AGC is RxBwAfc instead of the standard RxBw setting. This may impact the sensitivity of  
the receiver, and the setting of RssiThreshold accordingly  
3.4.3.2. AGC Reference  
The AGC reference level is automatically computed in the RFM65CW, according to:  
AGC Reference [dBm] = -174 + NF + DemodSnr +10.log(2*RxBw) + FadingMargin [dBm]  
Page 19  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
3.4.4. Continuous-Time DAGC  
In addition to the automatic gain control described in section 3.4.3, the RFM65CW is capable of continuously adjusting its  
gain in the digital domain, after the analog to digital conversion has occured. This feature, named DAGC, is fully  
transparent to the end user. The digital gain adjustment is repeated every 2 bits, and has the following benefits:  
z
Fully transparent to the end user  
z
z
z
Improves the fading margin of the receiver during the reception of a packet, even if the gain of the LNA is frozen  
Improves the receiver robustness in fast fading signal conditions, by quickly adjusting the receiver gain (every 2 bits)  
Works in Continuous, Packet, and unlimited length Packet modes  
The DAGC is enabled by setting RegTestDagc to 0x10 for low modulation index systems (i.e. when AfcLowBetaOn=1,  
refer to section 3.4.17), and 0x30 for other systems. See section 9.5 for details. It is recommended to always enable the  
DAGC.  
3.4.5. Quadrature Mixer - ADCs - Decimators  
The mixer is inserted between output of the RF buffer stage and the input of the analog to digital converter (ADC) of the  
receiver section. This block is designed to translate the spectrum of the input RF signal to base-band, and offer both high  
IIP2 and IIP3 responses.  
In the lower bands of operation (290 to 510 MHz), the multi-phase mixing architecture with weighted phases improves the  
rejection of the LO harmonics in receiver mode, hence increasing the receiver immunity to out-of-band interferers.  
The I and Q digitalization is made by two 5th order continuous-time Sigma-Delta Analog to Digital Converters (ADC). Their  
gain is not constant over temperature, but the whole receiver is calibrated before reception, so that this inaccuracy has no  
impact on the RSSI precision. The ADC output is one bit per channel. It needs to be decimated and filtered afterwards. This  
ADC can also be used for temperature measurement, please refer to section 3.4.18 for more details.  
The decimators decrease the sample rate of the incoming signal in order to optimize the area and power consumption of  
the following receiver blocks.  
3.4.6. Channel Filter  
The role of the channel filter is to filter out the noise and interferers outside of the channel. Channel filtering on the  
RFM65CW is implemented with a 16-tap Finite Impulse Response (FIR) filter, providing an outstanding Adjacent Channel  
Rejection performance, even for narrowband applications.  
Note to respect oversampling rules in the decimation chain of the receiver, the Bit Rate cannot be set at a higher value  
than 2 times the single-side receiver bandwidth (BitRate < 2 x RxBw)  
The single-side channel filter bandwidth RxBw is controlled by the parameters RxBwMant and RxBwExp in RegRxBw:  
Page 20  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
The following channel filter bandwidths are accessible (oscillator is mandated at 32 MHz):  
Table 10 Available RxBw Settings  
RxBwMant  
RxBwExp  
RxBw (kHz)  
(binary/value) (decimal)  
FSK  
OOK  
ModulationType=00 ModulationType=01  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
7
7
7
6
6
6
5
5
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
2.6  
3.1  
1.3  
1.6  
3.9  
2.0  
5.2  
2.6  
6.3  
3.1  
7.8  
3.9  
10.4  
12.5  
15.6  
20.8  
25.0  
31.3  
41.7  
50.0  
62.5  
83.3  
100.0  
125.0  
166.7  
200.0  
250.0  
333.3  
400.0  
500.0  
5.2  
6.3  
7.8  
10.4  
12.5  
15.6  
20.8  
25.0  
31.3  
41.7  
50.0  
62.5  
83.3  
100.0  
125.0  
166.7  
200.0  
250.0  
3.4.7. DC Cancellation  
DC cancellation is required in zero-IF architecture receivers to remove any DC offset generated through self-reception. It is  
built-in the RFM65CW and its adjustable cutoff frequency fc is controlled in RegRxBw:  
Page 21  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
The default value of DccFreq cutoff frequency is typically 4% of the RxBw (channel filter BW). The cutoff frequency of the  
DCC can however be increased to slightly improve the sensitivity, under wider modulation conditions. It is advised to adjust  
the DCC setting while monitoring the receiver sensitivity.  
3.4.8. Complex Filter - OOK  
In OOK mode the RFM65CW is modified to a low-IF architecture. The IF frequency is automatically set to half the single  
side bandwidth of the channel filter (FIF = 0.5 x RxBw). The Local Oscillator is automatically offset by the IF in the OOK  
receiver. A complex filter is implemented on the chip to attenuate the resulting image frequency by typically 30 dB.  
Note this filter is automatically bypassed when receiving FSK signals (ModulationType = 00 in RegDataModul).  
3.4.9. RSSI  
The RSSI block evaluates the amount of energy available within the receiver channel bandwidth. Its resolution is 0.5 dB,  
and it has a wide dynamic range to accommodate both small and large signal levels that may be present. Its acquisition  
time is very short, taking only 2 bit periods. The RSSI sampling must occur during the reception of preamble in FSK, and  
constant “1” reception in OOK.  
Note - The receiver is capable of automatic gain calibration, in order to improve the precision of its RSSI measurements.  
This function injects a known RF signal at the LNA input, and calibrates the receiver gain accordingly. This  
calibration is automatically performed during the PLL start-up, making it a transparent process to the end-user.  
- RssiValue can only be read when it exceeds RssiThreshold  
3.4.10. Cordic  
The Cordic task is to extract the phase and the amplitude of the modulation vector (I+j.Q). This information, still in the  
digital domain is used:  
z
Phase output: used by the FSK demodulator and the AFC blocks.  
z
Amplitude output: used by the RSSI block, for FSK demodulation, AGC and automatic gain calibration purposes.  
Q(t)  
Real-  
time  
Magnitude  
Real-time Phase  
I(t)  
Figure 7. Cordic Extraction  
3.4.11. Bit Rate Setting  
Page 22  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
The Bit Rate (BR) is controlled by bits BitRate in RegBitrate:  
FXOS  
C
-------------------  
BR =  
BitRate  
Amongst others, the following Bit Rates are accessible:  
Table 11 Bit Rate Examples  
BitRate  
(15:8)  
BitRate  
(7:0)  
(G)FSK  
(G)MSK  
Actual BR  
(b/s)  
Type  
OOK  
Classical modem baud rates  
(multiples of 1.2 kbps)  
0x68  
0x34  
0x1A  
0x0D  
0x06  
0x03  
0x01  
0x00  
0x02  
0x01  
0x0A  
0x05  
0x02  
0x01  
0x00  
0x00  
0x00  
0x00  
0x03  
0x2B  
0x15  
0x0B  
0x05  
0x83  
0x41  
0xA1  
0xD0  
0x2C  
0x16  
0x00  
0x00  
0x80  
0x40  
0xD5  
0xA0  
0x80  
0x6B  
0xD1  
1.2 kbps  
2.4 kbps  
1.2 kbps  
2.4 kbps  
4.8 kbps  
9.6 kbps  
19.2 kbps  
1200.015  
2400.060  
4799.760  
9600.960  
19196.16  
38415.36  
76738.60  
153846.1  
57553.95  
115107.9  
12500.00  
25000.00  
50000.00  
100000.0  
150234.7  
200000.0  
250000.0  
299065.4  
32753.32  
4.8 kbps  
9.6 kbps  
19.2 kbps  
38.4 kbps  
76.8 kbps  
153.6 kbps  
57.6 kbps  
115.2 kbps  
12.5 kbps  
25 kbps  
Classical modem baud rates  
(multiples of 0.9 kbps)  
Round bit rates  
(multiples of 12.5, 25 and  
50 kbps)  
12.5 kbps  
25 kbps  
50 kbps  
100 kbps  
150 kbps  
200 kbps  
250 kbps  
300 kbps  
32.768 kbps  
Watch Xtal frequency  
32.768 kbps  
3.4.12. FSK Demodulator  
The FSK demodulator of the RFM65CW is designed to demodulate FSK, GFSK, MSK and GMSK modulated signals. It  
is most efficient when the modulation index of the signal is greater than 0.5 and below 10:  
The output of the FSK demodulator can be fed to the Bit Synchronizer (described in section 3.4.14), to provide the  
companion processor with a synchronous data stream in Continuous mode.  
Page 23  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
3.4.13. OOK Demodulator  
The OOK demodulator performs a comparison of the RSSI output and a threshold value. Three different threshold modes  
are available, configured through bits OokThreshType in RegOokPeak.  
The recommended mode of operation is the "Peak" threshold mode, illustrated in Figure 8:  
RSSI  
[dBm]  
‘’Peak -6dB’’ Threshold  
‘’Floor’’ threshold defined by  
OokFixedThresh  
Noise floor of  
receiver  
Time  
Zoom  
Decay in dB as defined in  
OokPeakThreshStep  
Fixed 6dB difference  
Period as defined in  
OokPeakThreshDec  
Figure 8. OOK Peak Demodulator Description  
In peak threshold mode the comparison threshold level is the peak value of the RSSI, reduced by 6dB. In the absence of  
an input signal, or during the reception of a logical "0", the acquired peak value is decremented by one  
OokPeakThreshStep every OokPeakThreshDec period.  
When the RSSI output is null for a long time (for instance after a long string of "0" received, or if no transmitter is present),  
the peak threshold level will continue falling until it reaches the "Floor Threshold", programmed in OokFixedThresh.  
The default settings of the OOK demodulator lead to the performance stated in the electrical specification. However, in  
applications in which sudden signal drops are awaited during a reception, the three parameters should be optimized  
accordingly.  
3.4.13.1. Optimizing the Floor Threshold  
OokFixedThresh determines the sensitivity of the OOK receiver, as it sets the comparison threshold for weak input signals  
(i.e. those close to the noise floor). Significant sensitivity improvements can be generated if configured correctly.  
Page 24  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Note that the noise floor of the receiver at the demodulator input depends on:  
z
z
z
z
The noise figure of the receiver.  
The gain of the receive chain from antenna to base band.  
The matching - including SAW filter if any.  
The bandwidth of the channel filters.  
It is therefore important to note that the setting of OokFixedThresh will be application dependant. The following procedure  
is recommended to optimize OokFixedThresh.  
Set RFM65CW in OOK Rx mode  
Adjust Bit Rate, Channel filter BW  
Default OokFixedThresh setting  
No input signal  
Continuous Mode  
Monitor DIO2/DATA pin  
Increment  
OokFixedThresh  
Glitch activity  
on DATA  
?
Optimization complete  
Figure 9. Floor Threshold Optimization  
The new floor threshold value found during this test should be used for OOK reception with those receiver settings.  
3.4.13.2. Optimizing OOK Demodulator for Fast Fading Signals  
A sudden drop in signal strength can cause the bit error rate to increase. For applications where the expected signal drop  
can be estimated, the following OOK demodulator parameters OokPeakThreshStep and OokPeakThreshDec can be  
optimized as described below for a given number of threshold decrements per bit. Refer to RegOokPeak to access those  
settings.  
3.4.13.3. Alternative OOK Demodulator Threshold Modes  
In addition to the Peak OOK threshold mode, the user can alternatively select two other types of threshold detectors:  
z
Fixed Threshold: The value is selected through OokFixedThresh  
z
Average Threshold: Data supplied by the RSSI block is averaged, and this operation mode should only be used with  
DC-free encoded data.  
Page 25  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
3.4.14. Bit Synchronizer  
The Bit Synchronizer is a block that provides a clean and synchronized digital output, free of glitches. Its output is made  
available on pin DIO1/DCLK in Continuous mode and can be disabled through register settings. However, for optimum  
receiver performance its use when running Continuous mode is strongly advised.  
The Bit Synchronizer is automatically activated in Packet mode. Its bit rate is controlled by BitRateMsb and BitRateLsb in  
RegBitrate.  
Raw demodulator  
output  
(FSK or OOK)  
DATA  
BitSync Output To  
pin DATA and  
DCLK in continuous  
mode  
DCLK  
Figure 10. Bit Synchronizer Description  
To ensure correct operation of the Bit Synchronizer, the following conditions have to be satisfied:  
z
A preamble (0x55 or 0xAA) of 12 bits is required for synchronization (from the RxReady interrupt)  
z
The subsequent payload bit stream must have at least one transition form '0' to '1' or '1' to '0 every 16 bits during data  
transmission  
z
The bit rate matching between the transmitter and the receiver must be better than 6.5 %.  
Notes - If the Bit Rates of Transmitter and Receiver are known to be the same, the RFM65CW will be able to receive  
an infinite unbalanced sequence (all “0s” or all ”1s”) with no restriction.  
- If there is a difference in Bit Rate between Tx and Rx, the amount of adjacent bits at the same level that the  
BitSync can withstand can be estimated as follows:  
- This implies approximately 6 consecutive unbalanced bytes when the Bit Rate precision is 1%, which is easily  
achievable (crystal tolerance is in the range of 50 to 100 ppm).  
3.4.15. Frequency Error Indicator  
This function provides information about the frequency error of the local oscillator (LO) compared with the carrier frequency  
of a modulated signal at the input of the receiver. When the FEI block is launched, the frequency error is measured and the  
Page 26  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
signed result is loaded in FeiValue in RegFei, in 2’s complement format. The time required for an FEI evaluation is 4 times  
the bit period.  
To ensure a proper behavior of the FEI:  
z
z
The operation must be done during the reception of preamble  
The sum of the frequency offset and the 20 dB signal bandwidth must be lower than the base band filter bandwidth  
The 20 dB bandwidth of the signal can be evaluated as follows (double-side bandwidth):  
The frequency error, in Hz, can be calculated with the following formula:  
FEI = FSTEP  
FeiValue  
RFM65CW in Rx mode  
Preamble-modulated input signal  
Signal level > Sensitivity  
Set FeiStart  
=
1
No  
FeiDone  
=
1
Yes  
Read  
FeiValue  
Figure 11. FEI Process  
3.4.16. Automatic Frequency Correction  
The AFC is based on the FEI block, and therefore the same input signal and receiver setting conditions apply. When the  
AFC procedure is done, AfcValue is directly subtracted to the register that defines the frequency of operation of the chip,  
FRF. The AFC can be launched:  
z
Each time the receiver is enabled, if AfcAutoOn = 1  
z
Upon user request, by setting bit AfcStart in RegAfcFei, if AfcAutoOn = 0  
Page 27  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
When the AFC is automatically triggered (AfcAutoOn = 1), the user has the option to:  
z
Clear the former AFC correction value, if AfcAutoClearOn = 1  
z
Start the AFC evaluation from the previously corrected frequency. This may be useful in systems in which the LO keeps  
on drifting in the “same direction”. Ageing compensation is a good example.  
The RFM65CW offers an alternate receiver bandwidth setting during the AFC phase, to accommodate large LO drifts. If  
the user considers that the received signal may be out of the receiver bandwidth, a higher channel filter bandwidth can  
be programmed in RegAfcBw, at the expense of the receiver noise floor, which will impact upon sensitivity.  
3.4.17. Optimized Setup for Low Modulation Index Systems  
z
For wide band systems, where AFC is usually not required (XTAL inaccuracies do not typically impact the sensitivity), it  
is recommended to offset the LO frequency of the receiver to avoid desensitization. This can be simply done by  
modifying Frf in RegFrfLsb. A good rule of thumb is to offset the receiver’s LO by 10% of the expected transmitter  
frequency deviation.  
z
For narrow band systems, it is recommended to perform AFC. The RFM65CW has a dedicated AFC, enabled  
when  
AfcLowBetaOn in RegAfcCtrl is set to 1. A frequency offset, programmable through LowBetaAfcOffset in RegTestAfc, is  
added and is calculated as follows:  
Offset = LowBetaAfcOffset x 488 Hz  
The user should ensure that the programmed offset exceeds the DC canceller’s cutoff frequency, set through DccFreqAfc  
in RegAfcBw.  
RX  
TX  
RX & TX  
FeiValue  
AfcValue  
Standard AFC  
AfcLowBetaOn = 0  
f
f
f
RX  
TX  
TX RX  
FeiValue  
AfcValue  
LowBetaAfcOffset  
Optimized AFC  
AfcLowBetaOn =  
1
f
Before AFC  
After AFC  
Figure 12. Optimized Afc (AfcLowBe  
taOn=1)  
As shown on Figure 12, a standard AFC sequence uses the result of the FEI to correct the LO frequency and align both  
local oscillators. When the optimized AFC is enabled (AfcLowBetaOn=1), the receiver’s LO is corrected by “FeiValue +  
LowBetaAfcOffset”.  
When the optimized AFC routine is enabled, the receiver startup time can be computed as follows (refer to section 4.2.1):  
TS_RE_AGC&AFC (optimized AFC) = Tana + 4.Tcf + 4.Tdcc + 3.Trssi + 2.Tafc + 2.Tpllafc  
Page 28  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
3.4.18. Temperature Sensor  
When temperature is measured, the receiver ADC is used to digitize the sensor response. Most receiver blocks are  
disabled, and temperature measurement can only be triggered in Standby or Frequency Synthesizer modes.  
The response of the temperature sensor is -1°C / Lsb. A CMOS temperature sensor is not accurate by nature, therefore it  
should be calibrated at ambient temperature for precise temperature readings.  
TempValue  
-1°C/Lsb  
TempValue(t)  
TempValue(t)-1  
Returns 150d (typ.)  
Needs calibration  
-40  
°
C
t t+1  
Ambient  
+85°C  
Figure 13. Temperature Sensor Response  
It takes less than 100 microseconds for the RFM65CW to evaluate the temperature (from setting TempMeasStart to 1  
to  
TempMeasRunning reset).  
3.4.19. Timeout Function  
The RFM65CW includes a Timeout function, which allows it to automatically shut-down the receiver after a receive  
sequence and therefore save energy.  
z
z
Timeout interrupt is generated TimeoutRxStart x 8 x Tbit after switching to RX mode if RssiThreshold flag does not raise  
within this time frame  
Timeout interrupt is generated TimeoutRssiThresh x 8 x Tbit after RssiThreshold flag has been raised.  
This timeout interrupt can be used to warn the companion processor to shut down the receiver and return to a lower power  
mode.  
Page 29  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
4. Operating Modes  
DATASHEET  
4.1. Basic Modes  
The circuit can be set in 4 different basic modes which are described in Table 12.  
By default, when switching from a mode to another one, the sub-blocks are woken up according to a pre-defined and  
optimized sequence. Alternatively, these operating modes can be selected directly by disabling the automatic sequencer  
(SequencerOff in RegOpMode = 1).  
Table 12 Basic Receiver Modes  
ListenOn  
Mode  
Selected mode  
Enabled blocks  
in RegOpMode  
in RegOpMode  
0
0
0
0
1
0 0 0  
0 0 1  
0 1 0  
1 0 0  
x
Sleep Mode  
Stand-by Mode  
FS Mode  
None  
Top regulator and crystal oscillator  
Frequency synthesizer  
Receive Mode  
Listen Mode  
Frequency synthesizer and receiver  
See Listen Mode, section 4.3  
4.2. Automatic Sequencer and Wake-Up Times  
By default, when switching from one operating mode to another, the circuit takes care of the sequence of events in such a  
way that the transition timing is optimized. For example, when switching from Sleep mode to Receive mode, the  
RFM65CW goes first to Standby mode (XO started), then to frequency synthesizer mode, and finally, when the PLL has  
locked, to Receive mode.  
z
The crystal oscillator wake-up time, TS_OSC, is directly related to the time for the crystal oscillator to reach its steady  
state. It depends notably on the crystal characteristics.  
z
The frequency synthesizer wake-up time, TS_FS, is directly related to the time needed by the PLL to reach its steady  
state. The signal PLL_LOCK, provided on an external pin, gives an indication of the lock status. It goes high when the  
PLL reaches its locking range.  
Three specific cases can be highlighted:  
Receiver Wake Up time from Sleep mode  
= TS_OSC + TS_FS + TS_RE  
Receiver Wake Up time from Sleep mode, AGC enabled  
Receiver Wake Up time from Sleep mode, AGC and AFC enabled  
= TS_OSC + TS_FS + TS_RE_AGC  
= TS_OSC + TS_FS + TS_RE_AGC&AFC  
These timings are detailed in section 4.2.1.  
In applications where the target average power consumption, or the target startup time, do not require setting the  
RFM65CW in the lowest power modes (Sleep or Standby), the respective timings TS_OSC and TS_FS in the former  
equations can be omitted.  
4.2.1. Receiver Startup Time  
It is highly recommended to use the built-in sequencer of the RFM65CW, to optimize the delays when setting the chip in  
receive mode. It guarantees the shortest startup times, hence the lowest possible energy usage, for battery operated  
systems.  
The startup times of the receiver can be calculated from the following:  
Page 30  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Rx startup request  
(sequencer or user)  
TS_RE  
Analog FE’s  
group delay  
Channel Filter’s  
group delay  
DC Cutoff’s  
group delay sampling sampling  
RSSI  
RSSI  
XO Started and PLL is locked  
Reception of Packet  
Tana  
Tcf  
Tdcc  
Trssi  
Trssi  
ModeReady  
RxReady  
Figure 14. Rx Startup - No AGC, no AFC  
The LNA gain is adjusted by  
the AGC, according to the  
RSSI result  
Rx startup request  
(sequencer or user)  
TS_RE_AGC  
Analog FE’s  
group delay  
Channel Filter’s  
group delay  
DC Cutoff’s  
group delay sampling sampling  
RSSI  
RSSI  
Channel Filter’s  
group delay  
DC Cutoff’s  
group delay sampling  
RSSI  
XO Started and PLL is locked  
Reception of Packet  
Tana  
Tcf  
Tdcc  
Trssi  
Trssi  
Tcf  
Tdcc  
Trssi  
ModeReady  
RxReady  
Figure 15. Rx Startup - AGC, no AFC  
The LNA gain is adjusted by  
the AGC, according to the  
RSSI result  
Rx startup request  
(sequencer or user)  
Carrier Frequency is adjusted  
by the AFC  
TS_RE_AGC&AFC  
XO Started and Analog FE’s Channel Filter’s DC Cutoff’s  
RSSI  
RSSI  
Channel Filter’s DC Cutoff’s  
RSSI  
PLL  
lock  
Channel Filter’s DC Cutoff’s  
AFC  
Reception of Packet  
PLL is locked  
group delay  
group delay  
group delay sampling sampling  
group delay  
group delay sampling  
group delay  
group delay  
Tana  
Tcf  
Tdcc  
Trssi  
Trssi  
Tcf  
Tdcc Trssi  
Tafc Tpllafc  
Tcf  
Tdcc  
ModeReady  
RxReady  
Figure 16. Rx Startup - AGC and AFC  
The different timings shown above are as follows:  
Note The above timings represent maximum settling times, and shorter settling times may be observed in real cases  
Page 31  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
4.2.2. Rx Start Procedure  
As described in the former sections, the RxReady interrupt warns the uC that the receiver is ready.  
z
In Continuous mode with Bit Synchronizer, the receiver will start locking its Bit Synchronizer on a minimum or 12 bits of  
received preamble (see section 3.4.14 for details), before the reception of correct Data, or Sync Word (if enabled) can  
occur.  
z
z
In Continuous mode without Bit Synchronizer, valid data will be available on DIO2/DATA right after the RxReady  
interrupt.  
In Packet mode, the receiver will start locking its Bit Synchronizer on a minimum or 12 bits of received preamble (see  
section 3.4.14 for details), before the reception of correct Data, or Sync Word (if enabled) can occur.  
4.2.3. Optimized Frequency Hopping Sequences  
In a frequency hopping-like application, it is required to turn off the receiver when hopping from one channel to another, to  
optimize the hopping sequence:  
Receiver hop from Ch A to Ch B:  
(0) RFM65CW is in Rx mode in  
Ch A  
(1) Change the carrier frequency in the RegFrf registers  
(2) Program the RFM65CW in FS mode  
(3) Turn the receiver back to Rx mode  
(4) Respect the Rx start procedure, described in section 4.2.4  
Note the above sequence assumes that the sequencer is turned on (SequencerOff=0 in RegOpMode).  
Page 32  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
4.3. Listen Mode  
DATASHEET  
The circuit can be set to Listen mode, by setting ListenOn in RegOpMode to 1 while in Standby mode. In this mode,  
RFM65CW spends most of the time in Idle mode, during which only the RC oscillator runs. Periodically the receiver is  
woken up and listens for an RF signal. If a wanted signal is detected, the receiver is kept on and the data is demodulated.  
Otherwise, if a wanted signal hasn't been detected after a pre-defined period of time, the receiver is disabled until the next  
time period.  
This periodical Rx wake-up requirement is very common in low power applications. On RFM65CW it is handled locally by  
the  
Listen mode block without using uC resources or energy.  
The simplified timing diagram of this procedure is illustrated in Figure 17.  
tLis  
tenIdle  
Rx  
Idle  
Rx  
time  
tListenRx  
tListenRx  
Figure 17. Listen Mode Sequence (no wanted signal is received)  
4.3.1. Timings  
The duration of the Idle phase is given by tListenIdle. The time during which the receiver is on and waits for a signal is given  
by tListenRx. tListenRx includes the wake-up time of the receiver, described in section 4.2.1. This duration can be  
programmed in the configuration registers via the serial interface.  
Both time periods tListenRx and tListenIdle (denoted tListenX in the following text) are fixed by two parameters from the  
configuration register and are calculated as follows:  
ListenCoefX Listen Re solX  
tListenX  
where ListenResolX is the Rx or Idle resolution and is independantly programmable on three values (64us, 4.1ms or  
262ms), whereas ListenCoefX is an integer between 1 and 255. All parameters are located in RegListen registers.  
The timing ranges are tabulated in Table 13 below.  
Table 13 Range of Durations in Listen Mode  
ListenResolX  
Min duration  
Max duration  
( ListenCoef = 1 )  
( ListenCoef = 255 )  
01  
10  
11  
64 us  
4.1 ms  
16 ms  
1.04  
67  
s
0.26  
s
s
Page 33  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Notes - the accuracy of the typical timings given in Table 13 will depend in the RC oscillator calibration  
- RC oscillator calibration is required, and must be performed at power up. See section 4.3.4 for details  
4.3.2. Criteria  
The criteria taken for detecting a wanted signal and hence deciding to maintain the receiver on is defined by ListenCriteria  
in RegListen1.  
Table 14 Signal Acceptance Criteria in Listen Mode  
ListenCriteria  
Input Signal Power  
SyncAddressMatch  
>= RssiThreshold  
0
1
Required  
Required  
Not Required  
Required  
4.3.3. End of Cycle Actions  
The action taken after detection of a packet, is defined by ListenEnd in RegListen3, as described in the table below.  
Table 15 End of Listen Cycle Actions  
ListenEnd  
Description  
Chip stays in Rx mode. Listen mode stops and must be disabled.  
00  
01  
Chip stays in Rx mode until PayloadReady or Timeout interrupt occurs. It then goes to the  
mode defined by Mode. Listen mode stops and must be disabled.  
Chip stays in Rx mode until PayloadReady or Timeout interrupt occurs. Listen mode then  
10  
resumes in Idle state. FIFO content is lost at next Rx wakeup.  
Page 34  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Upon detection of a valid packet, the sequencing is altered, as shown below:  
PayloadReady  
ListenCriteria  
passed  
Idle  
Idle  
Idle  
Rx  
Rx  
Rx  
ListenEnd = 00  
ListenEnd = 01  
ListenEnd = 10  
Listen Mode  
Listen Mode  
Listen Mode  
Mode  
Idle  
Rx  
Figure 18. Listen Mode Sequence (wanted signal is received)  
Listen mode can be disabled by writing ListenOn to 0  
4.3.4. RC Timer Accuracy  
All timings of the Listen Mode rely on the accuracy of the internal low-power RC oscillator. This oscillator is automatically  
calibrated at the device power-up, and it is a user-transparent process.  
For applications enduring large temperature variations, and for which the power supply is never removed, RC calibration  
can be performed upon user request. RcCalStart in RegOsc1 can be used to trigger this calibration, and the flag  
RcCalDone will be set automatically when the calibration is over.  
Page 35  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
4.4. AutoModes  
DATASHEET  
Automatic modes of packet handler can be enabled by configuring the related parameters in RegAutoModes.  
The intermediate mode of the chip is called IntermediateMode and the enter and exit conditions to/from this intermediate  
mode can be configured through the parameters EnterCondition & ExitCondition.  
The enter and exit conditions cannot be used independently of each other i.e. both should be enabled at the same time.  
The initial and the final state is the one configured in the Mode in RegOpMode. The initial & final states can be different by  
configuring the modes register while the chip is in intermediate mode. The pictorial description of the auto modes is shown  
below.  
Intermediate State  
defined by IntermediateMode  
ExitCondition  
EnterCondition  
Initial state defined  
Final state defined  
By Mode in RegOpMode  
By Mode in RegOpMode  
Figure 19. Auto Modes of Packet Handler  
Some typical examples of AutoModes usage are described below :  
z
Automatic reception (AutoRx) : Mode = Rx, IntermediateMode = Sleep, EnterCondition = CrcOk, ExitCondition = falling  
edge of FifoNotEmpty  
z
...  
Page 36  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5. Data Processing  
5.1. Overview  
5.1.1. Block Diagram  
Figure below illustrates the RFM65CW data processing circuit. Its role is to interface the data from the demodulator and  
the uC access points (SPI and DIO pins). It also controls all the configuration registers.  
The circuit contains several control blocks which are described in the following paragraphs.  
DIO0  
DIO1  
Rx  
DIO2  
DIO3  
CONTROL  
DIO4  
NSS  
SCK  
MOSI  
Data  
Rx  
PACKET  
HANDLER  
SYNC  
RECOG.  
FIFO  
(+SR)  
SPI  
MISO  
Potential datapaths (data operation mode dependant)  
Figure 20. RFM65CW Data Processing Conceptual View  
The RFM65CW implements several data operation modes, each with their own data path through the data processing  
section. Depending on the data operation mode selected, some control blocks are active whilst others remain disabled.  
5.1.2. Data Operation Modes  
The RFM65CW has two different data operation modes selectable by the user:  
z
Continuous mode: each bit received is accessed in real time at the DIO2/DATA pin. This mode may be used if adequate  
external signal processing is available.  
z
Packet mode (recommended): user only retrieves payload bytes from the FIFO. The packet engine automatically  
removes the preamble, checks the Sync word, performs AES decryption, checks the CRC, and decodes DC-free  
schemes if enabled. The uC processing overhead is hence significantly reduced compared to Continuous mode.  
Depending on the optional features activated (CRC, AES, etc) the maximum payload length is limited to FIFO size, 255  
bytes or unlimited.  
Each of these data operation modes is described fully in the following sections.  
Page 37  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.2. Control Block Description  
5.2.1. SPI Interface  
The SPI interface gives access to the configuration register via a synchronous full-duplex protocol corresponding to CPOL  
= 0 and CPHA = 0 in Motorola/Freescale nomenclature. Only the slave side is implemented.  
Three access modes to the registers are provided:  
z
SINGLE access: an address byte followed by a data byte is sent for a write access whereas an address byte is sent and  
a read byte is received for the read access. The NSS pin goes low at the begin of the frame and goes high after the data  
byte.  
z
BURST access: the address byte is followed by several data bytes. The address is automatically incremented internally  
between each data byte. This mode is available for both read and write accesses. The NSS pin goes low at the  
beginning of the frame and stay low between each byte. It goes high only after the last byte transfer.  
z
FIFO access: if the address byte corresponds to the address of the FIFO, then succeeding data byte will address the  
FIFO. The address is not automatically incremented but is memorized and does not need to be sent between each data  
byte. The NSS pin goes low at the beginning of the frame and stay low between each byte. It goes high only after the  
last byte transfer.  
Figure below shows a typical SPI single access to a register.  
Figure 21. SPI Timing Diagram (single access)  
MOSI is generated by the master on the falling edge of SCK and is sampled by the slave (i.e. this SPI interface) on the  
rising edge of SCK. MISO is generated by the slave on the falling edge of SCK.  
A transfer always starts by the NSS pin going low. MISO is high impedance when NSS is high.  
The first byte is the address byte. It is made of:  
z
wnr bit, which is 1 for write access and 0 for read access  
7 bits of address, MSB first  
z
The second byte is a data byte, either sent on MOSI by the master in case of a write access, or received by the master on  
MISO in case of read access. The data byte is transmitted MSB first.  
Proceeding bytes may be sent on MOSI (for write access) or received on MISO (for read access) without rising NSS and  
re-sending the address. In FIFO mode, if the address was the FIFO address then the bytes will be read at the FIFO  
address. In Burst mode, if the address was not the FIFO address, then it is automatically incremented at each new byte  
received.  
Page 38  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
The frame ends when NSS goes high. The next frame must start with an address byte. The SINGLE access mode is  
actually a special case of FIFO / BURST mode with only 1 data byte transferred.  
During the write access, the byte transferred from the slave to the master on the MISO line is the value of the written  
register before the write operation.  
5.2.2. FIFO  
5.2.2.1. Overview and Shift Register (SR)  
In packet mode of operation, data that has been received is stored in a configurable FIFO (First In First Out) device. It is  
accessed via the SPI interface and provides several interrupts for transfer management.  
The FIFO is 1 byte wide hence it only performs byte (parallel) operations, whereas the demodulator functions serially. A  
shift register is therefore employed to interface the two devices. In Rx the shift register gets bit by bit data from the  
demodulator and writes them byte by byte to the FIFO. This is illustrated in Figure 22.  
FIFO  
byte1  
byte0  
8
Rx Data  
SR (8bits)  
1
MSB  
LSB  
Figure 22. FIFO and Shift Register (SR)  
Note When switching to Sleep mode, the FIFO can only be used once the ModeReady flag is set (quasi immediate from  
all modes)  
5.2.2.2. Size  
The FIFO size is fixed to 66 bytes.  
5.2.2.3. Interrupt Sources and Flags  
z
FifoNotEmpty: FifoNotEmpty interrupt source is low when byte 0, i.e. whole FIFO, is empty. Otherwise it is high. Note  
that when retrieving data from the FIFO, FifoNotEmpty is updated on NSS falling edge, i.e. when FifoNotEmpty is  
updated to low state the currently started read operation must be completed. In other words, FifoNotEmpty state  
must be checked after each read operation for a decision on the next one (FifoNotEmpty = 1: more byte(s) to read;  
FifoNotEmpty = 0: no more byte to read).  
z
FifoFull: Fifofull interrupt source is high when the last FIFO byte, i.e. the whole FIFO, is full. Otherwise it is low.  
z
FifoOverrunFlag: FifoOverrunFlag is set when a new byte is written by the SR while the FIFO is already full. Data is lost  
and the flag should be cleared by writing a 1, note that the FIFO will also be cleared.  
z
FifoLevel: Threshold can be programmed by FifoThreshold in RegFifoThresh. Its behavior is illustrated in figure below.  
Page 39  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
FifoLevel  
1
0
B
B+1  
# of bytes in FIFO  
Figure 23. FifoLevel IRQ Source Behavior  
5.2.2.4. FIFO Clearing  
Table below summarizes the status of the FIFO when switching between different modes  
Table 16 Status of FIFO when Switching Between Different Modes of the Chip  
From  
Stdby  
To  
Sleep  
FIFO status  
Not cleared  
Not cleared  
Cleared  
Comments  
Sleep  
Stdby  
Stdby/Sleep  
Rx  
Rx  
Stdby/Sleep  
Not cleared  
To allow the user to read FIFO in Stdby/Sleep mode after Rx  
5.2.3. Sync Word Recognition  
5.2.3.1. Overview  
Sync word recognition (also called Pattern recognition) is activated by setting SyncOn in RegSyncConfig. The bit  
synchronizer must also be activated in continuous mode (automatically done in Packet mode) .  
The block behaves like a shift register; it continuously compares the incoming data with its internally programmed Sync  
word and sets SyncAddressMatch when a match is detected. This is illustrated in Figure 24 below.  
Page 40  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Rx DATA  
Bit N-x =  
Sync_value[x]  
Bit N-1 =  
Bit N =  
(NRZ)  
Sync_value[1] Sync_value[0]  
DCLK  
SyncAddressMatch  
Figure 24. Sync Word Recognition  
During the comparison of the demodulated data, the first bit received is compared with bit 7 (MSB) of RegSyncValue1 and  
the last bit received is compared with bit 0 (LSB) of the last byte whose address is determined by the length of the Sync  
word.  
When the programmed Sync word is detected the user can assume that this incoming packet is for the node and can be  
processed accordingly.  
SyncAddressMatch is cleared when leaving Rx or FIFO is emptied.  
5.2.3.2. Configuration  
z
Size: Sync word size can be set from 1 to 8 bytes (i.e. 8 to 64 bits) via SyncSize in RegSyncConfig.  
Error tolerance: The number of errors tolerated in the Sync word recognition can be set from 0 to 7 bits to via SyncTol.  
Value: The Sync word value is configured in SyncValue(63:0).  
z
z
Note SyncValue choices containing 0x00 bytes are not allowed  
5.2.4. Packet Handler  
The packet handler is the block used in Packet mode. Its functionality is fully described in section 5.5.  
5.2.5. Control  
The control block configures and controls the full chip's behavior according to the settings programmed in the configuration  
registers.  
Page 41  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
5.3. Digital IO Pins Mapping  
DATASHEET  
Six general purpose IO pins are available on the RFM65CW, and their configuration in Continuous or Packet mode  
is controlled through RegDioMapping1 and RegDioMapping2.  
5.3.1. DIO Pins Mapping in Continuous Mode  
Table 17 DIO Mapping, Continuous Mode  
Mode  
Diox  
Mapping  
00  
DIO4  
DIO3  
DIO2  
DIO1  
DIO0  
Sleep  
-
-
-
-
-
-
-
-
-
-
-
-
01  
10  
11  
LowBat  
-
AutoMode  
-
LowBat  
-
LowBat  
ModeReady  
Stdby  
FS  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LowBat  
-
LowBat  
AutoMode  
LowBat  
ModeReady  
-
-
-
-
-
-
-
PllLock  
-
-
AutoMode  
-
LowBat  
PllLock  
LowBat  
PllLock  
Dclk  
RxReady  
LowBat  
Low  
ModeReady  
SyncAddress  
Bat  
Rx  
Timeou  
RxReady  
SyncAddress  
PllLock  
t
Rssi  
RxReady  
oMode  
Timeout  
D
at  
Da  
at  
Da  
a
a
a
a
t
T
imeout  
Rssi  
ModeReady  
Au  
t
D
t
Sync  
Address  
5.3.2. DIO Pins Mapping in Packet Mode  
Table 18 DIO Mapping, Packet Mode  
Mode  
Diox  
Mapping  
00  
DIO4  
DIO3  
Fif  
DIO2  
DIO1  
DIO0  
Sleep  
-
-
o
F
u
ll  
FifoNotEmpty  
-
FifoLeve  
l
-
-
01  
-
Fif  
oFull  
10  
11  
LowBat  
-
Low  
Bat  
Low  
B
a
t
FifoNotEmpty  
LowBat  
-
-
AutoMode  
-
Stdby  
FS  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
-
-
FifoFul  
l
FifoNotE  
m
pt  
y
y
y
FifoLevel  
-
-
-
-
Fif  
oFull  
LowBat  
LowBat  
LowBa  
t
FifoNotEmpty  
LowBat  
-
-
AutoMode  
-
-
-
-
-
-
FifoFul  
l
FifoNotE  
m
pt  
FifoLevel  
-
-
Fif  
oFull  
LowBat  
PllLock  
LowBat  
Low  
utoMode  
FifoNotE pt  
Da  
Low  
utoMode  
Ba  
t
FifoNotEmpty  
PllLock  
LowBat  
PllLock  
CrcOk  
PllLock  
A
Rx  
Timeou  
Rssi  
RxReady  
PllLock  
t
FifoFul  
l
m
FifoLevel  
Rssi  
yncAddress  
PllLock  
t
a
Fif  
FifoNotEmpty Sync  
Timeout Rssi  
oFull  
Pay  
l
oadReady  
S
Ba  
t
Address  
A
Note Received Data is only shown on the Data signal between RxReady and PayloadReady’s rising edges  
Page 42  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.4. Continuous Mode  
5.4.1. General Description  
As illustrated in Figure 25, in Continuous mode the NRZ data from the demodulator is directly accessed by the uC on the  
DIO2/DATA pin. The FIFO and packet handler are thus inactive.  
DIO0  
DIO1/DCLK  
Rx  
DIO2/DATA  
DIO3  
CONTROL  
DIO4  
Data  
Rx  
SYNC  
RECOG.  
SPI  
NSS  
SCK  
MOSI  
MISO  
Figure 25. Continuous Mode Conceptual View  
5.4.2. Rx Processing  
If the bit synchronizer is disabled, the raw demodulator output is made directly available on DATA pin and no DCLK signal  
is provided.  
Conversely, if the bit synchronizer is enabled, synchronous cleaned data and clock are made available respectively on  
DIO2/DATA and DIO1/DCLK pins. DATA is sampled on the rising edge of DCLK and updated on the falling edge as  
illustrated below.  
DATA (NRZ)  
DCLK  
Figure 26. Rx Processing in Continuous Mode  
Note in Continuous mode it is always recommended to enable the bit synchronizer to clean the DATA signal even if the  
DCLK signal is not used by the uC (bit synchronizer is automatically enabled in Packet mode).  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Page 43  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
5.5. Packet Mode  
5.5.1. General Description  
In Packet mode the NRZ data from the demodulator is not directly accessed by the uC but stored in the FIFO and  
accessed via the SPI interface.  
In addition, the RFM65CW packet handler performs several packet oriented tasks such as Preamble and Sync word  
check, CRC check, dewhitening of data, Manchester decoding, address filtering, AES decryption, etc. This simplifies  
software and reduces uC overhead by performing these repetitive tasks within the RF chip itself.  
Another important feature is ability to empty the FIFO in Sleep/Stdby mode, ensuring optimum power consumption and  
adding more flexibility for the software.  
5.5.2. Packet Format  
5.5.2.1. Fixed Length Packet Format  
Fixed length packet format is selected when bit PacketFormat is set to 0 and PayloadLength is set to any value greater  
than 0.  
In applications where the packet length is fixed in advance, this mode of operation may be of interest to minimize RF  
overhead (no length byte field is required). All nodes should be programmed with the same packet length value.  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
Page 44  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
The length of the payload is limited to 255 bytes if AES is not enabled else the message is limited to 64 bytes (i.e. max 65  
bytes payload if Address byte is enabled).  
The length programmed in PayloadLength relates only to the payload which includes the message and the optional  
address byte. In this mode, the payload must contain at least one byte, i.e. address or message byte.  
An illustration of a fixed length packet is shown below. It contains the following fields:  
z
z
z
z
z
Preamble (1010...)  
Sync word (Network ID)  
Optional Address byte (Node ID)  
Message data  
Optional 2-bytes CRC checksum  
DC free Data decoding  
CRC checksum calculation  
AES Decryption  
Preamble  
0 to 65535  
bytes  
Sync Word  
0 to 8 bytes  
Address  
byte  
Message  
Up to 255 bytes  
CRC  
2-bytes  
Payload  
(min Byte)  
1
Fields processed and removed in Rx  
Optional User provided fields which are part of the payload  
Message part of the payload  
Figure 28. Fixed Length Packet Format  
5.5.2.2. Variable Length Packet Format  
Variable length packet format is selected when bit PacketFormat is set to 1.  
This mode is useful in applications where the length of the packet is not known in advance and can vary over time. It is then  
necessary for the transmitter to send the length information together with each packet in order for the receiver to operate  
properly.  
In this mode the length of the payload, indicated by the length byte, is given by the first byte of the FIFO and is limited to  
255 bytes if AES is not enabled else the message is limited to 64 bytes, i.e. max 66 bytes payload if Address byte is  
enabled. Note that the length byte itself is not included in its calculation. In this mode, the payload must contain at least 2  
bytes, i.e. length + address or message byte.  
An illustration of a variable length packet is shown below. It contains the following fields:  
Page 45  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
‹
Optional Address byte (Node ID)  
Message data  
‹
‹
Optional 2-bytes CRC checksum  
DC free Data decoding  
CRC checksum calculation  
AES Decryption  
Preamble  
0 to 65535  
bytes  
Sync Word  
0 to 8 bytes  
Length  
byte  
Address  
byte  
Message  
Up to 255 bytes  
CRC  
2-bytes  
Payload  
(min 2 bytes)  
Fields processed and removed in Rx  
Optional User provided fields which are part of the payload  
Message part of the payload  
Figure 29. Variable Length Packet Format  
5.5.2.3. Unlimited Length Packet Format  
Unlimited length packet format is selected when bit PacketFormat is set to 0 and PayloadLength is set to 0.  
The user can then receive packets of arbitrary length and PayloadLength register is not used in Rx modes for counting the  
length of the bytes received. This mode is a replacement for the legacy buffered mode in RF63/RF64 transceivers.  
The data processing features like Address filtering, Manchester decoding and data dewhitening are not available if the  
sync pattern length is set to zero (SyncOn = 0). The CRC detection is also not supported in this mode of the packet  
handler. The interrupts like CrcOk & PayloadReady are not available either.  
An unlimited length packet shown in is made up of the following fields:  
DC free Data decoding  
Preamble  
0 to 65535  
bytes  
Sync Word  
0 to 8 bytes  
Address  
byte  
Message  
unlimited length  
Payload  
Fields processed and removed in Rx  
Message part of the payload  
Optional User provided fields which are part of the payload  
Figure 30. Unlimited Length Packet Format  
Page 46  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.5.3. Processing (without AES)  
In Rx mode the packet handler extracts the user payload to the FIFO by performing the following operations:  
z
Receiving the preamble and stripping it off  
Detecting the Sync word and stripping it off  
Optional DC-free decoding of data  
z
z
z
z
Optionally checking the address byte  
Optionally checking CRC and reflecting the result on CrcOk.  
Only the payload (including optional address and length fields) is made available in the FIFO.  
When the Rx mode is enabled the demodulator receives the preamble followed by the detection of sync word. If fixed  
length packet format is enabled then the number of bytes received as the payload is given by the PayloadLength  
parameter.  
In variable length mode the first byte received after the sync word is interpreted as the length of the received packet. The  
internal length counter is initialized to this received length. The PayloadLength register is set to a value which is greater  
than the maximum expected length of the received packet. If the received length is greater than the maximum length stored  
in PayloadLength register the packet is discarded otherwise the complete packet is received.  
If the address check is enabled then the second byte received in case of variable length and first byte in case of fixed  
length is the address byte. If the address matches to the one in the NodeAddress field, reception of the data continues  
otherwise it's stopped. The CRC check is performed if CrcOn = 1 and the result is available in CrcOk indicating that the  
CRC was successful. An interrupt (PayloadReady) is also generated on DIO0 as soon as the payload is available in the  
FIFO. The payload available in the FIFO can also be read in Sleep/Standby mode.  
If the CRC fails the PayloadReady interrupt is not generated and the FIFO is cleared. This function can be overridden by  
setting CrcAutoClearOff = 1, forcing the availability of PayloadReady interrupt and the payload in the FIFO even if the CRC  
fails.  
5.5.4. AES  
AES is the symmetric-key block cipher that provides the cryptographic capabilities to the receiver. The system proposed  
can work with 128-bit long fixed keys. The fixed key is stored in a 16-byte write only user configuration register, which  
retains its value in Sleep mode.  
As shown in Figure 28 and Figure 29 above the message part of the Packet can be decrypted with the cipher 128- cipher  
key stored in the configuration registers.  
5.5.4.1. Processing  
1. The data received is stored in the FIFO, The address, CRC interrupts are generated as usual because these  
parameters were not encrypted.  
2. Once the complete packet has been received. The data is read from the FIFO, decrypted and written back to FIFO.  
The PayloadReady interrupt is issued once the decrypted data is ready in the FIFO for reading via the SPI interface.  
The AES decryption cannot be used on the fly i.e. while receiving data. Thus when AES decryption is enabled, the FIFO  
acts as a simple buffer. The decryption is initiated only once the complete packet has been received in the buffer.  
The decryption process takes approximately 7.0 us per 16-byte block. Thus for a maximum of 4 blocks (i.e. 64 bytes) it can  
take up to 28 us for completing the cryptographic operations.  
Page 47  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
The receiver sees the AES decryption time as a sequential delay before the PayloadReady interrupt is available.  
In Fixed length mode the Message part of the payload that can be decrypted can be 64 bytes long. If the address filtering is  
enabled, the length of the payload should be at max 65 bytes in this case.  
In Variable length mode the Max message size that can be decrypted is also 64 bytes whether address comparison is  
enabled or not. Thus, including length byte, the length of the payload is either 65 or 66 bytes (the latter when address  
comparison is enabled) at max.  
Crc check being performed on encrypted data, CrcOk interrupt will occur "decryption time" before PayloadReady interrupt.  
5.5.5. Handling Large Packets  
When Payload length exceeds FIFO size (66 bytes) whether in fixed, variable or unlimited length packet format, in addition  
to PayloadReady or CrcOk in Rx, the FIFO interrupts/flags can be used as described below:  
FIFO must be unfilled "on-the-fly" during Rx to prevent FIFO overrun.  
1) Start reading bytes from the FIFO when FifoNotEmpty or FifoThreshold becomes set.  
2) Suspend reading from the FIFO if FifoNotEmpty clears before all bytes of the message have been read  
3) Continue to step 1 until PayloadReady or CrcOk fires  
4) Read all remaining bytes from the FIFO either in Rx or Sleep/Standby mode  
Note AES decryption is not feasible on large packets, since all Payload bytes need to be in the FIFO at the same time to  
perform decryption  
5.5.6. Packet Filtering  
RFM65CW's packet handler offers several mechanisms for packet filtering, ensuring that only useful packets are  
made available to the uC, reducing significantly system power consumption and software complexity.  
5.5.6.1. Sync Word Based  
Sync word filtering/recognition is used for identifying the start of the payload and also for network identification. As  
previously described, the Sync word recognition block is configured (size, error tolerance, value) in RegSyncValue  
registers. This information is used to filter packets in Rx.  
Every received packet which does not start with this locally configured Sync word is automatically discarded and no  
interrupt is generated.  
When the Sync word is detected, payload reception automatically starts and SyncAddressMatch is asserted.  
Note Sync Word values containing 0x00 byte(s) are forbidden  
Page 48  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.5.6.2. Address Based  
Address filtering can be enabled via the AddressFiltering bits. It adds another level of filtering, above Sync word (i.e. Sync  
must match first), typically useful in a multi-node networks where a network ID is shared between all nodes (Sync word)  
and each node has its own ID (address).  
Two address based filtering options are available:  
z
AddressFiltering = 01: Received address field is compared with internal register NodeAddress. If they match then the  
packet is accepted and processed, otherwise it is discarded.  
z
AddressFiltering = 10: Received address field is compared with internal registers NodeAddress and BroadcastAddress.  
If either is a match, the received packet is accepted and processed, otherwise it is discarded. This additional check with  
a constant is useful for implementing broadcast in a multi-node networks  
As address filtering requires a Sync Word match, both features share the same interrupt flag SyncAddressMatch.  
Please note that the received address byte, as part of the payload, is not stripped off the packet and is made available in  
the FIFO.  
5.5.6.3. Length Based  
In variable length Packet mode, PayloadLength must be programmed with the maximum payload length permitted. If  
received length byte is smaller than this maximum then the packet is accepted and processed, otherwise it is discarded.  
Please note that the received length byte, as part of the payload, is not stripped off the packet and is made available in the  
FIFO.  
To disable this function the user should set the value of the PayloadLength to 255.  
5.5.6.4. CRC Based  
The CRC check is enabled by setting bit CrcOn in RegPacketConfig1. It is used for checking the integrity of the message.  
The checksum is calculated on the received payload and compared with the two checksum bytes received. The result of  
the comparison is stored in bit CrcOk.  
By default, if the CRC check fails then the FIFO is automatically cleared and no interrupt is generated. This filtering function  
can be disabled via CrcAutoClearOff bit and in this case, even if CRC fails, the FIFO is not cleared and only PayloadReady  
interrupt goes high. Please note that in both cases, the two CRC checksum bytes are stripped off by the packet handler  
and only the payload is made available in the FIFO.  
The CRC is based on the CCITT polynomial as shown below. This implementation also detects errors due to leading and  
trailing zeros.  
Page 49  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
CRC Polynomial =X16 + X12 + X5 +  
1
data input  
X14  
X13  
X12  
X15  
X5  
X0  
X11  
X4  
* * *  
* * *  
Figure 31. CRC Implementation  
5.5.7. DC-Free Data Mechanisms  
The received payload can be de-whitened or Manchester decoded automatically in the RFM65CW Packet  
Handler.  
Note Only one of the two methods should be enabled at a time.  
5.5.7.1. Manchester Decoding  
Manchester decoding is enabled if DcFree = 01 and can only be used in Packet mode.  
The Manchester data is decoded to NRZ code by decoding "10" as '1' and "01" as '0'.  
In this case, the maximum chip rate is the maximum bit rate given in the specifications section and the actual bit rate is half  
the chip rate.  
Manchester decoding is only applied to the payload and CRC checksum while preamble and Sync word are kept NRZ.  
However, the chip rate from preamble to CRC is the same and defined by BitRate in RegBitRate (Chip Rate = Bit Rate  
NRZ = 2 x Bit Rate Manchester).  
Manchester decoding is thus made transparent for the user, who still retrieves NRZ data from the FIFO.  
1/BR  
1/BR  
...Sync  
Payload...  
RF chips @ BR  
User/NRZ bits  
Manchester OFF  
User/NRZ bits  
Manchester ON  
...  
1
1
1
0
1
0
0
1
0
0
1
0
1
1
0
1
0
...  
t
...  
1
1
1
1
0
1
0
0
1
0
0
1
0
1
1
0
1
0
...  
...  
1
1
0
1
0
0
1
0
0
1
1
...  
Figure 32. Manchester Decoding  
5.5.7.2. Data De-Whitening  
Another technique called whitening or scrambling is widely used for randomizing the user data before radio transmission.  
The data is whitened using a random sequence on the Tx side and de-whitened on the Rx side using the same sequence.  
Comparing to Manchester technique it has the advantage of keeping NRZ data rate i.e. actual bit rate is not halved.  
Page 50  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
The de-whitening process is enabled if DcFree = 10. The data, including payload and 2-byte CRC checksum, is de-  
whitened by XORing it with a random sequence generated in a 9-bit LFSR, shown in Figure 33.  
Payload de-whitening is thus made transparent for the user, who still retrieves NRZ data from the FIFO.  
De-whitened Data  
Received Data  
Figure 33. Data De-Whitening  
Page 51  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
6. Configuration and Status Registers  
DATASHEET  
6.1. General Description  
Table 19 Registers Summary  
Default  
Reset  
Address  
Register Name  
(recom  
Description  
(built-in)  
mended)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
RegFifo  
RegOpMode  
RegDataModul  
RegBitrateMsb  
RegBitrateLsb  
Reserved05  
Reserved06  
RegFrfMsb  
RegFrfMid  
0x00  
FIFO read/write access  
Operating modes of the receiver  
0x04  
0x00  
0x1A  
0x0B  
0x00  
0x52  
0xE4  
0xC0  
0x00  
0x41  
0x00  
0x02  
0x92  
0xF5  
0x20  
0x23  
0x9F  
0x09  
0x1A  
0x40  
Data operation mode and Modulation settings  
Bit Rate setting, Most Significant Bits  
Bit Rate setting, Least Significant Bits  
-
-
RF Carrier Frequency, Most Significant Bits  
RF Carrier Frequency, Intermediate Bits  
RF Carrier Frequency, Least Significant Bits  
RC Oscillators Settings  
AFC control in low modulation index situations  
Low Battery Indicator Settings  
Listen Mode settings  
RegFrfLsb  
RegOsc1  
RegAfcCtrl  
RegLowBat  
RegListen1  
RegListen2  
RegListen3  
RegVersion  
Reserved11  
Reserved12  
Reserved13  
Reserved14  
Listen Mode Idle duration  
Listen Mode Rx duration  
ID relating the silicon revision  
-
-
-
-
-
0x15  
0x16  
Reserved15  
Reserved16  
0xB0  
0x7B  
0x9B  
-
0x17  
0x18  
Reserved17  
RegLna  
-
0x08  
0x86  
0x88  
0x55  
LNA settings  
0x19  
RegRxBw  
Channel Filter BW Control  
Page 52  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Default  
Reset  
Address  
Register Name  
(recom  
Description  
(built-in)  
mended)  
0x1A  
RegAfcBw  
0x8A  
0x8B  
Channel Filter BW control during the AFC routine  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
RegOokPeak  
RegOokAvg  
RegOokFix  
0x40  
OOK demodulator selection and control in peak mode  
Average threshold control of the OOK demodulator  
Fixed threshold control of the OOK demodulator  
AFC and FEI control and status  
0x80  
0x06  
0x10  
0x00  
0x00  
0x00  
0x00  
0x02  
0xFF  
0x00  
RegAfcFei  
RegAfcMsb  
MSB of the frequency correction of the AFC  
LSB of the frequency correction of the AFC  
MSB of the calculated frequency error  
LSB of the calculated frequency error  
RSSI-related settings  
RegAfcLsb  
RegFeiMsb  
RegFeiLsb  
RegRssiConfig  
RegRssiValue  
RegDioMapping1  
RegDioMapping2  
RSSI value in dBm  
Mapping of pins DIO0 to DIO3  
0x05  
0xFF  
0x07  
0xE4  
Mapping of pins DIO4 and DIO5, ClkOut frequency  
0x27  
0x28  
0x29  
RegIrqFlags1  
RegIrqFlags2  
RegRssiThresh  
0x80  
0x00  
Status register: PLL Lock state, Timeout, RSSI > Threshold...  
Status register: FIFO handling flags, Low Battery detection...  
RSSI Threshold control  
0x2A  
0x2B  
RegRxTimeout1  
RegRxTimeout2  
Reserved2C  
0x00  
0x00  
0x00  
0x03  
0x98  
Timeout duration between Rx request and RSSI detection  
Timeout duration between RSSI detection and PayloadReady  
0x2C  
-
0x2D  
Reserved2D  
-
0x2E  
RegSyncConfig  
RegSyncValue1-8  
Sync Word Recognition control  
0x2F-0x36  
0x00  
0x01  
Sync Word bytes, 1 through 8  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
RegPacketConfig1  
RegPayloadLength  
RegNodeAdrs  
0x10  
0x40  
0x00  
0x00  
0x00  
Packet mode settings  
Payload length setting  
Node address  
RegBroadcastAdrs  
RegAutoModes  
RegFifoThresh  
Broadcast address  
Auto modes settings  
0x0F  
0x8F  
Fifo threshold  
0x3D  
RegPacketConfig2  
0x02  
Packet mode settings  
Page 53  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Default  
Reset  
Address  
Register Name  
(recom  
Description  
(built-in)  
mended)  
0x3E-0x4D  
0x4E  
RegAesKey1-16  
RegTemp1  
0x00  
16 bytes of the cypher key  
0x01  
0x00  
0x1B  
Temperature Sensor control  
Temperature readout  
Sensitivity boost  
0x4F  
RegTemp2  
0x58  
RegTestLna  
RegTestDagc  
0x6F  
0x00  
0x30  
Fading Margin Improvement  
0x71  
RegTestAfc  
RegTest  
0x00  
-
AFC offset for low modulation index AFC  
Internal test registers  
0x50 +  
Note - Reset values are automatically refreshed in the chip at Power On Reset  
- Default values are the HopeRF recommended register values, optimizing the device operation  
- Registers for which the Default value differs from the Reset value are denoted by a * in the tables of section 6  
Page 54  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.2. Common Configuration Registers  
Table 20 Common Configuration Registers  
Name  
(Address)  
Default  
Value  
Bits Variable Name  
Mode  
Description  
0x00 FIFO data output  
7-0 Fifo  
rw  
RegFifo  
(0x00)  
7
SequencerOff  
rw  
0
Controls the automatic Sequencer (see section 4.2 ):  
0Operating mode as selected with Mode bits in  
RegOpMode is automatically reached with the Sequencer  
1Mode is forced by the user  
RegOpMode  
(0x01)  
6
5
ListenOn  
rw  
w
0
0
Enables Listen mode:  
0 Off (see section 4.3)  
1On  
ListenAbort  
Aborts Listen mode when set together with ListenOn=0  
and new Mode selection in 1 SPI access (see section 4.3)  
Always reads 0.  
4-2 Mode  
rw  
001  
Receiver’s operating modes:  
000sleep mode (SLEEP)  
001standby mode (STDBY)  
010frequency synthesizer mode (FS)  
100receiver mode (RX)  
othersreserved  
Reads the value corresponding to the current chip mode  
1-0  
7
-
-
r
r
00  
0
unused  
unused  
RegDataModul  
(0x02)  
6-5 DataMode  
rw  
00  
Data processing mode:  
00Packet mode  
01reserved  
10Continuous mode with bit synchronizer  
11Continuous mode without bit synchronizer  
4-3 ModulationType  
rw  
00  
Modulation scheme:  
00FSK  
01OOK  
10 - 11reserved  
2-0  
-
r
000  
unused  
7-0 BitRate(15:8)  
rw  
0x1a MSB of Bit Rate (Chip Rate when Manchester encoding is  
enabled)  
RegBitrateMsb  
(0x03)  
7-0 BitRate(7:0)  
rw  
0x0b LSB of Bit Rate (Chip Rate if Manchester encoding is  
RegBitrateLsb  
(0x04)  
enabled)  
FXO SC  
BitRate(15,0)  
----------------------------------  
BitRate =  
Default value: 4.8 kb/s  
7-0  
7-0  
-
-
r
0x00 unused  
Reserved05  
(0x05)  
r
0x52 unused  
Reserved06  
(0x06)  
7-0 Frf(23:16)  
7-0 Frf(15:8)  
rw  
rw  
0xe4 MSB of the RF Local Oscillator  
RegFrfMsb  
(0x07)  
0xc0 Middle byte of the RF Local Oscillator  
RegFrfMid  
(0x08)  
Page 55  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7-0 Frf(7:0)  
rw  
RegFrfLsb  
(0x09)  
7
6
RcCalStart  
w
r
0
1
Triggers the calibration of the RC oscillator when set.  
Always reads 0. RC calibration must be triggered in  
Standby mode.  
RegOsc1  
(0x0A)  
RcCalDone  
0RC calibration in progress  
1RC calibration is over  
5-0  
7-6  
5
-
r
r
000001 unused  
-
00  
0
unused  
RegAfcCtrl  
(0x0B)  
AfcLowBetaOn  
rw  
Improved AFC routine for signals with modulation index  
lower than 2. Refer to section 3.4.17 for details  
0Standard AFC routine  
1Improved AFC routine  
4-0  
7-5  
4
-
r
r
00000 unused  
-
000  
-
unused  
RegLowBat  
(0x0C)  
LowBatMonitor  
rw  
Real-time (not latched) output of the Low Battery detector,  
when enabled.  
3
LowBatOn  
rw  
rw  
0
Low Battery detector enable signal  
0LowBat off  
1LowBat on  
2-0 LowBatTrim  
010  
Trimming of the LowBat threshold:  
0001.695 V  
0101.835 V  
1001.976 V  
1102.116 V  
0011.764 V  
0111.905 V  
1012.045 V  
1112.185 V  
7-6 ListenResolIdle  
5-4 ListenResolRx  
rw  
rw  
10  
01  
Resolution of Listen modes timings (calibrated RC osc):  
010164 us  
10104.1 ms  
1111262 ms  
Othersreserved  
RegListen1  
(0x0D)  
Resolution of Listen mode Rx time (calibrated RC osc):  
00reserved  
0164 us  
104.1 ms  
11262 ms  
3
ListenCriteria  
rw  
rw  
0
Criteria for packet acceptance in Listen mode:  
0signal strength is above RssiThreshold  
1signal strength is above RssiThreshold and  
SyncAddress matched  
2-1 ListenEnd  
01  
Action taken after acceptance of a packet in Listen mode:  
00chip stays in Rx mode. Listen mode stops and must  
be disabled (see section 4.3).  
01chip stays in Rx mode until PayloadReady or  
Timeout interrupt occurs. It then goes to the mode defined  
by Mode. Listen mode stops and must be disabled (see  
section 4.3).  
10chip stays in Rx mode until PayloadReady or  
Timeout interrupt occurs. Listen mode then resumes in  
Idle state. FIFO content is lost at next Rx wakeup.  
11Reserved  
0
-
r
0
unused  
Page 56  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7-0 ListenCoefIdle  
7-0 ListenCoefRx  
rw  
rw  
0xf5 Duration of the Idle phase in Listen mode.  
RegListen2  
(0x0E)  
tListenIdle  
ListenCoefIdleListenResolIdle  
0x20 Duration of the Rx phase in Listen mode (startup time  
included, see section 4.2.1)  
RegListen3  
(0x0F)  
tListenRx  
ListenCoefRxListenResolRx  
7-0 Version  
r
0x23 Version code of the chip. Bits 7-4 give the full revision  
number; bits 3-0 give the metal mask revision number.  
RegVersion  
(0x10)  
Page 57  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.3. Receiver Registers  
Table 21 Receiver Registers  
Name  
(Address)  
Default  
Value  
Bits Variable Name  
Mode  
Description  
7-0  
7-0  
7-0  
7-0  
7
-
r
0x40 unused  
0xB0 unused  
0x7B unused  
0x9B unused  
Reserved14  
(0x14)  
-
r
r
Reserved15  
(0x15)  
-
Reserved16  
(0x16)  
-
r
Reserved17  
(0x17)  
LnaZin  
rw  
1
*
LNA’s input impedance  
050 ohms  
1200 ohms  
RegLna  
(0x18)  
6
-
r
r
0
unused  
5-3 LnaCurrentGain  
2-0 LnaGainSelect  
001  
000  
Current LNA gain, set either manually, or by the AGC  
rw  
LNA gain setting:  
000gain set by the internal AGC loop  
001G1 = highest gain  
010G2 = highest gain – 6 dB  
011G3 = highest gain – 12 dB  
100G4 = highest gain – 24 dB  
101G5 = highest gain – 36 dB  
110G6 = highest gain – 48 dB  
111reserved  
7-5 DccFreq  
rw  
010  
*
Cut-off frequency of the DC offset canceller (DCC):  
RegRxBw  
(0x19)  
4-3 RxBwMant  
2-0 RxBwExp  
rw  
rw  
10  
*
Channel filter bandwidth control:  
00RxBwMant = 16  
01RxBwMant = 20  
10RxBwMant = 24  
11reserved  
101  
*
Channel filter bandwidth control:  
FSK Mode:  
7-5 DccFreqAfc  
4-3 RxBwMantAfc  
2-0 RxBwExpAfc  
rw  
rw  
rw  
100  
01  
DccFreq parameter used during the AFC  
RxBwMant parameter used during the AFC  
RegAfcBw  
(0x1A)  
011 * RxBwExp parameter used during the AFC  
Page 58  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7-6 OokThreshType  
rw  
rw  
01  
Selects type of threshold in the OOK data slicer:  
RegOokPeak  
(0x1B)  
00fixed  
01peak  
10average  
11reserved  
5-3 OokPeakTheshStep  
000  
Size of each decrement of the RSSI threshold in the OOK  
demodulator:  
0000.5 dB  
0101.5 dB  
1003.0 dB  
1105.0 dB  
0011.0 dB  
0112.0 dB  
1014.0 dB  
1116.0 dB  
2-0 OokPeakThreshDec  
7-6 OokAverageThreshFilt  
rw  
rw  
000  
10  
Period of decrement of the RSSI threshold in the OOK  
demodulator:  
000once per chip  
010once every 4 chips  
100twice in each chip  
001once every 2 chips  
011once every 8 chips  
1014 times in each chip  
1108 times in each chip 11116 times in each chip  
Filter coefficients in average mode of the OOK  
demodulator:  
RegOokAvg  
(0x1C)  
00f chip rate / 32.π  
C
01f chip rate / 8.π  
C
10f chip rate / 4.π  
C
11f chip rate / 2.π  
C
5-0  
-
r
000000 unused  
7-0 OokFixedThresh  
rw  
0110 Fixed threshold value (in dB) in the OOK demodulator.  
(6dB) Used when OokThresType = 00  
RegOokFix  
(0x1D)  
7
6
-
r
r
0
0
unused  
RegAfcFei  
(0x1E)  
FeiDone  
0FEI is on-going  
1FEI finished  
5
4
FeiStart  
w
r
0
1
Triggers a FEI measurement when set. Always reads 0.  
AfcDone  
0AFC is on-going  
1AFC has finished  
3
2
AfcAutoclearOn  
AfcAutoOn  
rw  
rw  
0
0
Only valid if AfcAutoOn is set  
0AFC register is not cleared before a new AFC phase  
1AFC register is cleared before a new AFC phase  
0AFC is performed each time AfcStart is set  
1AFC is performed each time Rx mode is entered  
1
0
AfcClear  
AfcStart  
w
w
r
0
0
Clears the AfcValue if set in Rx mode. Always reads 0  
Triggers an AFC when set. Always reads 0.  
7-0 AfcValue(15:8)  
7-0 AfcValue(7:0)  
7-0 FeiValue(15:8)  
7-0 FeiValue(7:0)  
0x00 MSB of the AfcValue, 2’s complement format  
RegAfcMsb  
(0x1F)  
r
r
r
0x00 LSB of the AfcValue, 2’s complement format  
RegAfcLsb  
(0x20)  
Frequency correction = AfcValue x Fstep  
-
-
MSB of the measured frequency offset, 2’s complement  
RegFeiMsb  
(0x21)  
LSB of the measured frequency offset, 2’s complement  
RegFeiLsb  
(0x22)  
Frequency error = FeiValue x Fstep  
7-2  
1
-
r
r
000000 unused  
RegRssiConfig  
(0x23)  
RssiDone  
1
0RSSI is on-going  
1RSSI sampling is finished, result available  
0
RssiStart  
w
r
0
Trigger a RSSI measurement when set. Always reads 0.  
7-0 RssiValue  
0xFF Absolute value of the RSSI in dBm, 0.5dB steps.  
RegRssiValue  
(0x24)  
RSSI = -RssiValue/2 [dBm]  
Page 59  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.4. IRQ and Pin Mapping Registers  
Table 22 IRQ and Pin Mapping Registers  
Name  
(Address)  
Default  
Value  
Bits Variable Name  
Mode  
Description  
7-6 Dio0Mapping  
5-4 Dio1Mapping  
3-2 Dio2Mapping  
1-0 Dio3Mapping  
7-6 Dio4Mapping  
5-4 Dio5Mapping  
rw  
rw  
rw  
rw  
rw  
rw  
r
00  
RegDioMapping1  
(0x25)  
Mapping of pins DIO0 to DIO5  
00  
00  
See Table 17 for mapping in Continuous mode  
See Table 18 for mapping in Packet mode  
00  
00  
RegDioMapping2  
(0x26)  
00  
3
-
0
unused  
2-0 ClkOut  
rw  
111  
*
Selects CLKOUT frequency:  
000FXOSC  
001FXOSC / 2  
010FXOSC / 4  
011FXOSC / 8  
100FXOSC / 16  
101FXOSC / 32  
110RC (automatically enabled)  
111OFF  
7
6
ModeReady  
r
r
1
0
Set when the operation mode requested in Mode, is ready  
- Sleep: Entering Sleep mode  
- Standby: XO is running  
- FS: PLL is locked  
- Rx: RSSI sampling starts  
RegIrqFlags1  
(0x27)  
Cleared when changing operating mode.  
RxReady  
Set in Rx mode, after RSSI, AGC and AFC.  
Cleared when leaving Rx.  
5
4
-
r
r
0
0
unused  
PllLock  
Set (in FS and Rx) when the PLL is locked.  
Cleared when it is not.  
3
2
Rssi  
rwc  
r
0
0
Set in Rx when the RssiValue exceeds RssiThreshold.  
Cleared when leaving Rx.  
Timeout  
Set when a timeout occurs (see TimeoutRxStart and  
TimeoutRssiThresh)  
Cleared when leaving Rx or FIFO is emptied.  
1
0
AutoMode  
r
0
0
Set when entering Intermediate mode.  
Cleared when exiting Intermediate mode.  
Please note that in Sleep mode a small delay can be  
observed between AutoMode interrupt and the  
corresponding enter/exit condition.  
SyncAddressMatch  
r/rwc  
Set when Sync and Address (if enabled) are detected.  
Cleared when leaving Rx or FIFO is emptied.  
This bit is read only in Packet mode, rwc in Continuous  
mode  
Page 60  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7
FifoFull  
r
0
Set when FIFO is full (i.e. contains 66 bytes), else  
cleared.  
RegIrqFlags2  
(0x28)  
6
5
FifoNotEmpty  
FifoLevel  
r
r
0
0
Set when FIFO contains at least one byte, else cleared  
Set when the number of bytes in the FIFO strictly exceeds  
FifoThreshold, else cleared.  
4
FifoOverrun  
rwc  
0
Set when FIFO overrun occurs. (except in Sleep mode)  
Flag(s) and FIFO are cleared when this bit is set. The  
FIFO then becomes immediately available for the next  
reception.  
3
2
-
r
r
0
0
unused  
PayloadReady  
Set in Rx when the payload is ready (i.e. last byte  
received and CRC, if enabled and CrcAutoClearOff is  
cleared, is Ok). Cleared when FIFO is empty.  
1
0
CrcOk  
r
0
-
Set in Rx when the CRC of the payload is Ok. Cleared  
when FIFO is empty.  
LowBat  
rwc  
rw  
Set when the battery voltage drops below the Low Battery  
threshold. Cleared only when set by the user.  
7-0 RssiThreshold  
7-0 TimeoutRxStart  
0xE4 RSSI trigger level for Rssi interrupt :  
*
RegRssiThresh  
(0x29)  
- RssiThreshold / 2 [dBm]  
rw  
0x00  
Timeout interrupt is generated TimeoutRxStart*16*T  
RegRxTimeout1  
(0x2A)  
bit  
after switching to Rx mode if Rssi interrupt doesn’t occur  
(i.e. RssiValue > RssiThreshold)  
0x00: TimeoutRxStart is disabled  
7-0 TimeoutRssiThresh  
rw  
0x00  
Timeout interrupt is generated TimeoutRssiThresh*16*T  
after Rssi interrupt if PayloadReady interrupt doesn’t  
occur.  
RegRxTimeout2  
(0x2B)  
bit  
0x00: TimeoutRssiThresh is disabled  
Page 61  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.5. Packet Engine Registers  
Table 23 Packet Engine Registers  
Name  
(Address)  
Default  
Value  
Bits Variable Name  
Mode  
Description  
7-0  
7-0  
7
-
rw  
0x00 unused  
0x03 unused  
Reserved2C  
(0x2c)  
-
rw  
rw  
Reserved2D  
(0x2d)  
SyncOn  
1
0
Enables the Sync word detection:  
0Off  
1On  
RegSyncConfig  
(0x2e)  
6
FifoFillCondition  
rw  
rw  
FIFO filling condition:  
0if SyncAddress interrupt occurs  
1as long as FifoFillCondition is set  
5-3 SyncSize  
011  
000  
Size of the Sync word:  
(SyncSize + 1) bytes  
2-0 SyncTol  
rw  
rw  
Number of tolerated bit errors in Sync word  
1st byte of Sync word. (MSB byte)  
Used if SyncOn is set.  
7-0 SyncValue(63:56)  
0x01  
*
RegSyncValue1  
(0x2f)  
2nd byte of Sync word  
Used if SyncOn is set and (SyncSize +1) >= 2.  
3rd byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 3.  
4th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 4.  
5th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 5.  
6th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 6.  
7th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 7.  
8th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) = 8.  
7-0 SyncValue(55:48)  
7-0 SyncValue(47:40)  
7-0 SyncValue(39:32)  
7-0 SyncValue(31:24)  
7-0 SyncValue(23:16)  
7-0 SyncValue(15:8)  
7-0 SyncValue(7:0)  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
0x01  
*
RegSyncValue2  
(0x30)  
0x01  
*
RegSyncValue3  
(0x31)  
0x01  
*
RegSyncValue4  
(0x32)  
0x01  
*
RegSyncValue5  
(0x33)  
0x01  
*
RegSyncValue6  
(0x34)  
0x01  
*
RegSyncValue7  
(0x35)  
0x01  
*
RegSyncValue8  
(0x36)  
Page 62  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7
PacketFormat  
rw  
rw  
0
Defines the packet format used:  
0Fixed length  
1Variable length  
RegPacketConfig1  
(0x37)  
6-5 DcFree  
00  
Defines DC-free decoding performed:  
00None (Off)  
01Manchester  
10Whitening  
11reserved  
4
3
CrcOn  
rw  
rw  
1
0
Enables CRC check:  
0Off  
1On  
CrcAutoClearOff  
Defines the behavior of the packet handler when CRC  
check fails:  
0Clear FIFO and restart new packet reception. No  
PayloadReady interrupt issued.  
1Do not clear FIFO. PayloadReady interrupt issued.  
2-1 AddressFiltering  
rw  
00  
Defines address based filtering in Rx:  
00None (Off)  
01Address field must match NodeAddress  
10Must match NodeAddress or BroadcastAddress  
11reserved  
0
-
rw  
rw  
0
unused  
7-0 PayloadLength  
7-0 NodeAddress  
7-0 BroadcastAddress  
7-5 EnterCondition  
0x40 If PacketFormat = 0 (fixed), payload length.  
If PacketFormat = 1 (variable), max length in Rx  
RegPayloadLength  
(0x38)  
rw  
rw  
rw  
0x00 Node address used in address filtering.  
RegNodeAdrs  
(0x39)  
0x00 Broadcast address used in address filtering.  
RegBroadcastAdrs  
(0x3A)  
000  
000  
00  
Interrupt condition for entering the intermediate mode:  
000None (AutoModes Off)  
001Rising edge of FifoNotEmpty  
010Rising edge of FifoLevel  
RegAutoModes  
(0x3B)  
011Rising edge of CrcOk  
100Rising edge of PayloadReady  
101Rising edge of SyncAddress  
110Reserved  
111Falling edge of FifoNotEmpty (i.e. FIFO empty)  
4-2 ExitCondition  
rw  
Interrupt condition for exiting the intermediate mode:  
000None (AutoModes Off)  
001Falling edge of FifoNotEmpty (i.e. FIFO empty)  
010Rising edge of FifoLevel or Timeout  
011Rising edge of CrcOk or Timeout  
100Rising edge of PayloadReady or Timeout  
101Rising edge of SyncAddress or Timeout  
110Reserved  
111Rising edge of Timeout  
1-0 IntermediateMode  
rw  
Intermediate mode:  
00Sleep mode (SLEEP)  
01Standby mode (STDBY)  
10Receiver mode (RX)  
11Reserved  
7
-
rw  
rw  
1
*
unused  
RegFifoThresh  
(0x3C)  
6-0 FifoThreshold  
0001111 Used to trigger FifoLevel interrupt.  
Page 63  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7-4 InterPacketRxDelay  
rw  
0000 After PayloadReady occurred, defines the delay between  
FIFO empty and the start of a new RSSI phase for next  
packet. Must match the transmitter’s PA ramp-down time.  
- Tdelay = 0 if InterpacketRxDelay >= 12  
RegPacketConfig2  
(0x3D)  
- Tdelay = (2InterpacketRxDelay) / BitRate otherwise  
3
2
-
rw  
w
0
0
unused  
RestartRx  
Forces the Receiver in WAIT mode, in Continuous Rx  
mode.  
Always reads 0.  
1
0
AutoRxRestartOn  
AesOn  
rw  
rw  
1
0
Enables automatic Rx restart (RSSI phase) after  
PayloadReady occurred and packet has been completely  
read from FIFO:  
0Off. RestartRx can be used.  
1On. Rx auto. restart after InterPacketRxDelay.  
Enable the AES decryption:  
0Off  
1On (payload limited to 66 bytes maximum)  
1st byte of cipher key (MSB byte)  
2nd byte of cipher key  
3rd byte of cipher key  
4th byte of cipher key  
5th byte of cipher key  
6th byte of cipher key  
7th byte of cipher key  
8th byte of cipher key  
9th byte of cipher key  
10th byte of cipher key  
11th byte of cipher key  
12th byte of cipher key  
13th byte of cipher key  
14th byte of cipher key  
15th byte of cipher key  
16th byte of cipher key (LSB byte)  
7-0 AesKey(127:120)  
7-0 AesKey(119:112)  
7-0 AesKey(111:104)  
7-0 AesKey(103:96)  
7-0 AesKey(95:88)  
7-0 AesKey(87:80)  
7-0 AesKey(79:72)  
7-0 AesKey(71:64)  
7-0 AesKey(63:56)  
7-0 AesKey(55:48)  
7-0 AesKey(47:40)  
7-0 AesKey(39:32)  
7-0 AesKey(31:24)  
7-0 AesKey(23:16)  
7-0 AesKey(15:8)  
7-0 AesKey(7:0)  
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RegAesKey1  
(0x3E)  
RegAesKey2  
(0x3F)  
RegAesKey3  
(0x40)  
RegAesKey4  
(0x41)  
RegAesKey5  
(0x42)  
RegAesKey6  
(0x43)  
RegAesKey7  
(0x44)  
RegAesKey8  
(0x45)  
RegAesKey9  
(0x46)  
RegAesKey10  
(0x47)  
RegAesKey11  
(0x48)  
RegAesKey12  
(0x49)  
RegAesKey13  
(0x4A)  
RegAesKey14  
(0x4B)  
RegAesKey15  
(0x4C)  
RegAesKey16  
(0x4D)  
Page 64  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.6. Temperature Sensor Registers  
Table 24 Temperature Sensor Registers  
Name  
(Address)  
Default  
Value  
Bits Variable Name  
Mode  
Description  
7-4  
3
-
r
0000 unused  
RegTemp1  
(0x4E)  
TempMeasStart  
w
0
0
Triggers the temperature measurement when set. Always  
reads 0.  
2
TempMeasRunning  
r
Set to 1 while the temperature measurement is running.  
Toggles back to 0 when the measurement has completed.  
The receiver can not be used while measuring  
temperature  
1-0  
-
r
r
01  
-
unused  
7-0 TempValue  
Measured temperature  
-1°C per Lsb  
RegTemp2  
(0x4F)  
Needs calibration for accuracy  
6.7. Test Registers  
Table 25 Test Registers  
Name  
Default  
Value  
Bits Variable Name  
Mode  
Description  
(Address)  
RegTestLna  
(0x58)  
7-0 SensitivityBoost  
rw  
0x1B High sensitivity or normal sensitivity mode:  
0x1BNormal mode  
0x2DHigh sensitivity mode  
RegTestDagc  
(0x6F)  
7-0 ContinuousDagc  
rw  
rw  
0x30 Fading Margin Improvement, refer to 3.4.4  
*
0x00Normal mode  
0x10Improved margin, use if AfcLowBetaOn=1  
0x30Improved margin, use if AfcLowBetaOn=0  
RegTestAfc  
(0x71)  
7-0 LowBetaAfcOffset  
0x00 AFC offset set for low modulation index systems, used if  
AfcLowBetaOn=1.  
Offset = LowBetaAfcOffset x 488 Hz  
Page 65  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7. Application Information  
7.1. Crystal Resonator Specification  
Table 26 shows the crystal resonator specification for the crystal reference oscillator circuit of the RFM65CW.  
This specification covers the full range of operation of the RFM65CW and is employed in the reference design.  
Table 26 Crystal Specification  
Symbol Description  
Conditions  
Min  
Typ  
Max  
Unit  
FXOSC  
XTAL Frequency  
26  
-
-
32  
140  
7
MHz  
ohms  
pF  
RS  
XTAL Serial Resistance  
XTAL Shunt Capacitance  
External Foot Capacitance  
30  
2.8  
16  
C0  
-
CLOAD  
On each pin XTA and XTB  
8
22  
pF  
Notes - the initial frequency tolerance, temperature stability and ageing performance should be chosen in accordance  
with the target operating temperature range and the receiver bandwidth selected.  
- the loading capacitance should be applied externally, and adapted to the actual Cload specification of the XTAL.  
- A minimum XTAL frequency of 28 MHz is required to cover the 863-870 MHz band, 29 MHz for the 902-928 MHz  
band  
7.2. Reset of the module  
A power-on reset of the RFM65CW is triggered at power up. Additionally, a manual reset can be issued by controlling  
Reset pin.  
7.2.1. POR  
If the application requires the disconnection of VDD from the RFM65CW, despite of the extremely low Sleep Mode current,  
the user should wait for 10 ms from of the end of the POR cycle before commencing communications over the SPI bus.  
Pin 6 (Reset) should be left floating during the POR sequence.  
VDD  
Reset Pin  
Undefined  
(output)  
Wait for  
10 ms  
Chip is ready from  
this point on  
Figure 34. POR Timing Diagram  
Please note that any CLKOUT activity can also be used to detect that the chip is ready.  
Page 66  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7.2.2. Manual Reset  
A manual reset of the RFM65CW is possible even for applications in which VDD cannot be physically disconnected.  
should be pulled high for a hundred microseconds, and then released. The user should then wait for 5 ms before using the  
chip.  
VDD  
Chip is ready from  
this point on  
Wait for  
5 ms  
> 100 us  
’’1’’  
High-Z  
High-Z  
(input)  
Figure 35. Manual Reset Timing Diagram  
Note whilst is driven high, an over current consumption of up to ten milliamps can be seen on VDD.  
7.3. Reference Design  
Figure 36. Application Schematic  
Page 67  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
8. Packaging Information  
8.1. Package Outline Drawing  
Figure 37. S2 Package Outline Drawing  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
Page 68  
RFM65CW  
9. Chip Revisions  
Three distinct chip populations exist and can be identified as follows:  
Table 27 Chip Identification  
Chip  
Register Value  
Lot Codes  
(see Figure 3)  
Comment  
Version @ address 0x10  
V2a  
V2b  
Limited supply  
Limited supply  
0x21  
0x22  
W0K976.00  
W6A114.0A ¦ W0N382.00  
W0N386.00 ¦ W0P051.00  
V2c  
0x23  
W0S934.01 and all others  
Running production  
This document describes the behavior and characteristics of the RFM65CW V2c. Minor differences can be observed  
between the three versions, and they are listed in the following sub sections.  
9.1. RC Oscillator Calibration  
On the RFM65CW V2a, RC calibration at power-up needs to be performed according to the following routine:  
/////// RC CALIBRATION (Once at POR) ///////  
SetRFMode(RF_STANDBY);  
WriteRegister(0x57, 0x80);  
WriteRegister(REG_OSC1, ReadRegister(REG_OSC1) | 0x80);  
while (ReadRegister(REG_OSC1) & 0x40 == 0x00);  
WriteRegister(REG_OSC1, ReadRegister(REG_OSC1) | 0x80);  
while (ReadRegister(REG_OSC1) & 0x40 == 0x00);  
WriteRegister(0x57, 0x00);  
////////////////////////////////////////////  
This is not required in the version V2b any more, where the calibration is fully automatic.  
9.2. Listen Mode  
9.2.1. Resolutions  
On the RFM65CW V2a, the Listen mode resolutions were identical for the Idle phase and the Rx phase. They are  
now independently configurable, adding flexibility in the setup of the Listen mode.  
Figure 38. Listen Mode Resolutions, V2a  
Figure 39. Listen Mode Resolution, V2b  
Page 69  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
9.2.2. Exiting Listen Mode  
In the RFM65CW V2a, the following procedure was requested to exit Listen mode:  
For all three ListenEnd settings (i.e. even for 00 and 01) disabling Listen mode can be done  
anytime by writing all together in a single SPI write command (same register) :  
z
z
ListenOn to 0  
ListenAbort to 1  
Mode to the wanted operation mode  
Listen mode can simply be exited on the RFM65CW V2b by resetting bit ListenOn to 0 in RegListen.  
9.3. OOK Floor Threshold Default Setting  
The following default value modification was required on the V2a silicon:  
Figure 40. RegTestOok Description  
It is not required to modify this register any more on the RFM65CW V2b.  
9.4. AFC Control  
The following differences are observed between silicon revisions V2a and V2b:  
9.4.1. AfcAutoClearOn  
On the RFM65CW V2a, it is required to manually clear AfcValue in RegAfcFei, when the device is in Rx  
mode. AfcAutoClear function is fully functional on the silicon version V2b.  
9.4.2. AfcLowBetaOn and LowBetaAfcOffset  
Those two bits enable a functionality that was not available on the silicon version V2a.  
9.5. ContinuousDagc  
This register enables a functionnality that is only available in the silicon version V2c.  
Page 70  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM65CW  
10. Ordering Information  
RFM65CW 433 S2  
Package  
Operation Band  
Mode Type  
P/N: RFM65CW-315S2  
RFM65CW module at 315MHz band, SMD Package  
P/N: RFM65CW-433S2  
RFM65CW module at 433MHz band, SMD Package  
P/N: RFM65CW-868S2  
RFM65CW module at 868MHz band, SMD Package  
P/N: RFM65CW-915S2  
RFM65CW module at 915MHz band, SMD Package  
This document may contain preliminary information and is subject to  
change by Hope Microelectronics without notice. Hope Microelectronics  
assumes no responsibility or liability for any use of the information  
contained herein. Nothing in this document shall operate as an express or  
implied license or indemnity under the intellectual property rights of Hope  
Microelectronics or third parties. The products described in this document  
are not intended for use in implantation or other direct life support  
applications where malfunction may result in the direct physical harm or  
injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT  
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY  
OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS  
DOCUMENT.  
HOPE MICROELECTRONICS CO.,LTD  
Add: 2/F, Building 3, Pingshan Private  
Enterprise Science and Technology  
Park, Lishan Road, XiLi Town, Nanshan  
District, Shenzhen, Guangdong, China  
Tel: 86-755-82973805  
Fax: 86-755-82973550  
Email: sales@hoperf.com  
Website: http://www.hoperf.com  
http://www.hoperf.cn  
©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.  
Page 71  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY