RFM67W-915S2 [HOPERF]

ISM TRANSMITTER MODULE;
RFM67W-915S2
型号: RFM67W-915S2
厂家: HOPERF    HOPERF
描述:

ISM TRANSMITTER MODULE

ISM频段
文件: 总37页 (文件大小:634K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Page 1  
RFM67W  
RFM67W ISM TRANSMITTER MODULE V1.2  
Features  
APPLICATIONS  
GENERAL DESCRIPTION  
The RFM67W is a transmitter  
module which can operate in the  
315, 433, 868 and 915 MHz  
licence free ISM bands.  
z
Remote Keyless Entry (RKE)  
z
Remote Control / Security  
Systems  
z
z
Voice and Data RF  
Communication Links  
Process and building / home  
control  
The transmitter modulehas two  
modes of operation, a  
RFM67W  
conventional MCU controlled  
mode and a ‘stand-alone’  
mode which enables the  
RFM67W to download  
z
z
Active RFID  
AMR / AMI Platforms  
KEY PRODUCT FEATURES  
NOTE:  
configuration and messages from  
In order to better use RFM67W  
modules, this specification also  
involves a large number of the  
parameters and functions of its  
core chip RF67's,including those  
IC pins which are not leaded  
out. All of these can help  
customers gain a better  
z
2
+17 dBm to -18 dBm  
an E PROM in response to a user  
Programmable output power.  
input.  
z
z
Bit rates up to 600 kbits / sec.  
FSK, GFSK, MSK, GMSK and  
OOK modulation.  
Stand-alone mode makes the  
RFM67W ideal for miniaturized or  
low cost remote keyless entry  
(RKE) applications. It also offers  
the unique advantage of narrow-  
band and wide-band  
z
z
z
Stand-alone mode: No need  
for a host MCU.  
Consistent RF performance  
over a 1.8 to 3.7 V range.  
Low phase noise (-95 dBc/Hz  
understanding of the  
performance of RFM67W  
modules, and enhance the  
application skills.  
communication in a range of  
modulation formats.  
PLL  
at 50 kHz) with automated  
calibration and fully integrated  
VCO and loop filter.  
The RFM67W offers high RF  
output power and channelized  
operation suited for the European  
(ETSI EN 300-220-1), North  
American (FCC part 15.231,  
15.247 and 15.249) and  
z
On chip RC timer for timer  
/wake-up applications.  
Low battery detection.  
Module size:19.7X16mm  
Low cost  
z
z
z
Japanese (ARIB T-67) regulatory  
standards.  
Page 1  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM67W  
DATASHEET  
ADVANCED COMMUNICATIONS & SENSING  
Table of contents  
Section  
Page  
1.  
2.  
General Description.................................................................................................................................................  
4
4
5
1.1. Simplified Block Diagram.................................................................................................................................  
1.2. Pin Diagram .....................................................................................................................................................  
1.3.  
Pin Description..............................................................................................................................................6  
Electrical Characteristics .........................................................................................................................................  
7
7
7
7
2.1. ESD Notice ......................................................................................................................................................  
2.2. Absolute Maximum Ratings .............................................................................................................................  
2.3. Operating Range..............................................................................................................................................  
2.4.  
Electrical Specifications.................................................................................................................................8  
3.  
4.  
Timing Characteristics .............................................................................................................................................  
9
Working Modes of the RFM67W..............................................................................................................................10  
4.1. Operating Modes ........................................................................................................................................... 10  
4.2. Application Modes.......................................................................................................................................... 10  
4.2.1. Stand Alone Mode .................................................................................................................................. 10  
4.2.2. MCU Mode.............................................................................................................................................. 11  
Operation of the RFM67W .......................................................................................................................................12  
5.1. Main Parameters............................................................................................................................................ 12  
5.1.1. Center Frequency ................................................................................................................................... 12  
5.1.2. Frequency Deviation............................................................................................................................... 12  
5.1.3. Bit Rate ................................................................................................................................................... 12  
5.2. Synthesizer .................................................................................................................................................... 13  
5.3. The Power Amplifier....................................................................................................................................... 14  
Digital Control and Interface .................................................................................................................................. 15  
6.1. Stand Alone Mode ......................................................................................................................................... 15  
6.1.1. State Machine Description...................................................................................................................... 15  
6.1.2. Memory Organization of the E2PROM ................................................................................................... 15  
6.1.3. Periodic mode......................................................................................................................................... 17  
6.1.4. Low Battery Indicator: Stand Alone Mode............................................................................................... 18  
6.1.5. Low Battery Indicator: MCU Mode.......................................................................................................... 18  
6.2. MCU Mode..................................................................................................................................................... 18  
6.2.1. SPI Operation ......................................................................................................................................... 18  
6.2.2. Data and Data Clock Usage..................................................................................................................20  
5.  
6.  
6.3.  
RFM67W Register Description....................................................................................................................21  
7.  
RFM67W Application Circuits ...................................................................................................................................26  
7.1. Typical Application Schematic...........................................................................................................................26  
Page 2  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM67W  
Table of contents  
Section  
Page  
7.2. Wake-up Times.............................................................................................................................................. 27  
7.3. Reset Pin Timing............................................................................................................................................ 27  
Reference Design Performance ............................................................................................................................ 29  
8.1. Power Output versus Consumption ............................................................................................................... 29  
8.  
8.2.  
8.3. Phase Noise................................................................................................................................................... 31  
8.4. RFM67W Baseband Filtering.......................................................................................................................33  
Power Output Flatness versus Temperature and Supply Voltage................................................................30  
8.5. Adjacent Channel Power ............................................................................................................................... 33  
9.  
Packaging Information........................................................................................................................................... 36  
10. Ordering Information.............................................................................................................................................. 37  
Page 3  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
This product datasheet contains a detailed description of the RFM67W performance and functionality.  
1. General Description  
The RFM67W is a transmitte module capable of (G)FSK, (G)MSK, and OOK modulation of an input data stream. It can  
transmit this modulated signal in the 315, 433, 868 and 915 MHz licence free ISM bands.  
1.1. Simplified Block Diagram  
VBAT  
VR_DIG  
VR_ANA  
RESET  
TEST  
Power Distribution  
VR_PA  
RFOUT  
GND  
E2_MODE  
PA1  
RC Oscillator  
Modulator  
Div 2/4/6  
DATA  
DCLK  
Interpolation  
and Filtering  
Ramp and  
Control  
Fractional-N  
PLL  
PLL_LOCK  
NSS  
Calibration  
PA2  
MISO  
MOSI  
SCK  
Registers  
and SPI  
Interface  
÷R  
XTAL  
Switch I/P  
XTA  
XTB  
PB(3:0)  
CLKOUT  
Figure 1. RFM67W Simplified Block Diagram  
The general architecture of the RFM67W is shown in Figure 1. The frequency synthesizer generating the LO frequency is  
a third-order fractional-N sigma-delta PLL. The PLL is capable of fast auto-calibration and offers fast switching and  
settling times. For frequency modulation ((G)FSK and (G)MSK), the modulation is performed within the PLL bandwidth.  
Optional pre-filtering of the bit stream may also be enabled to reduce the power delivered to adjacent channels.  
Amplitude modulation (OOK), is performed via a DAC driving the reference of the regulator of the PA. Note that pre-filtering  
of the bit stream is also available in this mode. The VCO works at 2, 4 or 6 times the RF output frequency to improve the  
quadrature precision and reduce pulling effects during transmission.  
The PA of the RFM67W is comprised of two amplifiers - one high power, one low power. This enables the RFM67W to  
deliver a wide range, over 30 dB, of output powers - up to +13 dBm in single PA configuration. However, with an appropriate  
output impedance transformation, in dual PA mode, this can be increased to +17 dBm.  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Page 4  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
The RFM67W also includes two timing references; an RC oscillator, for sleep mode operation of the SPI interface (in  
MCU mode), and a 32 MHz crystal oscillator, which serves as the low-noise frequency reference of the PLL. The  
references and supply voltages are provided by the power distribution system which includes several regulators allowing  
true battery powered operation.  
1.2. Pin Diagram  
(TOP)  
Page 5  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
1.3. Pin Description  
Table 1 Description of the RFM67W Pinouts  
Number  
Name  
MOSI  
Type  
Description  
1
I/O  
I/O  
O
O
O
I
SPI Data input/output  
SPI Chip select input/output  
Reference clock output  
PLL lock detection, active high/low  
Output data clock  
2
NSS  
3
CLKOUT  
PLL_LOCK  
DCLK  
DATA  
SCK  
4
5
6
Modulation input data  
SPI Clock input  
7
I
8
MISO  
GND  
I/O  
-
SPI Data output/input  
9
RF Ground  
RF signal output/input.  
I/O  
10  
11  
12  
13  
14  
15  
ANA  
GND  
-
-
RF Ground  
RF Ground  
GND  
3.3V  
Main supply voltage from battery  
RF Ground  
GND  
-
RESET  
I/O  
Reset, active high  
Low battery indicator output Push-button input 0, active high  
Push-button input 0, active high  
16  
PB(0)  
I
Page 6  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
2. Electrical Characteristics  
2.1. ESD Notice  
The RFM67W is an electrostatic discharge sensitive device. It satisfies:  
z
Class 2 of the JEDEC standard JESD22-A114-B (human body model) on all other pins.  
2.2. Absolute Maximum Ratings  
Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for  
extended periods may affect device reliability.  
Table 2 Absolute Maximum Ratings  
Symbol  
Description  
Min  
Max  
Unit  
VDDmr  
Tmr  
Supply Voltage  
Temperature  
-0.5  
-55  
3.9  
V
115  
° C  
2.3. Operating Range  
Operating ranges define the limits for functional operation and the parametric characteristics of the device as described in  
this section. Functionality outside these limits is not implied.  
Table 3 Operating Range  
Symbol  
Description  
Min  
Max  
Unit  
VDDop  
Top  
Supply voltage  
1.8  
-40  
-
3.7  
85  
25  
V
Operational temperature range  
Load capacitance on digital ports  
° C  
pF  
Clop  
Page 7  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
2.4. Electrical Specifications  
The table below gives the electrical specifications of the transmitter under the following conditions: Supply voltage = 3.3 V,  
temperature = 25 °C, fRF = 915 MHz, 2-level FSK modulation without prefiltering, = 5 kHz, bit rate = 4.8 kbit/s and output  
D
f
power = 13 dBm terminated in a matched 50 ohm impedance, unless otherwise specified.  
Table 4 Transmitter Specifications  
Symbol Description  
Current Consumption  
Conditions  
Min  
Typ  
Max  
Unit  
IDDSL  
IDDST  
IDDFS  
Supply current in sleep mode  
-
-
-
0.5  
0.9  
8
1
1.2  
-
µA  
Supply current in standby mode  
Crystal oscillator enabled  
mA  
mA  
Supply current in synthesiser  
mode  
IDDT  
Supply current in transmit mode RF Power o/p = 17 dBm  
with appropriate external match- RF Power o/p = 13 dBm  
-
-
-
-
95  
45  
33  
20  
-
-
40  
25  
mA  
mA  
mA  
mA  
ing (see Section 7).  
RF Power o/p = 10 dBm  
RF Power o/p = 0 dBm  
RF and Baseband Specifications  
BRF  
Bit rate, FSK  
Programmable.  
1.2  
1.2  
0.6  
-
-
-
600  
32  
kbps  
kbps  
kHz  
BRO  
FDA  
Bit rate, OOK  
Programmable.  
Frequency deviation, FSK  
RF output power in 50 ohms  
Programmable  
300  
RFOP  
Programmable with 1 dB steps.  
Max  
Min  
10  
-21  
13  
-18  
-
-
dBm  
dBm  
PHN  
Transmitter phase noise  
50 kHz Offset from carrier  
-
-95  
-
dBc/  
Hz  
RFOPH  
Max RF output power with an  
external impedance transforma-  
tion  
With external match to 50 ohms.  
14  
17  
-
dBm  
ACP  
FR  
Transmitter adjacent channel  
power (measured at 25 kHz off-  
set)  
Pre-filter enabled. Measurement  
conditions as defined by EN 300  
220-1 V2.1.1.  
-
-
-37  
dBm  
315MHz Module  
433MHz Module  
868MHz Module  
290  
431  
862  
890  
340  
510  
890  
1020  
MHz  
MHz  
MHz  
MHz  
Synthesizer Frequency Range  
915MHz Module  
19  
FSTEP  
FRC  
Frequency synthesizer step  
RC Oscillator frequency range  
-
61  
65  
-
Hz  
FXOSC/2  
45  
85  
kHz  
Timing Specifications  
TS_FS Frequency synthesizer wake up  
Crystal oscillator Enabled.  
-
100  
150  
µs  
time  
Page 8  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
Symbol Description  
Conditions  
Min  
Typ  
Max  
Unit  
µs  
Transmitter wake-up time  
Frequency synthesizer enabled.  
Note, depends upon bit rate and  
ramp time, please refer to Section  
7.4.  
-
120  
-
TS_TR  
TS_OS  
FXOSC  
TS_TT  
Crystal oscillator wake-up time  
Crystal oscillator frequency  
Total Wake up time  
-
-
300  
32  
500  
-
µs  
For All Module  
MHz  
µs  
Sleep to transmit, automated. Note,  
depends upon bit rate and ramp  
time, please refer to Section 7.4.  
450  
T_DATA Data set-up time  
-
-
0.25  
µs  
3. Timing Characteristics  
The following table gives the operating specifications for the SPI interface of the RFM67W.  
Table 5 SPI Timing Specifications  
Symbol Description  
Conditions  
Min  
-
Typ  
Max  
Unit  
MHz  
ns  
SCK Frequency  
SCK High time  
SCK Low time  
SCK rise time  
SCK Fall time  
-
-
10  
-
f
t
t
t
t
t
SCK  
ch  
50  
50  
-
-
-
ns  
cl  
5
5
-
-
ns  
rise  
fall  
-
-
ns  
From MOSI transition to SCK rising  
edge  
30  
-
ns  
setup  
MOSI Setup time  
MOSI hold time  
t
t
t
From SCK rising edge to MOSI tran-  
sition  
20  
30  
30  
-
-
-
-
ns  
ns  
ns  
hold  
nl  
NSS setup time  
NSS Hold time  
From NSS falling edge to SCK rising  
edge  
From SCK falling edge to NSS rising  
edge.  
-
nh,n  
For explanatory diagrams of the timing characteristic parameters, please see Figure 7 and Figure 8.  
Page 9  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
4. Working Modes of the RFM67W  
4.1. Operating Modes  
The four operating modes of the RFM67W are shown in Table 6. Each of these may be selected via the SPI bus by  
writing the corresponding bits to Mode(2:0). A key feature of the RFM67W is that the transition from one operating mode to  
the next is automatically optimized. For example, if the transmit operating mode is selected whilst in sleep operating mode  
then, in a pre-defined time-optimized sequence, each of the intermediate modes is engaged sequentially without the need  
to issue any further SPI commands. For more information on timing and optimization please see Section 7.4.  
Table 6 RFM67W  
Modes  
Operating  
Enabled Blocks  
Xtal Osc  
MODE(2:0)  
Selected Mode  
RC Osc  
SPI  
Freq. Synth.  
PA  
000  
001  
010  
011  
Sleep mode  
Stand-by mode  
FS mode  
Optional  
Optional  
Optional  
Optional  
x
x
x
x
x
x
x
x
x
Transmit mode  
x
4.2. Application Modes  
The RFM67W has two application modes, selected by applying an external logical level to the E2_MODE input. The first,  
MCU mode (E2_Mode= ‘0’), configures the RFM67W as an SPI slave. This permits the configuration of the circuit by an  
external microprocessor via the SPI interface of the RFM67W and the data to be applied via the DATA input (pin 13).  
The second application mode, stand-alone mode (E2_Mode = 0), sees the RFM67W configured as SPI master. In the  
stand- alone application mode the RFM67W can download its configuration from an external SPI E2PROM. Moreover, in  
response to an input on the GPIO pins, a specific configuration can be programmed and a payload transmitted.  
Note that this mode selection process is performed at start up (or POR) of the circuit. Thus the hardware mode cannot be  
dynamically changed without resetting the chip. This may be achieved either by power down or by issuing an active high  
POR signal to the Reset input. For reset signal timing please see the diagram of Figure 13 and accompanying  
description.  
4.2.1. Stand Alone Mode  
In stand alone mode (E2_Mode = ‘1’) the RFM67W will operate as a stand-alone SPI master which can download both  
register settings and data payload from an SPI E2PROM. Four debounced GPIO inputs are available in stand alone mode,  
in this application mode the RFM67W remains in sleep operating mode until either a single or combination of button  
presses are detected. RFM67W can then be dynamically reconfigured and / or transmit a data sequence stored within the  
E2PROM.  
The RFM67W can accommodate SPI E2PROM sizes up to 8 kbit and uses industry standard SPI commands. For a full  
description of E2PROM use with RFM67W and the associated application circuits, please see Section 6.1. The  
application circuit for stand-alone operation is shown in Figure 3, note that both matching and LM are band specific  
whilst CTX is application specific.  
Page 10  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
100 nF  
3 V  
CTX  
100 nF  
100k  
PB(3:0)  
VBAT E2_MODE  
NSS  
Hold  
VCC  
CS  
SPI  
EEPROM  
MISO  
MOSI  
SCK  
SO  
SI  
RF67  
SCK  
Match  
RFOUT  
VR_PA  
VSS  
WP  
VR_ANA  
VR_DIG  
LM  
100 nF 100 nF  
XTA  
XTB  
GND  
10 nF  
15 pF  
32 MHz  
15 pF  
Figure 3. RFM67W Stand-Alone Application Circuit  
4.2.2. MCU Mode  
The RFM67W is also capable of operating in a conventional MCU controlled mode. Figure 4 shows the RFM67W  
operating in MCU mode and connected to an external microcontroller. Note that CLKOUT provides the oscillator signal  
for the MCU, thus negating the need for two crystal oscillators. The DCLK connection is also optional - only being  
required if the data rate is to be determined by RFM67W or transmit filtering is to be used.  
100 nF  
EOL  
PB0  
3 V  
VCC  
MCU  
VSS  
CTX  
100 nF  
PB(3:1)  
VBAT  
CLKOUT  
OSC1  
DATA  
DCLK  
IO  
IO  
MISO  
MOSI  
SCK  
SI  
RF67  
SO  
SCK  
CS  
Match  
RFOUT  
NSS  
VR_ANA  
LM  
VR_DIG  
VR_PA  
15 pF  
XTA  
XTB  
GND MODE  
10 nF  
100 nF  
100 nF  
32 MHz  
15 pF  
Figure 4. RFM67W MCU Mode Application Circuit  
Page 11  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
ADVANCED COMMUNICATIONS & SENSING  
5. Operation of the RFM67W  
DATASHEET  
The RFM67W is an integrated ISM band transmitter module and features a fully integrated frequency synthesizer,  
modulator and power amplifier. This section describes the operation of the RFM67W and the functionality of these blocks.  
5.1. Main Parameters  
5.1.1. Center Frequency  
The carrier output center frequency, fRF, of the RFM67W is programmable via the SPI interface. It is determined by  
the following equation:  
where freq_rf(23:0) is the decimal value of the 24 bit number stored in configuration registers FrfMsb, FrfMid and FrfLsb  
and fXOSC is the frequency of the crystal oscillator. If the optimal value of 32 MHz is selected for the crystal oscillator, then  
this results in a programmable frequency resolution of 61.035 Hz.  
Note that RF output frequencies are only valid in the bands 290-340 MHz, 431-510 MHz and 862-1020 MHz. Note also,  
that for ease of use, the band selection process is performed automatically.  
5.1.2. Frequency Deviation  
The frequency deviation of the RFM67W in FSK mode is given by the following  
equation:  
where df_coeff is the decimal value of the 14 bit contents of the FdevLsb and FdevMsb configuration registers.  
5.1.3. Bit Rate  
The bit rate (or, depending upon coding, the chip rate) of the RFM67W is given by the following equation:  
where fXOSC is the crystal oscillator frequency, br_ratio is the decimal value of the 16 bit contents of registers BrMsb and  
BrLsb. Note that for OOK modulation the maximum bit rate is 32.7 kbps which corresponds to a br_ratio(15:0) of 979.  
The table below gives examples of some of the standard data rates accessible with RFM67W.  
Page 12  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
Table 7 Example Standard Bitrates and their Corresponding Register Settings.  
Type  
BrMSB  
BrLSB  
(G)FSK, (G)MSK  
OOK  
Rb Actual (to 7s.f.)  
Classical modem baud rates  
(multiples of 1.2 kbps)  
0x68  
0x34  
0x1A  
0x0D  
0x06  
0x03  
0x01  
0x00  
0x02  
0x01  
0x0A  
0x05  
0x80  
0x01  
0x00  
0x00  
0x00  
0x00  
0x03  
0x2B  
0x15  
0x0B  
0x05  
0x83  
0x41  
0xA1  
0xD0  
0x2C  
0x16  
0x00  
0x00  
0x00  
0x40  
0xD5  
0xA0  
0x80  
0x6B  
0xD1  
1.2 kbps  
2.4 kbps  
1.2 kbps  
2.4 kbps  
4.8 kbps  
9.6 kbps  
19.2 kbps  
1200.015  
2400.060  
4799.760  
9600.960  
19196.16  
38415.36  
76738.60  
153846.1  
57553.95  
115107.9  
12500.00  
25000.00  
50000.00  
100000.0  
150234.7  
200000.0  
250000.0  
299065.4  
32753.32  
4.8 kbps  
9.6 kbps  
19.2 kbps  
38.4 kbps  
76.8 kbps  
153.6 kbps  
57.6 kbps  
115.2 kbps  
12.5 kbps  
25 kbps  
Classical modem baud rates  
(multiples of 0.9 kbps)  
Round bit rates  
(multiples of 12.5, 25 and  
50 kbps)  
12.5 kbps  
25 kbps  
50 kbps  
100 kbps  
150 kbps  
200 kbps  
250 kbps  
300 kbps  
32.768 kbps  
Watch Xtal frequency  
32.768 kbps  
5.2. Synthesizer  
The frequency synthesizer of the RFM67W is a fully integrated fractional-N third-order sigma-delta phase-locked loop  
and VCO. Also incorporated are fully integrated third-order and low pass filters which determine the loop bandwidth. All of  
these features are fully automated and derived from the user bitrate and frequency deviation settings, as described in  
Sections  
5.1.1 to 5.1.3.  
To ensure the frequency accuracy of the PLL output it is necessary to perform calibration. The calibration process is  
performed automatically upon power up of the RFM67W. However, the calibration feature is also accessible to the user  
via the SPI configuration register, PllStat (address 0x0A). The calibration is performed by setting bit 2 (pll_cal) high. This  
ensures that the frequency output accuracy is limited only by the frequency error of the crystal oscillator, the calibration  
procedure lasts 500 µs, during which time pll_cal_done (bit 4 of address 0x0A) is set low. Once complete pll_cal_done is  
set high and confirmation of a successful calibration can be obtained by reading pll_cal_ok.  
Page 13  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
5.3. The Power Amplifier  
A simplified schematic of the dual power amplifiers of the RFM67W is shown in Figure 5. PA 1 comprises a pair of amplifiers:  
One dedicated for low power use, LPA, for programmed powers from -18 to -3 dBm: The second for high power use, HPA,  
for programmed powers from -2 to 13 dBm. PA 2 is a single high power amplifier and may be used in conjunction with PA 1  
to deliver the full 17 dBm of output power.  
VR_PA  
Ramp and  
Control  
pa_ramp_rising_time(6:5)  
OOK  
LPA  
RFOUT  
HPA1  
PA 1  
Match  
I/P  
HPA2  
PA 2  
Figure 5. Simplified Schematic of the RFM67W Power Amplifier  
The mode of operation of the PA’s is determined by the register setting pa_select(1:0) which is configured as shown in  
Table 8, below. The output power of the PA is determined by the value of the register pow_val(4:0), with a single PA  
enabled the output power is set by:  
Pout = –18 dBm + pow_val(4:0)  
The default setting for this register is 13 dBm. The expressions for the output power with other combinations of power  
amplifier enabled are shown in Table 8. Note also that the power amplifier current limiter, over current protection (OCP),  
feature of RFM67W can also limit the output power. To ensure correct operation at 17 dBm ensure that trim_ocp(3:0) is  
set to 105 mA (‘1100’).  
Table 8 Power Amplifier Mode Selection Truth Table  
pa_select(1:0)  
Mode  
invalid  
Power Range  
Pout Formula  
00  
01  
10  
11  
-
PA1 enabled  
PA2 enabled  
Dual PA  
-18 to 13 dBm  
-
-18 dBm + pow_val(4:0)  
-
-13 to 17 dBm  
-13 dBm + pow_val(4:0)  
The ramp and power control features of the PA, determine the regulator output voltage which is used to power the  
amplifiers, this must be done through an external RF choke.  
Page 14  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
6. Digital Control and Interface  
The RFM67W has several operating modes, configuration parameters and internal status indicators which are stored in  
internal registers. In MCU mode, all of these registers can be accessed by an external microcontroller via the SPI interface.  
In stand alone mode, both the configuration information and the data to be transmitted, are stored in an external E2PROM.  
The way that both the configuration and payload information is stored in the E2PROM must match the way the  
configuration is defined in the internal registers. For a full description see Section 6.1.2.  
6.1. Stand Alone Mode  
6.1.1. State Machine Description  
The stand alone mode is activated when the pin E2_Mode is tied to VDD. The RFM67W SPI interface is then configured  
in master mode. The internal state machine of the RFM67W then carries out the following operations:  
1) Immediately after power-up, the SPI interface reads the main configuration section in the E2PROM and then goes into  
the ‘sleep’ operating mode (i.e. all blocks off).  
2) Whilst in ‘sleep’ operating mode, when an edge is detected on any of the push-buttons PB[3:0], the chip wakes-up and  
starts the RC oscillator (typical startup time ~100 µs).  
3) The RC oscillator is used to clock a debounce timer which gives the logical push button input value after the  
programmed delay. The frame section corresponding to the button value (1 to 15) is read from the E2PROM. At this point  
additional, button specific, configuration information may be loaded. Otherwise, the configuration settings of 1) are used.  
Using the appropriate configuration, the payload corresponding to the detected button press is then transmitted. The  
payload transmission may be repeated up to 254 times.  
4) When the frame has been transmitted, the pad PLL_LOCK goes low and the chip goes into SLEEP mode.  
6.1.2. Memory Organization of the E2PROM  
The memory map for stand alone mode is shown in Figure 6. The configuration information occupies the first 77 bytes, the  
format of the configuration is {ADDR; VALUE} - therefore allowing up to 38 registers to be defined. Each push button  
configuration is mapped directly to a location in the E2PROM - determined by the mappings given in Table 9 and the  
variable section_size(5:0). The purpose of this variable, push button specific, section size is to allow the optimum use of  
different sizes of external memory. Note that the maximum frame length is 64 bytes - this equates to a maximum E2PROM  
size of 8 kbit. The influence of the section_size variable is illustrated in Figure 6.  
The mapping of Table 9 permits up to 15 frames to be defined. Each section may contain both write_registers commands  
and the payload to be transmitted. Thus allowing the dynamic configuration of settings such as output power and frequency  
in response to a button push. Each section within the E2PROM must conform to the following format: {FIFO_ADDR;  
REPEAT; LENGTH; VALUE_1; VALUE_2;...;VALUE_N}. Where VALUE_1... N is the user defined payload, REPEAT is the  
number of times the frame is to be transmitted, LENGTH defines the number of bytes in the message and FIFO_ADDR =  
0x95.  
The push-buttons may need to be debounced before being read. The debouncer time constant is programmed by the  
debounce_time(2:0) register which allows a range of debounce timer values to be accessed from 470  
m
s
to 480 ms. An  
Page 15  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
option for no debouncing is also available. Note that time constants are process and temperature dependent and may vary  
by +/- 15%.  
Pb ‘1111’  
0x4D + PB_MAPPING(PB(3:0)) * section size(5:0)  
Pb ‘0010’  
Pb ‘0001’  
section size(5:0)  
0x4D + PB_MAPPING(PB(3:0)) * section size(5:0)  
0x4D  
0x4C  
Config  
Registers  
0x00  
Figure 6. Memory Mapping in Stand Alone Mode  
The table below gives the push button mappings for the determination of E2PROM memory locations. Note that the  
combinations PB[3:0] = ‘0001’, ‘0010’, ‘0100’ and ‘1000’ are mapped to the four lowest locations in memory. This mapping  
allows the use of a simple four button interface with the minimum memory size.  
Table 9 Push Button Combination to E2PROM Memory Location Mapping  
PB[3:0]  
PB_MAPPING(3:0)  
PB[3:0]  
PB_MAPPING(3:0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
None (no active push-button)  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
3
0
1
7
8
4
11  
2
9
5
12  
13  
6
10  
14 / Low Battery  
The commands in the E2PROM are written as instructions thus bit 7 is set high - equivalent to adding 0x80 to the register  
address to be programmed. As was shown in Figure 6, the first 77 bytes are used for configuration. Note that registers only  
require programming if they hold a value other than the default value (see table 11 for default register settings).  
Page 16  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
The following table gives an example snippet of E2PROM contents, here for each location in E2PROM memory the first 13  
bytes of the available 77 (0x4C) bytes are occupied with configuration. The remaining bytes are left in their default 0xFF  
setting. The first push-button memory location is at 0x4D. Here we see that the periodic mode timer (see following section  
for a full description) is configured and a 10 byte payload follows. Subsequent push buttons are configured at the locations  
determined by the section size, see Figure 6.  
Table 10  
Example External SPI E2PROM Contents for RFM67W  
Configuration  
Address  
Content  
Comment  
Address  
Content  
Comment  
0x00  
0x01  
0x81  
0x05  
0x82  
0x00  
0x83  
0x03  
0x84  
0x33  
0x85  
0xE3  
0x90  
0x0F  
0x93  
0x1C  
0xFF  
0xFF  
0xFF  
Start-up config. (address)  
Start-up config. (data)  
Start-up config. (address)  
Start-up config. (data)  
Start-up config. (address)  
Start-up config. (data)  
Start-up config. (address)  
Start-up config. (data)  
Start-up config. (address)  
Start-up config. (data)  
Start-up config. (address)  
Start-up config. (data)  
Start-up config. (address)  
Start-up config. (data)  
Empty  
Empty  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0xFF  
0x97  
0x00  
0x95  
0x0A  
0x0A  
0x55  
0x55  
0x55  
0x55  
0xAA  
0x0A  
0x0B  
0x0C  
0x20  
0x00  
0x97  
PB[0] config (address)  
PB[0] config (data)  
FIFO address  
0x02  
0x03  
0x04  
Repeat  
0x05  
Length  
0x06  
Start of PB[0] Payload  
PB[0] Payload: Byte 1  
PB[0] Payload: Byte 2  
PB[0] Payload: Byte 3  
PB[0] Payload: Byte 4  
PB[0] Payload: Byte 5  
PB[0] Payload: Byte 6  
PB[0] Payload: Byte 7  
PB[0] Payload: Byte 8  
PB[0] Payload: Byte 9  
PB[1] config (address)  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Empty  
0x10-0x4B  
0x10 to 0x4B Empty  
Subsequent button push button configuration and payload could follow at address 0x5C, respecting the E2PROM section  
size constraint. Note that if register 0x00 is configured, care should be taken to enable transmit mode - mode(2:0) to  
ensure reliable transition to transmit mode.  
6.1.3. Periodic mode  
Periodic mode is a sub-mode of stand alone mode wherein the RFM67W will periodically sense the push button inputs  
for activity. If a push button input is high then the payload according to that input is transmitted. The wake-up interval,  
Twakeup, is defined by periodic_n(3:0) and periodic_d(3:0) values.  
Twakeu = 2  
·
TRC  
·
(periodic_n(3:0) + 1)  
·
2periodic_d(3:0) + 9  
p
Page 17  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
where TRC is the RC oscillator period, periodic_n is programmable between 0 and 15 and periodic_d may take values  
between 0 and 10. The maximum period is hence approximately 125 s when the frequency of the RC oscillator is 67 kHz.  
Push button mode is enabled when the value of D is non-zero and, when activated, all stand alone mode functionality is  
available. It is important to note that if there is no push button pressed, then no message will be transmitted.  
6.1.4. Low Battery Indicator: Stand Alone Mode  
The low battery indicator may be used in stand alone mode to detect the battery voltage and send a low battery message  
to the receiver. It is enabled by setting the eol_frame_mode bit ‘high’ (register 0x12). The low battery state is determined by  
comparing the supply voltage with a 1.695 V to 2.185 V programmable threshold (threshold trim_eol(2:0), address 0x12).  
Following detection, the following actions are performed depending upon the exact mode of operation:  
Normal Operation (Non-Periodic): The battery end-of-life condition is checked during the normal frame. If it is true, then  
a single extra frame #14 (see Table 9) is automatically sent after the normal frame.  
Stand-Alone Periodic Mode Operation: The battery end-of-life condition is checked during the normal frame. If it is true,  
then the next frame, sent at the next timer tick is frame #14 (see Table 9), the frame is sent only once.  
6.1.5. Low Battery Indicator: MCU Mode  
In MCU mode the low battery status indicator may be accessed and configured via the SPI register EolCtrl. Alternatively,  
the active high low battery indication is mapped to the PB0 pin allowing the independent generation of hardware interrupts.  
6.2. MCU Mode  
6.2.1. SPI Operation  
The first byte in any data transfer over the SPI is the address read/write byte. It comprises:  
1. W/RB bit, which is 1 for write access and 0 for read access  
2. 7 bits of address, MSB first.  
A transfer always starts by the NSS (not slave select) signal going low whilst SCK is high. MOSI (master out - slave in) is  
generated by the master on the next falling edge of SCK and is sampled by the slave on the next rising edge of SCK. MISO  
is generated by the slave on the falling edge of SCK and is high impedance when NSS is high. By convention, all bytes are  
sent MSB first.  
MCU mode is activated when pad E2_Mode is tied to GND (ground). In this mode the RFM67W is configured as SPI  
slave and its internal configuration registers can be written following the format shown in Figure 7.  
An ‘address write-byte‘ followed by a data byte is sent for a write access. Where multiple sequential registers are to be  
written, the NSS input may be kept low after this first address-byte plus data-byte have been sent. In this state sequential  
data-bytes may be written, the address is automatically incremented after the reception of each additional data-byte. This  
allows the sequential data-bytes to be written without the need for an address byte. NSS must then be set ‘high’ after the  
last byte transfer.  
Page 18  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
NSS  
tnl  
tnh  
tch  
SCK  
thold  
up  
tse  
t
tcl  
New Address (A1)  
A4 A3  
Last Address Accessed (A1')  
A5' A4' A3' A2'  
New Data at Address A1  
D4 D3 D2  
Current Data at Address A1'  
D4' D3' D2'  
MOSI  
W/RB  
A6  
A5  
A2  
A1  
A0  
D7  
D6  
D5  
D1  
D0  
MISO  
W/RB  
A6'  
A1'  
A0'  
D7'  
D6'  
D5'  
D1'  
D0'  
Figure 7. Register Write Access  
NSS  
tnl  
tnh  
tch  
SCK  
thold  
tsetup  
tcl  
New Address (A1)  
A4 A3  
Last Address Accessed (A1')  
A5' A4' A3' A2'  
MOSI  
W/RB  
W/RB  
A6  
A5  
A2  
A1  
A0  
X
Current Data at Address A1'  
D5' D4' D3' D2'  
MISO  
A6'  
A1'  
A0'  
D7'  
D6'  
D1'  
D0'  
Figure 8. Register Read Access  
Similarly, the configuration registers of the RFM67W can be read by issuing an ‘address read-byte’ (see Figure 8)  
the corresponding register contents are then transferred over the MISO line. As above, the contents of each subsequent  
register can be transferred by holding the NSS input low.  
A summary of all of the registers of the RFM67W are given in Table 11, this is followed by detailed descriptions of each of  
the registers in Table 12.  
Page 19  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
6.2.2. Data and Data Clock Usage  
In MCU mode the data to be transmitted is applied exclusively via the DATA input. The DATA input is sampled at the crystal  
frequency, fxosc. Where the MCU mediates the data rate and no gaussian or bit filtering is required, then the use of the data  
clock signal is optional. However, where filtering is to be used or the specified data rate accuracy is to be achieved, then  
the rising edge of the data clock, DCLK, signal must be used to clock the data into the RFM67W DATA input.  
T_DATA  
T_DATA  
DATA (NRZ)  
DCLK  
Figure 9. RFM67W Data Clock Timing Diagram (Used Only for Filtering and Ensuring Bit Rate Accuracies)  
Page 20  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
6.3. RFM67W Register Description  
Table 11 RFM67W Register Summary  
Address  
Register Name  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
Mode  
BrMsb  
Operating and modulation mode settings.  
Bit rate setting.  
BrLsb  
FdevMsb  
FdevLsb  
FrfMsb  
Frequency Deviation (FSK).  
RF centre frequency setting.  
FrfMid  
FrfLsb  
PaCtrl  
PA selection and power control.  
PA rise and fall timing (FSK).  
PLL status register.  
PaFskRamp  
PllStat  
VcoCtrl1  
VcoCtrl2  
VcoCtrl3  
VcoCtrl4  
ClockCtrl  
Eeprom  
VCO calibration values.  
Clock output pin settings.  
Stand alone mode E2PROM configuration.  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
ClockSel  
EolCtrl  
Selection between RC or crystal oscillator.  
Low battery indicator settings.  
PaOcpCtrl  
unused  
PA Over current protection - limits PA current.  
-
unused  
-
-
unused  
PerDivider  
BtnDeb  
Periodic mode wake-up timer control.  
Push button debouncer setting.  
Page 21  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
Table 12 RFM67W SPI Register Description  
Addr. Register Name  
Default Bits Variable Name  
Mode  
Description  
0x00  
Mode  
0x10  
7
-
rw  
rw  
unused  
6:4  
mode(2:0)  
Operating mode:  
000 sleep mode (SLEEP)  
001 stand-by mode (STDBY)  
010 frequency synthesizer mode (FS)  
011 transmit mode (TX)  
others reserved  
Read value is always chip actual mode  
3:2  
1:0  
modul_type(1:0)  
rw  
rw  
Modulation type:  
00 FSK  
01 OOK  
Others reserved  
data_shaping(1:0)  
Data shaping:  
In FSK:  
00 no shaping  
01 Gaussian filter with BT = 1.0  
10 Gaussian filter with BT = 0.5  
11 Gaussian filter with BT = 0.3  
In OOK:  
00 no shaping  
01 filtering with fcutoff = bit rate  
10 filtering with fcutoff = 2 * bit rate  
(BR <= 32 kb/s)  
11 reserved  
0x01  
0x02  
BrMsb  
BrLsb  
0x1A  
0x0B  
7:0  
7:0  
br_ratio(15:8)  
br_ratio(7:0)  
rw  
rw  
Bit rate MSB (chip rate if Manchester encoding)  
Bit rate LSB (chip rate if Manchester encoding)  
Default value is 0x1A0B = 4.8 kbps  
unused  
0x03  
0x04  
FdevMsb  
FdevLsb  
0x00  
0x52  
7:6  
5:0  
7:0  
-
-
fdev_coeff(13:8)  
fdev_coeff(7:0)  
rw  
rw  
Deviation frequency MSB  
Deviation Frequency LSB  
Default = 0x0052 = 82, gives 5 kHz  
RF carrier frequency MSB  
0x05  
0x06  
FrfMsb  
FrfMid  
0xE4  
0xC0  
7:0  
7:0  
freq_rf(23:16)  
freq_rf(15:8)  
rw  
rw  
RF carrier centre bits  
Page 22  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
Addr. Register Name  
Default Bits Variable Name  
Mode  
Description  
RF carrier frequency LSB  
0x00  
7:0  
freq_rf(7:0)  
rw  
0x07  
FrfLsb  
For fXOSC = 32 MHz, resolution = 61.035 Hz  
Default = 0xE4C000, gives 915 MHz  
0x08  
PaCtrl  
0x3F  
7
-
r
unused  
6:5  
pa_select  
rw  
Selects between PA1 and PA2  
00 = unused  
01 = PA1 selected (d)  
10 = reserved  
11 = PA1 and PA2 selected.  
4:0  
pow_val(4:0)  
rw  
Output power  
Pout = -18 dBm + pow_val  
Default is 13 dBm.  
0x09  
PaFskRamp  
0x08  
7:4  
3:0  
-
r
unused  
pa_ramp_rising_time(3:0)  
rw  
Rise/fall time ramping (FSK only)  
0000 = 2 ms  
0001 = 1 ms  
0010 = 500 us  
0011 = 250 us  
0100 = 125 us  
0101 = 100 us  
0110 = 62 us  
0111 = 50 us  
1000 = 40 us (d)  
1001 = 31 us  
1011 = 25 us  
1010 = 20 us  
1100 = 15 us  
1101 = 12 us  
1110 = 10 us  
1111 = 8 us  
Page 23  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
Addr. Register Name  
Default Bits Variable Name  
Mode  
Description  
0x10  
7:6  
5
-
r
r
unused  
0x0A  
PllStat  
pll_lock_detect  
PLL lock status:  
0 = PLL not locked  
1 = PLL locked  
4
3
pll_cal_done  
pll_cal_ok  
r
r
PLL calibration status  
0 = Calibration on-going  
1 = Calibration performed  
Note: Reset to 0 in sleep mode irrespective of  
calibration state.  
PLL Calibration Result  
0 = Calibration procedure failed  
1= Calibration procedure successful  
Note: Reset to 0 in sleep mode irrespective of  
calibration state  
2
pll_cal_start  
pll_divr(1:0)  
w
Triggers PLL calibration, always read as 0.  
1:0  
rw  
PLL division ratio  
00 = Automatic  
Others, PLL divider = PLL_divr  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
VcoCtrl1  
VcoCtrl2  
VcoCtrl3  
VcoCtrl4  
ClockCtrl  
NA  
NA  
7:5  
4:0  
7:5  
4:0  
7:5  
4:0  
7:5  
4:0  
7:4  
3
-
r
rw  
r
unused  
SB1(4:0)  
VCO band first calibration value  
unused  
-
SB2(4:0)  
rw  
r
VCO band second calibration value  
unused  
NA  
-
SB3(4:0)  
rw  
r
VCO band third calibration value  
unused  
NA  
-
SB4(4:0)  
-
rw  
r
VCO band fourth calibration value  
unused  
0x05  
rc_enable  
rw  
Enables RC oscillator. RC oscillator is also  
automatically switched on in E2PROM mode.  
0 = RC oscillator off  
1 = RC oscillator on  
2:0  
clkout_select  
rw  
Selects CLKOUT source:  
000 = fXOSC (32 MHz)  
001 = fXOSC / 2 (16 MHz)  
010 = fXOSC / 4 (8 MHz)  
011 = fXOSC / 8 (4 MHz)  
100 = fXOSC / 16 (2 MHz)  
101 = fXOSC / 32 (1 MHz) (d)  
110 = RC clock (65 kHz)  
111 = Clock output off.  
Note: Switching from RC to fXOSC or vice versa  
can generate glitches  
Page 24  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
Addr. Register Name  
Default Bits Variable Name  
Mode  
Description  
0x10  
7:6  
5:0  
-
-
0x10  
Eeprom  
unused  
Section size, used in E2PROM mode only.  
unused  
section_size(5:0)  
rw  
0x11  
ClockSel  
0x11  
7:5  
4
-
r
xosc_ck_ext_sel  
rw  
Selects external clock instead of xosc  
0 = use xosc  
1 = use external clock  
3:0  
7:5  
4
-
r/w  
unused  
unused  
0x12  
EolCtrl  
0x12  
-
r
r
q_eol  
Battery end of life flag  
0 = VBAT < VTHR (Battery is flat)  
1 = VBAT > VTHR  
3
on_eol  
rw  
rw  
Enables EOL  
0 = EOL disabled  
1 = EOL enabled  
2:0  
vthr_eol(2:0)  
Battery end of life threshold  
000 = 1.695 V  
001 = 1.764 V  
010 = 1.835 V (default setting)  
011 = 1.905 V  
100 = 1.976 V  
101 = 2.045 V  
110 = 2.116 V  
111 = 2.185 V  
0x13  
PaOcpCtrl  
0x11  
7:5  
4
-
r
unused  
on_ocp  
rw  
Enables power amplifier current limiter:  
0 = OCP disabled  
1 = OCP enabled  
3:0  
trim_ocp(3:0)  
rw  
PA OCP DC load current threshold:  
0000 = 45 mA  
0001 = 50 mA  
0010 = 55 mA  
0011 = 60 mA  
0100 = 65 mA  
0101 = 70 mA  
0110 = 75 mA  
0111 = 80 mA  
1000 = 85 mA  
1001 = 90 mA  
1010 = 95 mA  
1011 = 100 mA (default setting)  
1100 = 105 mA (recommended +17 dBm setting)  
1101 = 110 mA  
1110 = 115 mA  
1111 = 120 mA  
0x14  
Unused  
-
-
-
-
unused  
Page 25  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
Addr. Register Name  
Default Bits Variable Name  
Mode  
Description  
-
-
-
-
-
-
0x15  
0x16  
0x17  
Unused  
Unused  
-
-
-
unused  
PerDivider  
0x00  
7:4  
3:0  
periodic_d(3:0)  
periodic_n(3:0)  
rw  
rw  
Periodic mode D divider (values from 1 to 10)  
Periodic mode N divider (values from 0 to 15)  
Twake = 2TRC(periodic_n(3:0) + 1)  
·
2periodic_d(3:0) + 9  
Note: Only available in E2PROM Mode and  
when N>0 (N = 0 = disabled)  
0x18  
BtnDeb  
0x03  
7:3  
2:0  
-
r
unused  
debounce_time(2:0)  
rw  
Push button debounce tim constant:  
000 = 470 us  
001 = 7.5 ms  
010 = 15 ms  
011 = 30 ms (d)  
100 = 60 ms  
101 = 120 ms  
110 = 240 ms  
111 = 480 ms  
7. RFM67W Application Circuits  
7.1. Typical Application Schematic  
Page 26  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
7.2. Wake-up Times  
When switching between modes, an optimized sequence of events is automatically performed by RFM67W. For example,  
in response to the command to enter transmit mode whilst in sleep mode, each intermediate mode is engaged - ensuring  
crystal oscillator start-up and PLL lock before transition to transmit mode. External indication of PLL lock is given by the  
PLL lock pin (MCU mode only). The PLL lock pin output is only valid whist no data is applied to the DATA pin. The transition  
from frequency synthesizer mode to transmit is well defined and a function of bit rate and transmit ramp time, given in FSK  
mode by:  
1
-------------  
TS  
(
μ
s) = 5 + 1.25  
·
pa_ramp_rising_time(3:0) +  
2
·
RB  
where pa_ramp_rising_time(3:0) is the user defined contents of PaFskRamp and RB is the bit rate. For OOK mode the time  
is given by:  
1
-------------  
TS_TS  
(μs) = 5 +  
RB  
2
·
A flow chart showing the automatic, optimised start-up procedure, initiated with a single SPI command is shown in  
Figure 14. Note that after the PLL lock indicator is set then the transmitter requires TS_TR to set-up before transmission  
may begin.  
7.3 Reset Pin Timing  
Manual reset of the RFM67W is possible by asserting a logical high to the reset pin. The timing for this operation is shown  
in the following figure. During the reset operation the RFM67W current consumption may rise to 1 mA. Following the  
reset operation the user must wait 5 ms before performing any other operation.  
Page 27  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
Figure 13. RFM67W Reset  
Sleep Mode  
Tx Mode Enable  
mode(‘011’)  
Wait TS_OS  
Stand-by  
Mode  
enabled  
Synthesiser  
Mode  
Enabled  
PLL  
and calibration  
OK?  
TS_FS  
N
Y
PLL Lock indicator  
Set  
Wait TS_TR  
Transmit Mode  
Ready  
Figure 14. Automatic Optimised RFM67W Start-up Sequence with a Single SPI Command  
or 315/434 MHz Operation at or below 13 dBm Output Power  
28  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
8. Reference Design Performance  
This section details the measured typical performance of the reference design described in the preceding section.  
8.1. Power Output versus Consumption  
20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
17 dBm Match Pmeas  
14 dBm Match Pmeas  
17 dBm Match Imeas  
14 dBm Match Imeas  
15  
10  
5
0
-5  
-10  
-15  
-20  
PA1 Only PA1 and 2 Enabled  
10 15 20  
-20  
-15  
-10  
-5  
0
5
Programmed Power (dBm)  
Figure 24. Typical Power Consumption of the Reference Design versus Measured and Programmed Power  
Output at 915 MHz  
The measured current consumption of the RFM67W versus programmed and measured output power is shown in the  
preceding figure. The green curves correspond to measurements (made at 915 MHz) using the low power matching of  
Section 7.7. The measured consumption displays two distinct regimes: Above a programmed power of -3 dBm both high  
and low power amplifiers of PA1 are active. Below, however, only the low power amplifier within PA1 is enabled allowing  
enhanced efficiency for operation below this programmed power output.  
The blue portion of the curve (13 to 17 dBm operation) uses the matching illustrated in Section 7.6. Note that not only must  
both power amplifiers be enabled to access these output powers, but also the OCP (current limiter) for the PA must be  
disabled or the limit adjusted to 100 mA accordingly.  
29  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
8.2. Power Output Flatness versus Temperature and Supply Voltage  
The RFM67W reference design power output flatness as a function of voltage and temperature is shown below.  
16.90  
16.80  
16.70  
3.6 V, 25  
3.3 V, 25  
1.8 V, 25  
3.6 V, 90  
3.3 V, 90  
1.8 V, 90  
3.6 V, -45  
3.3 V, -45  
1.8 V, -45  
C
C
C
C
C
C
16.60  
16.50  
16.40  
16.30  
C
C
C
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
Frequency (MHz)  
Figure 25. Typical 17 dBm Output Power Flatness versus Supply Voltage and Temperature, Measured in the  
868 MHz ISM Band  
17.40  
17.30  
17.20  
3.6 V, 25  
3.3 V, 25  
1.8 V, 25  
3.6 V, 90  
3.3 V, 90  
1.8 V, 90  
3.6 V, -45  
3.3 V, -45  
1.8 V, -45  
C
C
C
C
C
C
17.10  
17.00  
16.90  
16.80  
16.70  
16.60  
C
C
C
900  
905  
910  
915  
Frequenc  
92  
0
92  
5
930  
y
(MHz)  
Figure 26. Typical 17 dBm Output Power Flatness versus Supply Voltage and Temperature, Measured in the  
915 MHz ISM band  
30  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
8.3. Phase Noise  
The phase noise of the RFM67W is measured in the centre frequencies of the principal ISM bands below 1 GHz. The  
phase noise is a function of frequency and varies from -104 dBc/Hz at 50 kHz offset at 315 MHz band to -96dBc/Hz at  
50 kHz  
.
offset at 915 MHz  
Figure 27. Typical RFM67W Phase Noise Measurement at 315 MHz (-104dBc/Hz at 50  
Figure 28. Typical RFM67W Phase Noise Measurement at 434 MHz (-102 dBc/Hz at 50 kHz).  
31  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
Figure 29. Typical RFM67W Phase Noise Measured at 868 MHz (-97 dBc/Hz at 50 kHz).  
Figure 30. Typical RFM67W Phase Noise Measured at 915 MHz (-96 dBc/Hz at 50 kHz).  
32  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
8.4. RFM67W Baseband Filtering  
The following figure illustrates the effect of applying the baseband gaussian filtering to the modulating bitstream of the  
RFM67W. This measurement was performed in the 868 MHz ISM band with the following settings: PPGM = 17 dBm, fRF  
=
868 MHz, Df = 50 kHz and Rb = 50 kbps (implies b=2). Here we see the occupied bandwidth reduced from 500 kHz for the  
unfiltered bit stream to 330 kHz with a filtering coefficient (BT) of 1. By increasing the filtering strength further to BT=0.3,  
the channel bandwidth for operation in the 868 MHz ISM band is reduced to below 200 kHz.  
10  
0
No Filtering  
'BT =  
1
'BT = 0.3  
ETSI Limit  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-500  
-400  
-300  
-200  
-100  
0
100  
200  
300  
400  
500  
Offset from Centre Frequency (kHz)  
Figure 31. The Influence of Gaussian Filtering on the Modulation Bandwidth (Wideband)  
8.5. Adjacent Channel Power  
Modulation spectrum of the RFM67W measured in 100 Hz bandwidth is shown in the following three figures together  
with the integrated adjacent channel power for the modulation settings shown in the figure caption. Please note that all  
measurements were performed at 868 MHz, with an output power of 13 dBm. Please also note that the clock output was  
disabled.  
Page33  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Integrated Power = -23.28 dBm  
Integrated Power = -21.42 dBm  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Offset from Centre Frequency (kHz)  
Figure 32. GMSK 6.25 kHz Channel Example.  
D
f
= 1.25 kHz, Rb = 4.8 kbps (implies b = 0.5) and BT = 0.3.  
10  
0
-10  
Integrated Power = -22.97 dBm  
Integrated Power = -22.55 dBm  
-20  
-30  
-40  
-50  
-60  
-70  
-20 -18 -16 -14 -12 -10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Offset from Centre Frequency (kHz)  
Figure 33. GMSK 12.5 kHz Channel Example. Df = 2.5 kHz, Rb = 9.6 kbps (implies b = 0.5) and BT = 0.3.  
Page3
34  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM 67W  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Integrated Power = -40.14 dBm  
ntegrated  
Power = -37 01 dBm  
-30  
-25  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
25  
30  
Offset from Centre Frequency (kHz)  
Figure 34. GFSK 20 kHz Channel Example. Df = 4.8 kHz, Rb = 4.8 kbps (implies b = 2) and BT = 0.3.  
Page
35  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RF67  
9. Packaging Information  
Figure 35: S2 Packaging Outline Drawing  
Page
36  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RF67  
10. Ordering Information  
RFM67W 433 S2  
Package  
Operation Band  
Mode Type  
P/N: RFM67W-315S2  
RFM67W module at 315MHz band, SMD Package  
P/N: RFM67W-433S2  
RFM67W module at 433MHz band, SMD Package  
P/N: RFM67W-868S2  
RFM67W module at 868MHz band, SMD Package  
P/N: RFM67W-915S2  
RFM67W module at 915MHz band, SMD Package  
This document may contain preliminary information and is subject to  
change by Hope Microelectronics without notice. Hope Microelectronics  
assumes no responsibility or liability for any use of the information  
contained herein. Nothing in this document shall operate as an express or  
implied license or indemnity under the intellectual property rights of Hope  
Microelectronics or third parties. The products described in this document  
are not intended for use in implantation or other direct life support  
applications where malfunction may result in the direct physical harm or  
injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT  
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY  
OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS  
DOCUMENT.  
HOPE MICROELECTRONICS CO.,LTD  
Add: 2/F, Building 3, Pingshan Private  
Enterprise Science and Technology  
Park, Lishan Road, XiLi Town, Nanshan  
District, Shenzhen, Guangdong, China  
Tel: 86-755-82973805  
Fax: 86-755-82973550  
Email: sales@hoperf.com  
Website: http://www.hoperf.com  
http://www.hoperf.cn  
©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.  
Page3
37  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  

相关型号:

RFM68CW

Low Cost ISM Transmitter Module
HOPERF

RFM68CW-315S2

Low Cost ISM Transmitter Module
HOPERF

RFM68CW-433S2

Low Cost ISM Transmitter Module
HOPERF

RFM68CW-868S2

Low Cost ISM Transmitter Module
HOPERF

RFM68CW-915S2

Low Cost ISM Transmitter Module
HOPERF

RFM68W

Low Cost ISM Transmitter Module
HOPERF

RFM68W-315S2

Low Cost ISM Transmitter Module
HOPERF

RFM68W-433S2

Low Cost ISM Transmitter Module
HOPERF

RFM68W-868S2

Low Cost ISM Transmitter Module
HOPERF

RFM68W-915S2

Low Cost ISM Transmitter Module
HOPERF

RFM69CW

ISM TRANSCEIVER MODULE
HOPERF

RFM69CW-315S2

ISM TRANSCEIVER MODULE
HOPERF