RFM69HW-868S2 [HOPERF]

ISM TRANSCEIVER MODULE;
RFM69HW-868S2
型号: RFM69HW-868S2
厂家: HOPERF    HOPERF
描述:

ISM TRANSCEIVER MODULE

ISM频段
文件: 总79页 (文件大小:1200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RFM69HW  
RFM69HW ISM TRANSCEIVER MODULE V1.3  
GENERAL DESCRIPTION  
TAL  
ND  
The RFM69HW is a transceiver module capable of  
operation over a wide frequency range, including the  
315,433,868 and 915MHz license-free ISM (Industry  
Scientific and Medical) frequency bands. All major RF  
communication parameters are programmable and most of  
them can be dynamically set. The RFM69HW offers  
the unique advantage of programmable narrow-band and  
wide- band communication modes. The RFM69HW is  
optimized for low power consumption while offering high RF  
output power and channelized operation. Compliance ETSI  
and FCC regulations.  
RFM69HW  
In order to better use RFM69HW modules, this specification  
also involves a large number of the parameters and  
functions of its core chip RF69H's,including those IC pins  
which are not leaded out. All of these can help customers  
gain a better understanding of the performance of  
RFM69HW modules, and enhance the application skills.  
APPLICATIONS  
‹
‹
‹
‹
‹
‹
Automated Meter Reading  
Wireless Sensor Networks  
Home and Building Automation  
Wireless Alarm and Security Systems  
Industrial Monitoring and Control  
Wireless M-BUS  
KEY PRODUCT FEATURES  
‹
‹
+20 dBm - 100 mW Power Output Capability  
High Sensitivity: down to -120 dBm at 1.2 kbps  
High Selectivity: 16-tap FIR Channel Filter  
‹
‹
80  
Bullet-proof front end: IIP3 = -18 dBm, IIP2 = +35 dBm,  
dB Blocking Immunity, no Image Frequency response  
‹
‹
‹
‹
‹
‹
‹
‹
‹
‹
‹
Low current: Rx = 16 mA, 100nA register retention  
Programmable Pout: -18 to +20 dBm in 1dB steps  
Constant RF performance over voltage range of module  
FSK Bit rates up to 300 kb/s  
Fully integrated synthesizer with a resolution of 61 Hz  
FSK, GFSK, MSK, GMSK and OOK modulations  
Built-in Bit Synchronizer performing Clock Recovery  
Incoming Sync Word Recognition  
115 dB+ Dynamic Range RSSI  
Automatic RF Sense with ultra-fast AFC  
Packet engine with CRC-16, AES-128, 66-byte FIFO  
Built-in temperature sensor  
‹
Module Size:19.7X16mm  
Page 1  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Table of Contents  
Page  
1.  
General Description ................................................................................................................................................  
8
1.1. Simplified Block Diagram ............................................................................................................................. 8  
1.2. Pin and Marking Diagram.................................................................................................................................  
1.3. Pin Description ....................................................................................................................................10  
9
2.  
Electrical Characteristics........................................................................................................................................11  
2.1. Absolute Maximum Ratings ..................................................................................................................11  
2.2. Operating Range............................................................................................................................................ 11  
2.3. Module Specification ...........................................................................................................................12  
2.3.1. Power Consumption ................................................................................................................................. 12  
2.3.2. Frequency Synthesis ................................................................................................................................ 12  
2.3.3. Receiver .....................................................................................................................................................13  
2.3.4. Transmitter ............................................................................................................................................... 14  
2.3.5. Digital Specification ................................................................................................................................. 15  
Module Description.................................................................................................................................................16  
3.1. Power Supply Strategy.............................................................................................................................16  
3.2. Frequency Synthesis..................................................................................................................................... 16  
3.2.1. Reference Oscillator ................................................................................................................................. 16  
3.2.2. CLKOUT Output ....................................................................................................................................... 17  
3.2.3. PLL Architecture ....................................................................................................................................... 17  
3.2.4. Lock Time ....................................................................................................................................................18  
3.2.5. Lock Detect Indicator................................................................................................................................ 18  
3.3. Transmitter Description .................................................................................................................................. 19  
3.3.1. Architecture Description ........................................................................................................................... 19  
3.3.2. Bit Rate Setting ........................................................................................................................................ 19  
3.3.3. FSK Modulation ......................................................................................................................................... 20  
3.3.4. OOK Modulation ....................................................................................................................................... 20  
3.3.5. Modulation Shaping.................................................................................................................................... 21  
3.3.6. Power Amplifiers ...................................................................................................................................... 21  
3.3.7. High Power Settings ................................................................................................................................. 22  
3.3.8. Output Power Summary ............................................................................................................................ 22  
3.3.9. Over Current Protection ............................................................................................................................ 22  
3.4. Receiver Description ..............................................................................................................................23  
3.4.1. Block Diagram .......................................................................................................................................... 23  
3.4.2. LNA - Single to Differential Buffer ............................................................................................................ 23  
3.4.3. Automatic Gain Control ............................................................................................................................ 24  
3.4.4. Continuous-Time DAGC........................................................................................................................... 25  
3.4.5. Quadrature Mixer - ADCs - Decimators.................................................................................................... 26  
3.4.6. Channel Filter ........................................................................................................................................... 26  
3.4.7. DC Cancellation ....................................................................................................................................... 27  
3.  
Page 2  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.4.8. Complex Filter - OOK ............................................................................................................................... 27  
3.4.9. RSSI......................................................................................................................................................... 27  
3.4.10. Cordic ..................................................................................................................................................... 28  
3.4.11. FSK Demodulator ....................................................................................................................................29  
3.4.12. OOK Demodulator.................................................................................................................................. 29  
3.4.13. Bit Synchronizer ..................................................................................................................................... 31  
3.4.14. Frequency Error Indicator....................................................................................................................... 31  
3.4.15. Automatic Frequency Correction............................................................................................................ 32  
3.4.16. Optimized Setup for Low Modulation Index Systems............................................................................. 33  
3.4.17. Temperature Sensor ............................................................................................................................... 34  
3.4.18. Timeout Function.................................................................................................................................... 34  
Operating Modes .................................................................................................................................................... 35  
4.  
4.1.  
4.2.  
Basic Modes.................................................................................................................................................. 35  
Automatic Sequencer and Wake-Up Times.................................................................................................. 35  
4.2.1. Transmitter Startup Time ..........................................................................................................................36  
4.2.2. Tx Start Procedure ................................................................................................................................... 36  
4.2.3. Receiver Startup Time.............................................................................................................................. 36  
4.2.4. Rx Start Procedure................................................................................................................................... 38  
4.2.5. Optimized Frequency Hopping Sequences.............................................................................................. 38  
4.3. Listen Mode..................................................................................................................................................... 39  
4.3.1. Timings..................................................................................................................................................... 39  
4.3.2. Criteria...................................................................................................................................................... 40  
4.3.3. End of Cycle Actions ................................................................................................................................ 40  
4.3.4. Stopping Listen Mode............................................................................................................................... 41  
4.3.5. RC Timer Accuracy .................................................................................................................................. 41  
4.4. AutoModes...................................................................................................................................................... 42  
Data Processing...................................................................................................................................................... 43  
5.1. Overview ......................................................................................................................................................... 43  
5.1.1. Block Diagram .......................................................................................................................................... 43  
5.1.2. Data Operation Modes ............................................................................................................................. 43  
5.2. Control Block Description.............................................................................................................................. 44  
5.2.1. SPI Interface............................................................................................................................................... 44  
5.2.2. FIFO ........................................................................................................................................................... 45  
5.2.3. Sync Word Recognition............................................................................................................................ 46  
5.2.4. Packet Handler......................................................................................................................................... 47  
5.2.5. Control........................................................................................................................................................ 47  
5.3. Digital IO Pins Mapping................................................................................................................................. 47  
5.3.1. DIO Pins Mapping in Continuous Mode ................................................................................................... 48  
5.3.2. DIO Pins Mapping in Packet Mode .......................................................................................................... 48  
5.4. Continuous Mode ........................................................................................................................................... 49  
5.4.1. General Description................................................................................................................................... 49  
5.4.2. Tx Processing............................................................................................................................................ 49  
5.  
Page 3  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
5.4.3. Rx Processing .......................................................................................................................................... 50  
5.5. Packet Mode .................................................................................................................................................. 50  
5.5.1. General Description................................................................................................................................... 50  
5.5.2. Packet Format .......................................................................................................................................... 51  
5.5.3. Tx Processing (without AES).................................................................................................................... 53  
5.5.4. Rx Processing (without AES) ................................................................................................................... 54  
5.5.5. AES ........................................................................................................................................................... 54  
5.5.6. Handling Large Packets ........................................................................................................................... 56  
5.5.7. Packet Filtering.......................................................................................................................................... 56  
5.5.8. DC-Free Data Mechanisms...................................................................................................................... 58  
Configuration and Status Registers ...................................................................................................................... 60  
6.1. General Description ...................................................................................................................................... 60  
6.2. Common Configuration Registers................................................................................................................. 63  
6.3. Transmitter Registers ..................................................................................................................................... 66  
6.4. Receiver Registers......................................................................................................................................... 67  
6.5. IRQ and Pin Mapping Registers.................................................................................................................... 69  
6.6. Packet Engine Registers............................................................................................................................... 71  
6.7. Temperature Sensor Registers..................................................................................................................... 74  
6.8. Test Registers............................................................................................................................................... 74  
Application Information ......................................................................................................................................... 75  
7.1. Crystal Resonator Specification.................................................................................................................... 75  
7.2. Reset of the Module ...................................................................................................................................... 75  
7.2.1. POR.......................................................................................................................................................... .. 75  
7.2.2. Manual Reset .............................................................................................................................................. 76  
7.3. Reference Design ......................................................................................................................................... 77  
Packaging Information .......................................................................................................................................... 78  
8.1. Package Outline Drawing.............................................................................................................................. 78  
Ordering Information ............................................................................................................................................. 79  
6.  
7.  
8.  
9.  
Page 4  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Index of Figures  
Page  
Figure 1. Block Diagram ................................................................................................................................................  
8
Figure 2. Pin Diagram ....................................................................................................................................................  
Figure 3. Marking Diagram ............................................................................................................................................  
9
9
Figure 4. TCXO Connection ........................................................................................................................................ 16  
Figure 5. Transmitter Block Diagram ........................................................................................................................... 19  
Figure 6. Output Power Curves ................................................................................................................................... 22  
Figure 7. Receiver Block Diagram ............................................................................................................................... 23  
Figure 8. AGC Thresholds Settings ............................................................................................................................. 24  
Figure 9. RSSI Dynamic Curve .................................................................................................................................... 28  
Figure 10. Cordic Extraction ........................................................................................................................................ 28  
Figure 11. OOK Peak Demodulator Description .......................................................................................................... 29  
Figure 12. Floor Threshold Optimization ..................................................................................................................... 30  
Figure 13. Bit Synchronizer Description ...................................................................................................................... 31  
Figure 14. FEI Process ................................................................................................................................................ 32  
Figure 15. Optimized AFC (AfcLowBetaOn=1) ............................................................................................................ 33  
Figure 16. Temperature Sensor Response ................................................................................................................. 34  
Figure 17. Tx Startup, FSK and OOK .......................................................................................................................... 36  
Figure 18. Rx Startup - No AGC, no AFC .................................................................................................................... 37  
Figure 19. Rx Startup - AGC, no AFC ......................................................................................................................... 37  
Figure 20. Rx Startup - AGC and AFC ........................................................................................................................ 37  
Figure 21. Listen Mode Sequence (no wanted signal is received) .............................................................................. 39  
Figure 22. Listen Mode Sequence (wanted signal is received) ................................................................................... 41  
Figure 23. Auto Modes of Packet Handler ................................................................................................................... 42  
Figure 24. RFM69HW Data Processing Conceptual View ........................................................................................... 43  
Figure 25. SPI Timing Diagram (single access) .......................................................................................................... 44  
Figure 26. FIFO and Shift Register (SR) ..................................................................................................................... 45  
Figure 27. FifoLevel IRQ Source Behavior .................................................................................................................. 46  
Figure 28. Sync Word Recognition .............................................................................................................................. 47  
Figure 29. Continuous Mode Conceptual View ........................................................................................................... 49  
Figure 30. Tx Processing in Continuous Mode ............................................................................................................ 49  
Figure 31. Rx Processing in Continuous Mode ........................................................................................................... 50  
Figure 32. Packet Mode Conceptual View ................................................................................................................... 51  
Figure 33. Fixed Length Packet Format ...................................................................................................................... 52  
Figure 34. Variable Length Packet Format .................................................................................................................. 52  
Figure 35. Unlimited Length Packet Format ................................................................................................................ 53  
Figure 36. CRC Implementation .................................................................................................................................. 58  
Figure 37. Manchester Encoding/Decoding ................................................................................................................. 58  
Figure 38. Data Whitening ........................................................................................................................................... 59  
Figure 39. POR Timing Diagram ................................................................................................................................. 75  
Figure 40. Manual Reset Timing Diagram ................................................................................................................... 76  
Page 5  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Figure 41. +20dBm Schematic .................................................................................................................................... 77  
Figure 42. Package Outline Drawing ........................................................................................................................... 78  
Index of Tables  
Page  
Table 1. RFM69HW Pinouts ........................................................................................................................................ 10  
Table 2. Absolute Maximum Ratings ............................................................................................................................ 11  
Table 3. Operating Range ............................................................................................................................................ 11  
Table 4. Power Consumption Specification .................................................................................................................. 12  
Table 5. Frequency Synthesizer Specification .............................................................................................................. 12  
Table 6. Receiver Specification .................................................................................................................................... 13  
Table 7. Transmitter Specification ................................................................................................................................ 14  
Table 8. Digital Specification ........................................................................................................................................ 15  
Table 9. Bit Rate Examples .......................................................................................................................................... 20  
Table 10. Power Amplifier Mode Selection Truth Table ............................................................................................... 21  
Table 11. High Power Settings ..................................................................................................................................... 22  
Table 12. LNA Gain Settings ........................................................................................................................................ 23  
Table 13. Receiver Performance Summary .................................................................................................................. 25  
Table 14. Available RxBw Settings ............................................................................................................................... 26  
Table 15. Available DCC Cutoff Frequencies ............................................................................................................... 27  
Table 16. Basic Transceiver Modes ............................................................................................................................. 35  
Table 17. Range of Durations in Listen Mode .............................................................................................................. 39  
Table 18. Signal Acceptance Criteria in Listen Mode ................................................................................................... 40  
Table 19. End of Listen Cycle Actions .......................................................................................................................... 40  
Table 20. Status of FIFO when Switching Between Different Modes of the Module ................................................... . 46  
Table 21. DIO Mapping, Continuous Mode .................................................................................................................. 48  
Table 22. DIO Mapping, Packet Mode ......................................................................................................................... 48  
Table 23. Registers Summary ...................................................................................................................................... 60  
Table 24. Common Configuration Registers ................................................................................................................. 63  
Table 25. Transmitter Registers ................................................................................................................................... 66  
Table 26. Receiver Registers ....................................................................................................................................... 67  
Table 27. IRQ and Pin Mapping Registers ................................................................................................................... 69  
Table 28. Packet Engine Registers .............................................................................................................................. 71  
Table 29. Temperature Sensor Registers ..................................................................................................................... 74  
Table 30. Test Registers .............................................................................................................................................. 74  
Table 31. Crystal Specification ..................................................................................................................................... 75  
Page 6  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Acronyms  
BOM  
Bill Of Materials  
Bit Rate  
LSB  
MSB  
NRZ  
OOK  
Least Significant Bit  
Most Significant Bit  
Non Return to Zero  
On Off Keying  
BR  
BW  
Bandwidth  
CCITT Comité Consultatif International  
Téléphonique et Télégraphique - ITU  
CRC  
DAC  
ETSI  
Cyclic Redundancy Check  
PA  
Power Amplifier  
Digital to Analog Converter  
PCB  
PLL  
Printed Circuit Board  
Phase-Locked Loop  
European Telecommunications Standards  
Institute  
FCC  
Fdev  
FIFO  
FIR  
FS  
Federal Communications Commission  
POR  
RBW  
RF  
Power On Reset  
Frequency Deviation  
Resolution BandWidth  
Radio Frequency  
First In First Out  
Finite Impulse Response  
Frequency Synthesizer  
Frequency Shift Keying  
Graphical User Interface  
Integrated Circuit  
RSSI  
Rx  
Received Signal Strength Indicator  
Receiver  
FSK  
GUI  
IC  
SAW  
SPI  
SR  
Surface Acoustic Wave  
Serial Peripheral Interface  
Shift Register  
ID  
IDentificator  
Stby  
Tx  
Standby  
IF  
Intermediate Frequency  
Interrupt ReQuest  
Transmitter  
IRQ  
ITU  
LFSR  
LNA  
LO  
uC  
Microcontroller  
International Telecommunication Union  
Linear Feedback Shift Register  
Low Noise Amplifier  
VCO  
XO  
Voltage Controlled Oscillator  
Crystal Oscillator  
eXclusive OR  
XOR  
Local Oscillator  
Page 7  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
This product datasheet contains a detailed description of the RFM69HW performance and functionality.  
1. General Description  
The RFM69HW is a transceiver module ideally suited for today's high performance ISM band RF applications. It is  
intended for use as high-performance, low-cost FSK and OOK RF transceiver for robust frequency agile, half-duplex bi-  
directional RF links, and where stable and constant RF performance is required over the full operating range of the  
device down to 1.8V.  
The RFM69HW is intended for applications over a wide frequency range, including the 315MHz,433 MHz,868 MHz and  
915MHz ISM bands. Coupled with a link budget in excess of 140 dB, the advanced system features of the RFM69HW  
include a 66 byte TX/RX FIFO, configurable automatic packet handler, listen mode, temperature sensor and configurable  
DIOs which greatly enhance system flexibility whilst at the same time significantly reducing MCU requirements.  
The RFM69HW complies with both ETSI and FCC regulatory requirements and is available  
1.1. Simplified Block Diagram  
Figure 1. Block Diagram  
Page 8  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
1.2. Pin and Marking Diagram  
The following diagram shows the pin arrangement of the top view.  
Figure 3. Marking Diagram  
Page 9  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
1.3. Pin Description  
Table 1 RFM69HW Pinouts  
Number  
Name  
RESET  
Type  
Description  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
-
Reset trigger input  
2
DIO0  
DIO1  
DIO2  
DIO3  
DIO4  
DIO5  
3.3V  
GND  
ANA  
GND  
SCK  
MISO  
MOSI  
NSS  
NC  
Digital I/O, software configured  
Digital I/O, software configured  
Digital I/O, software configured  
Digital I/O, software configured  
Digital I/O, software configured  
Digital I/O, software configured  
Supply voltage  
3
4
5
6
7
8
9
-
Ground  
RF signal output/input.  
10  
11  
12  
13  
14  
15  
16  
-
I
Ground  
SPI Clock input  
SPI Data output  
SPI Data input  
O
I
I
SPI Chip select input  
Connect to GND  
-
Page 10  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
2. Electrical Characteristics  
2.1. Absolute Maximum Ratings  
Stresses above the values listed below may cause permanent device failure. Exposure to absolute  
maximum ratings for extended periods may affect device reliability.  
Table 2 Absolute Maximum Ratings  
Symbol  
VDDmr  
Description  
Min  
Max  
Unit  
Supply Voltage  
Temperature  
-0.5  
3.9  
+115  
+125  
+6  
V
Tmr  
-55  
° C  
° C  
dBm  
%
Tj  
Junction temperature  
RF Input Level  
-
-
-
-
Pmr  
DC_20dBm  
VSWR_20dBm  
Duty Cycle of transmission at +20dBm output  
Maximum VSWR at antenna port  
1
3:1  
-
2.2. Operating Range  
Table 3 Operating Range  
Symbol  
Description  
Min  
Max  
Unit  
VDDop  
Top  
Supply voltage(1.8V-2.4V 17dBm, 2.4V- 3.6V 20dBm)  
Operational temperature range  
Load capacitance on digital ports  
RF Input Level  
1.8  
-20  
-
3.6  
+70  
25  
V
°C  
Clop  
ML  
pF  
dBm  
-
0
Page 11  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
2.3 Module Specification  
The tables below give the electrical specifications of the transceiver under the following conditions: Supply voltage VBAT1=  
VBAT2=VDD=3.3 V, temperature = 25 °C, FRF = 915 MHz, Pout = +20dBm, 2-level FSK modulation without pre-filtering,  
FDA = 5 kHz, Bit Rate = 4.8 kb/s and terminated in a matched 50 Ohm impedance, unless otherwise specified.  
Note Unless otherwise specified, the performances in the other frequency bands are similar or better.  
2.3.1. Power Consumption  
Table 4 Power Consumption Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
uA  
Supply current in Sleep mode  
Supply current in Idle mode  
Supply current in Standby mode  
-
-
-
-
0.1  
1.2  
1.25  
9
1
-
IDDSL  
IDDIDLE  
IDDST  
IDDFS  
RC oscillator enabled  
uA  
Crystal oscillator enabled  
1.5  
-
mA  
mA  
Supply current in Synthesizer  
mode  
IDDR  
IDDT  
Supply current in Receive mode  
-
16  
-
mA  
Supply current in Transmit mode  
with appropriate matching, sta-  
ble across VDD range  
RFOP = +20 dBm, on PA_BOOST  
RFOP = +17 dBm, on PA_BOOST  
RFOP = +13 dBm, on RFIO pin  
RFOP = +10 dBm, on RFIO pin  
RFOP = 0 dBm, on RFIO pin  
RFOP = -1 dBm, on RFIO pin  
-
-
-
-
-
-
130  
95  
45  
33  
20  
16  
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
2.3.2. Frequency Synthesis  
Table 5 Frequency Synthesizer Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
315MHz Module  
433MHz Module  
868MHz Module  
FR  
Synthesizer Frequency Range  
290  
424  
862  
890  
340  
510  
890  
MHz  
MHz  
MHz  
MHz  
1020  
915MHz Module  
For All Module  
FXOSC  
Crystal oscillator frequency  
-
32  
-
MHz  
TS_OSC  
Crystal oscillator wake-up time  
-
250  
500  
us  
TS_FS  
Frequency synthesizer wake-up  
time to PllLock signal  
From Standby mode  
-
80  
150  
us  
TS_HOP  
Frequency synthesizer hop time  
at most 10 kHz away from the  
target  
-
-
-
-
-
-
-
20  
20  
50  
50  
80  
80  
80  
-
-
-
-
-
-
-
us  
us  
us  
us  
us  
us  
us  
200 kHz step  
1 MHz step  
5 MHz step  
7 MHz step  
12 MHz step  
20 MHz step  
25 MHz step  
Page 12  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
19  
Frequency synthesizer step  
-
61.0  
-
FSTEP  
Hz  
FSTEP = FXOSC/2  
After calibration  
Programmable  
Programmable  
Programmable  
FRC  
BRF  
BRO  
FDA  
RC Oscillator frequency  
Bit rate, FSK  
-
62.5  
-
kHz  
1.2  
1.2  
0.6  
-
-
-
300  
kbps  
kbps  
kHz  
Bit rate, OOK  
32.768  
300  
Frequency deviation, FSK  
FDA + BRF/2 =< 500 kHz  
2.3.3. Receiver  
All receiver tests are performed with RxBw = 10 kHz (Single Side Bandwidth) as programmed in RegRxBw, receiving a  
PN15 sequence with a BER of 0.1% (Bit Synchronizer is enabled), unless otherwise specified. The LNA impedance is set  
to 200 Ohms, by setting bit LnaZin in RegLna to 1. Blocking tests are performed with an unmodulated interferer. The  
wanted signal power for the Blocking Immunity, ACR, IIP2, IIP3 and AMR tests is set 3 dB above the nominal sensitivity  
level.  
Table 6 Receiver Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
RFS_F  
FSK sensitivity, highest LNA gain  
-
-
-
-118  
-114  
-105  
-
-
-
dBm  
dBm  
dBm  
FDA = 5 kHz, BR = 1.2 kb/s  
FDA = 5 kHz, BR = 4.8 kb/s  
FDA = 40 kHz, BR = 38.4 kb/s  
-
-
-120  
-112  
-
dBm  
dBm  
FDA = 5 kHz, BR = 1.2 kb/s *  
BR = 4.8 kb/s  
RFS_O  
OOK sensitivity, highest LNA gain  
-109  
CCR  
ACR  
Co-Channel Rejection  
-13  
-10  
-
dB  
Adjacent Channel Rejection  
-
37  
42  
42  
-
-
dB  
dB  
Offset = +/- 25 kHz  
Offset = +/- 50 kHz  
BI  
Blocking Immunity  
-
-
-
66  
71  
79  
-
-
-
dB  
dB  
dB  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
Blocking Immunity  
Wanted signal at sensitivity  
+16dB  
-
-
-
62  
65  
73  
-
-
-
dB  
dB  
dB  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
AMR  
IIP2  
AM Rejection , AM modulated  
interferer with 100% modulation  
depth, fm = 1 kHz, square  
-
-
-
66  
71  
79  
-
-
-
dB  
dB  
dB  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
2nd order Input Intercept Point  
Unwanted tones are 20 MHz  
above the LO  
-
-
+75  
+35  
-
-
dBm  
dBm  
Lowest LNA gain  
Highest LNA gain  
Page 13  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3rd order Input Intercept point  
Unwanted tones are 1MHz and  
1.995 MHz above the LO  
-
+20  
-18  
-
-
IIP3  
dBm  
dBm  
Lowest LNA gain  
Highest LNA gain  
-23  
BW_SSB  
IMR_OOK  
TS_RE  
Single Side channel filter BW  
Image rejection in OOK mode  
Programmable  
2.6  
27  
-
500  
-
kHz  
dB  
Wanted signal level = -106 dBm  
30  
Receiver wake-up time, from PLL  
locked state to RxReady  
-
-
1.7  
96  
-
-
ms  
us  
RxBw = 10 kHz, BR = 4.8 kb/s  
RxBw = 200 kHz, BR = 100 kb/s  
TS_RE_AGC Receiver wake-up time, from PLL  
locked state, AGC enabled  
-
3.0  
163  
ms  
us  
RxBw = 10 kHz, BR = 4.8 kb/s  
RxBw = 200 kHz, BR = 100 kb/s  
TS_RE_AGC Receiver wake-up time, from PLL  
4.8  
265  
ms  
us  
RxBw = 10 kHz, BR = 4.8 kb/s  
RxBw = 200 kHz, BR = 100 kb/s  
&AFC  
lock state, AGC and AFC enabled  
TS_FEI  
TS_AFC  
TS_RSSI  
DR_RSSI  
FEI sampling time  
Receiver is ready  
Receiver is ready  
Receiver is ready  
AGC enabled  
-
-
-
4.T  
4.T  
2.T  
-
-
-
-
-
-
bit  
bit  
bit  
AFC Response Time  
RSSI Response Time  
RSSI Dynamic Range  
Min  
Max  
-
-
-115  
0
-
-
dBm  
dBm  
*
Set SensitivityBoost in RegTestLna to 0x2D to reduce the noise floor in the receiver  
2.3.4. Transmitter  
Table 7 Transmitter Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
RF_OP  
RF output power in 50 ohms  
On RFIO pin  
Programmable with 1dB steps Max  
Min  
-
-
+20  
-18  
-
-
dBm  
dBm  
RF_OPH  
Max RF output power, on  
PA_BOOST pin  
With external match to 50 ohms  
-
+20  
-
dBm  
RF output power stability  
Transmitter Phase Noise  
From VDD=2.4V to 3.6V  
-
+/-0.3  
-
dB  
ΔRF_OP  
PHN  
50 kHz Offset from carrier  
868 / 915 MHz bands  
434 / 315 MHz bands  
-
-
-95  
-99  
-
-
dBc/  
Hz  
ACP  
Transmitter adjacent channel  
power (measured at 25 kHz off-  
set)  
BT=0.5 . Measurement conditions as  
defined by EN 300 220-1 V2.1.1  
-
-
-37  
dBm  
TS_TR  
Transmitter wake up time, to the  
first rising edge of DCLK  
Frequency Synthesizer enabled,  
PaRamp = 10 us, BR = 4.8 kb/s.  
-
120  
-
us  
Page 14  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
2.3.5. Digital Specification  
Conditions: Temp = 25°C, VDD = 3.3V, unless otherwise specified.  
Table 8 Digital Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
V
Digital input level high  
Digital input level low  
0.8  
-
-
-
-
VDD  
VDD  
IH  
V
V
V
0.2  
IL  
Digital output level high  
Digital output level low  
SCK frequency  
SCK high time  
Imax = 1 mA  
Imax = -1 mA  
0.9  
-
-
-
-
0.1  
10  
-
VDD  
VDD  
MHz  
ns  
OH  
OL  
SCK  
F
-
-
t
t
t
t
t
50  
50  
-
-
ch  
SCK low time  
-
-
ns  
cl  
SCK rise time  
5
5
-
-
ns  
rise  
fall  
SCK fall time  
-
-
ns  
MOSI setup time  
from MOSI change to SCK rising  
edge  
30  
-
ns  
setup  
t
t
t
t
MOSI hold time  
NSS setup time  
NSS hold time  
from SCK rising edge to MOSI  
change  
60  
30  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
hold  
from NSS falling edge to SCK rising  
edge  
nsetup  
nhold  
nhigh  
from SCK falling edge to NSS rising  
edge, normal mode  
30  
NSS high time between SPI  
accesses  
20  
T_DATA  
DATA hold and setup time  
250  
Page 15  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3. Module Description  
This section describes in depth the architecture of the RFM69HW low-power, highly integrated  
transceiver.  
3.1. Power Supply Strategy  
The RFM69HW employs an advanced power supply scheme, which provides stable operating characteristics over the  
full temperature and voltage range of operation. This includes the full output power of +20dBm maintained from 2.4 to 3.6V.  
The RFM69HW can be powered from any low-noise voltage source via pins VBAT1 and VBAT2. Decoupling capacitors  
should be connected, as suggested in the reference design, on VR_PA, VR_DIG and VR_ANA pins to ensure a correct  
operation of the built-in voltage regulators.  
3.2. Frequency Synthesis  
The LO generation on the RFM69HW is based on a state-of-the-art fractional-N PLL. The PLL is fully integrated with  
automatic calibration.  
3.2.1. Reference Oscillator  
The crystal oscillator is the main timing reference of the RFM69HW. It is used as a reference for the frequency  
synthesizer and as a clock for the digital processing.  
The XO startup time, TS_OSC, depends on the actual XTAL being connected on pins XTA and XTB. When using the built-  
in sequencer, the RFM69HW optimizes the startup time and automatically triggers the PLL when the XO signal is stable.  
To manually control the startup time, the user should either wait for TS_OSC max, or monitor the signal CLKOUT which  
will only be made available on the output buffer when a stable XO oscillation is achieved.  
An external clock can be used to replace the crystal oscillator, for instance a tight tolerance TCXO. To do so, bit 4 at  
address 0x59 should be set to 1, and the external clock has to be provided on XTA. XTB should be left open. The peak-  
peak amplitude of the input signal must never exceed 2.4 V. Please consult your TCXO supplier for an appropriate value  
of decoupling capacitor, CD.  
XTA  
XTB  
NC  
TCXO  
OP  
32 MHz  
Vcc  
Vcc  
GND  
CD  
Figure 4. TCXO Connection  
Page 16  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.2.2. CLKOUT Output  
The reference frequency, or a fraction of it, can be provided on DIO5 by modifying bits ClkOut in RegDioMapping2. Two  
typical applications of the CLKOUT output include:  
‹
To provide a clock output for a companion processor, thus saving the cost of an additional oscillator. CLKOUT can be  
made available in any operation mode except Sleep mode and is automatically enabled at power on reset.  
‹
To provide an oscillator reference output. Measurement of the CLKOUT signal enables simple software trimming of the  
initial crystal tolerance.  
Note to minimize the current consumption of the RFM69HW, please ensure that the CLKOUT signal is disabled when  
not required.  
3.2.3. PLL Architecture  
The frequency synthesizer generating the LO frequency for both the receiver and the transmitter is a fractional-N sigma-  
delta PLL. The PLL incorporates a third order loop capable of fast auto-calibration, and it has a fast switching-time. The  
VCO and the loop filter are both fully integrated, removing the need for an external tight-tolerance, high-Q inductor in the  
VCO tank circuit.  
3.2.3.1. VCO  
The VCO runs at 2, 4 or 6 times the RF frequency (respectively in the 915, 434 and 315 MHz bands) to reduce any LO  
leakage in receiver mode, to improve the quadrature precision of the receiver, and to reduce the pulling effects on the VCO  
during transmission.  
The VCO calibration is fully automated. A coarse adjustment is carried out at power on reset, and a fine tuning is  
performed each time the RFM69HW PLL is activated. Automatic calibration times are fully transparent to the end-user, as  
their processing time is included in the TS_TE and TS_RE specifications.  
3.2.3.2. PLL Bandwidth  
The bandwidth of the RFM69HW Fractional-N PLL is wide enough to allow  
for:  
‹
High speed FSK modulation, up to 300 kb/s, inside the PLL bandwidth  
‹
Very fast PLL lock times, enabling both short startup and fast hop times required for frequency agile applications  
3.2.3.3. Carrier Frequency and Resolution  
The RFM69HW PLL embeds a 19-bit sigma-delta modulator and its frequency resolution, constant over the whole  
frequency range, and is given by:  
FXOS  
C
----------------  
219  
FSTE  
=
P
The carrier frequency is programmed through RegFrf, split across addresses 0x07 to 0x09:  
FRF = FSTEP  
Frf(23,0)  
Note The Frf setting is split across 3 bytes. A change in the center frequency will only be taken into account when the  
least significant byte FrfLsb in RegFrfLsb is written. This allows for more complex modulation schemes such as m-  
ary FSK, where frequency modulation is achieved by changing the programmed RF frequency.  
Page 17  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.2.4. Lock Time  
PLL lock time TS_FS is a function of a number of technical factors, such as synthesized frequency, frequency step, etc.  
When using the built-in sequencer, the RFM69HW optimizes the startup time and automatically starts the receiver or the  
transmitter when the PLL has locked. To manually control the startup time, the user should either wait for TS_FS max given  
in the specification, or monitor the signal PLL lock detect indicator, which is set when the PLL has is within its locking  
range.  
When performing an AFC, which usually corrects very small frequency errors, the PLL response time is approximately:  
------------  
In a frequency hopping scheme, the timings TS_HOP given in the table of specifications give an order of magnitude for the  
expected lock times.  
3.2.5. Lock Detect Indicator  
A lock indication signal can be made available on some of the DIO pins, and is toggled high when the PLL reaches its  
locking range. Please refer to Table 21 and Table 22 to map this interrupt to the desired pins.  
Note The lock detect block may indicate an unlock condition (signal toggling low) when the transmitter is FSK modulated  
with large frequency deviation settings.  
Page 18  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.3. Transmitter Description  
The transmitter of RFM69HW comprises the frequency synthesizer, modulator and power amplifier blocks.  
3.3.1. Architecture Description  
LNA  
Receiver Chain  
RFIO  
PA0  
Local  
Oscillator  
PA1  
PA2  
PA_BOOST  
Figure 5. Transmitter Block Diagram  
3.3.2. Bit Rate Setting  
When using the RFM69HW in Continuous mode, the data stream to be transmitted can be input directly to the modulator  
via pin DIO2/DATA in an asynchronous manner, unless Gaussian filtering is used, in which case the DCLK signal on pin  
DIO1/DCLK is used to synchronize the data stream. See section 3.3.5 for details on the Gaussian filter.  
In Packet mode or in Continuous mode with Gaussian filtering enabled (refer to section 5.5 for details), the Bit Rate (BR) is  
controlled by bits BitRate in RegBitrate:  
FXOS  
C
-------------------  
BR =  
BitRate  
Amongst others, the following Bit Rates are accessible:  
Page 19  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Table 9 Bit Rate Examples  
BitRate  
(15:8)  
BitRate  
(7:0)  
(G)FSK  
(G)MSK  
Actual BR  
(b/s)  
Type  
OOK  
Classical modem baud rates  
(multiples of 1.2 kbps)  
0x68  
0x34  
0x1A  
0x0D  
0x06  
0x03  
0x01  
0x00  
0x02  
0x01  
0x0A  
0x05  
0x02  
0x01  
0x00  
0x00  
0x00  
0x00  
0x03  
0x2B  
0x15  
0x0B  
0x05  
0x83  
0x41  
0xA1  
0xD0  
0x2C  
0x16  
0x00  
0x00  
0x80  
0x40  
0xD5  
0xA0  
0x80  
0x6B  
0xD1  
1.2 kbps  
2.4 kbps  
1.2 kbps  
2.4 kbps  
4.8 kbps  
9.6 kbps  
19.2 kbps  
1200.015  
2400.060  
4799.760  
9600.960  
19196.16  
38415.36  
76738.60  
153846.1  
57553.95  
115107.9  
12500.00  
25000.00  
50000.00  
100000.0  
150234.7  
200000.0  
250000.0  
299065.4  
32753.32  
4.8 kbps  
9.6 kbps  
19.2 kbps  
38.4 kbps  
76.8 kbps  
153.6 kbps  
57.6 kbps  
115.2 kbps  
12.5 kbps  
25 kbps  
Classical modem baud rates  
(multiples of 0.9 kbps)  
Round bit rates  
(multiples of 12.5, 25 and  
50 kbps)  
12.5 kbps  
25 kbps  
50 kbps  
100 kbps  
150 kbps  
200 kbps  
250 kbps  
300 kbps  
32.768 kbps  
Watch Xtal frequency  
32.768 kbps  
3.3.3. FSK Modulation  
FSK modulation is performed inside the PLL bandwidth, by changing the fractional divider ratio in the feedback loop of the  
PLL. The large resolution of the sigma-delta modulator, allows for very narrow frequency deviation. The frequency  
deviation FDEV is given by:  
Note no constraint applies to the modulation index of the transmitter, but the frequency deviation must exceed 600 Hz.  
3.3.4. OOK Modulation  
OOK modulation is applied by switching on and off the Power Amplifier. Digital control and smoothing are available to  
improve the transient power response of the OOK transmitter.  
Page 20  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.3.5. Modulation Shaping  
Modulation shaping can be applied in both OOK and FSK modulation modes, to improve the narrowband response of the  
transmitter. Both shaping features are controlled with PaRamp bits in RegPaRamp.  
„
In FSK mode, a Gaussian filter with BT = 0.3, 0.5 or 1 is used to filter the modulation stream, at the input of the  
delta modulator. If the Gaussian filter is enabled when the RFM69HW is in Continuous mode, DCLK signal  
sigma-  
on pin DIO1/DCLK will trigger an interrupt on the uC each time a new bit has to be transmitted. Please refer to  
section 5.4.2 for details.  
„
When OOK modulation is used, the PA bias voltages are ramped up and down smoothly when the PA is turned on  
off, to reduce spectral splatter.  
and  
Note the transmitter must be restarted if the PaRamp setting is changed, in order to recalibrate the built-in filter.  
3.3.6. Power Amplifiers  
‹
A higher power mode, when PA1 and PA2 are combined, providing up to +20 dBm to a matched load.  
When PA1 and PA2 are combined to deliver +20 dBm to the antenna, a specific impedance matching / harmonic filtering  
design is required to ensure impedance transformation and regulatory compliance.  
All PA settings are controlled by RegPaLevel, and the truth table of settings is given in Table 10.  
Table 10 Power Amplifier Mode Selection Truth Table  
Pa0On  
Pa1On Pa2On  
Mode  
Power Range  
Pout Formula  
PA0 output on pin RFIO  
-18 to +13 dBm  
-18 dBm + OutputPower  
1
0
0
1
1
1
0
0
1
1
PA1 enabled on pin PA_BOOST  
-2 to +13 dBm  
+2 to +17 dBm  
+5 to +20 dBm  
-18 dBm + OutputPower  
-14 dBm + OutputPower  
-11 dBm + OutputPower  
0
0
PA1 and PA2 combined on pin PA_BOOST  
PA1+PA2 on PA_BOOST with high output  
power +20dBm settings (see 3.3.7)  
Other combinations  
Reserved  
Notes - To ensure correct operation at the highest power levels, please make sure to adjust the Over Current Protection  
Limit accordingly in RegOcp, except above +18dBm where it must be disabled  
- If PA_BOOST pin is not used (+20dBm applications and less), the pin can be left floating.  
Page 21  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.3.7. High Power Settings  
The RFM69HW has a high power +20 dBm capability on PA_BOOST pin, with the following settings:  
Table 11 High Power Settings  
Value for  
High Power  
Value for Rx  
or PA0 use  
Register  
Address  
Description  
OCP control  
RegOcp  
0x13  
0x5A  
0x5C  
0x0F  
0x5D  
0x7C  
0x1x  
0x55  
0x70  
High power PA control  
High power PA control  
RegTestPa1  
RegTestPa2  
Note High Power settings MUST be turned off when using PA0, and in Receive mode  
The Duty Cycle of transmission at +20dBm is limited to 1%, with a maximum VSWR of 3:1 at antenna port, over the  
standard operating range [-40;+85°C].  
3.3.8. Output Power Summary  
The curves below summarize the possible PA options on the RFM69HW:  
Pout vs.  
P
r
ogram med Power  
22  
18  
14  
10  
6
2
-2  
Pout on PA0 [dBm]  
Pout on PA1 [dBm]  
Pout on PA1+PA2 [dBm]  
-6  
-10  
-14  
-18  
-22  
P
out on PA1+PA2 with 20dB m settings [dB m]  
-18  
-14  
-10  
-6  
-2  
Program m  
2
6
10  
14  
18  
e
d Pow er [dBm ]  
Figure 6. Output Power Curves  
3.3.9. Over Current Protection  
An over current protection block is built-in the module. It helps preventing surge currents required when the transmitter is  
used at its highest power levels, thus protecting the battery that may power the application. The current clamping value is  
controlled by OcpTrim bits in RegOcp, and is calculated with the following formula:  
Imax = 45 + 5  
OcpTrim mA  
Note Imax sets a limit on the current drain of the Power Amplifier only, hence the maximum current drain of the  
RFM69HW is equal to Imax + IFS  
Page 22  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.4. Receiver Description  
The RFM69HW features a digital receiver with the analog to digital conversion process being performed directly following  
the LNA-Mixers block. The zero-IF receiver is able to handle (G)FSK and (G)MSK modulation. ASK and OOK modulation  
is, however, demodulated by a low-IF architecture. All the filtering, demodulation, gain control, synchronization and packet  
handling is performed digitally, which allows a very wide range of bit rates and frequency deviations to be selected. The  
receiver is also capable of automatic gain calibration in order to improve precision on RSSI measurements.  
3.4.1. Block Diagram  
Rx Calibration  
Reference  
©/  
LNA  
CORDIC  
Mixers Modulators  
DC  
Cancellation  
Single to  
Differential  
Channel  
Filter  
Complex  
Filter  
Phase  
Output  
FSK  
Demodulator  
RFIO  
Module  
Output  
OOK  
Demodulator  
From  
PA1  
RSSI  
Bypassed  
in FSK  
Local  
Oscillator  
AFC  
AGC  
Figure 7. Receiver Block Diagram  
The following sections give a brief description of each of the receiver blocks.  
3.4.2. LNA - Single to Differential Buffer  
The LNA uses a common-gate topology, which allows for a flat characteristic over the whole frequency range. It is  
designed to have an input impedance of 50 Ohms or 200 Ohms (as selected with bit LnaZin in RegLna), and the parasitic  
capacitance at the LNA input port is cancelled with the external RF choke. A single to differential buffer is implemented to  
improve the second order linearity of the receiver.  
The LNA gain, including the single-to-differential buffer, is programmable over a 48 dB dynamic range, and control is either  
manual or automatic with the embedded AGC function.  
Note In the specific case where the LNA gain is manually set by the user, the receiver will not be able to properly handle  
FSK signals with a modulation index smaller than 2 at an input power greater than the 1dB compression point,  
tabulated in section 3.4.3.  
Table 12 LNA Gain Settings  
LnaGainSelect  
LNA Gain  
Any of the below, set by the AGC loop  
Max gain  
Gain Setting  
000  
001  
010  
011  
100  
101  
110  
111  
-
G1  
G2  
G3  
G4  
G5  
G6  
-
Max gain - 6 dB  
Max gain - 12 dB  
Max gain - 24 dB  
Max gain - 36 dB  
Max gain - 48 dB  
Reserved  
Page 23  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.4.3. Automatic Gain Control  
By default (LnaGainSelect = 000), the LNA gain is controlled by a digital AGC loop in order to obtain the optimal sensitivity/  
linearity trade-off.  
Regardless of the data transfer mode (Packet or Continuous), the following series of events takes place when the receiver  
is enabled:  
‹
The receiver stays in WAIT mode, until RssiValue exceeds RssiThreshold for two consecutive samples. Its power  
consumption is the receiver power consumption.  
‹
‹
‹
When this condition is satisfied, the receiver automatically selects the most suitable LNA gain, optimizing the  
linearity trade-off.  
sensitivity/  
The programmed LNA gain, read-accessible with LnaCurrentGain in RegLna, is carried on for the whole duration of the  
packet, until one of the following conditions is fulfilled:  
Packet mode: if AutoRxRestartOn = 0, the LNA gain will remain the same for the reception of the following packet. If  
AutoRxRestartOn = 1, after the controller has emptied the FIFO the receiver will re-enter the WAIT mode described  
above, after a delay of InterPacketRxDelay, allowing for the distant transmitter to ramp down, hence avoiding a false  
RSSI detection. In both cases (AutoRxRestartOn=0 or AutoRxRestartOn=1), the receiver can also re-enter the WAIT  
mode by setting RestartRx bit to 1. The user can decide to do so, to manually launch a new AGC procedure.  
‹
Continuous mode: upon reception of valid data, the user can decide to either leave the receiver enabled with the  
LNA gain, or to restart the procedure, by setting RestartRx bit to 1, resuming the WAIT mode of the receiver,  
same  
described above.  
Notes - the AGC procedure must be performed while receiving preamble in FSK mode  
- in OOK mode, the AGC will give better results if performed while receiving a constant “1” sequence  
The following figure illustrates the AGC behavior:  
Towards  
-125 dB  
m
16dB  
7dB  
11dB  
9dB  
11dB  
Pin [dBm]  
G1  
G2  
G3  
G4  
G5  
G6  
Higher Sensitivity  
Lower Linearity  
Lower Sensitivity  
Higher Linearity  
Lower Noise Figure  
Higher Noise Figure  
Figure 8. AGC Thresholds Settings  
The following table summarizes the performance (typical figures) of the complete receiver:  
Page 24  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Table 13 Receiver Performance Summary  
Input Power  
Pin  
Gain  
Setting  
Receiver Performance (typ)  
P-1dB  
[dBm]  
-37  
NF  
IIP3  
IIP2  
[dBm]  
[dB]  
[dBm]  
Pin < AgcThresh1  
AgcThresh1 < Pin < AgcThresh2  
AgcThresh2 < Pin < AgcThresh3  
AgcThresh3 < Pin < AgcThresh4  
AgcThresh4 < Pin < AgcThresh5  
AgcThresh5 < Pin  
G1  
G2  
G3  
G4  
G5  
G6  
7
-18  
-15  
-8  
+35  
+40  
+48  
+62  
+68  
+75  
-31  
13  
18  
27  
36  
44  
-26  
-14  
-1  
>-6  
+13  
+20  
>0  
3.4.3.1. RssiThreshold Setting  
For correct operation of the AGC, RssiThreshold in RegRssiThresh must be set to the sensitivity of the receiver. The  
receiver will remain in WAIT mode until RssiThreshold is exceeded.  
Note When AFC is enabled and performed automatically at the receiver startup, the channel filter used by the receiver  
during the AFC and the AGC is RxBwAfc instead of the standard RxBw setting. This may impact the sensitivity of  
the receiver, and the setting of RssiThreshold accordingly  
3.4.3.2. AGC Reference  
The AGC reference level is automatically computed in the RFM69HW, according  
to:  
AGC Reference [dBm] = -174 + NF + DemodSnr +10.log(2*RxBw) + FadingMargin [dBm]  
With:  
‹
‹
‹
‹
NF = 7dB  
: LNA’s Noise Figure at maximum gain  
: SNR needed by the demodulator  
DemodSnr = 8 dB  
RxBw  
: Single sideband channel filter bandwidth  
FadingMargin = 5 dB : Fading margin  
3.4.4. Continuous-Time DAGC  
In addition to the automatic gain control described in section 3.4.3, the RFM69HW is capable of continuously adjusting  
its gain in the digital domain, after the analog to digital conversion has occured. This feature, named DAGC, is fully  
transparent to the end user. The digital gain adjustment is repeated every 2 bits, and has the following benefits:  
‹
‹
‹
‹
Fully transparent to the end user  
Improves the fading margin of the receiver during the reception of a packet, even if the gain of the LNA is frozen  
Improves the receiver robustness in fast fading signal conditions, by quickly adjusting the receiver gain (every 2 bits)  
Works in Continuous, Packet, and unlimited length Packet modes  
The DAGC is enabled by setting RegTestDagc to 0x20 for low modulation index systems (i.e. when AfcLowBetaOn=1,  
refer to section 3.4.16), and 0x30 for other systems. It is recommended to always enable the DAGC.  
Page 25  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.4.5. Quadrature Mixer - ADCs - Decimators  
The mixer is inserted between output of the RF buffer stage and the input of the analog to digital converter (ADC) of the  
receiver section. This block is designed to translate the spectrum of the input RF signal to base-band, and offer both high  
IIP2 and IIP3 responses.  
In the lower bands of operation (290 to 510 MHz), the multi-phase mixing architecture with weighted phases improves the  
rejection of the LO harmonics in receiver mode, hence increasing the receiver immunity to out-of-band interferers.  
The I and Q digitalization is made by two 5th order continuous-time Sigma-Delta Analog to Digital Converters (ADC). Their  
gain is not constant over temperature, but the whole receiver is calibrated before reception, so that this inaccuracy has no  
impact on the RSSI precision. The ADC output is one bit per channel. It needs to be decimated and filtered afterwards. This  
ADC can also be used for temperature measurement, please refer to section 3.4.17 for more details.  
The decimators decrease the sample rate of the incoming signal in order to optimize the area and power consumption of  
the following receiver blocks.  
3.4.6. Channel Filter  
The role of the channel filter is to filter out the noise and interferers outside of the channel. Channel filtering on the  
RFM69HW is implemented with a 16-tap Finite Impulse Response (FIR) filter, providing an outstanding Adjacent  
Channel Rejection performance, even for narrowband applications.  
Note to respect oversampling rules in the decimation chain of the receiver, the Bit Rate cannot be set at a higher value  
than 2 times the single-side receiver bandwidth (BitRate < 2 x RxBw)  
The single-side channel filter bandwidth RxBw is controlled by the parameters RxBwMant and RxBwExp in RegRxBw:  
‹
When FSK modulation is enabled:  
FXOSC  
-----------------------------------------------------------------  
RxBw =  
RxBw =  
p + 2  
RxBwMant ⋅  
2 RxBwEx  
‹
When OOK modulation is enabled:  
FXOSC  
-----------------------------------------------------------------  
p + 3  
RxBwMant ⋅  
2 RxBwEx  
The following channel filter bandwidths are accessible (oscillator is mandated at 32 MHz):  
Table 14 Available RxBw Settings  
RxBwMant  
RxBwExp  
RxBw (kHz)  
(binary/value) (decimal)  
FSK  
OOK  
ModulationType=00 ModulationType=01  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
7
7
7
6
6
6
5
5
5
4
2.6  
3.1  
1.3  
1.6  
2.0  
2.6  
3.1  
3.9  
5.2  
6.3  
7.8  
10.4  
3.9  
5.2  
6.3  
7.8  
10.4  
12.5  
15.6  
20.8  
Page 26  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
10b / 24  
01b / 20  
00b / 16  
4
4
3
3
3
2
2
2
1
1
1
0
0
0
25.0  
31.3  
12.5  
15.6  
41.7  
20.8  
50.0  
25.0  
62.5  
31.3  
83.3  
41.7  
100.0  
125.0  
166.7  
200.0  
250.0  
333.3  
400.0  
500.0  
50.0  
62.5  
83.3  
100.0  
125.0  
166.7  
200.0  
250.0  
3.4.7. DC Cancellation  
DC cancellation is required in zero-IF architecture transceivers to remove any DC offset generated through self-reception.  
It is built-in the RFM69HW and its adjustable cutoff frequency fc is controlled in RegRxBw:  
Table 15 Available DCC Cutoff Frequencies  
DccFreq  
fc in  
in RegRxBw  
% of RxBw  
000  
001  
16  
8
010 (default)  
011  
4
2
100  
1
101  
0.5  
0.25  
0.125  
110  
111  
The default value of DccFreq cutoff frequency is typically 4% of the RxBw (channel filter BW). The cutoff frequency of the  
DCC can however be increased to slightly improve the sensitivity, under wider modulation conditions. It is advised to adjust  
the DCC setting while monitoring the receiver sensitivity.  
3.4.8. Complex Filter - OOK  
In OOK mode the RFM69HW is modified to a low-IF architecture. The IF frequency is automatically set to half the single  
side bandwidth of the channel filter (FIF = 0.5 x RxBw). The Local Oscillator is automatically offset by the IF in the OOK  
receiver. A complex filter is implemented on the module to attenuate the resulting image frequency by typically 30 dB.  
Note this filter is automatically bypassed when receiving FSK signals (ModulationType = 00 in RegDataModul).  
3.4.9. RSSI  
The RSSI block evaluates the amount of energy available within the receiver channel bandwidth. Its resolution is 0.5 dB,  
and it has a wide dynamic range to accommodate both small and large signal levels that may be present. Its acquisition  
time is very short, taking only 2 bit periods. The RSSI sampling must occur during the reception of preamble in FSK, and  
constant “1” reception in OOK.  
Page 27  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Note - RssiValue can only be read when it exceeds RssiThreshold  
- The receiver is capable of automatic gain calibration, in order to improve the precision of its RSSI measurements.  
This function injects a known RF signal at the LNA input, and calibrates the receiver gain accordingly. This  
calibration is automatically performed during the PLL start-up, making it a transparent process to the end-user  
- RSSI accuracy depends on all components located between the antenna port and pin RFIO, and is therefore  
limited to a few dB. Board-level calibration is advised to further improve accuracy  
RSSI Chart - With AGC  
0.0  
-20.0  
-40.0  
-60.0  
-80.0  
-100.0  
-120.0  
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Pin [dBm]  
Figure 9. RSSI Dynamic Curve  
3.4.10. Cordic  
The Cordic task is to extract the phase and the amplitude of the modulation vector (I+j.Q). This information, still in the  
digital domain is used:  
‹
‹
Phase output: used by the FSK demodulator and the AFC blocks.  
Amplitude output: used by the RSSI block, for FSK demodulation, AGC and automatic gain calibration purposes.  
Q(t)  
Real-  
time  
Magnitude  
Real-time Phase  
I(t)  
Figure 10. Cordic Extraction  
Page 28  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.4.11. FSK Demodulator  
The FSK demodulator of the RFM69HW is designed to demodulate FSK, GFSK, MSK and GMSK modulated signals. It  
is most efficient when the modulation index of the signal is greater than 0.5 and below 10:  
The output of the FSK demodulator can be fed to the Bit Synchronizer (described in section 3.4.13), to provide the  
companion processor with a synchronous data stream in Continuous mode.  
3.4.12. OOK Demodulator  
The OOK demodulator performs a comparison of the RSSI output and a threshold value. Three different threshold modes  
are available, configured through bits OokThreshType in RegOokPeak.  
The recommended mode of operation is the "Peak" threshold mode, illustrated in Figure 11:  
RSSI  
[dBm]  
‘’Peak -6dB’’ Threshold  
‘’Floor’’ threshold defined by  
OokFixedThresh  
Noise floor of  
receiver  
Time  
Zoom  
Decay in dB as defined in  
OokPeakThreshStep  
Fixed 6dB difference  
Period as defined in  
OokPeakThreshDec  
Figure 11. OOK Peak Demodulator Description  
In peak threshold mode the comparison threshold level is the peak value of the RSSI, reduced by 6dB. In the absence of  
an input signal, or during the reception of a logical "0", the acquired peak value is decremented by one  
OokPeakThreshStep every OokPeakThreshDec period.  
When the RSSI output is null for a long time (for instance after a long string of "0" received, or if no transmitter is present),  
the peak threshold level will continue falling until it reaches the "Floor Threshold", programmed in OokFixedThresh.  
The default settings of the OOK demodulator lead to the performance stated in the electrical specification. However, in  
applications in which sudden signal drops are awaited during a reception, the three parameters should be optimized  
accordingly.  
Page 29  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.4.12.1. Optimizing the Floor Threshold  
OokFixedThresh determines the sensitivity of the OOK receiver, as it sets the comparison threshold for weak input signals  
(i.e. those close to the noise floor). Significant sensitivity improvements can be generated if configured correctly.  
Note that the noise floor of the receiver at the demodulator input depends on:  
‹
‹
‹
‹
The noise figure of the receiver.  
The gain of the receive chain from antenna to base band.  
The matching - including SAW filter if any.  
The bandwidth of the channel filters.  
It is therefore important to note that the setting of OokFixedThresh will be application dependant. The following procedure  
is recommended to optimize OokFixedThresh.  
Set RFM69HW in OOK Rx mode  
Adjust Bit Rate, Channel filter BW  
Default OokFixedThresh setting  
No input signal  
Continuous Mode  
Monitor DIO2/DATA pin  
Increment  
OokFixedThresh  
Glitch activity  
on DATA  
?
Optimization complete  
Figure 12. Floor Threshold Optimization  
The new floor threshold value found during this test should be used for OOK reception with those receiver settings.  
3.4.12.2. Optimizing OOK Demodulator for Fast Fading Signals  
A sudden drop in signal strength can cause the bit error rate to increase. For applications where the expected signal drop  
can be estimated, the following OOK demodulator parameters OokPeakThreshStep and OokPeakThreshDec can be  
optimized as described below for a given number of threshold decrements per bit. Refer to RegOokPeak to access those  
settings.  
3.4.12.3. Alternative OOK Demodulator Threshold Modes  
In addition to the Peak OOK threshold mode, the user can alternatively select two other types of threshold detectors:  
‹
‹
Fixed Threshold: The value is selected through OokFixedThresh  
Average Threshold: Data supplied by the RSSI block is averaged, and this operation mode should only be used  
DC-free encoded data.  
with  
Page 30  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.4.13. Bit Synchronizer  
The Bit Synchronizer is a block that provides a clean and synchronized digital output, free of glitches. Its output is made  
available on pin DIO1/DCLK in Continuous mode and can be disabled through register settings. However, for optimum  
receiver performance its use when running Continuous mode is strongly advised.  
The Bit Synchronizer is automatically activated in Packet mode. Its bit rate is controlled by BitRateMsb and BitRateLsb in  
RegBitrate.  
Raw demodulator  
output  
(FSK or OOK)  
DATA  
BitSync Output To  
pin DATA and  
DCLK in continuous  
mode  
DCLK  
Figure 13. Bit Synchronizer Description  
To ensure correct operation of the Bit Synchronizer, the following conditions have to be satisfied:  
‹
A preamble (0x55 or 0xAA) of 12 bits is required for synchronization (from the RxReady interrupt)  
‹
The subsequent payload bit stream must have at least one transition form '0' to '1' or '1' to '0 every 16 bits during data  
transmission  
‹
The bit rate matching between the transmitter and the receiver must be better than 6.5 %.  
Notes - If the Bit Rates of transmitter and receiver are known to be the same, the RFM69HW will be able to receive  
an infinite unbalanced sequence (all “0s” or all ”1s”) with no restriction.  
- If there is a difference in Bit Rate between Tx and Rx, the amount of adjacent bits at the same level that the  
BitSync can withstand can be estimated as follows:  
- This implies approximately 6 consecutive unbalanced bytes when the Bit Rate precision is 1%, which is easily  
achievable (crystal tolerance is in the range of 50 to 100 ppm).  
3.4.14. Frequency Error Indicator  
This function provides information about the frequency error of the local oscillator (LO) compared with the carrier frequency  
of a modulated signal at the input of the receiver. When the FEI block is launched, the frequency error is measured and the  
Page 31  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
signed result is loaded in FeiValue in RegFei, in 2’s complement format. The time required for an FEI evaluation is 4 times  
the bit period.  
To ensure a proper behavior of the FEI:  
‹
The operation must be done during the reception of preamble  
‹
The sum of the frequency offset and the 20 dB signal bandwidth must be lower than the base band filter bandwidth  
The 20 dB bandwidth of the signal can be evaluated as follows (double-side bandwidth):  
The frequency error, in Hz, can be calculated with the following formula:  
SRXF1M23699HW in Rx  
mode  
Preamble-modulated input signal  
Signal level > Sensitivity  
Set FeiStart  
= 1  
No  
FeiDone  
= 1  
Yes  
Read  
FeiValue  
Figure 14. FEI Process  
3.4.15. Automatic Frequency Correction  
The AFC is based on the FEI block, and therefore the same input signal and receiver setting conditions apply. When the  
AFC procedure is done, AfcValue is directly subtracted to the register that defines the frequency of operation of the  
module, FRF. The AFC can be launched:  
‹
‹
Each time the receiver is enabled, if AfcAutoOn = 1  
Upon user request, by setting bit AfcStart in RegAfcFei, if AfcAutoOn = 0  
Page 32  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
When the AFC is automatically triggered (AfcAutoOn = 1), the user has the option to:  
‹
Clear the former AFC correction value, if AfcAutoClearOn = 1  
‹
Start the AFC evaluation from the previously corrected frequency. This may be useful in systems in which the LO keeps  
on drifting in the “same direction”. Ageing compensation is a good example.  
The RFM69HW offers an alternate receiver bandwidth setting during the AFC phase, to accommodate large LO drifts. If  
the user considers that the received signal may be out of the receiver bandwidth, a higher channel filter bandwidth can  
be programmed in RegAfcBw, at the expense of the receiver noise floor, which will impact upon sensitivity.  
3.4.16. Optimized Setup for Low Modulation Index Systems  
‹
For wide band systems, where AFC is usually not required (XTAL inaccuracies do not typically impact the sensitivity), it  
is recommended to offset the LO frequency of the receiver to avoid desensitization. This can be simply done by  
modifying Frf in RegFrfLsb. A good rule of thumb is to offset the receiver’s LO by 10% of the expected transmitter  
frequency deviation.  
‹
For narrow band systems, it is recommended to perform AFC. The RFM69HW has a dedicated AFC, enabled  
when  
AfcLowBetaOn in RegAfcCtrl is set to 1. A frequency offset, programmable through LowBetaAfcOffset in RegTestAfc, is  
added and is calculated as follows:  
Offset = LowBetaAfcOffset x 488 Hz  
The user should ensure that the programmed offset exceeds the DC canceller’s cutoff frequency, set through DccFreqAfc  
in RegAfcBw.  
RX  
TX  
RX & TX  
FeiValue  
AfcValue  
Standard AFC  
AfcLowBetaOn = 0  
f
f
f
RX  
TX  
TX RX  
FeiValue  
AfcValue  
LowBetaAfcOffset  
Optimized AFC  
AfcLowBetaOn =  
1
f
Before AFC  
After AFC  
Figure 15. Optimized AFC (AfcLowBetaOn=1)  
As shown on Figure 15, a standard AFC sequence uses the result of the FEI to correct the LO frequency and align both  
local oscillators. When the optimized AFC is enabled (AfcLowBetaOn=1), the receiver’s LO is corrected by “FeiValue +  
LowBetaAfcOffset”.  
When the optimized AFC routine is enabled, the receiver startup time can be computed as follows (refer to section 4.2.3):  
TS_RE_AGC&AFC (optimized AFC) = Tana + 4.Tcf + 4.Tdcc + 3.Trssi + 2.Tafc + 2.Tpllafc  
Page 33  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
3.4.17. Temperature Sensor  
When temperature is measured, the receiver ADC is used to digitize the sensor response. Most receiver blocks are  
disabled, and temperature measurement can only be triggered in Standby or Frequency Synthesizer modes.  
The response of the temperature sensor is -1°C / Lsb. A CMOS temperature sensor is not accurate by nature, therefore it  
should be calibrated at ambient temperature for precise temperature readings.  
TempValue  
-1°C/Lsb  
TempValue(t)  
TempValue(t)-1  
Returns 150d (typ.)  
Needs calibration  
t t+1  
Ambient  
-40°C  
+85°C  
Figure 16. Temperature Sensor Response  
It takes less than 100 microseconds for the RFM69HW to evaluate the temperature (from setting TempMeasStart to 1 to  
TempMeasRunning reset).  
3.4.18. Timeout Function  
The RFM69HW includes a Timeout function, which allows it to automatically shut-down the receiver after a  
receive sequence and therefore save energy.  
‹
Timeout interrupt is generated TimeoutRxStart x 16x Tbit after switching to RX mode if RssiThreshold flag does not  
raise within this time frame  
‹
Timeout interrupt is generated TimeoutRssiThresh x 16 x Tbit after RssiThreshold flag has been raised.  
This timeout interrupt can be used to warn the companion processor to shut down the receiver and return to a lower power  
mode.  
Page 34  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
4. Operating Modes  
4.1. Basic Modes  
The circuit can be set in 5 different basic modes which are described in Table 16.  
By default, when switching from a mode to another one, the sub-blocks are woken up according to a pre-defined and  
optimized sequence. Alternatively, these operating modes can be selected directly by disabling the automatic sequencer  
(SequencerOff in RegOpMode = 1).  
Table 16 Basic Transceiver Modes  
ListenOn  
Mode  
Selected mode  
Enabled blocks  
in RegOpMode  
in RegOpMode  
0
0
0
0
0
1
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
x
Sleep Mode  
Stand-by Mode  
FS Mode  
None  
Top regulator and crystal oscillator  
Frequency synthesizer  
Transmit Mode  
Receive Mode  
Listen Mode  
Frequency synthesizer and transmitter  
Frequency synthesizer and receiver  
See Listen Mode, section 4.3  
4.2. Automatic Sequencer and Wake-Up Times  
By default, when switching from one operating mode to another, the circuit takes care of the sequence of events in such a  
way that the transition timing is optimized. For example, when switching from Sleep mode to Transmit mode, the  
RFM69HW goes first to Standby mode (XO started), then to frequency synthesizer mode, and finally, when the PLL has  
locked, to transmit mode. Entering transmit mode is also made according to a predefined sequence starting with the  
wake-up of the PA regulator before applying a ramp-up on the PA and generating the DCLK clock.  
‹
The crystal oscillator wake-up time, TS_OSC, is directly related to the time for the crystal oscillator to reach its steady  
state. It depends notably on the crystal characteristics.  
‹
The frequency synthesizer wake-up time, TS_FS, is directly related to the time needed by the PLL to reach its steady  
state. The signal PLL_LOCK, provided on an external pin, gives an indication of the lock status. It goes high when the  
PLL reaches its locking range.  
Four specific cases can be highlighted:  
‹
‹
‹
‹
Transmitter Wake Up time from Sleep mode  
= TS_OSC + TS_FS + TS_TR  
Receiver Wake Up time from Sleep mode  
= TS_OSC + TS_FS + TS_RE  
Receiver Wake Up time from Sleep mode, AGC enabled  
Receiver Wake Up time from Sleep mode, AGC and AFC enabled  
= TS_OSC + TS_FS + TS_RE_AGC  
= TS_OSC + TS_FS + TS_RE_AGC&AFC  
These timings are detailed in sections 4.2.1 and 4.2.3.  
In applications where the target average power consumption, or the target startup time, do not require setting the  
RFM69HW in the lowest power modes (Sleep or Standby), the respective timings TS_OSC and TS_FS in the former  
equations can be omitted.  
Page 35  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
4.2.1. Transmitter Startup Time  
The transmitter wake-up time, TS_TR, is given by the sequence controlled by the digital part. It is a pure digital delay which  
depends on the bit rate and the ramp-up time. In FSK mode, this time can be derived from the following equation.  
where PaRamp is the ramp-up time programmed in RegPaRamp and Tbit is the bit time.  
In OOK mode, this equation can be simplified to the following:  
Tx startup request  
(sequencer or user)  
TS_TR  
1.25 x PaRamp  
Analog  
group delay  
XO Started and PLL is locked  
0.5 x Tbit  
(only in FSK  
mode)  
Transmission of Packet  
5
us  
ModeReady  
TxReady  
Figure 17. Tx Startup, FSK and OOK  
4.2.2. Tx Start Procedure  
As described in the former section, ModeReady and TxReady interrupts warn the uC that the transmitter is ready to  
transmit data  
‹
In Continuous mode, the preamble bits preceding the payload can be applied on the DIO2/DATA pin immediately after  
any of these interrupts have fired. The DCLK signal, activated on pin DIO1/DCLK can also be used to start toggling the  
DATA pin, as described on Figure 30.  
‹
In Packet mode, the RFM69HW will automatically modulate the RF signal with preamble bytes as soon as TxReady  
or  
ModeReady happen. The actual packet transmission (starting with the number of preambles specified in PreambleSize)  
will start when the TxStartCondition is fulfilled.  
4.2.3. Receiver Startup Time  
It is highly recommended to use the built-in sequencer of the RFM69HW, to optimize the delays when setting the  
module in receive mode. It guarantees the shortest startup times, hence the lowest possible energy usage, for battery  
operated systems.  
The startup times of the receiver can be calculated from the following:  
Page 36  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Rx startup request  
(sequencer or user)  
TS_RE  
Analog FE’s  
group delay  
Channel Filter’s  
group delay  
DC Cutoff’s  
group delay sampling sampling  
RSSI  
RSSI  
XO Started and PLL is locked  
Reception of Packet  
Tana  
Tcf  
Tdcc  
Trssi  
Trssi  
ModeReady  
RxReady  
Received Packet Preamble may start  
Figure 18. Rx Startup - No AGC, no AFC  
The LNA gain is adjusted by  
the AGC, according to the  
RSSI result  
Rx startup request  
(sequencer or user)  
TS_RE_AGC  
Analog FE’s  
group delay  
Channel Filter’s  
group delay  
DC Cutoff’s  
group delay sampling sampling  
RSSI  
RSSI  
Channel Filter’s  
group delay  
DC Cutoff’s  
group delay sampling  
RSSI  
XO Started and PLL is locked  
Reception of Packet  
Tana  
Tcf  
Tdcc  
Trssi  
Trssi  
Tcf  
Tdcc  
Trssi  
ModeReady  
RxReady  
Received Packet Preamble may start  
Figure 19. Rx Startup - AGC, no AFC  
The LNA gain is adjusted by  
the AGC, according to the  
RSSI result  
Rx startup request  
(sequencer or user)  
Carrier Frequency is adjusted  
by the AFC  
TS_RE_AGC&AFC  
XO Started and Analog FE’s Channel Filter’s DC Cutoff’s  
RSSI  
RSSI  
Channel Filter’s DC Cutoff’s  
RSSI  
PLL  
lock  
Channel Filter’s DC Cutoff’s  
AFC  
Reception of Packet  
PLL is locked  
group delay  
group delay  
group delay sampling sampling  
group delay  
group delay sampling  
group delay  
group delay  
Tana  
Tcf  
Tdcc  
Trssi  
Trssi  
Tcf  
Tdcc Trssi  
Tafc Tpllafc  
Tcf  
Tdcc  
ModeReady  
RxReady  
Received Packet Preamble may start  
Figure 20. Rx Startup - AGC and AFC  
The different timings shown above are as follows:  
‹
Group delay of the analog front end:  
Channel filter’s group delay in FSK mode:  
Channel filter’s group delay in OOK mode:  
DC Cutoff’s group delay:  
Tana = 20 us  
‹
‹
‹
‹
‹
‹
Tcf = 21 / (4.RxBw)  
Tcf = 34 / (4.RxBw)  
Tdcc = max(8 , 2^(round(log2(8.RxBw.Tbit)+1)) / (4.RxBw)  
Tpllafc = 5 / PLLBW (PLLBW = 300 kHz)  
PLL lock time after AFC adjustment:  
AFC sample time:  
Tafc = 4 x Tbit  
(also denoted TS_AFC in the general specification)  
RSSI sample time:  
Trssi = 2 x int(4.RxBw.Tbit)/(4.RxBw)  
(aka TS_RSSI)  
Note The above timings represent maximum settling times, and shorter settling times may be observed in real cases  
Page 37  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
4.2.4. Rx Start Procedure  
As described in the former sections, the RxReady interrupt warns the uC that the receiver is ready.  
‹
In Continuous mode with Bit Synchronizer, the receiver will start locking its Bit Synchronizer on a minimum or 12 bits of  
received preamble (see section 3.4.13 for details), before the reception of correct Data, or Sync Word (if enabled) can  
occur.  
‹
‹
In Continuous mode without Bit Synchronizer, valid data will be available on DIO2/DATA right after the RxReady  
interrupt.  
In Packet mode, the receiver will start locking its Bit Synchronizer on a minimum or 12 bits of received preamble (see  
section 3.4.13 for details), before the reception of correct Data, or Sync Word (if enabled) can occur.  
4.2.5. Optimized Frequency Hopping Sequences  
In a frequency hopping-like application, it is required to turn off the transmitter when hopping from one channel to another,  
to avoid spectral splatter and obtain the best spectral purity.  
‹
Transmitter hop from Ch A to Ch B: it is advised to step through the Rx mode:  
(0) RFM69HW is in Tx mode in Ch A  
(1) Program the RFM69HW in Rx mode  
(2) Change the carrier frequency in the RegFrf registers  
(3) Turn the transceiver back to Tx mode  
(4) Respect the Tx start procedure, described in section 4.2.2  
‹
Receiver hop from Ch A to Ch B:  
(0) RFM69HW is in Rx mode in  
Ch A  
(1) Change the carrier frequency in the RegFrf registers  
(2) Program the RFM69HW in FS mode  
(3) Turn the transceiver back to Rx mode  
(4) Respect the Rx start procedure, described in section 4.2.4  
Note all sequences described above are assuming that the sequencer is turned on (SequencerOff=0 in RegOpMode).  
Page 38  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
4.3. Listen Mode  
The circuit can be set to Listen mode, by setting ListenOn in RegOpMode to 1 while in Standby mode. In this mode,  
RFM69HW spends most of the time in Idle mode, during which only the RC oscillator runs. Periodically the receiver is  
woken up and listens for an RF signal. If a wanted signal is detected, the receiver is kept on and the data is demodulated.  
Otherwise, if a wanted signal hasn't been detected after a pre-defined period of time, the receiver is disabled until the next  
time period.  
This periodical Rx wake-up requirement is very common in low power applications. On RFM69HW it is handled locally by  
the  
Listen mode block without using uC resources or energy.  
The simplified timing diagram of this procedure is illustrated in Figure 21.  
tListenIdle  
Rx  
Idle  
Rx  
time  
tListenRx  
tListenRx  
Figure 21. Listen Mode Sequence (no wanted signal is received)  
4.3.1. Timings  
The duration of the Idle phase is given by tListenIdle. The time during which the receiver is on and waits for a signal is given  
by tListenRx. tListenRx includes the wake-up time of the receiver, described in section 4.2.3. This duration can be  
programmed in the configuration registers via the serial interface.  
Both time periods tListenRx and tListenIdle (denoted tListenX in the following text) are fixed by two parameters from the  
configuration register and are calculated as follows:  
= ListenCoefX Listen ResolX  
tListenX  
where ListenResolX is the Rx or Idle resolution and is independently programmable on three values (64us, 4.1ms or  
262ms), whereas ListenCoefX is an integer between 1 and 255. All parameters are located in RegListen registers.  
The timing ranges are tabulated in Table 17 below.  
Table 17 Range of Durations in Listen Mode  
ListenResolX  
Min duration  
Max duration  
( ListenCoef = 1 )  
( ListenCoef = 255 )  
01  
10  
11  
64 us  
4.1 ms  
16 ms  
1.04  
67  
s
0.26  
s
s
Page 39  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Notes - the accuracy of the typical timings given in Table 17 will depend in the RC oscillator calibration  
- RC oscillator calibration is required, and must be performed at power up. See section 4.3.5 for details  
4.3.2. Criteria  
The criteria taken for detecting a wanted signal and hence deciding to maintain the receiver on is defined by ListenCriteria  
in RegListen1.  
Table 18 Signal Acceptance Criteria in Listen Mode  
ListenCriteria  
Input Signal Power  
SyncAddressMatch  
>= RssiThreshold  
0
1
Required  
Required  
Not Required  
Required  
4.3.3. End of Cycle Actions  
The action taken after detection of a packet, is defined by ListenEnd in RegListen3, as described in the table below.  
Table 19 End of Listen Cycle Actions  
ListenEnd  
Description  
Module stays in Rx mode. Listen mode stops and must be disabled.  
00  
01  
Module stays in Rx mode until PayloadReady or Timeout interrupt occurs. It then goes to the  
mode defined by Mode. Listen mode stops and must be disabled.  
Module stays in Rx mode until PayloadReady or Timeout interrupt occurs. Listen mode then  
10  
resumes in Idle state. FIFO content is lost at next Rx wakeup.  
Page 40  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Upon detection of a valid packet, the sequencing is altered, as shown below:  
PayloadReady  
ListenCriteria  
passed  
Idle  
Idle  
Idle  
Rx  
Rx  
Rx  
ListenEnd = 00  
ListenEnd = 01  
ListenEnd = 10  
Listen Mode  
Listen Mode  
Listen Mode  
Mode  
Idle  
Rx  
Figure 22. Listen Mode Sequence (wanted signal is received)  
4.3.4. Stopping Listen Mode  
To abort Listen mode operation, the following procedure must be respected:  
‹
Program RegOpMode with ListenOn=0, ListenAbort=1, and the desired setting for the Mode bits (Sleep, Stdby, FS, Rx  
or Tx mode) in a single SPI access  
‹
Program RegOpMode with ListenOn=0, ListenAbort=0, and the desired setting for the Mode bits (Sleep, Stdby, FS, Rx  
or Tx mode) in a second SPI access  
4.3.5. RC Timer Accuracy  
All timings of the Listen Mode rely on the accuracy of the internal low-power RC oscillator. This oscillator is automatically  
calibrated at the device power-up, and it is a user-transparent process.  
For applications enduring large temperature variations, and for which the power supply is never removed, RC calibration  
can be performed upon user request. RcCalStart in RegOsc1 can be used to trigger this calibration, and the flag  
RcCalDone will be set automatically when the calibration is over.  
Page 41  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
4.4. AutoModes  
DATASHEET  
Automatic modes of packet handler can be enabled by configuring the related parameters in RegAutoModes.  
The intermediate mode of the module is called IntermediateMode and the enter and exit conditions to/from this  
intermediate mode can be configured through the parameters EnterCondition & ExitCondition.  
The enter and exit conditions cannot be used independently of each other i.e. both should be enabled at the same time.  
The initial and the final state is the one configured in Mode in RegOpMode. The initial & final states can be different by  
configuring the modes register while the module is in intermediate mode. The pictorial description of the auto modes is  
shown  
below.  
Intermediate State  
defined by IntermediateMode  
ExitCondition  
EnterCondition  
Initial state defined  
Final state defined  
By Mode in RegOpMode  
By Mode in RegOpMode  
Figure 23. Auto Modes of Packet Handler  
Some typical examples of AutoModes usage are described below:  
‹
‹
‹
‹
Automatic transmission (AutoTx) : Mode = Sleep, IntermediateMode = Tx, EnterCondition = FifoLevel, ExitCondition =  
PacketSent  
Automatic reception (AutoRx) : Mode = Rx, IntermediateMode = Sleep, EnterCondition = CrcOk, ExitCondition = falling  
edge of FifoNotEmpty  
Automatic reception of acknowledge (AutoRxAck): Mode = Tx, IntermediateMode = Rx, EnterCondition = PacketSent,  
ExitCondition = CrcOk  
...  
Page 42  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
5. Data Processing  
5.1. Overview  
5.1.1. Block Diagram  
Figure below illustrates the RFM69HW data processing circuit. Its role is to interface the data to/from the modulator/  
demodulator and the uC access points (SPI and DIO pins). It also controls all the configuration registers.  
The circuit contains several control blocks which are described in the following paragraphs.  
DIO0  
Tx/Rx  
DIO1  
DIO2  
DIO3  
DIO4  
DIO5  
CONTROL  
Rx  
Tx  
Data  
SYNC  
RECOG.  
PACKET  
HANDLER  
FIFO  
(+SR)  
SPI  
NSS  
SCK  
MOSI  
MISO  
Potential datapaths (data operation mode dependant)  
Figure 24. RFM69HW Data Processing Conceptual  
View  
The RFM69HW implements several data operation modes, each with their own data path through the data  
processing section. Depending on the data operation mode selected, some control blocks are active whilst others remain  
disabled.  
5.1.2. Data Operation Modes  
The RFM69HW has two different data operation modes selectable by the user:  
‹
Continuous mode: each bit transmitted or received is accessed in real time at the DIO2/DATA pin. This mode may be  
used if adequate external signal processing is available.  
‹
Packet mode (recommended):user only provides/retrieves payload bytes to/from the FIFO. The packet is automatically  
built with preamble, Sync word, and optional AES, CRC, and DC-free encoding schemes The reverse operation is  
performed in reception. The uC processing overhead is hence significantly reduced compared to Continuous mode.  
Depending on the optional features activated (CRC, AES, etc) the maximum payload length is limited to FIFO size, 255  
bytes or unlimited.  
Each of these data operation modes is described fully in the following sections.  
Page 43  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
5.2. Control Block Description  
5.2.1. SPI Interface  
The SPI interface gives access to the configuration register via a synchronous full-duplex protocol corresponding to CPOL  
= 0 and CPHA = 0 in Motorola/Freescale nomenclature. Only the slave side is implemented.  
Three access modes to the registers are provided:  
‹
SINGLE access: an address byte followed by a data byte is sent for a write access whereas an address byte is sent and  
a read byte is received for the read access. The NSS pin goes low at the begin of the frame and goes high after the data  
byte.  
‹
‹
BURST access: the address byte is followed by several data bytes. The address is automatically incremented internally  
between each data byte. This mode is available for both read and write accesses. The NSS pin goes low at the  
beginning of the frame and stay low between each byte. It goes high only after the last byte transfer.  
FIFO access: if the address byte corresponds to the address of the FIFO, then succeeding data byte will address the  
FIFO. The address is not automatically incremented but is memorized and does not need to be sent between each data  
byte. The NSS pin goes low at the beginning of the frame and stay low between each byte. It goes high only after the  
last byte transfer.  
Figure below shows a typical SPI single access to a register.  
Figure 25. SPI Timing Diagram (single access)  
MOSI is generated by the master on the falling edge of SCK and is sampled by the slave (i.e. this SPI interface) on the  
rising edge of SCK. MISO is generated by the slave on the falling edge of SCK.  
A transfer always starts by the NSS pin going low. MISO is high impedance when NSS is high.  
The first byte is the address byte. It is made of:  
‹
wnr bit, which is 1 for write access and 0 for read access  
7 bits of address, MSB first  
‹
The second byte is a data byte, either sent on MOSI by the master in case of a write access, or received by the master on  
MISO in case of read access. The data byte is transmitted MSB first.  
Proceeding bytes may be sent on MOSI (for write access) or received on MISO (for read access) without rising NSS and  
re-sending the address. In FIFO mode, if the address was the FIFO address then the bytes will be written / read at the  
FIFO address. In Burst mode, if the address was not the FIFO address, then it is automatically incremented at each new  
byte received.  
Page 44  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
The frame ends when NSS goes high. The next frame must start with an address byte. The SINGLE access mode is  
actually a special case of FIFO / BURST mode with only 1 data byte transferred.  
During the write access, the byte transferred from the slave to the master on the MISO line is the value of the written  
register before the write operation.  
5.2.2. FIFO  
5.2.2.1. Overview and Shift Register (SR)  
In packet mode of operation, both data to be transmitted and that has been received are stored in a configurable FIFO  
(First In First Out) device. It is accessed via the SPI interface and provides several interrupts for transfer management.  
The FIFO is 1 byte wide hence it only performs byte (parallel) operations, whereas the demodulator functions serially. A  
shift register is therefore employed to interface the two devices. In transmit mode it takes bytes from the FIFO and outputs  
them serially (MSB first) at the programmed bit rate to the modulator. Similarly, in Rx the shift register gets bit by bit data  
from the demodulator and writes them byte by byte to the FIFO. This is illustrated in figure below.  
FIFO  
byte1  
byte0  
8
Data Tx/Rx  
SR (8bits)  
1
MSB  
LSB  
Figure 26. FIFO and Shift Register (SR)  
Note When switching to Sleep mode, the FIFO can only be used once the ModeReady flag is set (quasi immediate from  
all modes except from Tx)  
5.2.2.2. Size  
The FIFO size is fixed to 66 bytes.  
5.2.2.3. Interrupt Sources and Flags  
‹
FifoNotEmpty: FifoNotEmpty interrupt source is low when byte 0, i.e. whole FIFO, is empty. Otherwise it is high.  
Note that when retrieving data from the FIFO, FifoNotEmpty is updated on NSS falling edge, i.e. when FifoNotEmpty  
is updated to low state the currently started read operation must be completed. In other words, FifoNotEmpty state  
must be checked after each read operation for a decision on the next one (FifoNotEmpty = 1: more byte(s) to read;  
FifoNotEmpty = 0: no more byte to read).  
‹
‹
FifoFull: FifoFull interrupt source is high when the last FIFO byte, i.e. the whole FIFO, is full. Otherwise it is low.  
FifoOverrunFlag: FifoOverrunFlag is set when a new byte is written by the user (in Tx or Standby modes) or the SR  
(inRx mode) while the FIFO is already full. Data is lost and the flag should be cleared by writing a 1, note that the  
FIFO will also be cleared.  
‹
‹
PacketSent: PacketSent interrupt source goes high when the SR's last bit has been sent.  
FifoLevel: Threshold can be programmed by FifoThreshold in RegFifoThresh. Its behavior is illustrated in figure  
below.  
Page 45  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
FifoLevel  
1
0
B
B+1  
# of bytes in FIFO  
Figure 27. FifoLevel IRQ Source Behavior  
Note - FifoLevel interrupt is updated only after a read or write operation on the FIFO. Thus the interrupt cannot be  
dynamically updated by only changing the FifoThreshold parameter  
- FifoLevel interrupt is valid as long as FifoFull does not occur. An empty FIFO will restore its normal operation  
5.2.2.4. FIFO Clearing  
Table below summarizes the status of the FIFO when switching between different modes  
Table 20 Status of FIFO when Switching Between Different Modes of the Module  
From  
Stdby  
To  
Sleep  
Stdby  
Tx  
FIFO status  
Not cleared  
Not cleared  
Not cleared  
Cleared  
Comments  
Sleep  
Stdby/Sleep  
Stdby/Sleep  
Rx  
To allow the user to write the FIFO in Stdby/Sleep before Tx  
To allow the user to read FIFO in Stdby/Sleep mode after Rx  
Rx  
Tx  
Cleared  
Rx  
Stdby/Sleep  
Any  
Not cleared  
Cleared  
Tx  
5.2.3. Sync Word Recognition  
5.2.3.1. Overview  
Sync word recognition (also called Pattern recognition) is activated by setting SyncOn in RegSyncConfig. The bit  
synchronizer must also be activated in continuous mode (automatically done in Packet mode) .  
The block behaves like a shift register; it continuously compares the incoming data with its internally programmed Sync  
word and sets SyncAddressMatch when a match is detected. This is illustrated in Figure 28 below.  
Page 46  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Rx DATA  
(NRZ)  
Bit N-x =  
Sync_value[x]  
Bit N-1 =  
Bit N =  
Sync_value[1] Sync_value[0]  
DCLK  
SyncAddressMatch  
Figure 28. Sync Word Recognition  
During the comparison of the demodulated data, the first bit received is compared with bit 7 (MSB) of RegSyncValue1 and  
the last bit received is compared with bit 0 (LSB) of the last byte whose address is determined by the length of the Sync  
word.  
When the programmed Sync word is detected the user can assume that this incoming packet is for the node and can be  
processed accordingly.  
SyncAddressMatch is cleared when leaving Rx or FIFO is emptied.  
5.2.3.2. Configuration  
‹
Size: Sync word size can be set from 1 to 8 bytes (i.e. 8 to 64 bits) via SyncSize in RegSyncConfig. In Packet mode  
this field is also used for Sync word generation in Tx mode.  
‹
‹
Error tolerance: The number of errors tolerated in the Sync word recognition can be set from 0 to 7 bits to via  
SyncTol.  
Value: The Sync word value is configured in SyncValue(63:0). In Packet mode this field is also used for Sync word  
generation in Tx mode.  
Note SyncValue choices containing 0x00 bytes are not allowed  
5.2.4. Packet Handler  
The packet handler is the block used in Packet mode. Its functionality is fully described in section 5.5.  
5.2.5. Control  
The control block configures and controls the full module's behavior according to the settings programmed in the  
configuration registers.  
5.3. Digital IO Pins Mapping  
Six general purpose IO pins are available on the RFM69HW, and their configuration in Continuous or Packet mode  
is controlled through RegDioMapping1 and RegDioMapping2.  
Page 47  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.3.1. DIO Pins Mapping in Continuous Mode  
Table 21 DIO Mapping, Continuous Mode  
Mode  
Diox  
Mapping  
00  
DIO5  
DIO4  
DIO3  
DIO2  
DIO1  
DIO0  
Sleep  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
01  
10  
11  
Au  
Au  
Au  
t
t
t
oMode  
-
ModeReady  
ModeReady  
Stdby  
FS  
00  
01  
10  
11  
ClkOut  
-
-
-
-
-
-
-
oMode  
-
ModeReady  
ModeReady  
00  
01  
10  
11  
ClkOut  
-
-
-
-
-
-
-
-
-
-
-
-
PllLock  
-
-
-
-
oMode  
-
ModeReady  
PllLock  
PllLock  
ModeReady  
Rx  
00  
01  
10  
11  
ClkOut  
Rssi  
T
imeou  
t
Rssi  
RxReady  
toMode  
imeout  
D
Da  
Data  
Da  
at  
t
a
a
Dclk  
RxReady  
-
SyncAddress  
RxReady  
yncAddress  
P
T
imeou  
t
-
S
A
T
u
Rssi  
ModeReady  
PllLock  
ModeReady  
llLock  
t
a
SyncAddress  
Tx  
00  
01  
10  
11  
ClkOut  
ClkOut  
-
T
T
xReady  
xReady  
-
T
T
xReady  
xReady  
Data  
Data  
Data  
Data  
Dclk  
T
xReady  
-
T
xReady  
-
AutoMode  
ModeReady  
P
llLock  
T
xReady  
PllLock  
ModeReady  
5.3.2. DIO Pins Mapping in Packet Mode  
Table 22 DIO Mapping, Packet Mode  
Mode  
Diox  
Mapping  
00  
DIO5  
DIO4  
DIO3  
DIO2  
DIO1  
DIO0  
Sleep  
-
-
-
-
-
-
-
-
-
-
-
Fif  
o
-
-
-
F
ull  
ull  
ull  
FifoNot  
Emp  
t
y
y
y
y
y
FifoLevel  
FifoFull  
oNotEmpty  
-
-
-
-
-
-
-
-
-
01  
10  
11  
-
-
Fi  
Fi  
Fi  
Fi  
Fi  
f
ModeReady  
AutoMode  
Stdby  
FS  
00  
01  
10  
11  
ClkOu  
t
Fif  
Fif  
o
F
FifoNotEmpt  
FifoLevel  
Fif ull  
-
-
-
-
-
-
-
oF  
f
oNotEmpty  
-
ModeReady  
AutoMode  
00  
01  
10  
11  
ClkOu  
t
-
-
-
o
F
FifoNotEmpt  
FifoLevel  
Fif ull  
oNotEmpty  
llLock  
oLevel  
FifoFull  
-
-
-
-
-
-
-
-
-
oF  
f
f
ModeReady  
PllLock  
P
llLock  
oFull  
Rssi  
yncAddress  
llLock  
Fif ull  
AutoMode  
P
PllLock  
Rx  
00  
01  
10  
11  
00  
01  
10  
11  
ClkOut  
Data  
T
imeout  
Rssi  
Fif  
Fif  
oNotEmp  
Data  
-
t
F
i
f
CrcOk  
ayloadReady  
P
-
RxReady  
llLock  
ModeReady  
S
oNotEmpty SyncAddress  
ModeReady  
P
P
AutoMode  
FifoNotEmpt  
Data  
-
AutoMode  
T
imeout  
FifoLevel  
FifoFull  
Rssi  
acketSent  
xReady  
-
PllLock  
Tx  
ClkOu  
Data  
-
t
o
F
P
T
xReady  
-
T
xReady  
-
T
f
oNotEmpty  
llLock  
ModeReady  
PllLock  
PllLock  
P
Note Received Data is only shown on the Data signal between RxReady and PayloadReady’s rising edges  
Page 48  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.4. Continuous Mode  
5.4.1. General Description  
As illustrated in Figure 29, in Continuous mode the NRZ data to (from) the (de)modulator is directly accessed by the uC on  
the bidirectional DIO2/DATA pin. The FIFO and packet handler are thus inactive.  
DIO0  
Tx/Rx  
DIO1/DCLK  
DIO2/DATA  
DIO3  
CONTROL  
DIO4  
DIO5  
Data  
Rx  
SYNC  
RECOG.  
SPI  
NSS  
SCK  
MOSI  
MISO  
Figure 29. Continuous Mode Conceptual View  
5.4.2. Tx Processing  
In Tx mode, a synchronous data clock for an external uC is provided on DIO1/DCLK pin. Clock timing with respect to the  
data is illustrated in Figure 30. DATA is internally sampled on the rising edge of DCLK so the uC can change logic state  
anytime outside the grayed out setup/hold zone.  
T_DATA  
T_DATA  
DATA  
(NRZ)  
DCLK  
Figure 30. Tx Processing in Continuous Mode  
Note the use of DCLK is required when the modulation shaping is enabled (see section 3.3.5).  
Page 49  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.4.3. Rx Processing  
If the bit synchronizer is disabled, the raw demodulator output is made directly available on DATA pin and no DCLK signal  
is provided.  
Conversely, if the bit synchronizer is enabled, synchronous cleaned data and clock are made available respectively on  
DIO2/DATA and DIO1/DCLK pins. DATA is sampled on the rising edge of DCLK and updated on the falling edge as  
illustrated below.  
DATA (NRZ)  
DCLK  
Figure 31. Rx Processing in Continuous Mode  
Note in Continuous mode it is always recommended to enable the bit synchronizer to clean the DATA signal even if the  
DCLK signal is not used by the uC (bit synchronizer is automatically enabled in Packet mode).  
5.5. Packet Mode  
5.5.1. General Description  
In Packet mode the NRZ data to (from) the (de)modulator is not directly accessed by the uC but stored in the FIFO and  
accessed via the SPI interface.  
In addition, the RFM69HW packet handler performs several packet oriented tasks such as Preamble and Sync word  
generation, CRC calculation/check, whitening/dewhitening of data, Manchester encoding/decoding, address filtering, AES  
encryption/decryption, etc. This simplifies software and reduces uC overhead by performing these repetitive tasks within  
the RF module itself.  
Another important feature is ability to fill and empty the FIFO in Sleep/Stdby mode, ensuring optimum power consumption  
and adding more flexibility for the software.  
Page 50  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
DVANCED COMMUNICATIONS & SENSING  
DATASHEET  
DIO0  
DIO1  
DIO2  
DIO3  
DIO4  
DIO5  
CONTROL  
Data  
Rx  
Tx  
SYNC  
RECOG.  
PACKET  
HANDLER  
FIFO  
(+SR)  
SPI  
NSS  
SCK  
MOSI  
MISO  
Figure 32. Packet Mode Conceptual View  
Note The Bit Synchronizer is automatically enabled in Packet mode.  
5.5.2. Packet Format  
5.5.2.1. Fixed Length Packet Format  
Fixed length packet format is selected when bit PacketFormat is set to 0 and PayloadLength is set to any value greater  
than 0.  
In applications where the packet length is fixed in advance, this mode of operation may be of interest to minimize RF  
overhead (no length byte field is required). All nodes, whether Tx only, Rx only, or Tx/Rx should be programmed with the  
same packet length value.  
The length of the payload is limited to 255 bytes if AES is not enabled else the message is limited to 64 bytes (i.e. max 65  
bytes payload if Address byte is enabled).  
The length programmed in PayloadLength relates only to the payload which includes the message and the optional  
address byte. In this mode, the payload must contain at least one byte, i.e. address or message byte.  
An illustration of a fixed length packet is shown below. It contains the following fields:  
‹
‹
‹
‹
‹
Preamble (1010...)  
Sync word (Network ID)  
Optional Address byte (Node ID)  
Message data  
Optional 2-bytes CRC checksum  
Page 51  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
DC free Data encoding  
CRC checksum calcula ion  
AES Enc Dec  
t
/
Preamble  
0 to 65535  
bytes  
Sync Word  
0 to 8 bytes  
Address  
byte  
Message  
Up to 255 by  
CRC  
2-bytes  
t
es  
Payload  
(min 1 byte)  
Fields added by the packet handler in Tx and processed and removed in Rx  
Optional User provided fields which are part of the payload  
Message part of the payload  
Figure 33. Fixed Length Packet Format  
5.5.2.2. Variable Length Packet Format  
Variable length packet format is selected when bit PacketFormat is set to 1.  
This mode is useful in applications where the length of the packet is not known in advance and can vary over time. It is then  
necessary for the transmitter to send the length information together with each packet in order for the receiver to operate  
properly.  
In this mode the length of the payload, indicated by the length byte, is given by the first byte of the FIFO and is limited to  
255 bytes if AES is not enabled else the message is limited to 64 bytes (i.e. max 66 bytes payload if Address byte is  
enabled). Note that the length byte itself is not included in its calculation. In this mode, the payload must contain at least 2  
bytes, i.e. length + address or message byte.  
An illustration of a variable length packet is shown below. It contains the following fields:  
‹
‹
‹
‹
‹
‹
Preamble (1010...)  
Sync word (Network ID)  
Length byte  
Optional Address byte (Node ID)  
Message data  
Optional 2-bytes CRC checksum  
DC free Data encoding  
CRC checksum calculation  
AES Enc/Dec  
Preamble  
0 to 65535  
bytes  
Sync Word  
0 to 8 bytes  
Length  
byte  
Address  
byte  
Message  
Up to 255 bytes  
CRC  
2-bytes  
Payload  
(min 2 bytes)  
Fields added by the packet handler in Tx and processed and removed in Rx  
Optional User provided fields which are part of the payload  
Message part of the payload  
Figure 34. Variable Length Packet Format  
Page 52  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.5.2.3. Unlimited Length Packet Format  
Unlimited length packet format is selected when bit PacketFormat is set to 0 and PayloadLength is set to 0.  
The user can then transmit and receive packet of arbitrary length and PayloadLength register is not used in Tx/Rx modes  
for counting the length of the bytes transmitted/received. This mode is a replacement for the legacy buffered mode in  
RF63/RF64 transceivers.  
In Tx the data is transmitted depending on the TxStartCondition bit. On the Rx side the data processing features like  
Address filtering, Manchester encoding and data whitening are not available if the sync pattern length is set to zero  
(SyncOn = 0). The filling of the FIFO in this case can be controlled by the bit FifoFillCondition. The CRC detection in Rx is  
also not supported in this mode of the packet handler, however CRC generation in Tx is operational. The interrupts like  
CrcOk & PayloadReady are not available either.  
An unlimited length packet shown in is made up of the following fields:  
‹
‹
‹
‹
‹
Preamble (1010...).  
Sync word (Network ID).  
Optional Address byte (Node ID).  
Message data  
Optional 2-bytes CRC checksum (Tx only)  
DC free Data encoding  
Preamble  
0 to 65535  
bytes  
Sync  
0 to 8 byte  
W
ord  
s
A
ddress  
byt  
Message  
unlimited length  
e
P
ayload  
Fields added by the packet handler in Tx and processed and removed in Rx  
Message part of the payload  
Optional User provided fields which are part of the payload  
Figure 35. Unlimited Length Packet Forma  
t
5.5.3. Tx Processing (without AES)  
In Tx mode the packet handler dynamically builds the packet by performing the following operations on the payload  
available in the FIFO:  
‹
Add a programmable number of preamble bytes  
‹
‹
Add a programmable Sync word  
Optionally calculating CRC over complete payload field (optional length byte + optional address byte + message)  
andappending the 2 bytes checksum.  
‹
Optional DC-free encoding of the data (Manchester or whitening)  
Only the payload (including optional address and length fields) is required to be provided by the user in the FIFO.  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
Page 53  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
The transmission of packet data is initiated by the Packet Handler only if the module is in Tx mode and the transmission  
condition defined by TxStartCondition is fulfilled. If transmission condition is not fulfilled then the packet handler transmits a  
preamble sequence until the condition is met. This happens only if the preamble length /= 0, otherwise it transmits a zero or  
one until the condition is met to transmit the packet data.  
The transmission condition itself is defined as:  
‹
if TxStartCondition = 1, the packet handler waits until the first byte is written into the FIFO, then it starts sending the  
preamble followed by the sync word and user payload  
‹
‹
If TxStartCondition = 0, the packet handler waits until the number of bytes written in the FIFO is equal to the number  
defined in RegFifoThresh + 1  
If the condition for transmission was already fulfilled i.e. the FIFO was filled in Sleep/Stdby then the transmission of  
packet starts immediately on enabling Tx  
5.5.4. Rx Processing (without AES)  
In Rx mode the packet handler extracts the user payload to the FIFO by performing the following operations:  
‹
Receiving the preamble and stripping it off  
Detecting the Sync word and stripping it off  
Optional DC-free decoding of data  
‹
‹
‹
‹
Optionally checking the address byte  
Optionally checking CRC and reflecting the result on CrcOk.  
Only the payload (including optional address and length fields) is made available in the FIFO.  
When the Rx mode is enabled the demodulator receives the preamble followed by the detection of sync word. If fixed  
length packet format is enabled then the number of bytes received as the payload is given by the PayloadLength  
parameter.  
In variable length mode the first byte received after the sync word is interpreted as the length of the received packet. The  
internal length counter is initialized to this received length. The PayloadLength register is set to a value which is greater  
than the maximum expected length of the received packet. If the received length is greater than the maximum length stored  
in PayloadLength register the packet is discarded otherwise the complete packet is received.  
If the address check is enabled then the second byte received in case of variable length and first byte in case of fixed  
length is the address byte. If the address matches to the one in the NodeAddress field, reception of the data continues  
otherwise it's stopped. The CRC check is performed if CrcOn = 1 and the result is available in CrcOk indicating that the  
CRC was successful. An interrupt (PayloadReady) is also generated on DIO0 as soon as the payload is available in the  
FIFO. The payload available in the FIFO can also be read in Sleep/Standby mode.  
If the CRC fails the PayloadReady interrupt is not generated and the FIFO is cleared. This function can be overridden by  
setting CrcAutoClearOff = 1, forcing the availability of PayloadReady interrupt and the payload in the FIFO even if the CRC  
fails.  
5.5.5. AES  
AES is the symmetric-key block cipher that provides the cryptographic capabilities to the transceiver. The system proposed  
can work with 128-bit long fixed keys. The fixed key is stored in a 16-byte write only user configuration register, which  
retains its value in Sleep mode.  
Page 54  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
As shown in Figure 33 and Figure 34 above the message part of the Packet can be encrypted and decrypted with the  
cipher 128- cipher key stored in the configuration registers.  
5.5.5.1. Tx Processing  
1. User enters the data to be transmitted in FIFO in Stdby/Sleep mode and gives the transmit command.  
2. On Tx command the Packet handler state machine takes over the control and If encryption is enabled then the  
message inside the FIFO is read in blocks of 16 bytes (padded with 0s if needed), encrypted and stored back to FIFO.  
All this processing is done in Tx mode before enabling the packet handling state machine. Only the Message part of the  
packet is encrypted and preamble, sync word, length byte, address byte and CRC are not encrypted.  
3. Once the encryption is done the Packet handling state machine is enabled to transmit the data.  
5.5.5.2. Rx Processing  
1. The data received is stored in the FIFO, The address, CRC interrupts are generated as usual because these  
parameters were not encrypted.  
2. Once the complete packet has been received. The data is read from the FIFO, decrypted and written back to FIFO.  
The PayloadReady interrupt is issued once the decrypted data is ready in the FIFO for reading via the SPI interface.  
The AES encryption/decryption cannot be used on the fly i.e. while transmitting and receiving data. Thus when AES  
encryption/decryption is enabled, the FIFO acts as a simple buffer. This buffer is filled before initiating any transmission.  
The data in the buffer is then encrypted before the transmission can begin. On the receive side the decryption is initiated  
only once the complete packet has been received in the buffer.  
The encryption/decryptionprocess takes approximately 7.0 us per 16-byte block. Thus for a maximum of 4 blocks (i.e. 64  
bytes) it can take up to 28 us for completing the cryptographic operations.  
The receive side sees the AES decryption time as a sequential delay before the PayloadReady interrupt is available.  
The Tx side sees the AES encryption time as a sequential delay in the startup of the Tx chain, thus the startup time of the  
Tx will increase according to the length of data.  
In Fixed length mode the Message part of the payload that can be encrypted/decrypted can be 64 bytes long. If the  
address filtering is enabled, the length of the payload should be at max 65 bytes in this case.  
In Variable length mode the Max message size that can be encrypted/decrypted is also 64 bytes when address filtering is  
disabled, else it is 48 bytes. Thus, including length byte, the length of the payload is max 65 or 50 bytes (the latter when  
address filtering is enabled).  
If the address filtering is expected then AddressFiltering must be enabled on the transmitter side as well to prevent address  
byte to be encrypted.  
Crc check being performed on encrypted data, CrcOk interrupt will occur "decryption time" before PayloadReady interrupt.  
Page 55  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.5.6. Handling Large Packets  
When Payload length exceeds FIFO size (66 bytes) whether in fixed, variable or unlimited length packet format, in addition  
to PacketSent in Tx and PayloadReady or CrcOk in Rx, the FIFO interrupts/flags can be used as described below:  
‹
For Tx:  
FIFO can be prefilled in Sleep/Standby but must be refilled "on-the-fly" during Tx with the rest of the payload.  
1) Prefill FIFO (in Sleep/Standby first or directly in Tx mode) until FifoThreshold or FifoFull is set  
2) In Tx, wait for FifoThreshold or FifoNotEmpty to be cleared (i.e. FIFO is nearly empty)  
3) Write bytes into the FIFO until FifoThreshold or FifoFull is set.  
4) Continue to step 2 until the entire message has been written to the FIFO (PacketSent will fire when the last bit of the  
packet has been sent).  
‹
For Rx:  
FIFO must be unfilled "on-the-fly" during Rx to prevent FIFO overrun.  
1) Start reading bytes from the FIFO when FifoNotEmpty or FifoThreshold becomes set.  
2) Suspend reading from the FIFO if FifoNotEmpty clears before all bytes of the message have been read  
3) Continue to step 1 until PayloadReady or CrcOk fires  
4) Read all remaining bytes from the FIFO either in Rx or Sleep/Standby mode  
Note AES encryption is not feasible on large packets, since all Payload bytes need to be in the FIFO at the same time to  
perform encryption  
5.5.7. Packet Filtering  
RFM69HW's packet handler offers several mechanisms for packet filtering, ensuring that only useful packets are  
made available to the uC, reducing significantly system power consumption and software complexity.  
5.5.7.1. Sync Word Based  
Sync word filtering/recognition is used for identifying the start of the payload and also for network identification. As  
previously described, the Sync word recognition block is configured (size, error tolerance, value) in RegSyncValue  
registers. This information is used, both for appending Sync word in Tx, and filtering packets in Rx.  
Every received packet which does not start with this locally configured Sync word is automatically discarded and no  
interrupt is generated.  
When the Sync word is detected, payload reception automatically starts and SyncAddressMatch is asserted.  
Note Sync Word values containing 0x00 byte(s) are forbidden  
Page 56  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.5.7.2. Address Based  
Address filtering can be enabled via the AddressFiltering bits. It adds another level of filtering, above Sync word (i.e. Sync  
must match first), typically useful in a multi-node networks where a network ID is shared between all nodes (Sync word)  
and each node has its own ID (address).  
Two address based filtering options are available:  
‹
AddressFiltering = 01: Received address field is compared with internal register NodeAddress. If they match then  
packet is accepted and processed, otherwise it is discarded.  
the  
‹
AddressFiltering = 10: Received address field is compared with internal registers NodeAddress and  
BroadcastAddress.If either is a match, the received packet is accepted and processed, otherwise it is discarded.  
This additional check with a constant is useful for implementing broadcast in a multi-node networks  
Please note that the received address byte, as part of the payload, is not stripped off the packet and is made available in  
the FIFO. In addition, NodeAddress and AddressFiltering only apply to Rx. On Tx side, if address filtering is expected, the  
address byte should simply be put into the FIFO like any other byte of the payload.  
As address filtering requires a Sync word match, both features share the same interrupt flag SyncAddressMatch.  
5.5.7.3. Length Based  
In variable length Packet mode, PayloadLength must be programmed with the maximum payload length permitted. If  
received length byte is smaller than this maximum then the packet is accepted and processed, otherwise it is discarded.  
Please note that the received length byte, as part of the payload, is not stripped off the packet and is made available in the  
FIFO.  
To disable this function the user should set the value of the PayloadLength to 255.  
5.5.7.4. CRC Based  
The CRC check is enabled by setting bit CrcOn in RegPacketConfig1. It is used for checking the integrity of the message.  
‹
On Tx side a two byte CRC checksum is calculated on the payload part of the packet and appended to the end of  
the message  
‹
On Rx side the checksum is calculated on the received payload and compared with the two checksum bytes  
received.The result of the comparison is stored in bit CrcOk.  
By default, if the CRC check fails then the FIFO is automatically cleared and no interrupt is generated. This filtering function  
can be disabled via CrcAutoClearOff bit and in this case, even if CRC fails, the FIFO is not cleared and only PayloadReady  
interrupt goes high. Please note that in both cases, the two CRC checksum bytes are stripped off by the packet handler  
and only the payload is made available in the FIFO.  
The CRC is based on the CCITT polynomial as shown below. This implementation also detects errors due to leading and  
trailing zeros.  
Page 57  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
CRC Polynomial =X16 + X12 + X5 +  
1
data input  
X14  
X13  
X12  
X15  
X5  
X0  
X11  
X4  
* * *  
* * *  
Figure 36. CRC Implementation  
5.5.8. DC-Free Data Mechanisms  
The payload to be transmitted may contain long sequences of 1's and 0's, which introduces a DC bias in the transmitted  
signal. The radio signal thus produced has a non uniform power distribution over the occupied channel bandwidth. It also  
introduces data dependencies in the normal operation of the demodulator. Thus it is useful if the transmitted data is random  
and DC free.  
For such purposes, two techniques are made available in the packet handler: Manchester encoding and data whitening.  
Note Only one of the two methods should be enabled at a time.  
5.5.8.1. Manchester Encoding  
Manchester encoding/decoding is enabled if DcFree = 01 and can only be used in Packet mode.  
The NRZ data is converted to Manchester code by coding '1' as "10" and '0' as "01".  
In this case, the maximum chip rate is the maximum bit rate given in the specifications section and the actual bit rate is half  
the chip rate.  
Manchester encoding and decoding is only applied to the payload and CRC checksum while preamble and Sync word are  
kept NRZ. However, the chip rate from preamble to CRC is the same and defined by BitRate in RegBitRate (Chip Rate =  
Bit Rate NRZ = 2 x Bit Rate Manchester).  
Manchester encoding/decoding is thus made transparent for the user, who still provides/retrieves NRZ data to/from the  
FIFO  
1/BR  
1/BR  
...Sync  
Payload...  
RF chips @ BR  
User/NRZ bits  
Manchester OFF  
User/NRZ bits  
Manchester ON  
...  
1
1
1
0
1
0
0
1
0
0
1
0
1
1
0
1
0
...  
t
...  
1
1
1
1
0
1
0
0
1
0
0
1
0
1
1
0
1
0
...  
...  
1
1
0
1
0
0
1
0
0
1
1
...  
Figure 37. Manchester Encoding/Decoding  
Page 58  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
5.5.8.2. Data Whitening  
Another technique called whitening or scrambling is widely used for randomizing the user data before radio transmission.  
The data is whitened using a random sequence on the Tx side and de-whitened on the Rx side using the same sequence.  
Comparing to Manchester technique it has the advantage of keeping NRZ data rate i.e. actual bit rate is not halved.  
The whitening/de-whitening process is enabled if DcFree = 10. A 9-bit LFSR is used to generate a random sequence. The  
payload and 2-byte CRC checksum is then XORed with this random sequence as shown below. The data is de-whitened  
on the receiver side by XORing with the same random sequence.  
Payload whitening/de-whitening is thus made transparent for the user, who still provides/retrieves NRZ data to/from the  
FIFO.  
LFS  
R
Polynom ia  
l
=X9  
+
X5  
+ 1  
X8  
X7  
X6  
X 5  
X4  
X3  
X2  
X1  
X 0  
W
hitened data  
Transm it data  
Figure 38. Data Whitening  
Page 59  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
6. Configuration and Status Registers  
DATASHEET  
6.1. General Description  
Table 23 Registers Summary  
Default  
Reset  
Address  
Register Name  
(recom  
Description  
(built-in)  
mended)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
RegFifo  
RegOpMode  
RegDataModul  
RegBitrateMsb  
RegBitrateLsb  
RegFdevMsb  
RegFdevLsb  
RegFrfMsb  
RegFrfMid  
0x00  
FIFO read/write access  
Operating modes of the transceiver  
0x04  
0x00  
0x1A  
0x0B  
0x00  
0x52  
0xE4  
0xC0  
0x00  
0x41  
0x00  
0x02  
0x92  
0xF5  
0x20  
0x24  
0x9F  
0x09  
0x1A  
0x40  
Data operation mode and Modulation settings  
Bit Rate setting, Most Significant Bits  
Bit Rate setting, Least Significant Bits  
Frequency Deviation setting, Most Significant Bits  
Frequency Deviation setting, Least Significant Bits  
RF Carrier Frequency, Most Significant Bits  
RF Carrier Frequency, Intermediate Bits  
RF Carrier Frequency, Least Significant Bits  
RC Oscillators Settings  
RegFrfLsb  
RegOsc1  
RegAfcCtrl  
AFC control in low modulation index situations  
-
Reserved0C  
RegListen1  
RegListen2  
RegListen3  
RegVersion  
RegPaLevel  
RegPaRamp  
RegOcp  
Listen Mode settings  
Listen Mode Idle duration  
Listen Mode Rx duration  
PA selection and Output Power control  
Control of the PA ramp time in FSK mode  
Over Current Protection control  
Reserved14  
-
-
0x15  
0x16  
Reserved15  
Reserved16  
0xB0  
0x7B  
0x9B  
-
0x17  
0x18  
Reserved17  
RegLna  
-
0x08  
0x86  
0x88  
0x55  
LNA settings  
0x19  
RegRxBw  
Channel Filter BW Control  
Page 60  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Default  
Reset  
Address  
Register Name  
(recom  
Description  
(built-in)  
mended)  
0x1A  
RegAfcBw  
0x8A  
0x8B  
Channel Filter BW control during the AFC routine  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
RegOokPeak  
RegOokAvg  
RegOokFix  
0x40  
OOK demodulator selection and control in peak mode  
Average threshold control of the OOK demodulator  
Fixed threshold control of the OOK demodulator  
AFC and FEI control and status  
0x80  
0x06  
0x10  
0x00  
0x00  
0x00  
0x00  
0x02  
0xFF  
0x00  
RegAfcFei  
RegAfcMsb  
MSB of the frequency correction of the AFC  
LSB of the frequency correction of the AFC  
MSB of the calculated frequency error  
LSB of the calculated frequency error  
RSSI-related settings  
RegAfcLsb  
RegFeiMsb  
RegFeiLsb  
RegRssiConfig  
RegRssiValue  
RegDioMapping1  
RegDioMapping2  
RSSI value in dBm  
Mapping of pins DIO0 to DIO3  
0x05  
0xFF  
0x07  
0xE4  
Mapping of pins DIO4 and DIO5, ClkOut frequency  
0x27  
0x28  
0x29  
RegIrqFlags1  
RegIrqFlags2  
RegRssiThresh  
0x80  
0x00  
Status register: PLL Lock state, Timeout, RSSI > Threshold...  
Status register: FIFO handling flags...  
RSSI Threshold control  
0x2A  
0x2B  
RegRxTimeout1  
RegRxTimeout2  
RegPreambleMsb  
RegPreambleLsb  
RegSyncConfig  
RegSyncValue1-8  
0x00  
0x00  
0x00  
0x03  
0x98  
Timeout duration between Rx request and RSSI detection  
Timeout duration between RSSI detection and PayloadReady  
Preamble length, MSB  
0x2C  
0x2D  
Preamble length, LSB  
0x2E  
Sync Word Recognition control  
0x2F-0x36  
0x00  
0x01  
Sync Word bytes, 1 through 8  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
RegPacketConfig1  
RegPayloadLength  
RegNodeAdrs  
0x10  
0x40  
0x00  
0x00  
0x00  
Packet mode settings  
Payload length setting  
Node address  
RegBroadcastAdrs  
RegAutoModes  
RegFifoThresh  
Broadcast address  
Auto modes settings  
0x0F  
0x8F  
Fifo threshold, Tx start condition  
Packet mode settings  
0x3D  
RegPacketConfig2  
0x02  
Page 61  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
Default  
(recom  
mended)  
Reset  
(built-in)  
Address  
Register Name  
Description  
0x3E-0x4D  
0x4E  
RegAesKey1-16  
RegTemp1  
0x00  
16 bytes of the cypher key  
0x01  
0x00  
0x1B  
0x55  
0x70  
Temperature Sensor control  
Temperature readout  
Sensitivity boost  
0x4F  
RegTemp2  
0x58  
RegTestLna  
RegTestPa1  
RegTestPa2  
RegTestDagc  
0x5A  
High Power PA settings  
High Power PA settings  
0x5C  
0x6F  
0x00  
0x30  
Fading Margin Improvement  
0x71  
RegTestAfc  
RegTest  
0x00  
-
AFC offset for low modulation index AFC  
Internal test registers  
0x50 +  
Note - Reset values are automatically refreshed in the chip at Power On Reset  
- Default values are recommended register values, optimizing the device operation  
- Registers for which the Default value differs from the Reset value are denoted by a * in the tables of section 6  
Page 62  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
6.2. Common Configuration Registers  
Table 24 Common Configuration Registers  
Name  
Default  
Value  
Bits Variable Name  
(Address)  
Mode  
Description  
7-0 Fifo  
rw  
0x00 FIFO data input/output  
RegFifo  
(0x00)  
7
6
5
SequencerOff  
rw  
rw  
0
0
Controls the automatic Sequencer (see section 4.2 ):  
0 Operating mode as selected with Mode bits in  
RegOpMode is automatically reached with the Sequencer  
1 Mode is forced by the user  
RegOpMode  
(0x01)  
ListenOn  
Enables Listen mode, should be enabled whilst in  
Standby mode:  
0 Off (see section 4.3)  
1 On  
ListenAbort  
w
0
Aborts Listen mode when set together with ListenOn=0  
See section 4.3.4 for details  
Always reads 0.  
4-2 Mode  
rw  
001  
Transceiver’s operating modes:  
000 Sleep mode (SLEEP)  
001 Standby mode (STDBY)  
010 Frequency Synthesizer mode (FS)  
011 Transmitter mode (TX)  
100 Receiver mode (RX)  
; Reads the value corresponding to  
others reserved  
the current module mode  
1-0  
7
-
-
r
r
00  
0
unused  
unused  
RegDataModul  
(0x02)  
6-5 DataMode  
rw  
00  
Data processing mode:  
00 Packet mode  
01 reserved  
10 Continuous mode with bit synchronizer  
11 Continuous mode without bit synchronizer  
4-3 ModulationType  
rw  
00  
Modulation scheme:  
00 FSK  
01 OOK  
10 - 11 reserved  
2
-
r
0
unused  
1-0 ModulationShaping  
rw  
00  
Data shaping:  
in FSK:  
00 no shaping  
01 Gaussian filter, BT = 1.0  
10 Gaussian filter, BT = 0.5  
11 Gaussian filter, BT = 0.3  
in OOK:  
00 no shaping  
01 filtering with fcutoff = BR  
10 filtering with fcutoff = 2*BR  
11 reserved  
7-0 BitRate(15:8)  
rw  
0x1a MSB of Bit Rate (Chip Rate when Manchester encoding is  
enabled)  
RegBitrateMsb  
(0x03)  
Page 63  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7-0 BitRate(7:0)  
rw  
0x0b LSB of Bit Rate (Chip Rate if Manchester encoding is  
RegBitrateLsb  
(0x04)  
enabled)  
FXO SC  
BitRate(15,0)  
----------------------------------  
BitRate =  
Default value: 4.8 kb/s  
unused  
7-6  
-
r
00  
RegFdevMsb  
(0x05)  
5-0 Fdev(13:8)  
7-0 Fdev(7:0)  
rw  
rw  
000000 MSB of the frequency deviation  
0x52 LSB of the frequency deviation  
RegFdevLsb  
(0x06)  
Fdev = Fstep  
Fdev(15,0)  
Default value: 5 kHz  
7-0 Frf(23:16)  
7-0 Frf(15:8)  
7-0 Frf(7:0)  
rw  
rw  
rw  
0xe4 MSB of the RF carrier frequency  
RegFrfMsb  
(0x07)  
0xc0 Middle byte of the RF carrier frequency  
0x00 LSB of the RF carrier frequency  
RegFrfMid  
(0x08)  
RegFrfLsb  
(0x09)  
Frf = Fstep  
Frf 23;0  
Default value: Frf = 915 MHz (32 MHz XO)  
7
6
RcCalStart  
RcCalDone  
w
r
0
1
Triggers the calibration of the RC oscillator when set.  
Always reads 0. RC calibration must be triggered in  
Standby mode.  
RegOsc1  
(0x0A)  
0 RC calibration in progress  
1 RC calibration is over  
5-0  
7-6  
5
-
r
r
000001 unused  
-
00  
0
unused  
RegAfcCtrl  
(0x0B)  
AfcLowBetaOn  
rw  
Improved AFC routine for signals with modulation index  
lower than 2. Refer to section 3.4.16 for details  
0 Standard AFC routine  
1 Improved AFC routine  
4-0  
7-0  
-
-
r
r
00000 unused  
0x02 unused  
Reserved0C  
(0x0C)  
Page 64  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7-6 ListenResolIdle  
rw  
10  
01  
Resolution of Listen mode Idle time (calibrated RC osc):  
00 reserved  
01 64 us  
10 4.1 ms  
11 262 ms  
RegListen1  
(0x0D)  
5-4 ListenResolRx  
rw  
Resolution of Listen mode Rx time (calibrated RC osc):  
00 reserved  
01 64 us  
10 4.1 ms  
11 262 ms  
3
ListenCriteria  
rw  
rw  
0
Criteria for packet acceptance in Listen mode:  
0 signal strength is above RssiThreshold  
1 signal strength is above RssiThreshold and  
SyncAddress matched  
2-1 ListenEnd  
01  
Action taken after acceptance of a packet in Listen mode:  
00 chip stays in Rx mode. Listen mode stops and must  
be disabled (see section 4.3).  
01 chip stays in Rx mode until PayloadReady or  
Timeout interrupt occurs. It then goes to the mode defined  
by Mode. Listen mode stops and must be disabled (see  
section 4.3).  
10 chip stays in Rx mode until PayloadReady or  
Timeout interrupt occurs. Listen mode then resumes in  
Idle state. FIFO content is lost at next Rx wakeup.  
11 Reserved  
0
-
r
0
unused  
7-0 ListenCoefIdle  
rw  
0xf5 Duration of the Idle phase in Listen mode.  
RegListen2  
(0x0E)  
t
= ListenCoefIdleListenResolIdle  
ListenIdle  
7-0 ListenCoefRx  
rw  
0x20 Duration of the Rx phase in Listen mode (startup time  
included, see section 4.2.3)  
RegListen3  
(0x0F)  
t
= ListenCoefRxListenResolRx  
ListenRx  
RegVersion  
(0x10)  
Version code of the chip. Bits 7-4 give the full revision  
number; bits 3-0 give the metal mask revision number.  
7-0 Version  
r
0x24  
Page 65  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.3. Transmitter Registers  
Table 25 Transmitter Registers  
Name  
(Address)  
Default  
Value  
Bits Variable Name  
Mode  
Description  
7
6
5
Pa0On *  
Pa1On *  
Pa2On *  
rw  
rw  
rw  
rw  
1
0
0
Enables PA0, connected to RFIO and LNA  
Enables PA1, on PA_BOOST pin  
Enables PA2, on PA_BOOST pin  
RegPaLevel  
(0x11)  
4-0 OutputPower  
11111 Output power setting, with 1 dB steps  
Pout = -18 + OutputPower [dBm] , with PA0  
Pout = -18 + OutputPower [dBm] , with PA1**  
Pout = -14+ OutputPower [dBm] , with PA1 and PA2**  
Pout = -11 + OutputPower [dBm] , with PA1 and PA2, and  
high Power PA settings (refer to section 3.3.7)**  
7-4  
-
r
0000 unused  
RegPaRamp  
(0x12)  
3-0 PaRamp  
rw  
1001 Rise/Fall time of ramp up/down in FSK  
0000 3.4 ms  
0001 2 ms  
0010 1 ms  
0011 500 us  
0100 250 us  
0101 125 us  
0110 100 us  
0111 62 us  
1000 50 us  
1001 40 us  
1010 31 us  
1011 25 us  
1100 20 us  
1101 15 us  
1110 12 us  
1111 10 us  
7-5  
4
-
r
000  
1
unused  
RegOcp  
(0x13)  
OcpOn  
rw  
Enables overload current protection (OCP) for the PA:  
0 OCP disabled  
1 OCP enabled  
3-0 OcpTrim  
rw  
1010 Trimming of OCP current:  
Imax = 45 + 5 OcpTrim mA  
95 mA OCP by default  
Note *Power Amplifier truth table is available in Table 10  
** Only the16 upper values of OutputPower are accessible  
Page 66  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.4. Receiver Registers  
Table 26 Receiver Registers  
Name  
(Address)  
Default  
Value  
Bits Variable Name  
Mode  
Description  
7-0  
7-0  
7-0  
7-0  
7
-
r
0x40 unused  
0xB0 unused  
0x7B unused  
0x9B unused  
Reserved14  
(0x14)  
-
r
r
Reserved15  
(0x15)  
-
Reserved16  
(0x16)  
-
r
Reserved17  
(0x17)  
LnaZin  
rw  
1
*
LNA’s input impedance  
0 50 ohms  
1 200 ohms  
RegLna  
(0x18)  
6
-
r
r
0
unused  
5-3 LnaCurrentGain  
2-0 LnaGainSelect  
001  
000  
Current LNA gain, set either manually, or by the AGC  
rw  
LNA gain setting:  
000 gain set by the internal AGC loop  
001 G1 = highest gain  
010 G2 = highest gain – 6 dB  
011 G3 = highest gain – 12 dB  
100 G4 = highest gain – 24 dB  
101 G5 = highest gain – 36 dB  
110 G6 = highest gain – 48 dB  
111 reserved  
7-5 DccFreq  
rw  
010  
*
Cut-off frequency of the DC offset canceller (DCC):  
RegRxBw  
(0x19)  
~4% of the RxBw by default  
4-3 RxBwMant  
2-0 RxBwExp  
rw  
rw  
10  
*
Channel filter bandwidth control:  
00 RxBwMant = 16  
01 RxBwMant = 20  
10 RxBwMant = 24  
11 reserved  
101  
*
Channel filter bandwidth control:  
FSK Mode:  
FXOSC  
-----------------------------------------------------------------  
RxBw =  
RxBwMant  
2RxBwExp + 2  
OOK Mode:  
RxBw =  
FXOSC  
-----------------------------------------------------------------  
RxBwMant  
2RxBwExp + 3  
See Table 14 for tabulated values  
7-5 DccFreqAfc  
4-3 RxBwMantAfc  
2-0 RxBwExpAfc  
rw  
rw  
rw  
100  
01  
DccFreq parameter used during the AFC  
RxBwMant parameter used during the AFC  
RegAfcBw  
(0x1A)  
011 * RxBwExp parameter used during the AFC  
Page 67  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7-6 OokThreshType  
rw  
rw  
01  
Selects type of threshold in the OOK data slicer:  
RegOokPeak  
(0x1B)  
00 fixed  
01 peak  
10 average  
11 reserved  
5-3 OokPeakTheshStep  
000  
Size of each decrement of the RSSI threshold in the OOK  
demodulator:  
000 0.5 dB  
010 1.5 dB  
100 3.0 dB  
110 5.0 dB  
001 1.0 dB  
011 2.0 dB  
101 4.0 dB  
111 6.0 dB  
2-0 OokPeakThreshDec  
7-6 OokAverageThreshFilt  
rw  
rw  
000  
10  
Period of decrement of the RSSI threshold in the OOK  
demodulator:  
000 once per chip  
010 once every 4 chips  
100 twice in each chip  
001 once every 2 chips  
011 once every 8 chips  
101 4 times in each chip  
110 8 times in each chip 111 16 times in each chip  
Filter coefficients in average mode of the OOK  
demodulator:  
RegOokAvg  
(0x1C)  
00 f chip rate / 32.π  
01 f chip rate / 8.π  
C
C
10 f chip rate / 4.π  
11 f chip rate / 2.π  
C
C
5-0  
-
r
000000 unused  
7-0 OokFixedThresh  
rw  
0110 Fixed threshold value (in dB) in the OOK demodulator.  
(6dB) Used when OokThresType = 00  
RegOokFix  
(0x1D)  
7
6
-
r
r
0
0
unused  
RegAfcFei  
(0x1E)  
FeiDone  
0 FEI is on-going  
1 FEI finished  
5
4
FeiStart  
w
r
0
1
Triggers a FEI measurement when set. Always reads 0.  
AfcDone  
0 AFC is on-going  
1 AFC has finished  
3
2
AfcAutoclearOn  
AfcAutoOn  
rw  
rw  
0
0
Only valid if AfcAutoOn is set  
0 AFC register is not cleared before a new AFC phase  
1 AFC register is cleared before a new AFC phase  
0 AFC is performed each time AfcStart is set  
1 AFC is performed each time Rx mode is entered  
1
0
AfcClear  
AfcStart  
w
w
r
0
0
Clears the AfcValue if set in Rx mode. Always reads 0  
Triggers an AFC when set. Always reads 0.  
7-0 AfcValue(15:8)  
7-0 AfcValue(7:0)  
7-0 FeiValue(15:8)  
7-0 FeiValue(7:0)  
0x00 MSB of the AfcValue, 2’s complement format  
RegAfcMsb  
(0x1F)  
r
r
r
0x00 LSB of the AfcValue, 2’s complement format  
RegAfcLsb  
(0x20)  
Frequency correction = AfcValue x Fstep  
-
-
MSB of the measured frequency offset, 2’s complement  
RegFeiMsb  
(0x21)  
LSB of the measured frequency offset, 2’s complement  
RegFeiLsb  
(0x22)  
Frequency error = FeiValue x Fstep  
7-2  
1
-
r
r
000000 unused  
RegRssiConfig  
(0x23)  
RssiDone  
1
0 RSSI is on-going  
1 RSSI sampling is finished, result available  
0
RssiStart  
w
r
0
Trigger a RSSI measurement when set. Always reads 0.  
7-0 RssiValue  
0xFF Absolute value of the RSSI in dBm, 0.5dB steps.  
RegRssiValue  
(0x24)  
RSSI = -RssiValue/2 [dBm]  
Page 68  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.5. IRQ and Pin Mapping Registers  
Table 27 IRQ and Pin Mapping Registers  
Name  
(Address)  
Default  
Value  
Bits Variable Name  
Mode  
Description  
7-6 Dio0Mapping  
5-4 Dio1Mapping  
3-2 Dio2Mapping  
1-0 Dio3Mapping  
7-6 Dio4Mapping  
5-4 Dio5Mapping  
rw  
rw  
rw  
rw  
rw  
rw  
r
00  
RegDioMapping1  
(0x25)  
Mapping of pins DIO0 to DIO5  
00  
00  
See Table 21 for mapping in Continuous mode  
See Table 22 for mapping in Packet mode  
00  
00  
RegDioMapping2  
(0x26)  
00  
3
-
0
unused  
2-0 ClkOut  
rw  
111  
*
Selects CLKOUT frequency:  
000 FXOSC  
001 FXOSC / 2  
010 FXOSC / 4  
011 FXOSC / 8  
100 FXOSC / 16  
101 FXOSC / 32  
110 RC (automatically enabled)  
111 OFF  
7
ModeReady  
r
1
Set when the operation mode requested in Mode, is ready  
- Sleep: Entering Sleep mode  
- Standby: XO is running  
RegIrqFlags1  
(0x27)  
- FS: PLL is locked  
- Rx: RSSI sampling starts  
- Tx: PA ramp-up completed  
Cleared when changing operating mode.  
6
5
4
3
2
RxReady  
TxReady  
PllLock  
Rssi  
r
0
0
0
0
0
Set in Rx mode, after RSSI, AGC and AFC.  
Cleared when leaving Rx.  
r
r
Set in Tx mode, after PA ramp-up.  
Cleared when leaving Tx.  
Set (in FS, Rx or Tx) when the PLL is locked.  
Cleared when it is not.  
rwc  
r
Set in Rx when the RssiValue exceeds RssiThreshold.  
Cleared when leaving Rx.  
Timeout  
Set when a timeout occurs (see TimeoutRxStart and  
TimeoutRssiThresh)  
Cleared when leaving Rx or FIFO is emptied.  
1
0
AutoMode  
r
0
0
Set when entering Intermediate mode.  
Cleared when exiting Intermediate mode.  
Please note that in Sleep mode a small delay can be  
observed between AutoMode interrupt and the  
corresponding enter/exit condition.  
SyncAddressMatch  
r/rwc  
Set when Sync and Address (if enabled) are detected.  
Cleared when leaving Rx or FIFO is emptied.  
This bit is read only in Packet mode, rwc in Continuous  
mode  
Page 69  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7
FifoFull  
r
0
Set when FIFO is full (i.e. contains 66 bytes), else  
cleared.  
RegIrqFlags2  
(0x28)  
6
5
FifoNotEmpty  
FifoLevel  
r
r
0
0
Set when FIFO contains at least one byte, else cleared  
Set when the number of bytes in the FIFO strictly exceeds  
FifoThreshold, else cleared.  
4
FifoOverrun  
rwc  
0
Set when FIFO overrun occurs. (except in Sleep mode)  
Flag(s) and FIFO are cleared when this bit is set. The  
FIFO then becomes immediately available for the next  
transmission / reception.  
3
2
PacketSent  
r
r
0
0
Set in Tx when the complete packet has been sent.  
Cleared when exiting Tx.  
PayloadReady  
Set in Rx when the payload is ready (i.e. last byte  
received and CRC, if enabled and CrcAutoClearOff is  
cleared, is Ok). Cleared when FIFO is empty.  
1
0
CrcOk  
-
r
0
0
Set in Rx when the CRC of the payload is Ok. Cleared  
when FIFO is empty.  
r
unused  
7-0 RssiThreshold  
rw  
0xE4 RSSI trigger level for Rssi interrupt :  
RegRssiThresh  
(0x29)  
*
- RssiThreshold / 2 [dBm]  
7-0 TimeoutRxStart  
rw  
rw  
0x00  
Timeout interrupt is generated TimeoutRxStart*16*T  
after switching to Rx mode if Rssi interrupt doesn’t occur  
(i.e. RssiValue > RssiThreshold)  
RegRxTimeout1  
(0x2A)  
bit  
0x00: TimeoutRxStart is disabled  
7-0 TimeoutRssiThresh  
0x00  
Timeout interrupt is generated TimeoutRssiThresh*16*T  
after Rssi interrupt if PayloadReady interrupt doesn’t  
occur.  
RegRxTimeout2  
(0x2B)  
bit  
0x00: TimeoutRssiThresh is disabled  
Page 70  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
6.6. Packet Engine Registers  
Table 28 Packet Engine Registers  
Name  
(Address)  
Default  
Value  
Bits Variable Name  
Mode  
Description  
7-0 PreambleSize(15:8)  
rw  
0x00 Size of the preamble to be sent (from TxStartCondition  
RegPreambleMsb  
(0x2c)  
fulfilled). (MSB byte)  
7-0 PreambleSize(7:0)  
rw  
rw  
0x03 Size of the preamble to be sent (from TxStartCondition  
RegPreambleLsb  
(0x2d)  
fulfilled). (LSB byte)  
7
6
SyncOn  
1
0
Enables the Sync word generation and detection:  
0 Off  
1 On  
RegSyncConfig  
(0x2e)  
FifoFillCondition  
rw  
rw  
FIFO filling condition:  
0 if SyncAddress interrupt occurs  
1 as long as FifoFillCondition is set  
5-3 SyncSize  
011  
000  
Size of the Sync word:  
(SyncSize + 1) bytes  
2-0 SyncTol  
rw  
rw  
Number of tolerated bit errors in Sync word  
1st byte of Sync word. (MSB byte)  
Used if SyncOn is set.  
7-0 SyncValue(63:56)  
0x01  
*
RegSyncValue1  
(0x2f)  
2nd byte of Sync word  
Used if SyncOn is set and (SyncSize +1) >= 2.  
3rd byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 3.  
4th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 4.  
5th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 5.  
6th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 6.  
7th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) >= 7.  
8th byte of Sync word.  
Used if SyncOn is set and (SyncSize +1) = 8.  
7-0 SyncValue(55:48)  
7-0 SyncValue(47:40)  
7-0 SyncValue(39:32)  
7-0 SyncValue(31:24)  
7-0 SyncValue(23:16)  
7-0 SyncValue(15:8)  
7-0 SyncValue(7:0)  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
0x01  
*
RegSyncValue2  
(0x30)  
0x01  
*
RegSyncValue3  
(0x31)  
0x01  
*
RegSyncValue4  
(0x32)  
0x01  
*
RegSyncValue5  
(0x33)  
0x01  
*
RegSyncValue6  
(0x34)  
0x01  
*
RegSyncValue7  
(0x35)  
0x01  
*
RegSyncValue8  
(0x36)  
Page 71  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7
PacketFormat  
rw  
rw  
0
Defines the packet format used:  
0 Fixed length  
1 Variable length  
RegPacketConfig1  
(0x37)  
6-5 DcFree  
00  
Defines DC-free encoding/decoding performed:  
00 None (Off)  
01 Manchester  
10 Whitening  
11 reserved  
4
3
CrcOn  
rw  
rw  
1
0
Enables CRC calculation/check (Tx/Rx):  
0 Off  
1 On  
CrcAutoClearOff  
Defines the behavior of the packet handler when CRC  
check fails:  
0 Clear FIFO and restart new packet reception. No  
PayloadReady interrupt issued.  
1 Do not clear FIFO. PayloadReady interrupt issued.  
2-1 AddressFiltering  
rw  
00  
Defines address based filtering in Rx:  
00 None (Off)  
01 Address field must match NodeAddress  
10 Address field must match NodeAddress or  
BroadcastAddress  
11 reserved  
0
-
rw  
rw  
0
unused  
7-0 PayloadLength  
0x40 If PacketFormat = 0 (fixed), payload length.  
If PacketFormat = 1 (variable), max length in Rx, not used  
in Tx.  
RegPayloadLength  
(0x38)  
7-0 NodeAddress  
rw  
rw  
rw  
0x00 Node address used in address filtering.  
RegNodeAdrs  
(0x39)  
7-0 BroadcastAddress  
7-5 EnterCondition  
0x00 Broadcast address used in address filtering.  
RegBroadcastAdrs  
(0x3A)  
000  
000  
00  
Interrupt condition for entering the intermediate mode:  
000 None (AutoModes Off)  
001 Rising edge of FifoNotEmpty  
010 Rising edge of FifoLevel  
RegAutoModes  
(0x3B)  
011 Rising edge of CrcOk  
100 Rising edge of PayloadReady  
101 Rising edge of SyncAddress  
110 Rising edge of PacketSent  
111 Falling edge of FifoNotEmpty (i.e. FIFO empty)  
4-2 ExitCondition  
rw  
Interrupt condition for exiting the intermediate mode:  
000 None (AutoModes Off)  
001 Falling edge of FifoNotEmpty (i.e. FIFO empty)  
010 Rising edge of FifoLevel or Timeout  
011 Rising edge of CrcOk or Timeout  
100 Rising edge of PayloadReady or Timeout  
101 Rising edge of SyncAddress or Timeout  
110 Rising edge of PacketSent  
111 Rising edge of Timeout  
1-0 IntermediateMode  
rw  
Intermediate mode:  
00 Sleep mode (SLEEP)  
01 Standby mode (STDBY)  
10 Receiver mode (RX)  
11 Transmitter mode (TX)  
Page 72  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7
TxStartCondition  
rw  
1
*
Defines the condition to start packet transmission :  
0 FifoLevel (i.e. the number of bytes in the FIFO  
exceeds FifoThreshold)  
RegFifoThresh  
(0x3C)  
1 FifoNotEmpty (i.e. at least one byte in the FIFO)  
6-0 FifoThreshold  
rw  
rw  
0001111 Used to trigger FifoLevel interrupt.  
7-4 InterPacketRxDelay  
0000 After PayloadReady occurred, defines the delay between  
FIFO empty and the start of a new RSSI phase for next  
packet. Must match the transmitter’s PA ramp-down time.  
- Tdelay = 0 if InterpacketRxDelay >= 12  
RegPacketConfig2  
(0x3D)  
- Tdelay = (2InterpacketRxDelay) / BitRate otherwise  
3
2
-
rw  
w
0
0
unused  
RestartRx  
Forces the Receiver in WAIT mode, in Continuous Rx  
mode.  
Always reads 0.  
1
AutoRxRestartOn  
rw  
1
Enables automatic Rx restart (RSSI phase) after  
PayloadReady occurred and packet has been completely  
read from FIFO:  
0 Off. RestartRx can be used.  
1 On. Rx automatically restarted after  
InterPacketRxDelay.  
0
AesOn  
rw  
0
Enable the AES encryption/decryption:  
0 Off  
1 On (payload limited to 66 bytes maximum)  
1st byte of cipher key (MSB byte)  
2nd byte of cipher key  
3rd byte of cipher key  
4th byte of cipher key  
5th byte of cipher key  
6th byte of cipher key  
7th byte of cipher key  
8th byte of cipher key  
9th byte of cipher key  
10th byte of cipher key  
11th byte of cipher key  
12th byte of cipher key  
13th byte of cipher key  
7-0 AesKey(127:120)  
7-0 AesKey(119:112)  
7-0 AesKey(111:104)  
7-0 AesKey(103:96)  
7-0 AesKey(95:88)  
7-0 AesKey(87:80)  
7-0 AesKey(79:72)  
7-0 AesKey(71:64)  
7-0 AesKey(63:56)  
7-0 AesKey(55:48)  
7-0 AesKey(47:40)  
7-0 AesKey(39:32)  
7-0 AesKey(31:24)  
w
w
w
w
w
w
w
w
w
w
w
w
w
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RegAesKey1  
(0x3E)  
RegAesKey2  
(0x3F)  
RegAesKey3  
(0x40)  
RegAesKey4  
(0x41)  
RegAesKey5  
(0x42)  
RegAesKey6  
(0x43)  
RegAesKey7  
(0x44)  
RegAesKey8  
(0x45)  
RegAesKey9  
(0x46)  
RegAesKey10  
(0x47)  
RegAesKey11  
(0x48)  
RegAesKey12  
(0x49)  
RegAesKey13  
(0x4A)  
Page 73  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
14th byte of cipher key  
15th byte of cipher key  
7-0 AesKey(23:16)  
7-0 AesKey(15:8)  
7-0 AesKey(7:0)  
w
w
w
0x00  
0x00  
0x00  
RegAesKey14  
(0x4B)  
RegAesKey15  
(0x4C)  
16th byte of cipher key (LSB byte)  
RegAesKey16  
(0x4D)  
6.7. Temperature Sensor Registers  
Table 29 Temperature Sensor Registers  
Name  
Default  
Value  
Bits Variable Name  
(Address)  
Mode  
Description  
7-4  
3
-
r
0000 unused  
RegTemp1  
(0x4E)  
TempMeasStart  
w
0
Triggers the temperature measurement when set. Always  
reads 0.  
2
TempMeasRunning  
r
0
Set to 1 while the temperature measurement is running.  
Toggles back to 0 when the measurement has completed.  
The receiver can not be used while measuring  
temperature  
1-0  
-
r
r
01  
-
unused  
7-0 TempValue  
Measured temperature  
-1°C per Lsb  
RegTemp2  
(0x4F)  
Needs calibration for accuracy  
6.8. Test Registers  
Table 30 Test Registers  
Name  
Default  
Value  
Bits Variable Name  
Mode  
Description  
(Address)  
RegTestLna  
(0x58)  
7-0 SensitivityBoost  
rw  
0x1B High sensitivity or normal sensitivity mode:  
0x1B Normal mode  
0x2D High sensitivity mode  
RegTestPa1  
(0x5A)  
7-0 Pa20dBm1  
rw  
rw  
rw  
rw  
0x55 Set to 0x5D for +20 dBm operation on PA_BOOST.  
0x55 Normal mode and Rx mode  
0x5D +20 dBm mode  
Revert to 0x55 when receiving or using PA0  
RegTestPa2  
(0x5C)  
7-0 Pa20dBm2  
0x70 Set to 0x7C for +20 dBm operation on PA_BOOST  
0x70 Normal mode and Rx mode  
0x7C +20 dBm mode  
Revert to 0x70 when receiving or using PA0  
RegTestDagc  
(0x6F)  
7-0 ContinuousDagc  
7-0 LowBetaAfcOffset  
0x30 Fading Margin Improvement, refer to 3.4.4  
*
0x00 Normal mode  
0x20 Improved margin, use if AfcLowBetaOn=1  
0x30 Improved margin, use if AfcLowBetaOn=0  
RegTestAfc  
(0x71)  
0x00 AFC offset set for low modulation index systems, used if  
AfcLowBetaOn=1.  
Offset = LowBetaAfcOffset x 488 Hz  
Page 74  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7. Application Information  
7.1. Crystal Resonator Specification  
Table 31 shows the crystal resonator specification for the crystal reference oscillator circuit of the RFM69HW.  
This specification covers the full range of operation of the RFM69HW and is employed in the reference design.  
Table 31 Crystal Specification  
Symbol Description  
Conditions  
Min  
Typ  
Max  
Unit  
FXOSC  
RS  
XTAL Frequency  
26  
-
-
32  
140  
7
MHz  
ohms  
pF  
XTAL Serial Resistance  
XTAL Shunt Capacitance  
External Foot Capacitance  
30  
2.8  
16  
C0  
-
CLOAD  
On each pin XTA and XTB  
8
22  
pF  
Notes - the initial frequency tolerance, temperature stability and ageing performance should be chosen in accordance  
with the target operating temperature range and the receiver bandwidth selected.  
- the loading capacitance should be applied externally, and adapted to the actual Cload specification of the XTAL.  
- A minimum XTAL frequency of 28 MHz is required to cover the 863-870 MHz band, 29 MHz for the 902-928 MHz  
band  
7.2. Reset of the Module  
A power-on reset of the RFM69HW is triggered at power up. Additionally, a manual reset can be issued by controlling pin  
RESET.  
7.2.1. POR  
If the application requires the disconnection of VDD from the RFM69HW, despite of the extremely low Sleep Mode  
current, the user should wait for 10 ms from of the end of the POR cycle before commencing communications over the SPI  
bus. Pin  
6 (Reset) should be left floating during the POR sequence.  
VDD  
Pin Reset  
Undefined  
(output)  
Wait  
for  
Module is ready  
10 ms  
from this point on  
Figure 39. POR Timing Diagram  
Please note that any CLKOUT activity can also be used to detect that the module is ready.  
Page 75  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
7.2.2. Manual Reset  
A manual reset of the RFM69HW is possible even for applications in which VDD cannot be physically disconnected. Pin  
RESET should be pulled high for a hundred microseconds, and then released. The user should then wait for 5 ms before  
using the module.  
Figure 40. Manual Reset Timing Diagram  
Note whilst pin RESET is driven high, an over current consumption of up to ten milliamps can be seen on VDD.  
Page 76  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
7.3. Reference Design  
Please contact your representative for evaluation tools, reference designs and design assistance. Note that all  
schematics shown in this section are full schematics, listing ALL required components, including decoupling capacitors.  
Figure 41:+20dBm Schematic  
A
ADVANCED COMMUNICATIONS & SENSING  
DATASHEET  
Page 77  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
8. Packaging Information  
8.1. Package Outline Drawing  
Figure 42. S 2 Package Outline Drawing  
Page 78  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM69HW  
A
9. Ordering Information  
RFM69HW 433 S2  
D
Package  
Operation Band  
Mode Type  
P/N: RFM69HW-315S2  
RFM69HW module at 315MHz band, SMD Package  
P/N: RFM69HW-433S2  
RFM69HW module at 433MHz band, SMD Package  
P/N: RFM69HW-868S2  
RFM69HW module at 868MHz band, SMD Package  
P/N: RFM69HW-915S2  
RFM69HW module at 915MHz band, SMD Package  
V
This document may contain preliminary information and is subject to  
change by Hope Microelectronics without notice. Hope Microelectronics  
assumes no responsibility or liability for any use of the information  
contained herein. Nothing in this document shall operate as an express or  
implied license or indemnity under the intellectual property rights of Hope  
Microelectronics or third parties. The products described in this document  
are not intended for use in implantation or other direct life support  
applications where malfunction may result in the direct physical harm or  
injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT  
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY  
OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS  
DOCUMENT.  
HOPE MICROELECTRONICS CO.,LTD  
Add: 2/F, Building 3, Pingshan Private  
Enterprise Science and Technology  
Park, Lishan Road, XiLi Town,  
Nanshan District, Shenzhen,  
Guangdong, China  
Tel: 86-755-82973805  
Fax: 86-755-82973550  
Email: sales@hoperf.com  
Website: http://www.hoperf.com  
http://www.hoperf.cn  
©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.  
Page 79  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY