HFBR-14E4C [HP]

Components is Designed to Provide cost effective, High performance fiber optic communication links; 组件旨在提供高性价比,高性能光纤通信链路
HFBR-14E4C
型号: HFBR-14E4C
厂家: HEWLETT-PACKARD    HEWLETT-PACKARD
描述:

Components is Designed to Provide cost effective, High performance fiber optic communication links
组件旨在提供高性价比,高性能光纤通信链路

光纤 通信
文件: 总25页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HFBR-0400, HFBR-14xx and  
HFBR-24xx Series Low Cost, Miniature  
Fiber Optic Components with ST®,  
SMA, SC and FC Ports  
Data Sheet  
Features  
Meets IEEE 802.3 Ethernet and  
802.5 Token Ring Standards  
Meets TIA/EIA-785 100Base-SX  
standard  
Low Cost Transmitters and  
Receivers  
Description  
The HFBR-0400 Series of  
components is designed to  
provide cost effective, high  
performance fiber optic  
communication links for  
information systems and  
industrial applications with link  
distances of up to 2.7  
Choice of ST®, SMA, SC or FC  
Ports  
820 nm Wavelength Technology  
Signal Rates up to 160 MBd  
Link Distances up to 2.7 km  
Specified with 50/125 µm, 62.5/  
125 µm, 100/140 µm, and 200 µm  
HCS® Fiber  
kilometers. With the HFBR-24x6,  
the 125 MHz analog receiver,  
data rates of up to 160  
megabaud are attainable.  
Repeatable ST Connections within  
Applications  
100Base-SX Fast Ethernet on 850  
nm  
0.2 dB Typical  
Transmitters and receivers are  
directly compatible with popular  
“industry-standard” connectors:  
ST®, SMA, SC and FC. They are  
completely specified with  
multiple fiber sizes; including  
50/125 µm, 62.5/125 µm, 100/  
140 µm, and 200 µm.  
Unique Optical Port Design for  
Efficient Coupling  
Auto-Insertable and Wave  
Solderable  
No Board Mounting Hardware  
Required  
Wide Operating Temperature  
Range -40 °C to +85 °C  
AlGaAs Emitters 100% Burn-In  
Ensures High Reliability  
Conductive Port Option  
Media/fiber conversion, switches,  
routers, hubs and NICs on  
100Base-SX  
Local Area Networks  
Computer to Peripheral Links  
Computer Monitor Links  
Digital Cross Connect Links  
Central Office Switch/PBX Links  
Video Links  
The HFBR-14x4 high power  
transmitter and HFBR-24x6 125  
MHz receiver pair up to provide  
a duplex solution optimized for  
100 Base-SX. 100Base-SX is a  
Fast Ethernet Standard (100  
Mbps) at 850 nm on multimode  
fiber.  
Modems and Multiplexers  
Suitable for Tempest Systems  
Industrial Control Links  
Complete evaluation kits are  
available for ST product  
offerings; including transmitter,  
receiver, connectored cable, and  
technical literature. In addition,  
ST connectored cables are  
available for evaluation.  
ST® is a registered trademark of AT&T.  
HCS® is a registered trademark of the SpecTran Corporation.  
HFBR-0400 Series Part Number Guide  
HFBR-x4xxaa  
1
2
Transmitter  
Receiver  
T
Threaded port option  
C
Conductive port receiver option  
Metal port option  
M
4
820 nm Transmitter and Receiver  
products  
2
4
2
5
6
TX, stadnard power  
TX, high power  
0
1
2
E
SMA, housed  
ST, housed  
FC, housed  
SC, housed  
RX, 5 MBd, TTL output  
TX, high light output power  
RX, 125 MHz, Analog Output  
Available Options  
HFBR-1402  
HFBR-1404  
HFBR-1412  
HFBR-1412T  
HFBR-1414  
HFBR-1414M  
HFBR-1414T  
HFBR-1424  
HFBR-1412TM  
HFBR-14E4  
HFBR-2402  
HFBR-2406  
HFBR-2412TC  
HFBR-2412T  
HFBR-2422  
HFBR-24E6  
HFBR-2416T  
HFBR-2416TC  
HFBR-2416  
HFBR-2416M  
HFBR-2412  
Link Selection Guide  
Data rate (MBd) Distance (m)  
Transmitter  
HFBR-14x2  
HFBR-14x4  
HFBR-14x4  
HFBR-14x4  
HFBR-14x4  
HFBR-14x4  
HFBR-14x4  
HFBR-14x4  
Receiver  
HFBR-24x2  
HFBR-24x2  
HFBR-24x6  
HFBR-24x6  
HFBR-24x6  
HFBR-24x6  
HFBR-24x6  
HFBR-24x6  
Fiber Size (µm)  
200 HCS  
Evaluation Kit  
N/A  
5
1500  
2000  
2700  
2200  
1400  
700  
5
62.5/125  
HFBR-0410  
HFBR-0414  
HFBR-0414  
HFBR-0414  
HFBR-0416  
HFBR-0416  
HFBR-0416  
20  
32  
55  
125  
155  
160  
62.5/125  
62.5/125  
62.5/125  
62.5/125  
600  
62.5/125  
500  
62.5/125  
For additional information on specific links see the following individual link descriptions. Distances measured over temperature range from 0 to +70 °C.  
2
Applications Support Guide  
Agilent offers a wide selection of Furthermore, Agilent’s  
This section gives the designer  
information necessary to use the  
HFBR-0400 series components  
to make a functional fiber optic  
transceiver.  
evaluation kits for hands-on  
experience with fiber optic  
application support group is  
always ready to assist with any  
products as well as a wide range design consideration.  
of application notes complete  
with circuit diagrams and board  
layouts.  
Application Literature  
Title  
Description  
HFBR-0400 Series Reliability Data  
Application Bulletin 78  
Application Note 1038  
Application Note 1065  
Application Note 1073  
Application Note 1086  
Application Note 1121  
Application Note 1122  
Application Note 1123  
Application Note 1137  
Application Note 1383  
Transmitter & Receiver Reliability Data  
Low Cost Fiber Optic Links for Digital Applications up to 155 MBd  
Complete Fiber Solutions for IEEE 802.3 FOIRL, 10Base-FB and 10Base-FL  
Complete Solutions for IEEE 802.5J Fiberoptic Token Ring  
HFBR-0219 Test Fixture for 1x9 Fiber Optic Transceivers  
Optical Fiber Interconnections in Telecommunication Products  
DC to 32 MBd Fiberoptic Solutions  
2 to 70 MBd Fiberoptic Solutions  
20 to 160 MBd Fiberoptic Solutions  
Generic Printed Circuit Layout Rules  
Cost Effective Fiber and Media Conversion for 100Base-SX  
3
HFBR-0400 Series Evaluation Kits  
Package and Handling Information  
Recommended Chemicals for  
Cleaning/Degreasing HFBR-0400  
Products  
HFBR-0410 ST Evaluation Kit  
Package Information  
Contains the following:  
All HFBR-0400 Series  
transmitters and receivers are  
housed in a low-cost, dual-inline Aliphatics: hexane, heptane,  
package that is made of high  
strength, heat resistant,  
chemically resistant, and UL  
94V-O flame retardant ULTEM®  
plastic (UL File #E121562). The  
transmitters are easily identified  
by the light grey color connector  
port. The receivers are easily  
identified by the dark grey color  
connector port. (Black color for  
conductive port). The package is  
designed for auto-insertion and  
wave soldering so it is ideal for  
high volume production  
Alcohols: methyl, isopropyl,  
isobutyl.  
One HFBR-1412 transmitter  
One HFBR-2412 five  
megabaud TTL receiver  
Three meters of ST  
Other: soap solution, naphtha.  
Do not use partially halogenated  
hydrocarbons such as 1,1.1  
trichloroethane, ketones such as  
MEK, acetone, chloroform, ethyl  
acetate, methylene dichloride,  
phenol, methylene chloride, or  
N-methylpyrolldone. Also,  
Agilent does not recommend the  
use of cleaners that use  
connectored 62.5/125 µm  
fiber optic cable with low cost  
plastic ferrules.  
Related literature  
HFBR-0414 ST Evaluation Kit  
Includes additional components  
to interface to the transmitter  
and receiver as well as the PCB  
to reduce design time. Contains  
the following:  
halogenated hydrocarbons  
because of their potential  
environmental harm.  
applications.  
One HFBR-1414T transmitter  
One HFBR-2416T receiver  
Three meters of ST  
Handling and Design Information  
Each part comes with a  
connectored 62.5/125 µm  
fiber optic cable  
protective port cap or plug  
covering the optics. These caps/  
plugs will vary by port style.  
When soldering, it is advisable  
to leave the protective cap on  
the unit to keep the optics clean.  
Good system performance  
requires clean port optics and  
cable ferrules to avoid  
Printed circuit board  
ML-4622 CP Data Quantizer  
74ACTllOOON LED Driver  
LT1016CN8 Comparator  
4.7 µH Inductor  
Related literature  
HFBR-0400 SMA Evaluation Kit  
Contains the following:  
obstructing the optical path.  
Clean compressed air often is  
sufficient to remove particles of  
dirt; methanol on a cotton swab  
also works well.  
One HFBR-1402 transmitter  
One HFBR-2402 five  
megabaud TTL receiver  
Two meters of SMA  
connectored 1000 µm plastic  
optical fiber  
Related literature  
HFBR-0416 Evaluation Kit  
Contains the following:  
One fully assembled 1x9  
transceiver board for 155  
MBd evaluation including:  
- HFBR-1414 transmitter  
- HFBR-2416 receiver  
- circuitry  
Related literature  
Ultem® is a registered Trademark of the GE corporation.  
4
Mechanical Dimensions  
SMA Port  
HFBR-x40x  
1/4 - 36 UNS 2A THREAD  
12.7  
(0.50)  
22.2  
(0.87)  
6.35  
(0.25)  
12.7  
(0.50)  
6.4  
(0.25)  
10.2  
(0.40)  
3.6  
(0.14)  
DIA.  
5.1  
(0.20)  
3.81  
(0.15)  
1.27  
(0.05)  
2.54  
(0.10)  
PINS 1,4,5,8  
0.51 X 0.38  
2.54  
(0.020 X 0.015)  
(0.10)  
PINS 2,3,6,7  
0.46  
(0.018)  
DIA.  
PIN NO. 1  
INDICATOR  
Mechanical Dimensions  
ST Port  
HFBR-x41x  
12.7  
(0.50)  
8.2  
(0.32)  
27.2  
(1.07)  
6.35  
(0.25)  
12.7  
(0.50)  
7.0  
(0.28)  
10.2  
(0.40)  
3.6  
(0.14)  
DIA.  
5.1  
(0.20)  
3.81  
(0.15)  
1.27  
(0.05)  
2.54  
(0.10)  
PINS 1,4,5,8  
0.51 X 0.38  
(0.020 X 0.015)  
2.54  
(0.10)  
PINS 2,3,6,7  
0.46  
(0.018)  
DIA.  
PIN NO. 1  
INDICATOR  
5
Mechanical Dimensions  
Threaded ST Port  
HFBR-x41xT  
5.1  
(0.20)  
12.7  
(0.50)  
8.4  
(0.33)  
27.2  
(1.07)  
7.6  
(0.30)  
6.35  
(0.25)  
12.7  
(0.50)  
7.1  
(0.28)  
10.2  
(0.40)  
DIA.  
3.6  
(0.14)  
5.1  
(0.20)  
3/8 - 32 UNEF - 2A  
3.81  
1.27  
(0.05)  
(0.15)  
2.54  
(0.10)  
DIA.  
PINS 1,4,5,8  
0.51 X 0.38  
(0.020 X 0.015)  
2.54  
(0.10)  
PINS 2,3,6,7  
0.46  
DIA.  
(0.018)  
PIN NO. 1  
INDICATOR  
Mechanical Dimensions  
FC Port  
HFBR-x42x  
M8 x 0.75 6G  
THREAD (METRIC)  
12.7  
(0.50)  
19.6  
(0.77)  
12.7  
(0.50)  
7.9  
(0.31)  
10.2  
(0.40)  
3.6  
(0.14)  
5.1  
(0.20)  
3.81  
(0.15)  
2.5  
(0.10)  
2.5  
(0.10)  
PIN NO. 1  
INDICATOR  
6
Mechanical Dimensions  
SC Port  
HFBR-x4Ex  
28.65  
(1.128)  
6.35  
12.7  
(0.25)  
(0.50)  
10.38  
(0.409)  
10.0  
(0.394)  
3.60  
(0.140)  
5.1  
(0.200)  
15.95  
(0.628)  
3.81  
(0.15)  
1.27  
(0.050)  
2.54  
(0.10)  
2.54  
(0.100)  
12.7  
(0.500)  
7
LED OR DETECTOR IC  
LENS–SPHERE  
(ON TRANSMITTERS ONLY)  
HOUSING  
LENS–WINDOW  
CONNECTOR PORT  
HEADER  
EPOXY BACKFILL  
PORT GROUNDING PATH INSERT  
Figure 1. HFBR-0400 ST Series Cross-Sectional View.  
Panel Mount Hardware  
HFBR-4401: for SMA Ports  
HFBR-4411: for ST Ports  
1/4 - 36 UNEF -  
2B THREAD  
PART  
NUMBER  
3/8 - 32 UNEF -  
2B THREAD  
0.2 IN.  
DATE CODE  
7.87  
DIA.  
12.70  
DIA.  
(0.310)  
(0.50)  
1.65  
1.65  
(0.065)  
3/8 - 32 UNEF -  
2A THREADING  
(0.065)  
HEX-NUT  
HEX-NUT  
1 THREAD  
AVAILABLE  
7.87 TYP.  
(0.310) DIA.  
14.27 TYP.  
(0.563) DIA.  
WALL  
NUT  
6.61  
(0.260)  
DIA.  
10.41 MAX.  
(0.410) DIA.  
0.14  
(0.005)  
0.46  
(0.018)  
WASHER  
WASHER  
WASHER  
(Each HFBR-4401 and HFBR-4411 kit consists of 100 nuts and 100 washers).  
Port Cap Hardware  
HFBR-4402: 500 SMA Port Caps  
HFBR-4120: 500 ST Port Plugs (120 psi)  
8
Options  
Option M (Metal Port Option)  
Nickel plated aluminum  
connector receptacle  
Designed to withstand  
electrostatic discharge (ESD)  
of 15 kV to the port  
Significantly reduces effect of  
electromagnetic interference  
(EMI) on receiver sensitivity  
Allows designer to separate  
the signal and metal port  
grounds  
In addition to the various port  
styles available for the HFBR-  
0400 series products, there are  
also several extra options that  
can be ordered. To order an  
option, simply place the  
corresponding option number at  
the end of the part number. See  
page 2 for available options.  
Option T (Threaded Port Option)  
Allows ST style port  
components to be panel  
mounted.  
Compatible with all current  
makes of ST® multimode  
connectors  
Recommended for use in very  
noisy environments  
Available on SMA, ST, and  
threaded ST ports  
Mechanical dimensions are  
compliant with MIL-STD-  
83522/13  
Maximum wall thickness  
when using nuts and washers  
from the HFBR-4411  
hardware kit is 2.8 mm (0.11  
inch)  
Available on all ST ports  
Option C (Conductive Port Receiver  
Option)  
Designed to withstand  
electrostatic discharge (ESD)  
of 25 kV to the port  
Significantly reduces effect of  
electromagnetic interference  
(EMI) on receiver sensitivity  
Allows designer to separate  
the signal and conductive port  
grounds  
Recommended for use in  
noisy environments  
Available on SMA and  
threaded ST port style  
receivers only  
9
Typical Link Data  
HFBR-0400 Series  
Description  
The following technical data is  
taken from 4 popular links using  
the HFBR-0400 series: the 5  
MBd link, Ethernet 20 MBd link,  
Token Ring 32 MBd link, and the  
corresponds to transceiver  
solutions combining the HFBR-  
0400 series components and  
various recommended  
transceiver design circuits using  
off-the-shelf electrical  
components. This data is meant  
to be regarded as an example of  
typical link performance for a  
given design and does not call  
out any link limitations. Please  
refer to the appropriate  
application note given for each  
link to obtain more information.  
5 MBd Link (HFBR-14xx/24x2)  
Link Performance -40 °C to +85 °C unless otherwise specified  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Reference  
Optical Power Budget  
with 50/125 µm fiber  
OPB50  
4.2  
9.6  
dB  
HFBR-14x4/24x2  
NA = 0.2  
Note 1  
Optical Power Budget  
with 62.5/125 µm fiber  
OPB62.5  
OPB100  
OPB200  
15  
15  
20  
dB  
dB  
dB  
HFBR-14x4/24x2  
NA = 0.27  
Note 1  
Note 1  
Note 1  
Note 2  
8.0  
Optical Power Budget  
with 100/140 µm fiber  
8.0  
HFBR-14x2/24x2  
NA = 0.30  
Optical Power Budget  
with 200 µm fiber  
HFBR-14x2/24x2  
NA = 0.37  
12  
Date Rate Synchronous  
Asynchronous  
dc  
dc  
5
MBd  
MBd  
2.5  
Note 3,  
Fig 7  
Propagation Delay  
LOW to HIGH  
tPLH  
72  
46  
26  
ns  
ns  
ns  
TA = +25 °C  
PR = -21 dBm peak  
Figs 6, 7, 8  
Propagation Delay  
HIGH to LOW  
tPHL  
System Pulse Width  
Distortion  
tPLH - tPHL  
Fiber cable length = 1 m  
Bit Error Rate  
BER  
10-9  
Data rate <5 Bd  
PR > -24 dBm peak  
Notes:  
1. OPB at T = -40 to +85 °C, V = 5.0 V dc, IF ON = 60 mA. P = -24 dBm peak.  
A
CC  
R
2. Synchronous data rate limit is based on these assumptions: a) 50% duty factor modulation, e.g., Manchester I or BiPhase Manchester II; b)  
continuous data; c) PLL Phase Lock Loop demodulation; d) TTL threshold.  
3. Asynchronous data rate limit is based on these assumptions: a) NRZ data; b) arbitrary timing-no duty factor restriction; c) TTL threshold.  
10  
5 MBd Logic Link Design  
If resistor R1 in Figure 2 is 70.4  
The following example will  
illustrate the technique for  
The curves in Figures 3, 4, and 5  
are constructed assuming no  
inline splice or any additional  
system loss. Should the link  
consists of any in-line splices,  
these curves can still be used to  
calculate link limits provided  
they are shifted by the  
additional system loss expressed  
in dB. For example, Figure 3  
indicates that with 48 mA of  
transmitter drive current, a 1.75  
km link distance is achievable  
with 62.5/125 µm fiber which  
has a maximum attenuation of 4  
dB/km. With 2 dB of additional  
system loss, a 1.25 km link  
W, a forward current I of 48 mA selecting the appropriate value  
F
is applied to the HFBR-14x4  
LED transmitter. With I = 48  
of I and R .  
F 1  
F
Maximum distance required =  
400 meters. From Figure 3 the  
drive current should be 15 mA.  
mA the HFBR-14x4/24x2 logic  
link is guaranteed to work with  
62.5/125 µm fiber optic cable  
over the entire range of 0 to  
1750 meters at a data rate of dc  
to 5 MBd, with arbitrary data  
format and pulse width  
From the transmitter data V =  
F
1.5 V (max.) at I = 15 mA as  
F
shown in Figure 9.  
R1 = VCC VF = 5V 1.5V  
distortion typically less than  
IF  
15 mA  
25%. By setting R = 115 W, the  
1
transmitter can be driven with  
R1 = 233 Ω  
I = 30 mA, if it is desired to  
F
economize on power or achieve  
lower pulse distortion.  
distance is still achievable.  
TTL DATA OUT  
HFBR-24x2  
RECEIVER  
HFBR-14xx  
TRANSMITTER  
+5 V  
SELECT R1 TO SET IF  
IF  
R1  
2
2
6
7
3
VCC  
T
R
RL  
6
1 KΩ  
0.1 µF  
7 & 3  
DATA IN  
½ 75451  
TRANSMISSION  
DISTANCE =  
NOTE:  
IT IS ESSENTIAL THAT A BYPASS CAPACITOR (0.01 µF TO 0.1 µF  
CERAMIC) BE CONNECTED FROM PIN 2 TO PIN 7 OF THE RECEIVER.  
TOTAL LEAD LENGTH BETWEEN BOTH ENDS OF THE CAPACITOR  
AND THE PINS SHOULD NOT EXCEED 20 MM.  
Figure 2. Typical Circuit Configuration.  
11  
0
60  
0
60  
50  
0
60  
50  
WORST CASE  
-40 ˚C, +85 ˚C  
UNDERDRIVE  
50  
40  
30  
-1  
-2  
-3  
-1  
-2  
-3  
-4  
-5  
OVERDRIVE  
-1  
-2  
-3  
-4  
-5  
WORST CASE  
-40 ˚C, +85 ˚C  
UNDERDRIVE  
WORST CASE  
-40˚C, +85˚C  
UNDERDRIVE  
40  
30  
40  
30  
OVERDRIVE  
TYPICAL 26˚C  
UNDERDRIVE  
TYPICAL +25 ˚C  
UNDERDRIVE  
TYPICAL +25 ˚C  
UNDERDRIVE  
20  
20  
-6  
-7  
-8  
-6  
-7  
-8  
-4  
CABLE ATTENUATION  
α MAX (-40˚C, +85˚C)  
α MIN (-40˚C, +85˚C)  
α TYP (-40˚C, +85˚C)  
dB/km  
4
1
2.8  
10  
6
10  
6
20  
-5  
-6  
dB/km  
CABLE ATTENUATION  
dB/km  
4
1.5  
2.8  
CABLE ATTENUATION  
-9  
-10  
-11  
-9  
-10  
-11  
5.5  
1.0  
3.3  
MAX (-40 ˚C, +85 ˚C)  
MIN (-40 ˚C, +85 ˚C)  
TYP (+25 ˚C)  
MAX (-40 ˚C, +85 ˚C)  
MIN (-40 ˚C, +85 ˚C)  
TYP (+25 ˚C)  
0
0.4  
0.8  
1.2  
1.6  
2
0
1
2
3
4
0
2
4
LINK LENGTH (km)  
LINK LENGTH (km)  
LINK LENGTH (km)  
Figure 3. HFBR-1414/HFBR-2412 Link Design  
Limits with 62.5/125 µm Cable.  
Figure 4. HFBR-14x2/HFBR-24x2 Link Design  
Limits with 100/140 µm Cable.  
Figure 5. HFBR-14x4/HFBR-24x2 Link Design  
Limits with 50/125 µm Cable.  
55  
50  
45  
40  
75  
70  
t
t
(TYP) @ 25˚C  
PLH  
PHL  
65  
60  
55  
50  
45  
40  
35  
30  
35  
30  
25  
(TYP) @ 25˚C  
25  
20  
20  
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12  
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12  
P
– RECEIVER POWER – dBm  
R
P
– RECEIVER POWER – dBm  
R
Figure 6. Propagation Delay through System  
with One Meter of Cable.  
Figure 7. Typical Distortion of Pseudo Random  
Data at 5 Mb/s.  
PULSE  
GEN  
+15 V  
RESISTOR VALUE AS NEEDED FOR  
SETTING OPTICAL POWER OUTPUT  
FROM RECEIVER END OF TEST CABLE  
RS  
1N4150  
PULSE REPETITION  
FREQ = 1 MHz  
½ 75451  
100 ns  
100 ns  
INPUT  
2, 6, 7  
IF 50%  
3
10 W  
tPHLT  
tPHLT  
TRANSMITTER  
INPUT (IF)  
IF 10 W  
50%  
PT  
tPHL  
MIN  
FROM 1-METER  
TEST CABLE  
TIMING  
ANALYSIS  
EQUIPMENT  
eg. SCOPE  
PT  
-
+5 V  
tPHL  
MAX  
tPHL  
MAX  
tPHL  
MIN  
RL  
2
560  
OUTPUT  
+
5 V  
VO  
6
0.1 µF  
1.5 V  
0
VO  
15 pF  
7 & 3  
HFBR-2412 RECEIVER  
Figure 8. System Propagation Delay Test Circuit and Waveform Timing Definitions.  
12  
Ethernet 20 MBd Link (HFBR-14x4/24x6)  
(refer to Application Note 1038 for details)  
Typical Link Performance  
Parameter  
Symbol  
Typ [1, 2]  
Units  
Conditions  
Receiver Sensitivity  
-34.4  
dBm average  
20 MBd D2D2 hexadecimal data  
2 km 62.5/125 µm fiber  
Link Jitter  
7.56  
7.03  
ns pk-pk  
ns pk-pk  
ECL Out Receiver  
TTL Out Receiver  
Transmitter Jitter  
Optical Power  
0.763  
-15.2  
ns pk-pk  
20 MBd D2D2 hexadecimal data  
PT  
dBm average  
20 MBd D2D2 hexadecimal data  
Peak IF,ON = 60 mA  
LED Rise Time  
tr  
1.30  
3.08  
1.77  
10-10  
36.7  
20  
ns  
ns  
ns  
1 MHz square wave input  
LED Fall Time  
tf  
Mean Difference  
Bit Error Rate  
|tr - tf|  
BER  
Output Eye Opening  
Data Format 50% Duty Factor  
ns  
At AUI receiver output  
MBd  
Notes:  
1. Typical data at T = +25 °C, V = 5.0 V dc.  
A
CC  
2. Typical performance of circuits shown in Figure 1 and Figure 3 of AN-1038 (see applications support section).  
Token Ring 32 MBd Link (HFBR-14x4/24x6)  
(refer to Application Note 1065 for details)  
Typical Link Performance  
Parameter  
Symbol  
Typ [1, 2]  
Units  
Conditions  
Receiver Sensitivity  
-34.1  
dBm average  
32 MBd D2D2 hexadecimal data  
2 km 62.5/125 µm fiber  
Link Jitter  
6.91  
5.52  
ns pk-pk  
ns pk-pk  
ECL Out Receiver  
TTL Out Receiver  
Transmitter Jitter  
Optical Power Logic Level "0"  
Optical Power Logic Level "1"  
LED Rise Time  
0.823  
-12.2  
-82.2  
1.3  
ns pk-pk  
32 MBd D2D2 hexadecimal data  
PT ON  
PT OFF  
tr  
dBm peak  
Transmitter TTL in IF ON = 60 mA,  
IF OFF = 1 mA  
ns  
ns  
ns  
1 MHz square wave input  
LED Fall Time  
tf  
3.08  
1.77  
10-10  
32  
Mean Difference  
|tr - tf|  
BER  
Bit Error Rate  
Data Format 50% Duty Factor  
MBd  
Notes:  
1. Typical data at T = +25 °C, V = 5.0 V dc.  
A
CC  
2. Typical performance of circuits shown in Figure 1 and Figure 3 of AN-1065 (see applications support section)  
13  
155 MBd Link (HFBR-14x4/24x6)  
(refer to Application Bulletin 78 for details)  
Typical Link Performance  
Parameter  
Symbol  
Min  
Typ [1, 2] Max  
Units  
Conditions  
Ref  
Optical Power Budget with  
50/125 µm fiber  
OPB50  
7.9  
13.9  
dB  
NA = 0.2  
Note 2  
Optical Power Budget with  
62.5/125 µm fiber  
OPB62  
OPB100  
OPB200  
11.7  
11.7  
16.0  
1
17.7  
17.7  
22.0  
175  
1
dB  
dB  
NA = 0.27  
NA = 0.30  
NA = 0.35  
Optical Power Budget with  
100/140 µm fiber  
Optical Power Budget with  
200 µm HCS fiber  
dB  
Data Format 20% to 80% Duty  
Factor  
MBd  
ns  
System Pulse Width Distortion |tPLH - tPHL  
|
PR = -7 dBm peak  
1 m 62.5/125 µm fiber  
Bit Error Rate  
BER  
10-9  
Data rate < 100 MBaud  
PR > -31 dBm peak  
Note 2  
Notes:  
1. Typical data at T = +25 °C, V = 5.0 V dc, PECL serial interface.  
A
CC  
2. Typical OPB was determined at a probability of error (BER) of 10-9. Lower probabilities of error can be achieved with short fibers that have less  
optical loss.  
14  
HFBR-14x2/14x4 Low-Cost High-  
Speed Transmitters  
into 50/125 µm fiber and -12  
dBm into 62.5/125 µm fiber. The  
HFBR-14x2 standard  
transmitter typically can launch  
-12 dBm of optical power at 60  
mA into 100/140 µm fiber cable.  
It is ideal for large size fiber  
such as 100/140 µm. The high  
Housed Product  
PIN  
11  
2
32  
41  
51  
6
72  
81  
FUNCTION  
NC  
ANODE  
CATHODE  
NC  
2, 6, 7  
ANODE  
3
Description  
CATHODE  
NC  
The HFBR-14xx fiber optic  
transmitter contains an 820 nm  
AlGaAs emitter capable of  
efficiently launching optical  
ANODE  
ANODE  
NC  
4
3
2
1
5
6
7
8
NOTES:  
1. PINS 1, 4, 5 AND 8  
ARE ELECTICALLY  
CONNECTED.  
2. PINS 2, 6 AND 7 ARE  
ELECTRICALLY CONNECTED  
TO THE HEADER.  
BOTTOM VIEW  
PIN 1 INDICATOR  
power into four different optical launched optical power level is  
fiber sizes: 50/125 µm, 62.5/125  
µm, 100/140 µm, and 200 µm  
HCS®. This allows the designer  
flexibility in choosing the fiber  
size. The HFBR-14xx is designed  
to operate with the Agilent  
useful for systems where star  
couplers, taps, or inline  
connectors create large fixed  
losses.  
Unhoused Product  
PIN FUNCTION  
1
2
3
4
ANODE  
CATHODE  
ANODE  
ANODE  
1
4
2
3
Consistent coupling efficiency is  
assured by the double-lens  
optical system (Figure 1). Power  
coupled into any of the three  
fiber types varies less than 5 dB  
from part to part at a given drive  
current and temperature.  
Consistent coupling efficiency  
reduces receiver dynamic range  
requirements which allows for  
longer link lengths.  
HFBR-24xx fiber optic receivers.  
The HFBR-14xx transmitter’s  
high coupling efficiency allows  
the emitter to be driven at low  
current levels resulting in low  
power consumption and  
increased reliability of the  
transmitter. The HFBR-14x4  
high power transmitter is  
BOTTOM VIEW  
optimized for small size fiber  
and typically can launch -15.8  
dBm optical power at 60 mA  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
-55  
Max  
+85  
Units  
°C  
Reference  
Storage Temperature  
TS  
TA  
Operating  
-40  
+85  
°C  
Temperature  
Lead Soldering Cycle  
Temp  
Time  
+260  
10  
°C  
sec  
Forward Input Current  
Peak  
dc  
IFPK  
IFdc  
200  
100  
mA  
V
Note 1  
Reverse Input Voltage VBR  
1.8  
V
15  
Electrical/Optical Specifications -40 °C to +85 °C unless otherwise specified.  
Parameter  
Symbol Min  
Typ2  
Max  
Units  
Conditions  
Reference  
Forward Voltage  
VF  
1.48  
1.70  
1.84  
2.09  
V
IF = 60 mA dc  
IF = 100 mA dc  
Figure 9  
DVF/DT  
Forward Voltage Temperature Coefficient  
-0.22  
-0.18  
mV/°C  
IF = 60 mA dc  
IF = 100 mA dc  
Figure 9  
Reverse Input Voltage  
VBR  
1.8  
3.8  
820  
55  
V
IF = 100 µA dc  
lP  
Peak Emission Wavelength  
Diode Capacitance  
792  
865  
nm  
pF  
CT  
V = 0, f = 1 MHz  
DPT/DT  
Optical Power Temperature Coefficient  
-0.006  
-0.010  
dB/°C  
I = 60 mA dc  
I = 100 mA dc  
qJA  
NA  
NA  
D
Thermal Resistance  
260  
0.49  
0.31  
290  
150  
°C/W  
Notes 3, 8  
14x2 Numerical Aperture  
14x4 Numerical Aperture  
14x2 Optical Port Diameter  
14x4 Optical Port Diameter  
µm  
µm  
Note 4  
Note 4  
D
HFBR-14x2 Output Power Measured Out of 1 Meter of Cable  
Parameter  
Symbol Min  
Typ2 Max Units  
Conditions  
Reference  
50/125 µm Fiber Cable  
NA = 0.2  
PT50  
PT62  
PT100  
PT200  
-21.8  
-22.8  
-20.3  
-21.9  
-18.8  
-16.8  
-16.8  
-15.8  
-14.4  
-13.8  
dBm peak TA = +25 °C, IF = 60mA dc  
TA = +25 °C, IF = 100 mA dc  
Notes 5, 6, 9  
62.5/125 µm Fiber Cable  
NA = 0.275  
-19.0  
-20.0  
-17.5  
-19.1  
-16.0  
-14.0  
-14.0  
-13.0  
-11.6  
-11.0  
dBm peak TA = +25 °C, IF = 60mA dc  
TA = +25 °C, IF = 100 mA dc  
100/140 µm Fiber Cable  
NA = 0.3  
-15.0  
16.0  
-13.5  
-15.1  
-12.0  
-10.0  
-10.0  
-9.0  
-7.6  
-7.0  
dBm peak TA = +25 °C, IF = 60mA dc  
TA = +25 °C, IF = 100 mA dc  
200 µm HCS Fiber Cable  
NA - 0.37  
-10.7  
-11.7  
-9.2  
-7.1  
-5.2  
-4.7  
-3.7  
-2.3  
-1.7  
dBm peak TA = +25 °C, IF = 60mA dc  
TA = +25 °C, IF = 100 mA dc  
-10.8  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these  
components to prevent damage and/or degradation which may be induced by ESD.  
16  
HFBR-14x4 Output Power Measured out of 1 Meter of Cable  
Parameter  
Symbol Min  
Typ2 Max Units  
Conditions  
Reference  
50/125 µm Fiber Cable  
NA = 0.2  
PT50  
PT62  
PT100  
PT200  
-18.8  
-19.8  
-17.3  
-18.9  
-15.8  
-13.8  
-13.8  
-12.8  
-11.4  
-10.8  
dBm peak TA = +25 °C, IF = 60mA dc  
TA = +25 °C, IF = 100 mA dc  
Notes 5, 6, 9  
62.5/125 µm Fiber Cable  
NA = 0.275  
-15.0  
-16.0  
-13.5  
-15.1  
-12.0  
-10.0  
-10.0  
-9.0  
-7.6  
-7.0  
dBm peak TA = +25 °C, IF = 60mA dc  
TA = +25 °C, IF = 100 mA dc  
100/140 µm Fiber Cable  
NA = 0.3  
-9.5  
-10.5  
-8.0  
-9.6  
-6.5  
-4.5  
-4.5  
-3.5  
-2.1  
-1.5  
dBm peak TA = +25 °C, IF = 60mA dc  
TA = +25 °C, IF = 100 mA dc  
200 µm HCS Fiber Cable  
NA - 0.37  
-5.2  
-6.2  
-3.7  
-5.3  
-3.7  
-1.7  
+0.8  
+1.8  
+3.2  
+3.8  
dBm peak TA = +25 °C, IF = 60mA dc  
TA = +25 °C, IF = 100 mA dc  
HFBR-14x5 Output Power Measured out of 1 Meter of Cable  
Parameter  
Symbol Min  
Typ2 Max Units  
Conditions  
Reference  
62.5/125 µm Fiber Cable  
NA = 0.275  
PT62  
-11.0  
-12.0  
-10.0  
-10.0  
-8.0  
-7.0  
dBm peak TA = +25 °C, IF = 60mA  
14x2/14x4 Dynamic Characteristics  
Parameter  
Symbol Min  
Typ2  
Max  
Units  
Conditions  
Reference  
Rise Time, Fall Time  
(10% to 90%)  
tr, tf  
4.0  
6.5  
nsec  
No pre-  
bias  
IF = 60 mA  
Figure 12  
Note 7  
Rise Time, Fall Time  
(10% to 90%)  
tr, tf  
3.0  
0.5  
nsec  
IF = 10 to 100 mA  
Note 7,  
Figure 11  
Pulse Width Distortion  
PWD  
nsec  
Figure 11  
Notes:  
1. For I > 100 mA, the time duration should not exceed 2 ns.  
FPK  
2. Typical data at T = +25 °C.  
A
3. Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit board.  
4. D is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.  
5. P is measured with a large area detector at the end of 1 meter of mode stripped cable, with an ST® precision ceramic ferrule (MILSTD- 83522/13)  
T
for HFBR-1412/1414, and with an SMA 905 precision ceramic ferrule for HFBR-1402/1404.  
6. When changing mW to dBm, the optical power is referenced to 1 mW (1000 mW). Optical Power P (dBm) = 10 log P (mW)/1000 mW.  
7. Pre-bias is recommended if signal rate >10 MBd, see recommended drive circuit in Figure 11.  
8. Pins 2, 6 and 7 are welded to the anode header connection to minimize the thermal resistance from junction to ambient. To further reduce the  
thermal resistance, the anode trace should be made as large as is consistent with good RF circuit design.  
9. Fiber NA is measured at the end of 2 meters of mode stripped fiber, using the far-field pattern. NA is defined as the sine of the half angle, determined  
at 5% of the peak intensity point. When using other manufacturer’s fiber cable, results will vary due to differing NA values and specification  
methods.  
All HFBR-14XX LED transmitters are classified as IEC 825-1 Accessible Emission Limit (AEL) Class 1 based upon the current proposed  
draft scheduled to go in to effect on January 1, 1997. AEL Class 1 LED devices are considered eye safe. Contact your Agilent sales  
representativeformoreinformation.  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these  
components to prevent damage and/or degradation which may be induced by ESD.  
17  
Recommended Drive Circuits  
Figure 11 uses frequency  
speed data transmission at  
The circuit used to supply  
compensation to reduce the  
signal rates of up to 155 MBd.  
current to the LED transmitter  
can significantly influence the  
optical switching characteristics  
of the LED. The optical rise/fall  
times and propagation delays  
can be improved by using the  
appropriate circuit techniques.  
The LED drive circuit shown in  
typical rise/fall times of the LED Component values for this  
and a small pre-bias voltage to  
minimize propagation delay  
differences that cause pulse-  
circuit can be calculated for  
different LED drive currents  
using the equations shown  
width distortion. The circuit will below. For additional details  
typically produce rise/fall times  
of 3 ns, and a total jitter  
including pulse-width distortion  
of less than 1 ns. This circuit is  
recommended for applications  
requiring low edge jitter or high-  
about LED drive circuits, the  
reader is encouraged to read  
Agilent Application Bulletin 78  
and Application Note 1038.  
(VCC VF) + 3.97(VCC VF 1.6V)  
(5 1.84) + 3.97(5 1.84 1.6)  
RY  
RY =  
IF ON (A)  
0.100  
3.16 + 6.19  
1
RY  
RY =  
= 93.5 Ω  
RX1 =  
0.100  
2 3.97  
1 93.5  
REQ2 () = RX1 1  
RX1 =  
= 11.8 Ω  
2 3.97  
RX2 = RX3 = RX4 = 3(REQ2)  
REQ2 =11.8 -1 =10.8 Ω  
RX2 = RX3 = RX4 = 3 (10.8) = 32.4 Ω  
2000 ps  
2000 ps  
C(pF) =  
RX1()  
Example for IF ON = 100mA :  
C =  
= 169 pF  
11.8 Ω  
VF can be obtained from Figure 9 (=1.84 V).  
18  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
3.0  
2.0  
100  
80  
+85 °C  
+25 °C  
1.4  
1.0  
0.8  
60  
0
-40 °C  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-7.0  
40  
20  
10  
0
0
10 20 30 40 50 60 70 80 90 100  
– FORWARD CURRENT – mA  
I
F
2.2  
1.8  
2.0  
1.2  
1.4  
1.6  
VI - FORWARD VOLTAGE - V  
Figure 9. Forward Voltage and Current  
Characteristics.  
Figure 10. Normalized Transmitter Output vs.  
Forward Current.  
+5 V  
0.1 µF  
+
4.7 µF  
¼
Ry  
12, 13  
74F3037  
2
1
3
15  
14  
RX2  
RX3  
RX4  
RX1  
16  
4, 5  
¼ 74F3037  
C
10  
11  
¼ 74F3037  
9
5
HFBR-14x2/x4  
8
7
¼ 74F3037  
Figure 11. Recommended Drive Circuit.  
HP8082A  
PULSE  
GENERATOR  
SILICON  
AVALANCHE  
PHOTODIODE  
50  
TEST  
HEAD  
HIGH SPEED  
OSCILLOSCOPE  
50 Ω  
LOAD  
RESISTOR  
Figure 12. Test Circuit for Measuring t , t .  
r
f
19  
HFBR-24x2 Low-Cost 5 MBd  
Receiver  
designed for direct interfacing to Housed Product  
popular logic families. The  
absence of an internal pull-up  
resistor allows the open-  
collector output to be used with  
logic families such as CMOS  
requiring voltage excursions  
2
6
Vcc  
DATA  
Description  
7 & 3  
COMMON  
The HFBR-24x2 fiber optic  
receiver is designed to operate  
with the Agilent HFBR-14xx  
fiber optic transmitter and 50/  
125 µm, 62.5/125 µm, 100/ 140  
µm, and 200 µm HCS® fiber  
optic cable. Consistent coupling  
into the receiver is assured by  
the lensed optical system  
4
3
2
1
5
6
7
8
much higher than V  
.
CC  
BOTTOM VIEW  
PIN 1 INDICATOR  
Both the open-collector “Data”  
output Pin 6 and V Pin 2 are  
CC  
PIN  
11  
2
FUNCTION  
NC  
referenced to “Com” Pin 3, 7.  
The “Data” output allows busing,  
strobing and wired “OR” circuit  
configurations. The transmitter  
is designed to operate from a  
single +5 V supply. It is essential  
V
CC (5 V)  
32  
41  
51  
6
COMMON  
NC  
NC  
DATA  
COMMON  
NC  
72  
81  
(Figure 1). Response does not  
vary with fiber size 0.100 µm.  
NOTES:  
1. PINS 1, 4, 5 AND 8 ARE ELECTRICALLY CONNECTED  
2. PINS 3 AND 7 ARE ELECTRICALLY CONNECTED TO HEADER  
The HFBR-24x2 receiver  
incorporates an integrated photo that a bypass capacitor (0.1 mF  
IC containing a photodetector  
and dc amplifier driving an  
opencollector Schottky output  
transistor. The HFBR-24x2 is  
ceramic) be connected from Pin  
Unhoused Product  
2 (V ) to Pin 3 (circuit  
CC  
common) of the receiver.  
PIN FUNCTION  
1
2
3
4
VCC (5 V)  
COMMON  
DATA  
1
4
2
3
COMMON  
BOTTOM VIEW  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
-55  
Max  
+85  
Units  
°C  
Reference  
Storage Temperature  
TS  
TA  
Operating  
-40  
+85  
°C  
Temperature  
Lead Soldering Cycle  
Note 1  
Temp  
Time  
+260  
10  
°C  
sec  
Supply Voltage  
Output Current  
Output Voltage  
VCC  
IO  
-0.5  
-0.5  
7.0  
25  
V
mA  
V
VO  
18.0  
40  
Output Collector  
PO AV  
mW  
Power Dissipation  
Fan Out (TTL)  
N
5
Note 2  
20  
Electrical/Optical Characteristics -40 °C to + 85 °C unless otherwise specified  
Fiber sizes with core diameter 100 µm and NA 0.35, 4.75 V V 5.25 V  
CC  
Parameter  
Symbol Min  
Typ3  
Max  
Units  
Conditions  
Reference  
High Level Output Current  
IOH  
5
250  
µA  
VO = 18  
PR < -40 dBm  
Low Level Output Voltage  
High Level Supply Current  
Low Level Supply Current  
VOL  
ICCH  
ICCL  
0.4  
3.5  
6.2  
0.5  
6.3  
10  
V
IO = 8 mA  
PR > -24 dBm  
mA  
mA  
VCC = 5.25 V  
PR < -40 dBm  
VCC = 5.25 V  
PR > -24 dBm  
Equivalent NA  
NA  
D
0.50  
400  
Optical Port Diameter  
µm  
Note 4  
Dynamic Characteristics  
-40 °C to +85 °C unless otherwise specified; 4.75 V V 5.25 V; BER 10-9  
CC  
Parameter  
Symbol Min  
Typ3  
Max  
Units  
Conditions  
Reference  
lP = 820 nm  
Peak Optical Input Power Logic Level HIGH PRH  
-40  
0.1  
dBm pk  
µW pk  
Note 5  
Peak Optical Input Power Logic Level LOW PRL  
-25.4  
2.9  
-9.2  
120  
dBm pk  
µW pk  
TA = +25 °C,  
IOL = 8mA  
Note 5  
Note 6  
-24.0  
4.0  
-10.0  
100  
dBm pk  
µW pk  
IOL = 8mA  
Propagation Delay LOW to HIGH  
Propagation Delay HIGH to LOW  
tPLHR  
tPHLR  
65  
49  
ns  
ns  
TA = +25 °C,  
PR = -21 dBm,  
Data Rate =  
5 MBd  
Notes:  
1. 2.0 mm from where leads enter case.  
2. 8 mA load (5 x 1.6 mA), RL = 560 W.  
3. Typical data at T = +25 °C, V = 5.0 Vdc.  
A
CC  
4. D is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter  
and the lens magnification.  
5. Measured at the end of 100/140 mm fiber optic cable with large area detector.  
6. Propagation delay through the system is the result of several sequentially-occurring phenomena. Consequently it is a combination of data-rate-  
limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time differentials  
between delays imposed on falling and rising edges.  
7. As the cable length is increased, the propagation delays increase at 5 ns per meter of length. Data rate, as limited by pulse width distortion, is not  
affected by increasing cable length if the optical power level at the receiver is maintained.  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these  
components to prevent damage and/or degradation which may be induced by ESD.  
21  
HFBR-24x6 Low-Cost 125 MHz  
Receiver  
preamplifier integrated circuit.  
The HFBR-24x6 receives an  
optical signal and converts it to  
an analog voltage. The output is  
a buffered emitter follower.  
Because the signal amplitude  
from the HFBR-24x6 receiver is  
much larger than from a simple  
PIN photodiode, it is less  
receiver from noisy host  
systems. Refer to AN 1038, 1065,  
or AB 78 for details.  
Description  
The HFBR-24x6 fiber optic  
receiver is designed to operate  
with the Agilent HFBR-14xx  
fiber optic transmitters and 50/  
125 µm, 62.5/125 µm, 100/140  
Housed Product  
6
Vcc  
2
ANALOG SIGNAL  
3 & 7  
VEE  
µm and 200 µm HCS® fiber optic susceptible to EMI, especially at  
4
3
2
1
5
6
7
8
cable. Consistent coupling into  
the receiver is assured by the  
high signaling rates. For very  
noisy environments, the  
lensed optical system (Figure 1). conductive or metal port option  
BOTTOM VIEW  
PIN 1 INDICATOR  
Response does not vary with  
fiber size for core diameters of  
100 mm or less.  
is recommended. A receiver  
dynamic range of 23 dB over  
temperature is achievable  
(assuming 10-9 BER).  
PIN  
11  
2
FUNCTION  
NC  
SIGNAL  
VEE  
NC  
NC  
VCC  
VEE  
NC  
32  
41  
51  
6
72  
81  
The receiver output is an analog  
signal which allows follow-on  
circuitry to be optimized for a  
variety of distance/data rate  
NOTES:  
The frequency response is  
typically dc to 125 MHz.  
Although the HFBR-24x6 is an  
1. PINS 1, 4, 5 AND 8 ARE ISOLATED FROM THE INTERNAL  
CIRCUITRY, BUT ARE ELECTRICALLY CONNECTED TO EACH  
OTHER.  
2. PINS 3 AND 7 ARE ELECTRICALLY CONNECTED TO HEADER  
requirements. Low-cost external analog receiver, it is compatible  
components can be used to  
convert the analog output to  
with digital systems. Please refer  
to Application Bulletin 78 for  
Unhoused Product  
logic compatible signal levels for simple and inexpensive circuits  
various data formats and data  
rates up to 175 MBd. This  
distance/data rate trade-off  
results in increased optical  
power budget at lower data  
rates which can be used for  
additional distance or splices.  
that operate at 155 MBd or  
higher.  
PIN FUNCTION  
1
2
3
4
SIGNAL  
VEE  
VCC  
1
4
2
3
VEE  
The recommended ac coupled  
receiver circuit is shown in  
Figure 14. It is essential that a  
10 ohm resistor be connected  
between pin 6 and the power  
supply, and a 0.1 mF ceramic  
bypass capacitor be connected  
between the power supply and  
ground. In addition, pin 6  
BOTTOM VIEW  
The HFBR-24x6 receiver  
contains a PIN photodiode and  
low noise transimpedance  
should be filtered to protect the  
6
POSITIVE  
SUPPLY  
BIAS & FILTER  
CIRCUITS  
V
CC  
300 pF  
2
ANALOG  
SIGNAL  
V
OUT  
5.0  
mA  
3, 7  
NEGATIVE  
SUPPLY  
V
EE  
Figure 13. Simplified Schematic Diagram.  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these  
components to prevent damage and/or degradation which may be induced by ESD.  
22  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
-55  
Max  
+85  
Units  
°C  
Reference  
Storage Temperature  
TS  
TA  
Operating  
-40  
+85  
°C  
Temperature  
Lead Soldering Cycle  
Note 1  
Temp  
Time  
+260  
10  
°C  
sec  
Supply Voltage  
Output Current  
Signal Pin Voltage  
VCC  
IO  
-0.5  
-0.5  
6.0  
25  
V
mA  
V
VSIG  
VCC  
Electrical/Optical Characteristics -40 °C to +85 °C; 4.75 V Supply Voltage 5.25 V,  
= 511 W, Fiber sizes with core diameter 100 mm, and N.A. -0.35 unless otherwise specified.  
R
LOAD  
Parameter  
Symbol Min  
Typ2  
Max  
Units  
Conditions  
Reference  
Responsivity  
RP  
5.3  
4.5  
7
9.6  
mV/µW  
TA = +25 °C @ 820 Note 3, 4  
nm, 50 MHz  
Figure 18  
11.5  
0.59  
mV/µW  
mV  
@ 820 nm, 50 MHz  
RMS Output Noise Voltage  
VNO  
0.40  
Bandwidth filtered  
@ 75 MHz  
Note 5  
PR = 0 µW  
0.70  
mV  
Unfiltered  
Figure 15  
bandwidth  
PR = 0 µW  
Equivalent Input Optical Noise Power  
(RMS)  
PN  
PR  
-43.0  
0.050  
-41.4  
0.065  
dBm  
µW  
Bandwidth Filtered  
@ 75MHz  
Optical Input Power (Overdrive)  
-7.6  
175  
dBm pk  
µW pk  
TA = +25 °C  
Note 6  
Figure 16  
-8.2  
150  
dBm pk  
µW pk  
W
Output Impedance  
ZO  
30  
Test Frequency =  
50 MHz  
dc Output Voltage  
Power Supply Current  
Equivalent NA  
VO dc  
IEE  
-4.2  
-3.1  
9
-2.4  
15  
V
PR = 0 µW  
mA  
RLOAD = 510 W  
NA  
D
0.35  
324  
Equivalent Diameter  
µm  
Note 7  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these  
components to prevent damage and/or degradation which may be induced by ESD.  
23  
Dynamic Characteristics -40 °C to +85 °C; 4.75 V Supply Voltage 5.25 V; R  
otherwise specified  
= 511 W, C  
= 5 pF unless  
LOAD  
LOAD  
Parameter  
Symbol Min  
Typ2  
3.3  
Max  
6.3  
Units  
Conditions  
Reference  
Rise/Fall Time 10% to 90%  
Pulse Width Distortion  
tr, tf  
ns  
ns  
PR = 100 µW peak  
PR = 150 µW peak  
Figure 17  
PWD  
0.4  
2.5  
Note 8,  
Figure 16  
Overshoot  
2
%
PR = 5 µW peak,  
tr = 1.5 ns  
Note 9  
Bandwidth (Electrical)  
BW  
125  
MHz  
-3 dB Electrical  
Note 10  
Bandwidth - Rise Time Product  
0.41  
Hz • s  
Notes:  
1. 2.0 mm from where leads enter case.  
2. Typical specifications are for operation at T = +25 °C and V = +5 V dc.  
A
CC  
3. For 200 µm HCS fibers, typical responsivity will be 6 mV/mW. Other parameters will change as well.  
4. Pin #2 should be ac coupled to a load ³ 510 ohm. Load capacitance must be less than 5 pF.  
5. Measured with a 3 pole Bessel filter with a 75 MHz, -3 dB bandwidth. Recommended receiver filters for various bandwidths are provided in  
Application Bulletin 78.  
6. Overdrive is defined at PWD = 2.5 ns.  
7. D is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter  
and the lens magnification.  
8. Measured with a 10 ns pulse width, 50% duty cycle, at the 50% amplitude point of the waveform.  
9. Percent overshoot is defined as:  
VPK V100%   
x100%  
V100%  
10. The conversion factor for the rise time to bandwidth is 0.41 since the HFBR-24x6 has a second order bandwidth limiting characteristic.  
0.1 µF  
+5 V  
10  
6
30 pF  
2
POST  
AMP  
LOGIC  
OUTPUT  
3 & 7  
R
LOADS  
500 MIN.  
Figure 14. Recommended ac Coupled Receiver Circuit. (See AB 78 and AN 1038 for more information.)  
CAUTION: The small junction sizes inherent to the design of these components increase the components’ susceptibility to damage  
from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these  
components to prevent damage and/or degradation which may be induced by ESD.  
24  
150  
3.0  
6.0  
5.0  
4.0  
125  
100  
2.5  
2.0  
t
t
75  
50  
f
1.5  
1.0  
3.0  
2.0  
1.0  
r
25  
0
0.5  
0
0
10  
P
20  
30  
40  
50  
60  
70 80  
0
50  
100  
150  
200  
250  
300  
-60 -40 -20  
0
20  
40  
60  
80 100  
FREQUENCY – MH  
– INPUT OPTICAL POWER – µW  
Z
TEMPERATURE – ˚C  
R
Figure 15. Typical Spectral Noise Density vs.  
Frequency.  
Figure 16. Typical Pulse Width Distortion vs.  
Peak Input Power.  
Figure 17. Typical Rise and Fall Times vs.  
Temperature.  
1.25  
1.00  
0.75  
0.50  
0.25  
0
400 480 560 640 720 800 880 960 1040  
λ – WAVELENGTH – nm  
Figure 18. Receiver Spectral Response  
Normalized to 820 nm.  
www.agilent.com/  
semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(916)788-6763  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6756 2394  
India, Australia, New Zealand: (+65) 6755 1939  
Japan: (+81 3) 3335-8152(Domestic/International), or  
0120-61-1280(DomesticOnly)  
Korea: (+65) 6755 1989  
Singapore, Malaysia, Vietnam, Thailand, Philippines,  
Indonesia: (+65) 6755 2044  
Taiwan: (+65) 6755 1843  
Data subject to change.  
Copyright © 2003 Agilent Technologies, Inc.  
Obsoletes:5980-1065E  
August 11, 2003  
5988-3624EN  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY