H5TC4G43BFR-RDA [HYNIX]

4Gb DDR3L SDRAM;
H5TC4G43BFR-RDA
型号: H5TC4G43BFR-RDA
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

4Gb DDR3L SDRAM

动态存储器 双倍数据速率
文件: 总33页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4Gb DDR3L SDRAM  
4Gb DDR3L SDRAM  
Lead-Free&Halogen-Free  
(RoHS Compliant)  
H5TC4G43BFR-xxA  
H5TC4G83BFR-xxA  
* SK hynix reserves the right to change products or specifications without notice.  
Rev. 1.0 / Nov. 2013  
1
Revision History  
Revision No.  
History  
Draft Date  
Jun. 2013  
Nov.2013  
Remark  
0.1  
1.0  
Initial Release  
IDD Specification update  
Rev. 1.0 / Nov. 2013  
2
Description  
The H5TC4G43BFR-xxA and H5TC4G83BFR-xxA are a 4Gb low power Double Data Rate III (DDR3L) Syn-  
chronous DRAM, ideally suited for the main memory applications which requires large memory density,  
high bandwidth and low power operation at 1.35V. DDR3L SDRAM provides backward compatibility with  
the 1.5V DDR3 based environment without any changes. (Please refer to the SPD information for details.)  
SK hynix 4Gb DDR3L SDRAMs offer fully synchronous operations referenced to both rising and falling  
edges of the clock. While all addresses and control inputs are latched on the rising edges of the CK (falling  
edges of the CK), Data, Data strobes and Write data masks inputs are sampled on both rising and falling  
edges of it. The data paths are internally pipelined and 8-bit prefetched to achieve very high bandwidth.  
Device Features and Ordering Information  
FEATURES  
• AverageRefreshCycle (Tcaseof0 oC~95oC)  
- 7.8 µs at 0oC ~ 85 oC  
VDD=VDDQ=1.35V + 0.100 / - 0.067V  
Fully differential clock inputs (CK, CK) operation  
Differential Data Strobe (DQS, DQS)  
- 3.9 µs at 85oC ~ 95 oC  
JEDEC standard 78ball FBGA(x4/x8)  
Driver strength selected by EMRS  
Dynamic On Die Termination supported  
Asynchronous RESET pin supported  
ZQ calibration supported  
On chip DLL align DQ, DQS and DQS transition with CK  
transition  
DM masks write data-in at the both rising and falling   
edges of the data strobe  
All addresses and control inputs except data, data  
strobes and data masks latched on the rising edges of  
the clock  
TDQS (Termination Data Strobe) supported (x8 only)  
Write Levelization supported  
Programmable CAS latency 5, 6, 7, 8, 9, 10, 11, 13  
supported  
8 bit pre-fetch  
Programmable additive latency 0, CL-1, and CL-2   
supported  
This product in compliance with the RoHS directive.  
Programmable CAS Write latency (CWL) = 5, 6, 7, 8, 9  
Programmable burst length 4/8 with both nibble  
sequential and interleave mode  
BL switch on the fly  
8banks  
Rev. 1.0 / Nov. 2013  
3
ORDERING INFORMATION  
Part No.  
Configuration  
Package  
H5TC4G43BFR-*xxA  
H5TC4G83BFR-*xxA  
1G x 4  
78ball FBGA  
512M x 8  
* xx means Speed Bin Grade  
OPERATING FREQUENCY  
Frequency [Mbps]  
Grade  
Remark  
CL5  
CL6  
CL7  
CL8  
CL9  
CL10  
CL11  
CL12  
CL13  
-G7  
-H9  
-PB  
-RD  
667  
667  
667  
800  
800  
800  
800  
1066  
1066  
1066  
1066  
1066  
1066 1333  
1066 1333  
1066 1333  
1333  
1333  
1333  
1600  
1600  
1866  
Rev. 1.0 / Nov. 2013  
4
Package Ballout/Mechanical Dimension  
x4 Package Ball out (Top view): 78ball FBGA Package  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VSS  
VSS  
VDD  
VSSQ  
DQ2  
NF  
NC  
DQ0  
DQS  
DQS  
NF  
NF  
DM  
VSS  
VSSQ  
DQ3  
VSS  
NF  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
A
B
C
D
E
F
VDDQ  
VSSQ  
VREFDQ  
NC  
DQ1  
VDD  
NF  
VDDQ  
VSS  
VDD  
CS  
RAS  
CAS  
WE  
BA2  
A0  
CK  
VSS  
VDD  
ZQ  
G
H
J
ODT  
CK  
CKE  
NC  
G
H
J
NC  
A10/AP  
A15  
VSS  
BA0  
A3  
VREFCA  
BA1  
A4  
VSS  
K
L
VDD  
VSS  
A12/BC  
A1  
VDD  
VSS  
K
L
A5  
A2  
M
N
VDD  
VSS  
A7  
A9  
A11  
A6  
VDD  
VSS  
M
N
RESET  
A13  
A14  
A8  
1
2
3
4
5
6
7
8
9
Note: NF (No Function) - This is applied to balls only used in x4 configuration.  
1
2 3  
7
8 9  
A
B
C
D
E
F
(Top View: See the balls through the Package)  
G
H
J
Populated ball  
Ball not populated  
K
L
M
N
Rev. 1.0 / Nov. 2013  
5
x8 Package Ball out (Top view): 78ball FBGA Package  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VSS  
VSS  
VDD  
VSSQ  
DQ2  
DQ6  
VDDQ  
VSS  
VDD  
CS  
NC  
DQ0  
DQS  
DQS  
DQ4  
RAS  
CAS  
WE  
NF/TDQS  
DM/TDQS  
DQ1  
VSS  
VSSQ  
DQ3  
VSS  
DQ5  
VSS  
VDD  
ZQ  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
A
B
C
D
E
F
VDDQ  
VSSQ  
VREFDQ  
NC  
VDD  
DQ7  
CK  
G
H
J
ODT  
NC  
CK  
CKE  
NC  
G
H
J
A10/AP  
A15  
VSS  
BA0  
A3  
BA2  
A0  
VREFCA  
BA1  
A4  
VSS  
K
L
VDD  
VSS  
A12/BC  
A1  
VDD  
VSS  
K
L
A5  
A2  
M
N
VDD  
VSS  
A7  
A9  
A11  
A6  
VDD  
VSS  
M
N
RESET  
A13  
A14  
A8  
1
2
3
4
5
6
7
8
9
1
2
3
7
8
9
A
B
C
D
E
(Top View: See the balls through the Package)  
F
Populated ball  
Ball not populated  
G
H
J
K
L
M
N
Rev. 1.0 / Nov. 2013  
6
Pin Functional Description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are  
sampled on the crossing of the positive edge of CK and negative edge of CK.  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and  
device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down  
and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any  
bank).  
CKE, (CKE0),  
(CKE1)  
Input CKE is asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have become stable  
during the power on and initialization sequence, they must be maintained during all  
operations (including Self-Refresh). CKE must be maintained high throughout read and  
write accesses. Input buffers, excluding CK, CK, ODT and CKE, are disabled during power-  
down. Input buffers, excluding CKE, are disabled during Self-Refresh.  
Chip Select: All commands are masked when CS is registered HIGH.  
CS provides for external Rank selection on systems with multiple Ranks.  
CS is considered part of the command code.  
CS, (CS0),  
(CS1), (CS2),  
(CS3)  
Input  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the  
DDR3 SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS,  
NU/TDQS (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x4/x8  
configurations.  
ODT, (ODT0),  
(ODT1)  
Input  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
RAS.  
CAS. WE  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when  
DM is sampled HIGH coincident with that input data during a Write access. DM is sampled  
on both edges of DQS. For x8 device, the function of DM or TDQS/TDQS is enabled by  
Mode Register A11 setting in MR1.  
DM, (DMU),  
(DML)  
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge  
BA0 - BA2  
A0 - A15  
Input command is being applied. Bank address also determines if the mode register or extended  
mode register is to be accessed during a MRS cycle.  
Address Inputs: Provide the row address for Active commands and the column address for  
Read/Write commands to select one location out of the memory array in the respective  
bank. (A10/AP and A12/BC have additional functions, see below).  
Input  
The address inputs also provide the op-code during Mode Register Set commands.  
Auto-precharge: A10 is sampled during Read/Write commands to determine whether  
Autoprecharge should be performed to the accessed bank after the Read/Write operation.  
(HIGH: Autoprecharge; LOW: no Autoprecharge).A10 is sampled during a Precharge  
command to determine whether the Precharge applies to one bank (A10 LOW) or all  
banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank  
addresses.  
A10 / AP  
A12 / BC  
Input  
Burst Chop: A12 / BC is sampled during Read and Write commands to determine if burst  
Input chop (on-the-fly) will be performed.  
(HIGH, no burst chop; LOW: burst chopped). See command truth table for details.  
Rev. 1.0 / Nov. 2013  
7
Symbol  
Type  
Function  
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when  
RESET is HIGH. RESET must be HIGH during normal operation.  
RESET is a CMOS rail-to-rail signal with DC high and low at 80% and 20% of VDD, i.e.  
1.20V for DC high and 0.30V for DC low.  
RESET  
Input  
Input /  
Output  
DQ  
Data Input/ Output: Bi-directional data bus.  
Data Strobe: output with read data, input with write data. Edge-aligned with read data,  
centered in write data. The data strobe DQS, DQSL, and DQSU are paired with differential  
signals DQS, DQSL, and DQSU, respectively, to provide differential pair signaling to the  
system during reads and writes. DDR3 SDRAM supports differential data strobe only and  
does not support single-ended.  
DQU, DQL,  
DQS, DQS,  
DQSU, DQSU, Output  
DQSL, DQSL  
Input /  
Termination Data Strobe: TDQS/TDQS is applicable for x8 DRAMs only. When enabled via  
Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance  
TDQS, TDQS Output function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11  
= 0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4  
DRAMs must disable the TDQS function via mode register A11 = 0 in MR1.  
NC  
NF  
No Connect: No internal electrical connection is present.  
No Function  
VDDQ  
VSSQ  
VDD  
Supply DQ Power Supply: 1.35 V +0.100/- 0.067 V  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DQ Ground  
Power Supply: 1.35 V +0.100/- 0.067 V  
Ground  
VSS  
Reference voltage for DQ  
Reference voltage for CA  
Reference Pin for ZQ calibration  
VREFDQ  
VREFCA  
ZQ  
Note:  
Input only pins (BA0-BA2, A0-A15, RAS, CAS, WE, CS, CKE, ODT, DM, and RESET) do not supply termination.  
Rev. 1.0 / Nov. 2013  
8
ROW AND COLUMN ADDRESS TABLE  
4Gb  
Configuration  
# of Banks  
1Gb x 4  
512Mb x 8  
8
8
Bank Address  
Auto precharge  
BL switch on the fly  
Row Address  
Column Address  
Page size 1  
BA0 - BA2  
A10/AP  
A12/BC  
A0 - A15  
A0 - A9,A11  
1 KB  
BA0 - BA2  
A10/AP  
A12/BC  
A0 - A15  
A0 - A9  
1 KB  
Note1: Page size is the number of bytes of data delivered from the array to the internal sense amplifiers   
when an ACTIVE command is registered. Page size is per bank, calculated as follows:  
page size = 2 COLBITS * ORG 8  
where COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits  
Rev. 1.0 / Nov. 2013  
9
Absolute Maximum Ratings  
Absolute Maximum DC Ratings  
Absolute Maximum DC Ratings  
Symbol  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
Rating  
Units  
Notes  
VDD  
- 0.4 V ~ 1.80 V  
V
1,3  
VDDQ  
VIN, VOUT  
TSTG  
- 0.4 V ~ 1.80 V  
- 0.4 V ~ 1.80 V  
-55 to +100  
V
1,3  
1
V
oC  
1, 2  
Notes:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement  
conditions, please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than  
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.  
DRAM Component Operating Temperature Range  
Temperature Range  
Symbol  
Parameter  
Rating  
Units  
Notes  
0 to 85  
oC  
1,2  
Normal Operating Temperature Range  
Extended Temperature Range  
TOPER  
85 to 95  
oC  
1,3  
Notes:  
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measure-  
ment conditions, please refer to the JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur-  
ing operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC  
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:  
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is  
also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.  
Please refer to the DIMM SPD for option availability  
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Man-  
ual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b). DDR3  
SDRAMs support Extended Temperature Range and please refer to component datasheet and/or the DIMM  
SPD for tREFI requirements in the EXtended Temperature Range.  
Rev. 1.0 / Nov. 2013  
10  
AC & DC Operating Conditions  
Recommended DC Operating Conditions  
Recommended DC Operating Conditions - DDR3L (1.35V) operation  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
1.283  
1.35  
1.45  
V
V
1,2,3,4  
1,2,3,4  
Supply Voltage  
Supply Voltage for Output  
VDDQ  
1.283  
1.35  
1.45  
Notes:  
1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a  
very long period of time (e.g., 1 sec).  
2. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications.  
3. Under these supply voltages, the device operates to this DDR3L specification.  
4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and  
VDDQ are changed for DDR3 operation (see Figure 0).  
Recommended DC Operating Conditions - DDR3 (1.5V) operation  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
1.425  
1.5  
1.575  
V
V
1,2,3  
1,2,3  
Supply Voltage  
Supply Voltage for Output  
VDDQ  
1.425  
1.5  
1.575  
Notes:  
1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications.  
2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as  
defined for this device.  
3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and  
VDDQ are changed for DDR3L operation (see Figure 0).  
Rev. 1.0 / Nov. 2013  
11  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK,CK#  
tCKSRX  
Tmin = 10ns  
VDD, VDDQ (DDR3)  
VDD, VDDQ (DDR3L)  
Tmin = 10ns  
Tmin = 200us  
T = 500us  
RESET#  
Tmin = 10ns  
CKE  
VALID  
VALID  
tDLLK  
tIS  
tXPR  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
1)  
COMMAND  
BA  
READ  
READ  
1)  
MRS  
MR2  
MRS  
MR3  
MRS  
MR1  
MRS  
MR0  
ZQCL  
VALID  
tIS  
tIS  
ODT  
RTT  
READ  
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW  
VALID  
NOTE 1: From time point Tduntil TkNOP or DES commands must be applied  
between MRS and ZQCL commands.  
DONT CARE  
TIME BREAK  
Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3  
Rev. 1.0 / Nov. 2013  
12  
IDD and IDDQ Specification Parameters and Test Conditions  
IDD and IDDQ Measurement Conditions  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure  
1. shows the setup and test load for IDD and IDDQ measurements.  
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R,  
IDD4W, IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls  
of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all  
VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ cur-  
rents.  
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can  
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In  
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one  
merged-power layer in Module PCB.  
For IDD and IDDQ measurements, the following definitions apply:  
”0” and “LOW” is defined as VIN <= V  
ILAC(max).  
”1” and “HIGH” is defined as VIN >= V  
IHAC(max).  
“MID_LEVEL” is defined as inputs are VREF = VDD/2.  
Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.  
Basic IDD and IDDQ Measurement Conditions are described in Table 2.  
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.  
IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not lim-  
ited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
Qoff = 0 (Output Buffer enabled in MR1);  
B
RTT_Nom = RZQ/6 (40 Ohm in MR1);  
RTT_Wr = RZQ/2 (120 Ohm in MR2);  
TDQS Feature disabled in MR1  
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time  
before actual IDD or IDDQ measurement is started.  
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}  
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}  
Rev. 1.0 / Nov. 2013  
13  
IDDQ (optional)  
IDD  
VDD  
RESET  
CK/CK  
VDDQ  
DDR3L  
SDRAM  
RTT = 25 Ohm  
CKE  
CS  
DQS, DQS  
DQ, DM,  
VDDQ/2  
RAS, CAS, WE  
TDQS, TDQS  
A, BA  
ODT  
ZQ  
VSS  
VSSQ  
Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements  
[Note: DIMM level Output test load condition may be different from above]  
Application specific  
memory channel  
environment  
IDDQ  
Test Load  
Channel  
IO Power  
Simulation  
IDDQ  
Simulation  
IDDQ  
Simulation  
Correction  
Channel IO Power  
Number  
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported  
by IDDQ Measurement  
Rev. 1.0 / Nov. 2013  
14  
Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns  
DDR3L-1066  
DDR3L-1333  
DDR3L-1600  
DDR3L-1866  
Symbol  
Unit  
7-7-7  
1.875  
7
9-9-9  
1.5  
9
11-11-11  
13-13-13  
1.07  
13  
tCK  
1.25  
11  
11  
39  
28  
11  
24  
32  
5
ns  
CL  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nRCD  
nRC  
nRAS  
nRP  
7
9
13  
27  
20  
7
33  
24  
9
45  
32  
13  
1KB page size  
2KB page size  
1KB page size  
2KB page size  
20  
27  
4
20  
30  
4
26  
nFAW  
33  
5
nRRD  
6
5
6
6
nRFC -512Mb  
nRFC-1 Gb  
nRFC- 2 Gb  
nRFC- 4 Gb  
nRFC- 8 Gb  
48  
59  
86  
139  
187  
60  
74  
107  
174  
234  
72  
88  
128  
208  
280  
85  
103  
150  
243  
328  
Table 2 -Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT  
and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO:  
MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see  
IDD0  
Table 3); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details:  
see Table 3.  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between  
ACT, RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to  
Table 4; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table  
IDD1  
4); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see  
Table 4.  
Rev. 1.0 / Nov. 2013  
15  
Symbol  
Description  
Precharge Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0;  
IDD2N  
Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable  
at 0; Pattern Details: see Table 5.  
Precharge Standby ODT Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0;  
IDD2NT  
Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: tog-  
gling according to Table 6; Pattern Details: see Table 6.  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed;  
IDD2P0  
Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down  
Mode: Slow Exitc)  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed;  
IDD2P1  
IDD2Q  
IDD3N  
Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down  
Mode: Fast Exitc)  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed;  
Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0;  
Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable  
at 0; Pattern Details: see Table 5.  
Rev. 1.0 / Nov. 2013  
16  
Symbol  
IDD3P  
Description  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open;  
Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Operating Burst Read Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command,  
Address, Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst  
with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank  
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer  
IDD4R  
and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7.  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command,  
Address, Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst  
with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank  
Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buf-  
IDD4W  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8.  
Burst Refresh Current  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Com-  
mand, Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM:  
stable at 0; Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in  
IDD5B  
Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 9.  
Self-Refresh Current: Normal Temperature Range  
TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale);  
IDD6  
CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address,  
Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Out-  
put Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Self-Refresh Current: Extended Temperature Range (optional)f)  
TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extend-  
ede); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command,  
Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Tempera-  
IDD6ET  
ture Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal:  
MID_LEVEL  
Rev. 1.0 / Nov. 2013  
17  
Symbol  
Description  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a), f); AL: CL-  
1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling accord-  
ing to Table 10; Data IO: read data burst with different data between one burst and the next one  
according to Table 10; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0,  
IDD7  
1,...7) with different addressing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb);  
ODT Signal: stable at 0; Pattern Details: see Table 10.  
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B;  
RTT_Wr enable: set MR2 A[10,9] = 10B  
c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit  
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable  
e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range  
f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B  
Rev. 1.0 / Nov. 2013  
18  
Table 3 - IDD0 Measurement-Loop Patterna)  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
0
0
-
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1, 2  
1*nRC+3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
-
repeat pattern 1...4 until 2*nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2013  
19  
Table 4 - IDD1 Measurement-Loop Patterna)  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRCD - 1, truncate if necessary  
RD 00  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRCD  
...  
0
1
0
1
0
0
0
0
0
0
0
0
00000000  
-
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1,2  
1*nRC+3,4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary  
RD 00  
repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRCD  
...  
0
1
0
1
0
0
0
0
F
0
00110011  
-
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL.  
Rev. 1.0 / Nov. 2013  
20  
Table 5 - IDD2N and IDD3N Measurement-Loop Patterna)  
Datab)  
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
0
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna)  
Datab)  
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
0
1
0
0
0
0
F
F
0
0
0
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2013  
21  
Table 7 - IDD4R and IDDQ4R Measurement-Loop Patterna)  
Datab)  
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
0
1
-
2,3  
D,D  
RD  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2013  
22  
Table 8 - IDD4W Measurement-Loop Patterna)  
Datab)  
0
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
0
1
-
2,3  
D,D  
WR  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
Table 9 - IDD5B Measurement-Loop Patterna)  
Datab)  
0
1
0
REF  
D, D  
D, D  
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
0
0
0
-
-
-
1.2  
00  
00  
3,4  
5...8  
repeat cycles 1...4, but BA[2:0] = 1  
repeat cycles 1...4, but BA[2:0] = 2  
repeat cycles 1...4, but BA[2:0] = 3  
repeat cycles 1...4, but BA[2:0] = 4  
repeat cycles 1...4, but BA[2:0] = 5  
repeat cycles 1...4, but BA[2:0] = 6  
repeat cycles 1...4, but BA[2:0] = 7  
9...12  
13...16  
17...20  
21...24  
25...28  
29...32  
33...nRFC-1  
2
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2013  
23  
Table 10 - IDD7 Measurement-Loop Patterna)  
ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9  
Datab)  
0
1
0
1
2
...  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
repeat above D Command until nRRD - 1  
nRRD  
nRRD+1  
nRRD+2  
...  
2*nRRD  
3*nRRD  
4*nRRD  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
repeat above D Command until 2* nRRD - 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 1, but BA[2:0] = 3  
2
3
D
1
0
0
0
0
3
00  
0
0
F
0
-
-
4
Assert and repeat above D Command until nFAW - 1, if necessary  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 1, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 1, but BA[2:0] = 7  
5
6
7
8
nFAW  
nFAW+nRRD  
nFAW+2*nRRD  
nFAW+3*nRRD  
nFAW+4*nRRD  
D
1
0
0
0
0
7
00  
0
0
F
0
9
Assert and repeat above D Command until 2* nFAW - 1, if necessary  
2*nFAW+0  
2*nFAW+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
10  
2&nFAW+2  
Repeat above D Command until 2* nFAW + nRRD - 1  
2*nFAW+nRRD  
2*nFAW+nRRD+1 RDA  
ACT  
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
11  
D
2&nFAW+nRRD+  
2
Repeat above D Command until 2* nFAW + 2* nRRD - 1  
12 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2  
13 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3  
D
1
0
0
0
0
3
00  
0
0
0
0
-
14 2*nFAW+4*nRRD  
Assert and repeat above D Command until 3* nFAW - 1, if necessary  
repeat Sub-Loop 10, but BA[2:0] = 4  
15 3*nFAW  
16 3*nFAW+nRRD  
repeat Sub-Loop 11, but BA[2:0] = 5  
17 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6  
18 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7  
D
1
0
0
0
0
7
00  
0
0
0
0
-
19 3*nFAW+4*nRRD  
Assert and repeat above D Command until 4* nFAW - 1, if necessary  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2013  
24  
IDD Specifications  
IDD values are for full operating range of voltage and temperature unless otherwise noted.  
IDD Specification  
Speed Grade DDR3L - 1066 DDR3L - 1333 DDR3L - 1600 DDR3L - 1866  
Bin  
Symbol  
IDD0  
7-7-7  
Max.  
25  
9-9-9  
Max.  
26  
11-11-11  
Max.  
26  
13-13-13  
Max.  
28  
Unit  
Notes  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
x4/x8  
x4/x8  
x4/x8  
x4/x8  
x4/x8  
x4/x8  
x4/x8  
x4/x8  
x4/x8  
x4  
IDD01  
33  
34  
34  
36  
IDD2P0  
IDD2P1  
IDD2N  
IDD2NT  
IDD2Q  
IDD3P  
8
8
8
9
8
8
8
9
13  
13  
14  
15  
16  
16  
18  
19  
12  
12  
13  
14  
11  
11  
11  
12  
IDD3N  
16  
17  
17  
19  
55  
60  
65  
78  
IDD4R  
58  
65  
70  
82  
x8  
60  
65  
70  
80  
x4  
IDD4w  
62  
70  
75  
85  
x8  
IDD5B  
IDD6  
IDD6ET  
IDD7  
125  
10  
125  
10  
125  
10  
125  
10  
x4/x8  
x4/x8, 1  
x4/x8, 2  
x4/x8  
13  
13  
13  
13  
105  
115  
120  
130  
Notes:  
1. Applicable for MR2 settings A6=0 and A7=0. Temperature range for IDD6 is 0 - 85oC.  
2. Applicable for MR2 settings A6=0 and A7=1. Temperature range for IDD6ET is 0 - 95oC.  
Rev. 1.0 / Nov. 2013  
25  
Input/Output Capacitance  
DDR3L-800 DDR3L-1066 DDR3L-1333 DDR3L-1600 DDR3L-1866  
Parameter  
Symbol  
Units Notes  
Min  
Max  
Min  
Max Min Max Min Max Min Max  
Input/output capacitance  
(DQ, DM, DQS, DQS,  
TDQS, TDQS)  
CIO  
1.4  
2.5  
1.4  
2.5  
1.4  
2.3  
1.4  
2.2  
1.4  
2.1  
pF  
1,2,3  
Input capacitance, CK and  
CK  
Input capacitance delta  
CK and CK  
Input capacitance delta,  
DQS and DQS  
Input capacitance  
(All other input-only pins)  
Input capacitance delta  
(All CTRL input-only pins)  
CCK  
CDCK  
CDDQS  
CI  
0.8  
0
1.6  
0.15  
0.20  
1.3  
0.8  
0
1.6  
0.15  
0.20  
1.3  
0.8  
0
1.4  
0.15  
0.15  
1.3  
0.8  
0
1.4  
0.15  
0.15  
1.2  
0.8  
0
1.3  
0.15  
0.15  
1.2  
pF  
pF  
pF  
pF  
pF  
2,3  
2,3,4  
2,3,5  
2,3,6  
2,3,7,8  
0
0
0
0
0
0.75  
-0.5  
0.75  
-0.5  
0.75  
-0.4  
0.75  
-0.4  
0.75  
-0.4  
CDI_CTR  
0.3  
0.3  
0.2  
0.2  
0.2  
L
Input capacitance delta  
(All ADD/CMD input-only  
pins)  
CDI_ADD  
_CMD  
-0.5  
0.5  
-0.5  
0.5  
-0.4  
0.4  
-0.4  
0.4  
-0.4  
0.4  
pF 2,3,9,10  
Input/output capacitance  
delta  
(DQ, DM, DQS, DQS)  
Input/output capacitance  
of ZQ pin  
CDIO  
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
pF  
pF  
2,3,11  
2,3,12  
CZQ  
Notes:  
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS.  
2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured  
according to JEP147(“PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER(VNA)”)  
with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as neces-  
sary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off.  
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4. Absolute value of CCK-CCK  
.
5. Absolute value of CIO(DQS)-CIO(DQS).  
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.  
7. CDI_CTR applies to ODT, CS and CKE.  
8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK) + CI(CLK))  
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE.  
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))  
11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS))  
12. Maximum external load capacitance an ZQ pin: 5 pF.  
Rev. 1.0 / Nov. 2013  
26  
Standard Speed Bins  
DDR3L SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
DDR3L-800 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 32.  
Speed Bin  
DDR3L-800E  
6-6-6  
Unit  
Notes  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
tAA  
15  
20  
ns  
ns  
ns  
ns  
ns  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tRCD  
15  
15  
tRP  
tRC  
52.5  
37.5  
ACT to ACT or REF command period  
ACT to PRE command period  
tRAS  
9 * tREFI  
tCK(AVG)  
tCK(AVG)  
3.0  
2.5  
3.3  
3.3  
ns  
ns  
CL = 5  
CL = 6  
CWL = 5  
CWL = 5  
1,2,3,4,11,12  
1,2,3  
12  
nCK  
nCK  
5, 6  
5
Supported CL Settings  
Supported CWL Settings  
Rev. 1.0 / Nov. 2013  
27  
DDR3L-1066 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 32.  
Speed Bin  
DDR3L-1066F  
7-7-7  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
Internal read command to  
first data  
tAA  
13.125  
20  
ns  
ns  
ns  
ns  
ns  
ACT to internal read or  
write delay time  
tRCD  
13.125  
13.125  
50.625  
tRP  
PRE command period  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
37.5  
3.0  
9 * tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
ns  
ns  
1,2,3,4,6,11,12  
CWL = 6  
Reserved  
4
1,2,3,6  
1,2,3,4  
4
CWL = 5  
CL = 6  
2.5  
3.3  
ns  
CWL = 6  
Reserved  
Reserved  
ns  
CWL = 5  
CL = 7  
ns  
CWL = 6  
1.875  
1.875  
< 2.5  
< 2.5  
ns  
1,2,3,4  
4
CWL = 5  
CL = 8  
Reserved  
ns  
CWL = 6  
ns  
1,2,3  
12  
nCK  
nCK  
Supported CL Settings  
Supported CWL Settings  
5, 6, 7, 8  
5, 6  
Rev. 1.0 / Nov. 2013  
28  
DDR3L-1333 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 32.  
Speed Bin  
DDR3L-1333H  
Unit  
Note  
CL - nRCD - nRP  
9-9-9  
Parameter  
Symbol  
min  
13.5  
max  
Internal read  
command to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
ns  
(13.125)5,10  
13.5  
(13.125)5,10  
ACT to internal read or  
write delay time  
13.5  
(13.125)5,10  
PRE command period  
49.5  
(49.125)5,10  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
36  
9 * tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3,4,7,11,12  
CWL = 6, 7  
Reserved  
4
CWL = 5  
2.5  
3.3  
1,2,3,7  
CL = 6  
CL = 7  
CL = 8  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
1,2,3,4,7  
4
4
1.875  
1.875  
< 2.5  
tCK(AVG)  
CWL = 6  
ns  
1,2,3,4,7  
(Optional)5,10  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7  
CWL = 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3,4  
4
Reserved  
CWL = 6  
< 2.5  
1,2,3,7  
1,2,3,4  
4
CWL = 7  
Reserved  
Reserved  
CWL = 5, 6  
CWL = 7  
CL = 9  
1.5  
1.5  
<1.875  
<1.875  
1,2,3,4  
4
CWL = 5, 6  
Reserved  
(Optional)  
CL = 10  
ns  
ns  
1,2,3  
5
tCK(AVG)  
CWL = 7  
nCK  
Supported CL Settings  
Supported CWL Settings  
5, 6, 7, 8, 9, 10  
5, 6, 7  
nCK  
Rev. 1.0 / Nov. 2013  
29  
DDR3L-1600 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 32.  
Speed Bin  
DDR3L-1600K  
11-11-11  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
13.75  
max  
Internal read  
command to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
ns  
(13.125)5,10  
13.75  
(13.125)5,10  
ACT to internal read or  
write delay time  
13.75  
(13.125)5,10  
PRE command period  
48.75  
(48.125)5,10  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
35  
9 * tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3,4,8,11,12  
CWL = 6, 7  
Reserved  
4
CWL = 5  
2.5  
3.3  
1,2,3,8  
CL = 6  
CL = 7  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
1,2,3,4,8  
4
4
1.875  
< 2.5  
tCK(AVG)  
CWL = 6  
ns  
1,2,3,4,8  
(Optional)5,10  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5, 6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3,4,8  
Reserved  
4
4
Reserved  
1.875  
1.5  
< 2.5  
1,2,3,8  
1,2,3,4,8  
1,2,3,4  
4
CL = 8  
CL = 9  
Reserved  
Reserved  
Reserved  
<1.875  
tCK(AVG)  
CWL = 7  
ns  
1,2,3,4,8  
(Optional)5,10  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 8  
ns  
ns  
1,2,3,4  
4
CWL = 5, 6  
Reserved  
CL = 10 CWL = 7  
CWL = 8  
1.5  
<1.875  
<1.5  
ns  
1,2,3,8  
1,2,3,4  
4
Reserved  
Reserved  
ns  
CWL = 5, 6,7  
CL = 11  
ns  
CWL = 8  
1.25  
ns  
1,2,3  
nCK  
nCK  
Supported CL Settings  
Supported CWL Settings  
5, 6, 7, 8, 9, 10, 11  
5, 6, 7, 8  
Rev. 1.0 / Nov. 2013  
30  
DDR3L-1866 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 32.  
Speed Bin  
DDR3L-1866M  
13-13-13  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Internal read command  
to first data  
Symbol  
min  
max  
13.91  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
ns  
(13.125)5,13  
13.91  
(13.125)5,13  
13.91  
ACT to internal read or  
write delay time  
PRE command period  
(13.125)5,13  
ACT to PRE command  
period  
tRAS  
tRC  
34  
9 * tREFI  
47.91  
(47.125)5,13  
3.0  
ACT to ACT or PRE  
command period  
-
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
3.3  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2, 3, 4, 9  
CWL = 6,7,8,9  
Reserved  
4
CWL = 5  
2.5  
1.875  
1.875  
1.5  
3.3  
1, 2, 3, 9  
1, 2, 3, 4, 9  
CL = 6  
CL = 7  
CWL = 6  
CWL = 7,8,9  
CWL = 5  
Reserved  
Reserved  
Reserved  
4
4
< 2.5  
< 2.5  
<1.875  
tCK(AVG)  
CWL = 6  
ns  
1, 2, 3, 4, 9  
(optional)  
Reserved  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7,8,9  
CWL = 5  
ns  
ns  
ns  
ns  
ns  
ns  
4
4
CWL = 6  
CWL = 7  
CWL = 8,9  
CWL = 5, 6  
1, 2, 3, 9  
1, 2, 3, 4, 9  
CL = 8  
CL = 9  
Reserved  
Reserved  
Reserved  
4
4
tCK(AVG)  
CWL = 7  
ns  
1, 2, 3, 4, 9  
(optional)  
Reserved  
Reserved  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 8  
CWL = 9  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2, 3, 4, 9  
4
4
CWL = 5, 6  
CWL = 7  
CWL = 8  
CL = 10  
CL = 11  
1.5  
<1.875  
<1.5  
1, 2, 3, 9  
1, 2, 3, 4, 9  
4
Reserved  
Reserved  
CWL = 5,6,7  
1.25  
tCK(AVG)  
CWL = 8  
ns  
1, 2, 3, 4, 9  
(optional)  
Reserved  
Reserved  
Reserved  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 9  
CWL = 5,6,7,8  
CWL = 9  
CWL = 5,6,7,8  
CWL = 9  
ns  
ns  
ns  
ns  
ns  
1, 2, 3, 4  
4
1,2,3,4  
4
CL = 12  
CL = 13  
1.07  
<1.25  
1, 2, 3  
nCK  
nCK  
Supported CL Settings  
Supported CWL Settings  
6, 7, 8, 9, 10, 11, 13  
5, 6, 7, 8, 9  
Rev. 1.0 / Nov. 2013  
31  
Speed Bin Table Notes  
Absolute Specification (T  
; V  
= V = 1.35V +0.100/- 0.067 V);  
OPER  
DDQ DD  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When mak-  
ing a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as require-  
ments from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchro-  
nized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should  
use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculat-  
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL, where tCK(AVG) =  
3.0 ns should only be used for CL = 5 calculation.  
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG)  
down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is  
tCK(AVG).MAX corresponding to CL SELECTED.  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a man-  
datory feature. Refer to DIMM data sheet and/or the DIMM SPD information if and how this setting is  
supported.  
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
9. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
10. DDR3 SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must  
be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H  
devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin  
(Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to  
DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin  
(Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23)  
also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125  
ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.  
11. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.  
12. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not manda-  
tory in SPD coding.  
13. DDR3 SDRAM devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin  
must be 13.125ns. SPD setting must be programed to match. For example, DDR3-1866M devices sup-  
porting down binning to DDR3-1600K or DDR3-1333H or 1066F should program 13.125ns in SPD  
bytes for tAAmin(byte 16), tRCDmin(byte 18) and tRPmin(byte 20) is programmed to 13.125ns, tRC-  
min(byte 21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin  
= 34ns + 13.125ns)  
Rev. 1.0 / Nov. 2013  
32  
Package Dimensions  
Package Dimension(x4/x8): 78Ball Fine Pitch Ball Grid Array Outline  
7.5000.100  
A1 INDEX MARK  
TOP  
SIDE  
0.800 X 8 = 6.400  
2.1000.100  
0.800  
0.5500.100  
A1 BALL MARK  
9
8
7
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
78x0.4500.050  
1.600 1.600  
BOTTOM  
Rev. 1.0 / Nov. 2013  
33  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY