HMA81GS7AFR8N-UH [HYNIX]

DDR4 SDRAM SO-DIMM Based on 8Gb A-die;
HMA81GS7AFR8N-UH
型号: HMA81GS7AFR8N-UH
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

DDR4 SDRAM SO-DIMM Based on 8Gb A-die

动态存储器 双倍数据速率
文件: 总73页 (文件大小:1643K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
260pin DDR4 SDRAM SODIMM  
DDR4 SDRAM SO-DIMM  
Based on 8Gb A-die  
HMA851S6AFR6N  
HMA81GS6AFR8N  
HMA81GS7AFR8N  
HMA82GS6AFR8N  
HMA82GS7AFR8N  
*SK hynix reserves the right to change products or specifications without notice.  
Rev. 1.4 / Sep.2017  
1
Revision History  
Revision No.  
History  
Draft Date  
Oct.2015  
Remark  
0.01  
0.1  
Initial Release  
Added Development plan (1Rx16)  
Updated JEDEC Specification  
Deleted Speed Grade Table  
Dec.2015  
0.2  
Added Development plan (ECC 1Rx8/2Rx8)  
Updated 2133Mbps (tCK(min) : 0.938ns->0.937ns)  
Updated JEDEC Specification  
Mar.2016  
Updated IDD Specification  
1.0  
1.1  
1.2  
1.3  
1.4  
Updated IDD Specification (1Rx16)  
Updated IPP Specification (1Rx8/2Rx8)  
Updated IDD Specification (2133Mbps)  
Corrected Module Dimension : 1Rx16 / thickness  
Corrected Block Diagram / Module Dimension  
Apr.2016  
Apr.2016  
Jun.2016  
Aug.2016  
Sep.2017  
Rev. 1.4 / Sep.2017  
2
Description  
SK hynix Unbuffered Small Outline DDR4 SDRAM DIMMs (Unbuffered Small Outine Double Data Rate Syn-  
chronous DRAM Dual In-Line Memory Modules) are low power, high-speed operation memory modules  
that use DDR4 SDRAM devices. These DDR4 SDRAM Unbuffered Small Outline DIMMs are intended for use  
as main memory when installed in systems such as micro servers and mobile personal computres.  
Features  
• Power Supply: VDD=1.2V (1.14V to 1.26V)  
• VDDQ = 1.2V (1.14V to 1.26V)  
• VPP - 2.5V (2.375V to 2.75V)  
• VDDSPD=2.25V to 3.6V  
• Functionality and operations comply with the DDR4 SDRAM datasheet  
• 16 internal banks  
• Bank Grouping is applied, and CAS to CAS latency (tCCD_L, tCCD_S) for the banks in the same or dif-  
ferent bank group accesses are available  
• Data transfer rates: PC4-2400, PC4-2133, PC4-1866, PC4-1600  
• Bi-Directional Differential Data Strobe  
• 8 bit pre-fetch  
• Burst Length (BL) switch on-the-fly BL8 or BC4(Burst Chop)  
• Supports ECC error correction and detection  
• On-Die Termination (ODT)  
• Temperature sensor with integrated SPD  
• This product is in compliance with the RoHS directive.  
• Per DRAM Addressability is supported  
• Internal Vref DQ level generation is available  
Ordering Information  
# of  
ranks  
Part Number  
Density  
Organization  
Component Composition  
HMA851S6AFR6N-TF/UH  
HMA81GS6AFR8N-TF/UH  
HMA81GS7AFR8N-TF/UH  
HMA82GS6AFR8N-TF/UH  
HMA82GS7AFR8N-TF/UH  
4GB  
8GB  
512Mx64  
1Gx64  
1Gx72  
2Gx64  
2Gx72  
512Mx16(H5AN8G6NAFR)*4  
1Gx8(H5AN8G8NAFR)*8  
1Gx8(H5AN8G8NAFR)*9  
1Gx8(H5AN8G8NAFR)*16  
1Gx8(H5AN8G8NAFR)*18  
1
1
1
2
2
8GB  
16GB  
16GB  
Rev. 1.4 / Sep.2017  
3
Key Parameters  
CAS  
Latency  
(tCK)  
tCK  
(ns)  
tRCD  
(ns)  
tRP  
(ns)  
tRAS  
(ns)  
tRC  
(ns)  
MT/s  
Grade  
CL-tRCD-tRP  
13.75  
13.75  
48.75  
(48.50)*  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
-PB  
-RD  
-TF  
-UH  
1.25  
1.071  
0.937  
0.833  
11  
13  
15  
17  
35  
34  
33  
32  
11-11-11  
13-13-13  
15-15-15  
17-17-17  
(13.50)* (13.50)*  
13.92 13.92  
(13.50)* (13.50)*  
14.06 14.06  
(13.50)* (13.50)*  
14.16 14.16  
(13.75)* (13.75)*  
47.92  
(47.50)*  
47.06  
(46.50)*  
46.16  
(45.75)*  
*SK hynix DRAM devices support optional downbinning to CL15, CL13 and CL11. SPD setting is programmed to match.  
Address Table  
4GB(1Rx16)  
8GB(1Rx8)  
16GB(2Rx8)  
# of Bank Groups  
Bank Address BG Address  
Bank Address in a BG  
2
4
4
BG0  
BG0~BG1  
BA0~BA1  
A0~A15  
A0~ A9  
1 KB  
BG0~BG1  
BA0~BA1  
A0~A15  
A0~ A9  
1 KB  
BA0~BA1  
A0~A15  
A0~ A9  
2KB  
Row Address  
Column Address  
Page size  
Rev. 1.4 / Sep.2017  
4
Pin Descriptions  
Pin Name  
Description  
Pin Name  
Description  
SDRAM address bus  
SDRAM bank select  
SCL  
SDA  
A0-A16  
BA0, BA1  
BG0, BG1  
I2C serial bus clock for SPD/TS  
I2C serial bus data line for SPD/TS  
I2C slave address select for SPD/TS  
SDRAM parity input  
SDRAM bank group select  
SDRAM row address strobe  
SDRAM column address strobe  
SDRAM write enable  
SA0-SA2  
PARITY  
VDD  
RAS_n1  
CAS_n2  
WE_n3  
SDRAM I/O & core power supply  
SDRAM activating power supply  
VPP  
CS0_n, CS1_n,  
CS2_n, CS3_n  
Rank Select Lines  
C0, C1  
Chip ID lines for 3DS components  
SDRAM command/address reference  
supply  
CKE0, CEK1  
SDRAM clock enable lines  
VREFCA  
ODT0, ODT1  
ACT_n  
SDRAM on-die termination control lines  
SDRAM activate  
VSS  
Power supply return (ground)  
Serial SPD/TS positive power supply  
SDRAM ALERT_n  
VDDSPD  
ALERT_n  
DQ0-DQ63  
CB0-CB7  
DIMM memory data bus  
DIMM ECC check bits  
SDRAM data strobes  
DQS0_t-DQS8_t  
DQS0_c-DQS8_c  
RESET_n  
EVENT_n  
VTT  
Set SDRAMs to a Known State  
(positive line of differential pair)  
SDRAM data strobes  
SPD signals a thermal event has  
occurred  
(negative line of differential pair)  
SDRAM data masks/data bus inversion  
(x8-based x72 DIMMs)  
DM0_n-DM8_n,  
DBI0_n-DBI8_n  
Termination supply for the Address,  
Command and Control bus  
SDRAM clocks (positive line of differen-  
tial pair)  
CK0_t, CK1_t  
CK0_c, CK1_c  
NC  
No connection  
SDRAM clocks (negative line of differ-  
ential pair)  
1. RAS_n is a multiplexed function with A16.  
2. CAS_n is a multiplexed function with A15.  
3. WE_n is a multiplexed function with A14.  
Rev. 1.4 / Sep.2017  
5
Input/Output Functional Descriptions  
Symbol  
Type  
Function  
CK0_t, CK0_c,  
CK1_t, CK1_c  
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals  
are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.  
Input  
Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and  
device input buffers and output drivers. Taking CKE LOW provides Precharge Power-  
Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in  
any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref  
CKE0, CKE1  
Input have become stable during the power on and initialization sequence, they must be  
maintained during all operations (including Self-Refresh). CKE must be maintained high  
throughout read and write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE,  
are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-  
Refresh.  
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for  
Input external Rank selection on systems with multiple Ranks. CS_n is considered part of the  
command code.  
CS0_n, CS1_n,  
CS2_n, CS3_n  
Chip ID: Chip ID is only used for 3DS for 2 and 4 high stack via TSV to select each slice  
of stacked component. Chip ID is considered part of the command code.  
C0, C1  
Input  
On-Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance  
internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t,  
DQS_c and DM_n/DBI_n, signal. The ODT pin will be ignored if MR1 is programmed to  
ODT0, ODT1  
Input  
disable RTT_NOM.  
Activation Command Input: ACT_n defines the Activation command being entered along  
Input with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as  
Row Address A16, A15, and A14.  
ACT_n  
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the  
command being entered. Those pins have multi function. For example, for activation  
Input with ACT_n Low, these are Addresses like A16, A15, and A14 but for non-activation  
command with ACT_n High, these are Command pins for Read, Write, and other  
command defined in command truth table.  
RAS_n/A16,  
CAS_n/A15,  
WE_n/A14  
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data.  
Input data is masked when DM_n is sampled LOW coincident with that input data during  
Input/ a Write access. DM_n is sampled on both edges of DQS. DM is muxed with DBI function.  
Output DBI_n is an input/output identifying wherther to store/output the true or inverted data.  
If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 SDRAM  
and not inverted if DBI_n is HIGH.  
DM_n/DBI_n  
BG0-BG1  
Bank Group Inputs: BG0 - BG1 define which bank group an Active, Read, Write, or  
Precharge command is being applied. BG0 also determines which mode register is to be  
accessed during a MRS cycle. For x4/8 based SDRAMs, BG0 and BG1 are valid. For x16  
Input  
based SDRAM components, only BG0 is valid.  
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write, or  
Input Precharge command is being applied. Bank address also determines which mode  
register is to be accessed during a MRS cycle.  
BA0-BA1  
Rev. 1.4 / Sep.2017  
6
Symbol  
Type  
Function  
Address Inputs: Provide the row address for ACTIVATE Commands and the column  
address for Read/Write commands to select one location out of the memory array in the  
A0 - A16  
Input respective bank. A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15, and WE_n/A14 have  
additional functions. See other rows. The address inputs also provide the op-code during  
Mode Register Set commands.  
Auto-precharge: A10 is sampled during Read/Write commands to determine whether  
Autoprecharge should be performed to the accessed bank after the Read/Write  
operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a  
Precharge command to determine whether the Precharge applies to one bank (A10  
A10 / AP  
Input  
LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected  
by bank addresses.  
Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if  
Input burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped).  
See command truth table for details.  
A12 / BC_n  
RESET_n  
CMOS Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive  
Input when RESET_n is HIGH. RESET_n must be HIGH during normal operation.  
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then  
Input/ CRC code is added at the end of Data Burst. Any DQ from DQ0-DQ3 may indicate the  
Output internal Vref level during test via Mode Register Setting MR4 A4=High. Refer to vendor  
specific data sheets to determine which DQ is used.  
DQ  
Data Strobe: output with read data, input with write data. Edge-aligned with read data,  
centered in write data. DDR4 SDRAMs support differential data strobe only and does not  
support single-ended.  
Input/  
Output  
DQS_t, DQS_c,  
Command and Address Parity Input : DDR4 Supports Even Parity check in DRAMs with  
MR setting. Once it’s enabled via Register in MR5, then DSRAM calculates Parity with  
Input ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-BA1, A16-A0. Input parity  
should be maintained at the rising edge of the clock and at the same time with  
command & address with CS_n LOW.  
PARITY  
ALERT: It has multiple functions, such as CRC error flag or Command and Address Parity  
error flag, as an Output signal. If there is an error in CRC, then ALERT_n goes LOW for  
the period time interval and goes back HIGH. If there is an error in Command Address  
Output Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM  
internal recovery transaction is complete.  
ALERT_n  
During Connectivity Test mode, this pin functions as an input.  
Use of this signal or not is dependent on the system.  
SA0-SA1  
RFU  
Input Device address for the SPD.  
Reserved for Future Use. No on DIMM electrical connection is present.  
No Connect: No on DIMM electrical connection is present.  
NC  
VDD1  
Supply  
Supply  
Supply  
Power Supply: 1.2 V +/- 0.06 V  
Ground  
VSS  
VTT2  
Power Supply : 0.6V  
Rev. 1.4 / Sep.2017  
7
Symbol  
Type  
Function  
Supply  
Supply  
Supply  
DRAM Activating Power Supply: 2.5V (2.375V min , 2.75V max)  
Reference voltage for CA  
VPP  
VREFCA  
VDDSPD  
Power supply used to power the I2C bus on the SPD.  
Note:  
1. For PC4, VDD 1.2V. For PC4L VDD is TBD.  
2. For PC4, VTT is 0.6V. For PC4L VTT is TBD.  
Rev. 1.4 / Sep.2017  
8
Pin Assignments  
Front Side  
Pin  
Back Side  
Pin Label  
Front Side  
Pin Label  
Back Side  
Pin Label  
Pin  
Pin  
Pin  
Pin Label  
1
VSS  
DQ5  
VSS  
2
VSS  
DQ4  
131  
133  
135  
137  
139  
141  
143  
A3  
A1  
132  
134  
136  
138  
140  
142  
144  
A2  
3
4
EVENT_  
n
5
6
VSS  
VDD  
VDD  
7
DQ1  
VSS  
8
DQ0  
CK0_t  
CK0_c  
VDD  
CK1_t  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
VSS  
CK1_C  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
73  
75  
DQS0_  
C
DM0_n, DBI0_n  
VSS  
VDD  
A0  
DQS0_t  
VSS  
PARITY  
DQ6  
KEY  
DQ7  
VSS  
VSS  
DQ2  
145  
147  
149  
151  
153  
155  
157  
159  
161  
163  
165  
167  
169  
171  
173  
175  
177  
179  
181  
183  
185  
187  
189  
191  
193  
195  
197  
199  
201  
BA1  
VDD  
146  
148  
150  
152  
154  
156  
158  
160  
162  
164  
166  
168  
170  
172  
174  
176  
178  
180  
182  
184  
186  
188  
190  
192  
194  
196  
198  
200  
202  
A10/AP  
VDD  
DQ3  
VSS  
VSS  
DQ12  
VSS  
CS0_n  
A14/WE_n  
VDD  
BA0  
DQ13  
VSS  
A16/RAS_n  
VDD  
DQ8  
DQ9  
VSS  
ODT0  
CS1_n  
VDD  
A15/CAS_n  
A13  
VSS  
DQS1_C  
DM1_n, DBI1_n  
VSS  
DQS1_t  
VSS  
VDD  
ODT1  
VDD  
C0, CS2_n, NC  
VREFCA  
SA2  
DQ15  
VSS  
DQ14  
VSS  
C1, CS3_n, NC  
VSS  
DQ10  
VSS  
DQ11  
VSS  
VSS  
DQ37  
VSS  
DQ36  
DQ21  
VSS  
DQ20  
VSS  
VSS  
DQ33  
VSS  
DQ32  
VSS  
DQ17  
VSS  
DQ16  
VSS  
DQS4_  
C
DM4_n, DBI4_n  
VSS  
DQS2_c  
DQS2_t  
VSS  
DM2_n, DBI2_n  
VSS  
DQS4_t  
VSS  
DQ39  
DQ22  
VSS  
DQ38  
VSS  
DQ23  
VSS  
VSS  
DQ35  
VSS  
DQ18  
DQ34  
VSS  
DQ19  
VSS  
VSS  
DQ45  
VSS  
DQ28  
VSS  
DQ44  
VSS  
DQ29  
VSS  
DQ41  
DQ24  
VSS  
DQ40  
VSS  
DQ25  
VSS  
VSS  
DQS5_c  
DQS5_t  
VSS  
DQS3_c  
DQS3_t  
DM5_n, DBI5_n  
VSS  
DM3_n, DBI3_n  
Rev. 1.4 / Sep.2017  
9
Front Side  
Pin Label  
Back Side  
Pin Label  
Front Side  
Pin Label  
Back Side  
Pin Label  
Pin  
Pin  
Pin  
Pin  
77  
79  
VSS  
DQ30  
VSS  
78  
80  
VSS  
DQ31  
203  
205  
207  
209  
211  
213  
215  
217  
219  
221  
223  
225  
227  
229  
231  
233  
235  
237  
239  
241  
243  
245  
247  
249  
251  
253  
255  
257  
259  
DQ46  
VSS  
204  
206  
208  
210  
212  
214  
216  
218  
220  
222  
224  
226  
228  
230  
232  
234  
236  
238  
240  
242  
244  
246  
248  
250  
252  
254  
256  
258  
260  
DQ47  
VSS  
81  
82  
VSS  
DQ42  
VSS  
DQ43  
VSS  
83  
DQ26  
VSS  
84  
DQ27  
VSS  
85  
86  
DQ52  
VSS  
DQ53  
VSS  
87  
CB5, NC  
VSS  
88  
CB4, NC  
VSS  
89  
90  
DQ49  
VSS  
DQ48  
VSS  
91  
CB1, NC  
VSS  
92  
CB0, NC  
VSS  
93  
94  
DQS6_  
C
DM6_n, DBI6_n  
VSS  
95  
DQS8_c  
DQS8_t  
VSS  
96  
DM8_n, DBI8_n  
VSS  
DQS6_t  
VSS  
97  
98  
DQ54  
VSS  
99  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
CB6, NC  
VSS  
DQ55  
VSS  
101  
103  
105  
107  
109  
111  
113  
115  
117  
119  
121  
123  
125  
127  
129  
CB2, NC  
VSS  
DQ50  
VSS  
CB7, NC  
VSS  
DQ51  
VSS  
CB3, NC  
VSS  
DQ60  
VSS  
RESET_n  
CKE1  
VDD  
DQ61  
VSS  
CKE0  
VDD  
DQ57  
VSS  
DQ56  
VSS  
BG1  
ACT_n  
ALERT_n  
VDD  
DQS7_c  
DQS7_t  
VSS  
BG0  
DM7_n, DBI7_n  
VSS  
VDD  
A12  
A11  
DQ62  
VSS  
DQ63  
VSS  
A9  
A7  
VDD  
VDD  
DQ58  
VSS  
DQ59  
VSS  
A8  
A5  
A6  
A4  
SCL  
SDA  
VDD  
VDD  
VDDSPD  
VPP  
SA0  
VTT  
VPP  
SA1  
Rev. 1.4 / Sep.2017  
10  
Functional Block Diagram  
4GB, 512Mx64 Module(1Rank of x16)  
CK0_t, CK0_c  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[0]  
CS0_n  
ODT0  
CKE0  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
DQS0_t  
DQS0_c  
DQ [7:0]  
DQS1_t  
DQS1_c  
DQSL_t  
DQSL_c  
DQL[7:0]  
DQSU_t  
DQSU_c  
DQU[7:0]  
D0  
D1  
D2  
D3  
Serial PD  
DQ [15:8]  
DM0_n/DBI0_n  
DM1_n/DBI1_n  
DM_n/DBI_n  
DM_n/DBI_n  
SCL  
SDA  
NC  
A0  
A1  
A2  
DQS2_t  
DQS2_c  
DQ [23:16]  
DQS3_t  
DQS3_c  
DQ [15:8]  
DQSL_t  
DQSL_c  
DQL[7:0]  
DQSU_t  
DQSU_c  
DQU[7:0]  
SA0 SA1 SA2  
DM2_n/DBI2_n  
DM3_n/DBI3_n  
DM_n/DBI_n  
DM_n/DBI_n  
VDDSPD  
SPD  
VPP  
D0–D4  
D0–D4  
DQS4_t  
DQS4_c  
DQ [39:32]  
DQS5_t  
DQS5_c  
DQ [47:40]  
DQSL_t  
DQSL_c  
DQL[7:0]  
DQSU_t  
DQSU_c  
DQU[7:0]  
VDD  
VTT  
D0–D4  
D0–D4  
VREFCA  
VSS  
DM4_n/DBI4_n  
DM5_n/DBI5_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS6_t  
DQS6_c  
DQ [55:48]  
DQSL_t  
DQSL_c  
DQL[7:0]  
DQS7_t  
DQS7_c  
DQ [63:56]  
DQSU_t  
DQSU_c  
DQU[7:0]  
DM6_n/DBI6_n  
DM7_n/DBI7_n  
DM_n/DBI_n  
DM_n/DBI_n  
Note:  
1. Unless otherwize noted, resistor values are 15±5%.  
2. ZQ resistors are 240 ±1%.For all other resistor values refer to the appropriate wiring diagram.  
3. CK1_t, CK1_c terminated with 75±5% resistor.  
Rev. 1.4 / Sep.2017  
11  
8GB, 1Gx64 Module(1Rank of x8)  
CK0_t, CK0_c  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[1:0]  
CS0_n  
ODT0  
CKE0  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
DQS2_t  
DQS2_c  
DQ [23:16]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS4_t  
DQS4_c  
DQ [39:32]  
DQS_t  
DQS_c  
DQ [7:0]  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
DM2_n/DBI2_n  
DM_n/DBI_n  
DM4_n/DBI4_n  
DM_n/DBI_n  
ZQ  
ZQ  
ZQ  
DQS0_t  
DQS0_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS6_t  
DQS6_c  
DQ [55:48]  
DQS_t  
DQS_c  
DQ [7:0]  
DM0_n/DBI0_n  
DM_n/DBI_n  
DM6_n/DBI6_n  
DM_n/DBI_n  
DQS1_t  
DQS1_c  
DQ [15:8]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS7_t  
DQS7_c  
DQ [63:56]  
DQS_t  
DQS_c  
DQ [7:0]  
DM1_n/DBI1_n  
DM_n/DBI_n  
DM7_n/DBI7_n  
DM_n/DBI_n  
DQS3_t  
DQS3_c  
DQ [31:24]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS5_t  
DQS5_c  
DQ [47:40]  
DQS_t  
DQS_c  
DQ [7:0]  
DM3_n/DBI3_n  
DM_n/DBI_n  
DM5_n/DBI5_n  
DM_n/DBI_n  
Serial PD  
VDDSPD  
SPD  
SCL  
EVENT_n  
VPP  
D0–D7  
D0–D7  
SDA  
R1  
NC  
A0  
A1  
A2  
VDD  
VTT  
SA2 (pin 166)  
VSS  
SA0 SA1  
D0–D7  
D0–D7  
VREFCA  
R2  
VSS  
Note:  
1. Unless otherwize noted, resistor values are 15±5%.  
2. ZQ resistors are 240 ±1%.For all other resistor values refer to the appropriate wiring diagram.  
3. To connect the SPD A2 input to the edge connector pin 166 install R1. To tie the SPD input A2 to ground install R2.  
Do not install both R1 and R2. The values for R1 and R2 are not critical. Any value less than 100 Ohms may be used.  
Rev. 1.4 / Sep.2017  
12  
8GB, 1Gx72 Module(1Rank of x8)  
CK1_t, CK1_c  
CK0_t, CK0_c  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[1:0]  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[1:0]  
CS0_n  
ODT0  
CKE0  
CS0_n  
ODT0  
CKE0  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
DQS8_t  
DQS8_c  
CB[7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS2_t  
DQS2_c  
DQ [23:16]  
DQS_t  
DQS_c  
DQ [7:0]  
D6  
D5  
D4  
D3  
D1  
D0  
D8  
D7  
DM8_n/DBI8_n  
DM_n/DBI_n  
DM2_n/DBI2_n  
DM_n/DBI_n  
ZQ  
ZQ  
ZQ  
DQS4_t  
DQS4_c  
DQ [39:32]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS0_t  
DQS0_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DM4_n/DBI4_n  
DM_n/DBI_n  
DM0_n/DBI0_n  
DM_n/DBI_n  
DQS6_t  
DQS6_c  
DQ [55:48]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS1_t  
DQS1_c  
DQ [15:8]  
DQS_t  
DQS_c  
DQ [7:0]  
DM6_n/DBI6_n  
DM_n/DBI_n  
DM1_n/DBI1_n  
DM_n/DBI_n  
DQS7_t  
DQS7_c  
DQ [63:56]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS3_t  
DQS3_c  
DQ [31:24]  
DQS_t  
DQS_c  
DQ [7:0]  
DM7_n/DBI7_n  
DM_n/DBI_n  
DM3_n/DBI3_n  
DM_n/DBI_n  
ZQ  
VSS  
DQS5_t  
DQS5_c  
DQ [47:40]  
DQS_t  
DQS_c  
DQ [7:0]  
D2  
DM5_n/DBI5_n  
DM_n/DBI_n  
Serial PD with Thermal sensor  
EVENT_n/NC  
VDDSPD  
SPD  
VPP  
D0–D8  
D0–D8  
SCL  
VDD  
VTT  
SDA  
EVENT_n  
A0  
A1  
A2  
R1  
D0–D8  
D0–D8  
VREFCA  
pin 166  
VSS  
SA0 SA1  
VSS  
R2  
Note:  
1. Unless otherwize noted, resistor values are 15±5%.  
2. ZQ resistors are 240 ±1%.For all other resistor values refer to the appropriate wiring diagram.  
3. To connect the SPD A2 input to the edge connector pin 166 install R1. To tie the SPD input A2 to ground install R2.  
Do not install both R1 and R2. The values for R1 and R2 are not critical. Any value less than 100 Ohms may be used.  
Rev. 1.4 / Sep.2017  
13  
16GB, 2Gx64 Module(2Rank of x8) - page1  
CK0_t, CK0_c  
CK1_t, CK1_c  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[1:0]  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[1:0]  
CS0_n  
ODT0  
CKE0  
CS1_n  
ODT1  
CKE1  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
DQS2_t  
DQS2_c  
DQ [23:16]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
D5  
D4  
D0  
D1  
D14  
D15  
D11  
D10  
DM2_n/DBI2_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS0_t  
DQS0_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DM0_n/DBI0_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS1_t  
DQS1_c  
DQ [15:8]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DM1_n/DBI1_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS3_t  
DQS3_c  
DQ [31:24]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DM3_n/DBI3_n  
DM_n/DBI_n  
DM_n/DBI_n  
Rev. 1.4 / Sep.2017  
14  
16GB, 2Gx64 Module(2Rank of x8) - page2  
CK0_t, CK0_c  
CK1_t, CK1_c  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[1:0]  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[1:0]  
CS0_n  
ODT0  
CKE0  
CS1_n  
ODT1  
CKE1  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
DQS4_t  
DQS4_c  
DQ [39:32]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
D2  
D3  
D7  
D6  
D9  
DM4_n/DBI4_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS6_t  
DQS6_c  
DQ [55:48]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
D8  
DM6_n/DBI6_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS7_t  
DQS7_c  
DQ [63:56]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
D12  
D13  
DM7_n/DBI7_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS5_t  
DQS5_c  
DQ [47:40]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DM5_n/DBI5_n  
DM_n/DBI_n  
DM_n/DBI_n  
Serial PD  
VDDSPD  
VPP  
SPD  
SCL  
SDA  
D0–D15  
D0–D15  
A0  
A1  
A2  
VDD  
VTT  
SA0 SA1 SA2  
D0–D15  
D0–D15  
VREFCA  
VSS  
Note:  
1. Unless otherwize noted, resistor values are 15±5%.  
2. ZQ resistors are 240 ±1%.For all other resistor values refer to the appropriate wiring diagram.  
3. SDRAMs for ODD ranks (D8 to D15), which are placed on the back side of the module use the address mirroing for A4-A3, A6-A5, A8-A7,  
A13-A11, BA1-BA0 and BG1-BG0. More detail can be found in the DDR4 SODIMM Common Section of the Design Specification.  
Rev. 1.4 / Sep.2017  
15  
16GB, 2Gx72 Module(2Rank of x8)  
CK0_t, CK0_c  
CK1_t, CK1_c  
PARITY  
A[16:0],BA[1:0],BG[1:0],ACT_n  
CS0_n  
CS1_n  
ODT1  
CKE1  
ODT0  
CKE0  
DQS0_t  
DQS0_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
D1  
D2  
D0  
D3  
D5  
D8  
D6  
D7  
D4  
D10  
D11  
D9  
DM0_n/DBI0_n  
DM_n/DBI_n  
DM_n/DBI_n  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
DQS1_t  
DQS1_c  
DQ [15:8]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DM1_n/DBI1_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS2_t  
DQS2_c  
DQ [23:16]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DM2_n/DBI2_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS3_t  
DQS3_c  
DQ [31:24]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
D12  
D14  
D17  
D15  
D16  
D13  
DM3_n/DBI3_n  
DM_n/DBI_n  
DM_n/DBI_n  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
DQS4_t  
DQS4_c  
DQ [39:32]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DM4_n/DBI4_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS5_t  
DQS5_c  
DQ [47:40]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
VDDSPD  
VPP  
SPD  
DM5_n/DBI5_n  
DM_n/DBI_n  
DM_n/DBI_n  
D0–D17  
D0–D17  
VDD  
VTT  
DQS6_t  
DQS6_c  
DQ [55:48]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
D0–D17  
D0–D17  
VREFCA  
VSS  
DM6_n/DBI6_n  
DM_n/DBI_n  
DM_n/DBI_n  
DQS7_t  
DQS7_c  
DQ [63:56]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DM7_n/DBI7_n  
DM_n/DBI_n  
DM_n/DBI_n  
Serial PD with Thermal sensor  
SCL  
DQS8_t  
DQS8_c  
CB [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
SDA  
EVENT_n  
VSS  
EVENT_n  
A0 A1  
A2  
DM8_n/DBI8_n  
DM_n/DBI_n  
DM_n/DBI_n  
SA0 SA1 SA2  
Note:  
1. DQ-to-I/O wiring is shown as recommended but may be changed.  
2. Unless otherwize noted, resistor values are 15±5%.  
3. See the Net Structure diagrams for all resistors associated with the command, address and control bus.  
4. ZQ resistors are 240 ±1%.For all other resistor values refer to the appropriate wiring diagram.  
Rev. 1.4 / Sep.2017  
16  
Absolute Maximum Ratings  
Absolute Maximum DC Ratings  
Absolute Maximum DC Ratings  
Symbol  
Parameter  
Rating  
Units  
NOTE  
VDD  
-0.3 ~ 1.5  
-0.3 ~ 1.5  
-0.3 ~ 3.0  
-0.3 ~ 1.5  
-55 to +100  
V
1,3  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on VPP pin relative to Vss  
Voltage on any pin except VREFCA relative to Vss  
Storage Temperature  
VDDQ  
VPP  
V
V
1,3  
4
VIN, VOUT  
TSTG  
V
1,3,5  
1,2  
°C  
NOTE :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any other conditions above those indi-  
cated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect reliability  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement  
conditions, please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x  
VDDQ, When VDD and VDDQ are less than 500 mV; VREFCA may be equal to or less than 300 mV  
4. VPP must be equal or greater than VDD/VDDQ at all times  
5. Overshoot area above 1.5V is specified in DDR4 Device Operation.  
DRAM Component Operating Temperature Range  
Temperature Range  
Symbol  
Parameter  
Rating  
Units  
oC  
oC  
Notes  
0 to 85  
1,2  
Normal Operating Temperature Range  
Extended Temperature Range  
TOPER  
85 to 95  
1,3  
NOTE:  
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measure-  
ment conditions, please refer to the JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported.  
During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating condi-  
tions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC  
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:  
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is  
also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.  
Please refer to the DIMM SPD for option availability  
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use  
the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b)  
or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).  
Rev. 1.4 / Sep.2017  
17  
AC & DC Operating Conditions  
Recommended DC Operating Conditions  
Recommended DC Operating Conditions  
Rating  
Typ.  
1.2  
Symbol  
Parameter  
Unit  
NOTE  
Min.  
1.14  
1.14  
Max.  
1.26  
VDD  
VDDQ  
VPP  
Supply Voltage  
V
V
V
1,2,3  
1,2,3  
3
Supply Voltage for Output  
1.2  
1.26  
2.75  
Supply Voltage for DRAM Activating 2.375  
2.5  
NOTE:  
1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
3. DC bandwidth is limited to 20MHz.  
Rev. 1.4 / Sep.2017  
18  
AC & DC Input Measurement Levels  
AC & DC Logic input levels for single-ended signals  
Single-ended AC & DC input levels for Command and Address  
DDR4-1600/1866/2133/  
DDR4-2666/3200  
2400  
Symbol  
Parameter  
Unit NOTE  
Min.  
Max.  
Min.  
Max.  
VREFCA  
0.075  
+
VIH.CA(DC75)  
VIL.CA(DC75)  
DC input logic high  
DC input logic low  
VDD  
TBD  
TBD  
V
V
VREFCA  
0.075  
-
VSS  
TBD  
TBD  
VIH.CA(AC100)  
VIL.CA(AC100)  
VREF + 0.1  
Note 2  
AC input logic high  
AC input logic low  
Note 2  
TBD  
TBD  
TBD  
TBD  
V
V
1
1
VREF - 0.1  
Reference Voltage for  
ADD, CMD inputs  
VREFCA(DC)  
0.49*VDD  
0.51*VDD  
TBD  
TBD  
V
2,3  
NOTE :  
1. See “Overshoot and Undershoot Specifications”  
2. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for  
reference : approx. ± 12mV)  
3. For reference : approx. VDD/2 ± 12mV  
Rev. 1.4 / Sep.2017  
19  
AC and DC Input Measurement Levels: V  
Tolerances  
REF  
The DC-tolerance limits and ac-noise limits for the reference voltages V  
is illustrated in Figure below.  
REFCA  
It shows a valid reference voltage V (t) as a function of time. (V  
stands for V  
).  
REF  
REF  
REFCA  
V
(DC) is the linear average of V  
(t) over a very long period of time (e.g. 1 sec). This average has to  
REF  
REF  
meet the min/max requirement in Table X. Furthermore V  
(t) may temporarily deviate from V  
(DC) by  
REF  
REF  
no more than ± 1% V  
.
DD  
voltage  
VDD  
VSS  
time  
Illustration of V  
(DC) tolerance and V  
AC-noise limits  
REF  
REF  
The voltage levels for setup and hold time measurements V (AC), V (DC), V (AC) and V (DC) are  
IH  
IH  
IL  
IL  
dependent on V  
.
REF  
"V " shall be understood as V (DC), as defined in Figure above.  
REF  
REF  
This clarifies, that DC-variations of V  
affect the absolute voltage a signal has to reach to achieve a valid  
REF  
high or low level and therefore the time to which setup and hold is measured. System timing and voltage  
budgets need to account for V (DC) deviations from the optimum position within the data-eye of the  
REF  
input signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and  
voltage associated with V  
AC-noise. Timing and voltage effects due to AC-noise on V  
up to the spec-  
REF  
REF  
ified limit (+/-1% of V ) are included in DRAM timings and their associated deratings.  
DD  
Rev. 1.4 / Sep.2017  
20  
AC and DC Logic Input Levels for Differential Signals  
Differential signal definition  
tDVAC  
VIH.DIFF.AC.MIN  
VIH.DIFF.MIN  
0.0  
half cycle  
VIL.DIFF.MAX  
VIL.DIFF.AC.MAX  
tDVAC  
time  
NOTE:  
1. Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.  
2. Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.  
Definition of differential ac-swing and “time above ac-level” t  
DVAC  
Rev. 1.4 / Sep.2017  
21  
Differential swing requirements for clock (CK_t - CK_c)  
Differential AC and DC Input Levels  
DDR4 -1600,1866,2133  
DDR4 -2400,2666 & 3200  
Symbol  
Parameter  
unit NOTE  
min  
+0.150  
max  
NOTE 3  
-0.150  
min  
TBD  
max  
NOTE 3  
TBD  
VIHdiff  
VILdiff  
differential input high  
differential input low  
V
V
1
1
NOTE 3  
NOTE 3  
2 x (VIH(AC) -  
2 x (VIH(AC) -  
V
IHdiff(AC)  
differential input high ac  
ILdiff(AC)  
differential input low ac  
NOTE 3  
NOTE 3  
V
V
2
2
VREF  
)
VREF  
)
2 x (VIL(AC) -  
2 x (VIL(AC) -  
V
NOTE 3  
NOTE 3  
VREF  
)
VREF)  
NOTE :  
1. Used to define a differential signal slew-rate.  
2. for CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD and VREFCA  
;
3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits  
(VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.  
Allowed time before ringback (tDVAC) for CK_t - CK_c  
tDVAC [ps] @ |VIH/Ldiff(AC)| = 200mV tDVAC [ps] @ |VIH/Ldiff(AC)| = TBDmV  
Slew Rate [V/ns]  
min  
120  
115  
110  
105  
100  
95  
max  
min  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
1.6  
1.4  
90  
1.2  
85  
1.0  
80  
< 1.0  
80  
Rev. 1.4 / Sep.2017  
22  
Single-ended requirements for differential signals  
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain require-  
ments for single-ended signals.  
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels  
(VIH.CA(AC) / VIL.CA(AC) ) for ADD/CMD signals) in every half-cycle.  
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different  
value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for  
the single-ended signals CK_t and CK_c  
VDD or VDDQ  
VSEH min  
VSEH  
VDD/2 or VDDQ/2  
CK  
VSEL max  
VSEL  
VSS or VSSQ  
time  
Single-ended requirement for differential signals  
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components  
of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transi-  
tion of single-ended signals through the ac-levels is used to measure setup time. For single-ended compo-  
nents of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but  
adds a restriction on the common mode characteristics of these signals.  
Rev. 1.4 / Sep.2017  
23  
Single-ended levels for CK_t, CK_c  
DDR4-1600/1866/2133 DDR4-2400/2666/3200  
Symbol  
VSEH  
Parameter  
Unit NOTE  
Min  
Max  
Min  
Max  
Single-ended high-level for  
CK_t , CK_c  
Single-ended low-level for  
CK_t , CK_c  
(VDD/2)  
+0.100  
NOTE3  
TBD  
NOTE3  
V
V
1, 2  
1, 2  
(VDD/2)-  
0.100  
VSEL  
NOTE3  
NOTE3  
TBD  
NOTE :  
1. For CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD;  
2. VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA  
;
3. These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits  
(VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.  
Rev. 1.4 / Sep.2017  
24  
Address and Control Overshoot and Undershoot specifications  
AC overshoot/undershoot specification for Address, Command and Control pins  
Specification  
Parameter  
Unit  
DDR4-  
1600  
DDR4-  
1866  
DDR4-  
2133  
DDR4-  
2400  
DDR4-  
2666  
Maximum peak amplitude above VDD Absolute Max  
allowed for overshoot area  
0.06  
0.06  
0.06  
0.06  
TBD  
V
Delta value between VDD Absolute Max and VDD Max  
allowed for overshoot area  
0.24  
0.3  
0.24  
0.3  
0.24  
0.3  
0.24  
0.3  
TBD  
TBD  
TBD  
V
Maximum peak amplitude allowed for undershoot area  
V-ns  
V-ns  
Maximum overshoot area per 1tCK Above Absolute  
Max  
0.0083  
0.0071  
0.0062  
0.0055  
Maximum overshoot area per 1tCK Between Absolute  
Max  
0.2550  
0.2644  
0.2185  
0.2265  
0.1914  
0.1984  
0.1699  
0.1762  
TBD  
TBD  
V-ns  
V-ns  
Maximum undershoot area per 1tCK Below VSS  
(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)  
Overshoot Area above VDD Absolute Max  
VDD Absolute Max  
Overshoot Area Between  
VDD Absolute Max and VDD Max  
VDD  
VSS  
Volts  
(V)  
1 tCK  
Undershoot Area below VSS  
Address,Command and Control Overshoot and Undershoot Definition  
Rev. 1.4 / Sep.2017  
25  
Clock Overshoot and Undershoot Specifications  
AC overshoot/undershoot specification for Clock  
Specification  
Parameter  
Unit  
DDR4-  
1600  
DDR4-  
1866  
DDR4-  
2133  
DDR4-  
2400  
DDR4-  
2666  
Maximum peak amplitude above VDD Absolute Max  
allowed for overshoot area  
0.06  
0.06  
0.24  
0.06  
0.24  
0.06  
0.24  
TBD  
TBD  
V
V
Delta value between VDD Absolute Max and VDD Max  
allowed for overshoot area  
0.24  
0.3  
Maximum peak amplitude allowed for undershoot area  
0.3  
0.3  
0.3  
TBD  
TBD  
V
Maximum overshoot area per 1UI Above Absolute Max 0.0038  
0.0032  
0.0028  
0.0025  
V-ns  
Maximum overshoot area per 1UI Between Absolute  
Max  
0.1125  
0.0964  
0.0980  
0.0844  
0.0858  
0.0750  
0.0762  
TBD  
TBD  
V-ns  
V-ns  
Maximum undershoot area per 1UI Below VSS  
0.1144  
(CK_t, Ck_c)  
Overshoot Area above VDD Absolute Max  
Overshoot Area Between  
VDD Absolute Max  
VDD Absolute Max and VDD Max  
VDD  
Volts  
(V)  
1 UI  
VSS  
Undershoot Area below VSS  
Clock Overshoot and Undershoot Definition  
Rev. 1.4 / Sep.2017  
26  
Data, Strobe and Mask Overshoot and Undershoot Specifications  
AC overshoot/undershoot specification for Data, Strobe and Mask  
Specification  
Parameter  
Unit  
DDR4-  
1600  
DDR4-  
1866  
DDR4-  
2133  
DDR4-  
2400  
DDR4-  
2666  
Maximum peak amplitude above Max absolute level of  
Vin,Vout  
0.16  
0.24  
0.16  
0.24  
0.16  
0.24  
0.16  
0.24  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
V
V
Overshoot area Between Max Absolute level of Vin,  
Vout and VDDQ Max  
Undershoot area Between Min absolute level of  
Vin,Vout and VDDQ Max  
0.30  
0.30  
0.30  
0.30  
V
Maximum peak amplitude below Min absolute level of  
Vin,Vout  
0.10  
0.10  
0.10  
0.10  
V
Maximum overshoot area per 1UI Above Max absolute  
level of Vin,Vout  
0.0150  
0.1050  
0.1050  
0.0150  
0.0129  
0.0900  
0.0900  
0.0129  
0.0113  
0.0788  
0.0788  
0.0113  
0.0100  
0.0700  
0.0700  
0.0100  
V-ns  
V-ns  
V-ns  
V-ns  
Maximum overshoot area per 1UI Between Max abso-  
lute level of Vin,Vout and VDDQ Max  
Maximum undershoot area per 1UI Between Min abso-  
lute level of Vin,Vout and VSSQ  
Maximum undershoot area per 1UI Below Min abso-  
lute level of Vin,Vout  
(DQ,DQS_t,DQS_c,DM_n, DBI_n, TDQS_t, TDQS_c)  
Overshoot Area above Max absolute level of Vin,Vout  
Max absolute level of Vin,Vout  
Overshoot Area Between  
Max absolute level of Vin,Vout and VDDQ  
VDDQ  
VSSQ  
Volts  
(V)  
1 UI  
Undershoot Area Between  
Min absolute level of Vin,Vout and VSSQ  
Min absolute level of Vin,Vout  
Undershoot Area below Min absolute level of Vin, Vout  
Data, Strobe and Mask Overshoot and Undershoot Definition  
Rev. 1.4 / Sep.2017  
27  
Slew Rate Definitions  
Slew Rate Definitions for Differential Input Signals (CK)  
Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table and Fig-  
ure below.  
Differential Input Slew Rate Definition  
Description  
Defined by  
from  
to  
V
V
V
V
V
V
V
Differential input slew rate for rising edge(CK_t - CK_c)  
Differential input slew rate for falling edge(CK_t - CK_c)  
[
[
ILdiffmax ] / DeltaTRdiff  
ILdiffmax  
IHdiffmin  
IHdiffmin -  
V
ILdiffmax ] / DeltaTFdiff  
IHdiffmin  
ILdiffmax  
IHdiffmin -  
NOTE: The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.  
Delta TRdiff  
V
IHdiffmin  
0
V
ILdiffmax  
Delta TFdiff  
Differential Input Slew Rate Definition for CK_t, CK_c  
Rev. 1.4 / Sep.2017  
28  
Slew Rate Definition for Single-ended Input Signals (CMD/ADD)  
Delta TRsingle  
V
IHCA(AC) Min  
V
IHCA(DC) Min  
VREFCA(DC)  
V
ILCA(DC) Max  
V
ILCA(AC) Max  
Delta TFsingle  
Single-ended Input Slew Rate definition for CMD and ADD  
NOTE :  
1. Single-ended input slew rate for rising edge = { VIHCA(AC)Min - VILCA(DC)Max } / Delta TR single  
2. Single-ended input slew rate for falling edge = { VIHCA(DC)Min - VILCA(AC)Max } / Delta TF single  
3. Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.  
4. Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope  
Rev. 1.4 / Sep.2017  
29  
Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each  
cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table. The dif-  
ferential input cross point voltage VIX is measured from the actual cross point of true and complement sig-  
nals to the midlevel between of VDD and VSS.  
VDD  
CK_t  
Vix  
VDD/2  
Vix  
CK_c  
VSEL  
VSEH  
VSS  
Vix Definition (CK)  
Cross point voltage for differential input signals (CK)  
DDR4-1600/1866/2133  
Symbol  
Parameter  
min  
max  
VDD/2 - 145mV VDD/2 + 100mV  
VSEL =<  
VDD/2 - 145mV  
VDD/2 + 145mV  
=< VSEH  
-
Area of VSEH, VSEL  
=< VSEL =<  
=< VSEH =<  
VDD/2 - 100mV VDD/2 + 145mV  
Differential Input Cross Point  
VlX(CK) Voltage relative to VDD/2 for  
CK_t, CK_c  
- (VDD/2 - VSEL) (VSEH - VDD/2)  
-120mV  
120mV  
+ 25mV  
- 25mV  
DDR4-2400/2666/3200  
Symbol  
Parameter  
min  
max  
-
Area of VSEH, VSEL  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Differential Input Cross Point  
VlX(CK) Voltage relative to VDD/2 for  
CK_t, CK_c  
Rev. 1.4 / Sep.2017  
30  
CMOS rail to rail Input Levels  
CMOS rail to rail Input Levels for RESET_n  
CMOS rail to rail Input Levels for RESET_n  
Parameter  
Symbol  
Min  
0.8*VDD  
0.7*VDD  
VSS  
Max  
VDD  
Unit  
V
NOTE  
AC Input High Voltage  
DC Input High Voltage  
DC Input Low Voltage  
AC Input Low Voltage  
Rising time  
VIH(AC)_RESET  
VIH(DC)_RESET  
VIL(DC)_RESET  
VIL(AC)_RESET  
TR_RESET  
6
2
VDD  
V
0.3*VDD  
0.2*VDD  
1.0  
V
1
VSS  
V
7
-
us  
us  
4
RESET pulse width  
tPW_RESET  
1.0  
-
3,5  
NOTE :  
1. After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET,  
otherwise, SDRAM may not be reset.  
2. Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM  
operation will not be guaranteed until it is reset asserting RESET_n signal LOW.  
3. RESET is destructive to data contents.  
4. No slope reversal(ringback) requirement during its level transition from Low to High.  
5. This definition is applied only “Reset Procedure at Power Stable”.  
6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.  
7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings  
tPW_RESET  
0.8*VDD  
0.7*VDD  
0.3*VDD  
0.2*VDD  
TR_RESET  
RESET_n Input Slew Rate Definition  
Rev. 1.4 / Sep.2017  
31  
AC and DC Logic Input Levels for DQS Signals  
Differential signal definition  
Definition of differential DQS Signal AC-swing Level  
Differential swing requirements for DQS (DQS_t - DQS_c)  
Differential AC and DC Input Levels for DQS  
DDR4-1600,1866,2133  
DDR4-2400  
DDR4-2666,3200  
Symbol  
Parameter  
Unit Note  
Min  
186  
Max  
Note2  
-186  
Min  
Max  
TBD  
TBD  
Min  
TBD  
TBD  
Max  
TBD  
TBD  
VIHDiffPeak VIH.DIFF.PeakVoltage  
VILDiffPeak VIL.DIFF.Peak Voltage  
TBD  
TBD  
mV  
mV  
1
1
Note2  
NOTE :  
1. Used to define a differential signal slew-rate.  
2. These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective  
limits Overshoot, Undershoot Specification for single-ended signals.  
Rev. 1.4 / Sep.2017  
32  
Peak voltage calculation method  
The peak voltage of Differential DQS signals are calculated in a following equation.  
VIH.DIFF.Peak Voltage = Max(f(t))  
VIL.DIFF.Peak Voltage = Min(f(t))  
f(t) = VDQS_t - VDQS_c  
The Max(f(t)) or Min(f(t)) used t o determine the midpoint which to reference the +/-35% window of the  
exempt non-monotonic signaling shall be the samllest peak voltage observed in all ui’s.  
Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling  
Rev. 1.4 / Sep.2017  
33  
Differential Input Cross Point Voltage  
To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the  
cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements in Tabel  
below. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) ins measured  
from the actual cross point of DQS_t, DQS_c relative to the VDQSmid fo the DQS_t and DQS_c signals.  
VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals,  
and noted by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above  
VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the tran-  
sitioning DQS signals.  
A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent  
provieded the said ledge occurs within +/- 30% of the midpoint of either VID.DIFF.Peak Voltage (DQS_t  
rising) of VIL.DIFF.Peak Voltage (DQS_c rising), refer to Furure Definition of differential DQS Peak Voltage  
and rage of exempt non-monotonic signaling. A secondary horizontal tangent resulting from a ring-back  
transition is also exempt in determination of a horizontal tangent. Thath is, a falling transition’s horizontal  
tangent is derived from its negative slope to zero slope transition (point A in Fugure bloew) and a ring-  
back’s horizontal tangent derived from its positive slope to zero slope transition (point B in Figure below) is  
not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope  
to zero slope transition (point C in Figure below) and a ring-back’s horizontal tangent derived from its neg-  
ative slope to zero slope transition (point D in Figure below) is not a valid horizontal tangent.  
Vix Definition (DQS)  
Rev. 1.4 / Sep.2017  
34  
Cross point voltage for differential input signals  
DDR4-  
1600,1866,2133,2400  
DDR4-  
2666,2933,3200  
Symbol  
Parameter  
Unit Note  
Min  
Max  
Min  
Max  
DQS_t and DQS_c crossing relative  
to the midpoint of the DQS_t and  
DQS_c signal swings  
Vix_DOS_  
ratio  
-
25  
TBD  
25  
%
1,2  
NOTE :  
1. Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the  
difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest  
horizontal tangent below VDQSmid of the transitioning DQS signals.  
2. VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs  
drivers and paths are matched.  
Rev. 1.4 / Sep.2017  
35  
Differential Input Slew Rate Definition  
Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in Figure  
below.  
NOTE :  
1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope.  
2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope.  
Differential Input Slew Rate Definition for DQS_t, DQS_c  
Differential Input Slew Rate Definition for DQS_t, DQS_c  
Description  
Defined by  
From  
To  
Differential input slew rate for  
rising edge(DQS_t - DQS_c)  
VILDiff_DQS  
VIHDiff_DQS  
|VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff  
|VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff  
Differential input slew rate for  
falling edge(DQS_t - DQS_c)  
VIHDiff_DQS  
VILDiff_DQS  
Differential Input Level for DQS_t, DQS_c  
DDR4-1600,1866,2133  
DDR4-2400  
DDR4-2666,3200  
Symbol  
Parameter  
Unit Note  
Min  
136  
-
Max  
-
Min  
Max  
-
Min  
TBD  
TBD  
Max  
TBD  
TBD  
VIHDiff_DQS Differential Input High  
VILDiff_DQS Differential Input Low  
130  
-
mV  
mV  
-136  
-130  
Rev. 1.4 / Sep.2017  
36  
Differential Input Slew Rate for DQS_t, DQS_c  
DDR4-1600,1866,2133  
DDR4-2400  
DDR4-2666,3200  
Symbol  
SRIdiff  
Parameter  
Unit Note  
Min  
Max  
Min  
Max  
Min  
Max  
Differential Input  
Slew Rate  
3
18  
3
18  
TBD  
TBD  
V/ns  
Rev. 1.4 / Sep.2017  
37  
AC and DC output Measurement levels  
Single-ended AC & DC Output Levels  
Single-ended AC & DC output levels  
DDR4-1600/1866/2133/  
2400/2666/3200  
Symbol Parameter  
Units NOTE  
V
OH(DC) DC output high measurement level (for IV curve linearity)  
OM(DC) DC output mid measurement level (for IV curve linearity)  
VOL(DC) DC output low measurement level (for IV curve linearity)  
OH(AC) AC output high measurement level (for output SR)  
1.1 x VDDQ  
0.8 x VDDQ  
V
V
V
V
0.5 x VDDQ  
V
(0.7 + 0.15) x VDDQ  
(0.7 - 0.15) x VDDQ  
V
V
1
1
VOL(AC) AC output low measurement level (for output SR)  
NOTE :  
1. The swing of ± 0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing  
with a driver impedance of RZQ/7and an effective test load of 50to VTT = VDDQ  
.
Differential AC & DC Output Levels  
Differential AC & DC output levels  
DDR4-1600/1866/  
2133/2400/2666/3200  
Symbol Parameter  
Units NOTE  
V
OHdiff(AC) AC differential output high measurement level (for output SR)  
OLdiff(AC) AC differential output low measurement level (for output SR)  
NOTE :  
+0.3 x VDDQ  
-0.3 x VDDQ  
V
V
1
1
V
1. The swing of ± 0.3 × VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with  
a driver impedance of RZQ/7and an effective test load of 50to VTT = VDDQ at each of the differential outputs.  
Rev. 1.4 / Sep.2017  
38  
Single-ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined  
and measured between V  
and V  
for single ended signals as shown in Table and Figure below.  
OL(AC)  
OH(AC)  
Single-ended output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
[VOH(AC)-VOL(AC)] /  
Delta TRse  
VOL(AC)  
VOH(AC)  
Single ended output slew rate for rising edge  
[VOH(AC)-VOL(AC)] /  
Delta TFse  
VOH(AC)  
VOL(AC)  
Single ended output slew rate for falling edge  
NOTE :  
1. Output slew rate is verified by design and characterization, and may not be subject to production test.  
V
OH(AC)  
V
OL(AC)  
delta TFse  
delta TRse  
Single-ended Output Slew Rate Definition  
Single-ended output slew rate  
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200  
Min Max Min Max Min Max Min Max Min Max Min Max Min Max  
Parameter  
Symbol  
Units  
Single ended output slew rate SRQse  
4
9
4
9
4
9
4
9
4
9
4
9
4
9
V/ns  
Description: SR: Slew Rate  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
se: Single-ended Signals  
For Ron = RZQ/7 setting  
NOTE:  
1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.  
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high  
to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or  
low).  
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high  
to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction  
(i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction,  
the regular maximum limit of 9 V/ns applies  
Rev. 1.4 / Sep.2017  
39  
Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined  
and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table and Figure  
below.  
Differential output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
[VOHdiff(AC)-VOLdiff(AC)] /  
Delta TRdiff  
VOLdiff(AC)  
VOHdiff(AC)  
Differential output slew rate for rising edge  
[VOHdiff(AC)-VOLdiff(AC)] /  
Delta TFdiff  
VOHdiff(AC)  
VOLdiff(AC)  
Differential output slew rate for falling edge  
NOTE :  
1. Output slew rate is verified by design and characterization, and may not be subject to production test.  
V
(AC)  
OHdiff  
V
(AC)  
OLdiff  
delta TFdiff  
delta TRdiff  
Differential Output Slew Rate Definition  
Differential output slew rate  
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200  
Min Max Min Max Min Max Min Max Min Max Min Max Min Max  
Parameter  
Symbol  
Units  
Differential output slew rate SRQdiff  
Description:  
8
18  
8
18  
8
18  
8
18  
8
18  
8
18  
8
18  
V/ns  
SR: Slew Rate  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
diff: Differential Signals  
For Ron = RZQ/7 setting  
Rev. 1.4 / Sep.2017  
40  
Single-ended AC & DC Output Levels of Connectivity Test Mode  
Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test  
Mode.  
Single-ended AC & DC output levels of Connectivity Test Mode  
DDR4-1600/1866/2133/  
Symbol Parameter  
OH(DC) DC output high measurement level (for IV curve linearity)  
Unit Note  
2400/2666/3200  
V
1.1 x VDDQ  
V
V
V
V
V
V
VOM(DC) DC output mid measurement level (for IV curve linearity)  
VOL(DC) DC output low measurement level (for IV curve linearity)  
VOB(DC) DC output below measurement level (for IV curve linearity)  
0.8 x VDDQ  
0.5 x VDDQ  
0.2 x VDDQ  
V
OH(AC) AC output high measurement level (for output SR)  
VTT + (0.1 x VDDQ  
)
1
1
VOL(AC) AC output below measurement level (for output SR)  
VTT - (0.1 x VDDQ  
)
NOTE :  
1. The effective test load is 50terminated by VTT = 0.5 * VDDQ.  
VOH(AC)  
VTT  
0.5 * VDDQ  
VOL(AC)  
TF_output_CT  
TR_output_CT  
Differential Output Slew Rate Definition of Connectivity Test Mode  
Single-ended output slew rate of Connectivity Test Mode  
DDR4-1600/1866/2133/2400/2666/3200  
Parameter  
Symbol  
Unit Note  
Min  
Max  
10  
Output signal Falling time TF_output_CT  
Output signal Rising time TR_output_CT  
-
-
ns/V  
ns/V  
10  
Rev. 1.4 / Sep.2017  
41  
Standard Speed Bins  
DDR4-1600 Speed Bins and Operations  
Speed Bin  
DDR4-1600K  
11-11-11  
CL-nRCD-nRP  
Unit NOTE  
Parameter  
Symbol  
min  
max  
13.75  
Internal read command to first  
data  
tAA  
18.00  
ns  
ns  
ns  
10  
10  
10  
(13.50)5,10  
Internal read command to first  
data with read DBI enabled  
tAA_DBI  
tRCD  
tAA(min) + 2nCK  
tAA(max) +2nCK  
-
13.75  
(13.50)5,10  
ACT to internal read or write  
delay time  
13.75  
PRE command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
10  
10  
10  
(13.50)5,10  
ACT to PRE command period  
35  
9 x tREFI  
-
48.75  
(48.50)5,10  
ACT to ACT or REF command  
period  
Normal Read DBI  
1,2,3,4,9,  
12  
CL = 9  
CL = 11 tCK(AVG)  
1.5  
1.6  
ns  
CWL = 9  
CL = 10 CL = 12 tCK(AVG)  
CL = 10 CL = 12 tCK(AVG)  
Reserved  
ns 1,2,3,4,9  
Reserved  
ns  
ns  
1,2,3,4  
1,2,3,4  
1,2,3  
11,12  
11  
CWL = 9,11 CL = 11 CL = 13 tCK(AVG)  
CL = 12 CL = 14 tCK(AVG)  
Supported CL Settings  
1.25  
1.25  
<1.5  
<1.5  
ns  
9,11,12  
11,13,14  
9,11  
nCK  
nCK  
nCK  
Supported CL Settings with read DBI  
Supported CWL Settings  
Rev. 1.4 / Sep.2017  
42  
DDR4-1866 Speed Bins and Operations  
Speed Bin  
DDR4-1866M  
13-13-13  
CL-nRCD-nRP  
Unit NOTE  
Parameter  
Symbol  
min  
max  
Internal read command to first  
data  
13.9212  
tAA  
18.00  
ns  
ns  
ns  
10  
10  
10  
(13.50)5,10  
Internal read command to first  
data with read DBI enabled  
tAA_DBI  
tRCD  
tAA(min) + 2nCK  
tAA(max) +2nCK  
-
13.92  
(13.50)5,10  
ACT to internal read or write delay  
time  
13.92  
PRE command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
10  
10  
10  
(13.50)5,10  
ACT to PRE command period  
34  
9 x tREFI  
-
47.92  
(47.50)5,10  
ACT to ACT or REF command  
period  
Normal Read DBI  
1,2,3,4,9,  
10  
CL = 9  
CL = 11 tCK(AVG)  
1.5  
1.6  
ns  
CWL = 9  
CL = 10 CL = 12 tCK(AVG)  
CL = 10 CL = 12 tCK(AVG)  
Reserved  
ns 1,2,3,4,9  
ns  
ns 1,2,3,4,6  
Reserved  
4
CWL = 9,11 CL = 11 CL = 13 tCK(AVG)  
CL = 12 CL = 14 tCK(AVG)  
CL = 12 CL = 14 tCK(AVG)  
CWL = 10,12 CL = 13 CL = 15 tCK(AVG)  
CL = 14 CL = 16 tCK(AVG)  
Supported CL Settings  
1.25  
1.25  
<1.5  
<1.5  
ns  
ns  
1,2,3,6  
1,2,3,4  
1,2,3,4  
1,2,3  
Reserved  
1.071  
1.071  
<1.25  
<1.25  
ns  
ns  
9,11,12,13,14  
11,13,14 ,15,16  
9,10,11,12  
nCK  
nCK  
nCK  
11,12  
12  
Supported CL Settings with read DBI  
Supported CWL Settings  
Rev. 1.4 / Sep.2017  
43  
DDR4-2133 Speed Bins and Operations  
Speed Bin  
DDR4-2133P  
15-15-15  
CL-nRCD-nRP  
Unit  
NOTE  
Parameter  
Symbol  
min  
max  
14.0612  
Internal read command to first data  
tAA  
18.00  
ns  
ns  
ns  
10  
10  
10  
(13.50)5,10  
Internal read command to first data  
with read DBI enabled  
tAA_DBI  
tRCD  
tAA(min)+3nCK  
tAA(max)+3nCK  
-
14.06  
(13.50)5,10  
ACT to internal read or write delay  
time  
14.06  
PRE command period  
ACT to PRE command period  
ACT to ACT or REF command period  
Normal Read DBI  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
10  
10  
10  
(13.50)5,10  
33  
9 x tREFI  
-
47.06  
(46.50)5,10  
1,2,3,4,9,1  
2
CL = 9  
CL = 11 tCK(AVG)  
1.5  
1.6  
ns  
CWL = 9  
CL = 10 CL = 12 tCK(AVG)  
CL = 11 CL = 13 tCK(AVG)  
CL = 12 CL = 14 tCK(AVG)  
CL = 13 CL = 15 tCK(AVG)  
CL = 14 CL = 16 tCK(AVG)  
CL = 14 CL = 17 tCK(AVG)  
Reserved  
ns  
ns  
1,2,3,9  
1,2,3,4,7  
1,2,3,7  
1,2,3,4,7  
1,2,3,7  
1,2,3,4  
1,2,3,4  
1,2,3  
1.25  
1.25  
<1.5  
<1.5  
CWL = 9,11  
ns  
1.071  
1.071  
<1.25  
<1.25  
ns  
CWL = 10,12  
ns  
Reserved  
ns  
CWL = 11,14 CL = 15 CL = 18 tCK(AVG)  
CL = 16 CL = 19 tCK(AVG)  
Supported CL Settings  
0.937  
0.937  
<1.071  
<1.071  
ns  
ns  
9,11,12,13,14,15,16  
11,13,14,15,16,18,19  
9,10,11,12,14  
nCK  
nCK  
nCK  
11,12  
Supported CL Settings with read DBI  
Supported CWL Settings  
Rev. 1.4 / Sep.2017  
44  
DDR4-2400 Speed Bins and Operations  
Speed Bin  
DDR4-2400T  
17-17-17  
CL-nRCD-nRP  
Unit  
NOTE  
Parameter  
Symbol  
min  
max  
14.16  
Internal read command to first data  
tAA  
18.00  
ns  
ns  
ns  
10  
10  
10  
(13.75)5,10  
Internal read command to first data  
with read DBI enabled  
tAA_DBI  
tRCD  
tAA(min)+3nCK  
tAA(max)+3nCK  
-
14.16  
(13.75)5,10  
ACT to internal read or write delay  
time  
14.16  
PRE command period  
ACT to PRE command period  
ACT to ACT or REF command period  
Normal Read DBI  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
10  
10  
10  
(13.75)5,10  
32  
9 x tREFI  
-
46.16  
(45.75)5,10  
CL = 9  
CL = 11 tCK(AVG)  
Reserved  
ns  
ns  
1,2,3,4,9  
1,2,3,4,9  
4
CWL = 9  
1.6  
CL = 10 CL = 12 tCK(AVG)  
CL = 10 CL = 12 tCK(AVG)  
1.5  
Reserved  
Reserved  
Reserved  
ns  
CWL = 9,11 CL = 11 CL = 13 tCK(AVG)  
CL = 12 CL = 14 tCK(AVG)  
1.25  
1.25  
<1.5  
<1.5  
ns  
1,2,3,4,8  
1,2,3,8  
4
ns  
CL = 12 CL = 14 tCK(AVG)  
ns  
CWL = 10,12 CL = 13 CL = 15 tCK(AVG)  
CL = 14 CL = 16 tCK(AVG)  
1.071  
1.071  
<1.25  
<1.25  
ns  
1,2,3,4,8  
1,2,3,8  
4
ns  
CL = 14 CL = 17 tCK(AVG)  
ns  
CWL = 11,14 CL = 15 CL = 18 tCK(AVG)  
CL = 16 CL = 19 tCK(AVG)  
0.937  
0.937  
<1.071  
<1.071  
ns  
1,2,3,4,8  
1,2,3,8  
1,2,3,4  
1,2,3,4  
ns  
CL = 15 CL = 18 tCK(AVG)  
Reserved  
Reserved  
ns  
CL = 16 CL = 19 tCK(AVG)  
CWL = 12,16  
ns  
CL = 17 CL = 20 tCK(AVG)  
0.833  
0.833  
<0.937  
<0.937  
ns  
CL = 18 CL = 21 tCK(AVG)  
Supported CL Settings  
ns  
1,2,3  
11  
10,11,12,13,14,15,16,17,18  
12,13,14,15,16,18,19,20,21  
9,10,11,12,14,16  
nCK  
nCK  
nCK  
Supported CL Settings with read DBI  
Supported CWL Settings  
Rev. 1.4 / Sep.2017  
45  
Speed Bin Table Notes  
Absolute Specification  
- VDDQ = VDD = 1.20V +/- 0.06 V  
- VPP = 2.5V +0.25/-0.125 V  
- The values defined with above-mentioned table are DLL ON case.  
- DDR4-1600, 1866, 2133 and 2400 Speed Bin Tables are valid only when Geardown Mode is disabled.  
1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making  
a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as require-  
ments from CWL setting.  
2. tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized  
by the DLL - all possible intermediate frequencies may not be guaranteed. CL in clock cycle is calcu-  
lated from tAA following rounding algorithm defined in DDR4 Device Operation(Rounding Algorithms)  
3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg)  
down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or 0.938 ns or 0.833 ns). This result  
is tCK(avg).MAX corresponding to CL SELECTED.  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a  
mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD information if and how this  
setting is supported.  
6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
8. Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
9. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.  
10. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as  
stated in the Speed Bin Tables.  
11. CL number in parentheses, it means that these numbers are optional.  
12. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).  
13. Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to  
be JEDEC compliant. JEDEC compliance does not require support for all speed bins within a given  
speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.  
Rev. 1.4 / Sep.2017  
46  
IDD and IDDQ Specification Parameters and Test Conditions  
IDD, IPP and IDDQ Measurement Conditions  
In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined.  
Figure shows the setup and test load for IDD, IPP and IDDQ measurements.  
IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q,  
IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA, IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E,  
IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD balls of the  
DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.  
IPP currents have the same definition as IDD except that the current on the VPP supply is measured.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all  
VDDQ balls of the DDR4 SDRAM under test tied together. Any IDD current is not included in IDDQ cur-  
rents.  
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can  
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In  
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one  
merged-power layer in Module PCB.  
For IDD, IPP and IDDQ measurements, the following definitions apply:  
“0” and “LOW” is defined as VIN <= VILAC(max).  
“1” and “HIGH” is defined as VIN >= VIHAC(min).  
“MID-LEVEL” is defined as inputs are VREF = VDD / 2.  
Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 1.  
Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 2.  
Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 11.  
IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not lim-  
ited to setting   
RON = RZQ/7 (34 Ohm in MR1);   
RTT_NOM = RZQ/6 (40 Ohm in MR1);  
RTT_WR = RZQ/2 (120 Ohm in MR2);  
RTT_PARK = Disable;  
Qoff = 0 (Output Buffer enabled) in MR1;  
B
TDQS_t disabled in MR1;  
CRC disabled in MR2;  
CA parity feature disabled in MR5;  
Gear down mode disabled in MR3  
Read/Write DBI disabled in MR5;  
DM disabled in MR5  
Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time  
before actual IDD or IDDQ measurement is started.  
Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA  
changes when directed.  
Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, HIGH, HIGH, HIGH, HIGH} ; apply  
invert of BG/BA changes when directed above.  
Rev. 1.4 / Sep.2017  
47  
I
I
I
DDQ  
DD  
PP  
V
V
V
DDQ  
DD  
PP  
RESET  
CK_t/CK_c  
DDR4 SDRAM  
CKE  
CS  
C
DQS_t/DQS_c  
DQ  
DM  
ACT,RAS,CAS,WE  
A,BG,BA  
ODT  
V
V
SSQ  
SS  
ZQ  
NOTE:  
1. DIMM level Output test load condition may be different from above  
Figure 1 - Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements  
Application specific  
IDDQ  
TestLad  
memory channel  
environment  
Channel  
IO Powe  
Simulatin  
IDDQ  
Simuaion  
IDDQ  
Measurement  
Correlation  
X
X
Channel IO Power  
Number  
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ  
Measurement  
Rev. 1.4 / Sep.2017  
48  
Table 1 -Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
Symbol  
Unit  
11-11-11  
13-13-13  
15-15-15  
17-17-17  
tCK  
CL  
1.25  
11  
11  
11  
39  
28  
11  
16  
20  
28  
4
1.071  
13  
12  
13  
45  
32  
13  
16  
22  
28  
4
0.937  
15  
14  
15  
51  
36  
15  
16  
23  
32  
4
0.833  
17  
17  
17  
56  
39  
17  
16  
26  
36  
4
ns  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
CWL  
nRCD  
nRC  
nRAS  
nRP  
x4  
nFAW x8  
x16  
x4  
nRRDS x8  
x16  
4
4
4
4
5
5
6
7
x4  
5
5
6
6
nRRDL x8  
x16  
5
5
6
6
6
6
7
8
tCCD_S  
tCCD_L  
tWTR_S  
tWTR_L  
nRFC 2Gb  
nRFC 4Gb  
nRFC 8Gb  
nRFC 16Gb  
4
4
4
4
5
5
6
6
2
3
3
3
6
7
8
9
128  
208  
280  
TBD  
150  
243  
327  
TBD  
171  
278  
374  
TBD  
193  
313  
421  
TBD  
Rev. 1.4 / Sep.2017  
49  
Table 2 -Basic IDD, IPP and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current (AL=0)  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 81; AL: 0; CS_n: High  
between ACT and PRE; Command, Address, Bank Group Address, Bank Address Inputs: partially  
toggling according to Table 3; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: Cycling with one  
bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode Regis-  
IDD0  
ters2; ODT Signal: stable at 0; Pattern Details: see Table 3  
Operating One Bank Active-Precharge Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD0  
IDD0A  
IPP0  
Operating One Bank Active-Precharge IPP Current  
Same condition with IDD0  
Operating One Bank Active-Read-Precharge Current (AL=0)  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 81; AL: 0; CS_n: High  
between ACT, RD and PRE; Command, Address, Bank Group Address, Bank Address Inputs,  
Data IO: partially toggling according to Table 4; DM_n: stable at 1; Bank Activity: Cycling with one  
bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and RTT: Enabled in Mode Regis-  
IDD1  
ters2; ODT Signal: stable at 0; Pattern Details: see Table 4  
Operating One Bank Active-Read-Precharge Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD1  
IDD1A  
IPP1  
Operating One Bank Active-Read-Precharge IPP Current  
Same condition with IDD1  
Precharge Standby Current (AL=0)  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,  
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 5; Data  
IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in  
IDD2N  
Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 5  
Precharge Standby Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD2N  
IDD2NA  
IPP2N  
Precharge Standby IPP Current  
Same condition with IDD2N  
Precharge Standby ODT Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,  
IDD2NT Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 6; Data  
IO: VSSQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in  
Mode Registers2; ODT Signal: toggling according to Table 6; Pattern Details: see Table 6  
IDDQ2NT Precharge Standby ODT IDDQ Current  
(Optional) Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Standby Current with CAL enabled  
IDD2NL  
Same definition like for IDD2N, CAL enabled3  
Precharge Standby Current with Gear Down mode enabled  
IDD2NG  
Same definition like for IDD2N, Gear Down mode enabled3,5  
Precharge Standby Current with DLL disabled  
IDD2ND  
Same definition like for IDD2N, DLL disabled3  
Rev. 1.4 / Sep.2017  
50  
Precharge Standby Current with CA parity enabled  
IDD2N_par  
IDD2P  
Same definition like for IDD2N, CA parity enabled3  
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 81; AL:  
0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at  
0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT:  
Enabled in Mode Registers2; ODT Signal: stable at 0  
Precharge Power-Down IPP Current  
Same condition with IDD2P  
IPP2P  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,  
Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable  
at 1;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT  
Signal: stable at 0  
IDD2Q  
IDD3N  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,  
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 5; Data  
IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks open; Output Buffer and RTT: Enabled in  
Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 5  
Active Standby Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD3N  
IDD3NA  
IPP3N  
Active Standby IPP Current  
Same condition with IDD3N  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,  
Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable  
at 1; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal:  
stable at 0  
IDD3P  
IPP3P  
Active Power-Down IPP Current  
Same condition with IDD3P  
Operating Burst Read Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 82; AL: 0; CS_n: High between RD;  
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to  
Table 7; Data IO: seamless read data burst with different data between one burst and the next one  
according to Table 7; DM_n: stable at 1; Bank Activity: all banks open, RD commands cycling through  
banks: 0,0,1,1,2,2,... (see Table 7); Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal:  
stable at 0; Pattern Details: see Table 7  
IDD4R  
Operating Burst Read Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD4R  
IDD4RA  
IDD4RB  
IPP4R  
Operating Burst Read Current with Read DBI  
Read DBI enabled3, Other conditions: see IDD4R  
Operating Burst Read IPP Current  
Same condition with IDD4R  
IDDQ4R Operating Burst Read IDDQ Current  
(Optional) Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
IDDQ4RB Operating Burst Read IDDQ Current with Read DBI  
(Optional) Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current  
Rev. 1.4 / Sep.2017  
51  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: High between WR;  
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to  
IDD4W Table 8; Data IO: seamless write data burst with different data between one burst and the next one  
according to Table 8; DM_n: stable at 1; Bank Activity: all banks open, WR commands cycling through  
banks: 0,0,1,1,2,2,... (see Table 8); Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal:  
stable at HIGH; Pattern Details: see Table 8  
Operating Burst Write Current (AL=CL-1)  
IDD4WA  
AL = CL-1, Other conditions: see IDD4W  
Operating Burst Write Current with Write DBI  
IDD4WB  
Write DBI enabled3, Other conditions: see IDD4W  
Operating Burst Write Current with Write CRC  
IDD4WC  
Write CRC enabled3, Other conditions: see IDD4W  
Operating Burst Write Current with CA Parity  
IDD4W_par  
CA Parity enabled3, Other conditions: see IDD4W  
Operating Burst Write IPP Current  
IPP4W  
Same condition with IDD4W  
Burst Refresh Current (1X REF)  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 81; AL: 0; CS_n: High between REF;  
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to  
IDD5B  
Table 9; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF command every nRFC (see Table 9);  
Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see  
Table 9  
Burst Refresh Write IPP Current (1X REF)  
Same condition with IDD5B  
IPP5B  
Burst Refresh Current (2X REF)  
IDD5F2  
tRFC=tRFC_x2, Other conditions: see IDD5B  
Burst Refresh Write IPP Current (2X REF)  
IPP5F2  
Same condition with IDD5F2  
Burst Refresh Current (4X REF)  
IDD5F4  
tRFC=tRFC_x4, Other conditions: see IDD5B  
Burst Refresh Write IPP Current (4X REF)  
IPP5F4  
Same condition with IDD5F4  
Self Refresh Current: Normal Temperature Range  
TCASE: 0 - 85°C; Low Power Array Self Refresh (LP ASR) : Normal4; CKE: Low; External clock:  
IDD6N  
IPP6N  
IDD6E  
IPP6E  
Off; CK_t and CK_c#: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group  
Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Self-Refresh operation;  
Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL  
Self Refresh IPP Current: Normal Temperature Range  
Same condition with IDD6N  
Self-Refresh Current: Extended Temperature Range)  
TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Extended4; CKE: Low; External clock:  
Off; CK_t and CK_c: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n, Command, Address, Bank Group  
Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature  
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL  
Self Refresh IPP Current: Extended Temperature Range  
Same condition with IDD6E  
Rev. 1.4 / Sep.2017  
52  
Self-Refresh Current: Reduced Temperature Range  
TCASE: 0 - TBD (~35-45)°C; Low Power Array Self Refresh (LP ASR) : Reduced4; CKE: Low;  
External clock: Off; CK_t and CK_c#: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n#, Command,  
Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity:  
Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2;  
ODT Signal: MID-LEVEL  
IDD6R  
Self Refresh IPP Current: Reduced Temperature Range  
Same condition with IDD6R  
IPP6R  
IDD6A  
IPP6A  
Auto Self-Refresh Current  
TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Auto4; CKE: Low; External clock: Off;  
CK_t and CK_c#: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group  
Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Auto Self-Refresh  
operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL  
Auto Self-Refresh IPP Current  
Same condition with IDD6A  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 1; BL: 81; AL:  
CL-1; CS_n: High between ACT and RDA; Command, Address, Bank Group Address, Bank Address  
Inputs: partially toggling according to Table 10; Data IO: read data bursts with different data between  
one burst and the next one according to Table 10; DM_n: stable at 1; Bank Activity: two times  
interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 10; Output Buffer and  
RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 10  
IDD7  
Operating Bank Interleave Read IPP Current  
Same condition with IDD7  
IPP7  
IDD8  
IPP8  
Maximum Power Down Current  
TBD  
Maximum Power Down IPP Current  
Same condition with IDD8  
Rev. 1.4 / Sep.2017  
53  
NOTE :  
1. Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].  
2. Output Buffer Enable  
- set MR1 [A12 = 0] : Qoff = Output buffer enabled  
- set MR1 [A2:1 = 00] : Output Driver Impedance Control = RZQ/7  
RTT_Nom enable  
- set MR1 [A10:8 = 011] : RTT_NOM = RZQ/6  
RTT_WR enable  
- set MR2 [A10:9 = 01] : RTT_WR = RZQ/2  
RTT_PARK disable  
- set MR5 [A8:6 = 000]  
3. CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s  
010] : 1866MT/s, 2133MT/s  
011] : 2400MT/s  
Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate  
DLL disabled : set MR1 [A0 = 0]  
CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s  
010] : 2400MT/s  
Read DBI enabled : set MR5 [A12 = 1]  
Write DBI enabled : set :MR5 [A11 = 1]  
4. Low Power Array Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal  
01] : Reduced Temperature range  
10] : Extended Temperature range  
11] : Auto Self Refresh  
5. IDD2NG should be measured after sync pulse(NOP) input.  
Rev. 1.4 / Sep.2017  
54  
Table 3 - IDD0, IDD0A and IPP0 Measurement-Loop Pattern1  
Data4  
0
0
ACT  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
1,2  
D, D  
D_#,  
D_#  
32  
3,4  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
-
...  
nRAS  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
-
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
1
2
1*nRC  
2*nRC  
3*nRC  
4*nRC  
5*nRC  
6*nRC  
7*nRC  
8*nRC  
9*nRC  
10*nRC  
11*nRC  
12*nRC  
13*nRC  
14*nRC  
15*nRC  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
For x4  
and x8  
only  
NOTE:  
1 .DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. DQ signals are VDDQ.  
Rev. 1.4 / Sep.2017  
55  
Table 4 - IDD1, IDD1A and IPP1 Measurement-Loop Patterna)  
Data4  
0 0  
1, 2  
ACT  
D, D  
D#, D#  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
3b  
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
3, 4  
...  
repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary  
nRCD -AL  
RD  
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRAS  
PRE  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
-
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1
1*nRC + 0  
1*nRC + 1, 2 D, D  
1*nRC + 3, 4 D#, D#  
ACT  
0
1
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
1
0
3b  
1
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
...  
repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
1*nRC + nRCD RD  
- AL  
0
1
1
0
1
0
0
1
1
0
0
0
0
0
0
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
...  
1*nRC + nRAS PRE  
... repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
0
1
0
1
0
0
0
1
1
0
0
0
0
0
0
-
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
2 2*nRC  
3 3*nRC  
4 4*nRC  
5 5*nRC  
6 6*nRC  
8 7*nRC  
9 9*nRC  
10 10*nRC  
11 11*nRC  
12 12*nRC  
13 13*nRC  
14 14*nRC  
15 15*nRC  
16 16*nRC  
For x4 and x8 only  
NOTE:  
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4.Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.  
Rev. 1.4 / Sep.2017  
56  
Table 5 - IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N,  
IDD3NA and IDD3P  
Measurement-Loop Pattern1  
Data4  
0 0  
D, D  
D, D  
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
32  
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
0
1
2
0
0
D#,  
D#  
32  
3
D#,  
D#  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
0
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
1 4-7  
2 8-11  
3 12-15  
4 16-19  
5 20-23  
6 24-27  
7 28-31  
8 32-35  
9 36-39  
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. DQ signals are VDDQ.  
Rev. 1.4 / Sep.2017  
57  
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern1  
Data4  
0 0  
D, D  
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
32  
32  
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
1
2
D, D  
D#, D#  
3
D#, D#  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
-
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 0 instead  
1 4-7  
2 8-11  
3 12-15  
4 16-19  
5 20-23  
6 24-27  
7 28-31  
8 32-35  
9 36-39  
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
For x4  
andx8  
only  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. DQ signals are VDDQ.  
Rev. 1.4 / Sep.2017  
58  
Table 7 - IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern1  
Data4  
0
1
0
RD  
0
1
1
0
1
0
0
0
0
32  
1
0
0
0
0
0
0
0
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
1
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2,3  
D#, D#  
4
RD  
0
1
1
0
1
0
0
1
0
0
0
7
F
0
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
5
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
32  
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
6,7  
D#, D#  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
2
3
4
5
6
7
8
9
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
For x4 and x8 only  
NOTE :  
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. Burst Sequence driven on each DQ signal by Read Command.  
Rev. 1.4 / Sep.2017  
59  
Table 8 - IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern1  
Data4  
0
1
0
WR  
0
1
1
0
1
1
0
0
0
32  
1
0
0
0
0
0
0
0
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
1
D
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2,3  
D#, D#  
4
WR  
0
1
1
0
1
1
0
1
0
0
0
7
F
0
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
5
D
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
32  
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
6,7  
D#, D#  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
2
3
4
5
6
7
8
9
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
For x4 and x8 only  
NOTE :  
1. DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. Burst Sequence driven on each DQ signal by Write Command.  
Rev. 1.4 / Sep.2017  
60  
Table 9 - IDD4WC Measurement-Loop Pattern1  
Datad  
0 0  
WR  
0
1
1
0
1
1
0
0
0
32  
1
0
0
0
0
0
0
0
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
D8=CRC  
1,2  
D, D  
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
3,4  
5
D#, D#  
WR  
0
1
1
0
1
1
0
1
0
0
0
7
F
0
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
D8=CRC  
6,7  
8,9  
D, D  
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
32  
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
D#, D#  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
2 10-14  
3 15-19  
4 20-24  
5 25-29  
6 30-34  
7 35-39  
8 40-44  
9 45-49  
10 50-54  
11 55-59  
12 60-64  
13 65-69  
14 70-74  
15 75-79  
For x4 and x8 only  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device.  
3. C[2:0] are used only for 3DS device.  
4. Burst Sequence driven on each DQ signal by Write Command.  
Rev. 1.4 / Sep.2017  
61  
Table 10 - IDD5B Measurement-Loop Pattern1  
Data4  
0 0  
1 1  
2
REF  
1
1
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
32  
32  
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
0
0
0
F
0
0
0
0
-
-
-
-
D
D
3
D#, D#  
4
D#, D#  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
-
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
4-7  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
40-43  
44-47  
48-51  
52-55  
56-59  
60-63  
For x4 and x8  
only  
2 64 ... nRFC - 1 repeat Sub-Loop 1, Truncate, if necessary  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device.  
3. C[2:0] are used only for 3DS device.  
4. DQ signals are VDDQ.  
Rev. 1.4 / Sep.2017  
62  
Table 11 - IDD7 Measurement-Loop Pattern1  
Data4  
0 0  
1
ACT  
RDA  
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
-
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
-
2
3
D
D#  
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
32  
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
...  
1 nRRD  
nRRD + 1  
repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary  
ACT  
RDA  
0
0
0
1
0
1
0
0
0
1
0
0
0
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
-
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
...  
repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
2 2*nRRD  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary  
3 3*nRRD  
4 4*nRRD  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
5 nFAW  
6 nFAW + nRRD  
7 nFAW + 2*nRRD  
8 nFAW + 3*nRRD  
9 nFAW + 4*nRRD repeat Sub-Loop 4  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
10 2*nFAW  
11 2*nFAW + nRRD  
12 2*nFAW + 2*nRRD  
13 2*nFAW + 3*nRRD  
14 2*nFAW + 4*nRRD repeat Sub-Loop 4  
For x4 and x8  
only  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
15 3*nFAW  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
16 3*nFAW + nRRD  
17 3*nFAW + 2*nRRD  
18 3*nFAW + 3*nRRD  
19 3*nFAW + 4*nRRD repeat Sub-Loop 4  
20 4*nFAW repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device.  
3. C[2:0] are used only for 3DS device.  
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ  
Rev. 1.4 / Sep.2017  
63  
IDD Specifications (Tcase: 0 to 95oC)  
4GB, 512Mx 64 SO-DIMM: HMA851S6AFR6N  
IDD  
IPP  
2133  
40  
40  
13  
13  
72  
72  
72  
unit note  
unit note  
Symbol  
IDD0  
IDD0A  
IDD1  
2133  
176  
176  
228  
240  
104  
104  
124  
72  
104  
104  
104  
72  
2400  
184  
184  
240  
252  
108  
108  
128  
72  
104  
104  
104  
72  
Symbol  
IPP0  
IPP1  
2400  
40  
40  
13  
13  
72  
72  
72  
72  
260  
184  
160  
16  
28  
16  
28  
96  
13  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IPP2N  
IPP2P  
IPP3N  
IPP3P  
IPP4R  
IPP4W  
IPP5B  
IPP5F2  
IPP5F4  
IPP6N  
IPP6E  
IPP6R  
IPP6A  
IPP7  
IDD1A  
IDD2N  
IDD2NA  
IDD2NT  
IDD2NL  
IDD2NG  
IDD2ND  
IDD2NP  
IDD2P  
IDD2Q  
IDD3N  
IDD3NA  
IDD3P  
IDD4R  
IDD4RA  
IDD4RB  
IDD4W  
IDD4WA  
IDD4WB  
IDD4WC  
IDD4WP  
IDD5B  
IDD5F2  
IDD5F4  
IDD6N  
IDD6E  
72  
260  
180  
160  
16  
28  
16  
28  
96  
13  
88  
88  
176  
176  
144  
708  
748  
736  
616  
628  
616  
592  
656  
780  
560  
492  
88  
180  
180  
148  
780  
816  
816  
680  
688  
680  
656  
744  
784  
568  
508  
88  
IPP8  
112  
56  
112  
724  
48  
112  
56  
112  
740  
48  
IDD6R  
IDD6A  
IDD7  
IDD8  
Rev. 1.4 / Sep.2017  
64  
8GB, 1Gx 64 SO-DIMM: HMA81GS6AFR8N  
IDD  
IPP  
2133  
48  
56  
26  
unit note  
unit note  
Symbol  
IDD0  
IDD0A  
IDD1  
2133  
296  
296  
368  
392  
208  
208  
248  
144  
208  
208  
208  
144  
176  
352  
352  
288  
920  
992  
992  
888  
912  
880  
848  
904  
1560  
1120  
984  
176  
224  
112  
224  
1160  
96  
2400  
304  
304  
384  
408  
216  
216  
256  
144  
208  
208  
208  
144  
176  
360  
360  
296  
992  
1072  
1072  
960  
984  
960  
912  
1088  
1568  
1136  
1016  
176  
224  
112  
224  
1216  
96  
Symbol  
IPP0  
IPP1  
2400  
48  
56  
26  
26  
120  
120  
120  
120  
520  
368  
320  
32  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IPP2N  
IPP2P  
IPP3N  
IPP3P  
IPP4R  
IPP4W  
IPP5B  
IPP5F2  
IPP5F4  
IPP6N  
IPP6E  
IPP6R  
IPP6A  
IPP7  
IDD1A  
IDD2N  
IDD2NA  
IDD2NT  
IDD2NL  
IDD2NG  
IDD2ND  
IDD2NP  
IDD2P  
IDD2Q  
IDD3N  
IDD3NA  
IDD3P  
IDD4R  
IDD4RA  
IDD4RB  
IDD4W  
IDD4WA  
IDD4WB  
IDD4WC  
IDD4WP  
IDD5B  
IDD5F2  
IDD5F4  
IDD6N  
IDD6E  
26  
120  
120  
120  
120  
520  
360  
320  
32  
56  
33  
56  
152  
26  
56  
33  
56  
152  
26  
IPP8  
IDD6R  
IDD6A  
IDD7  
IDD8  
Rev. 1.4 / Sep.2017  
65  
8GB, 1Gx 72 SO-DIMM: HMA81GS7AFR8N  
IDD  
2133  
333  
IPP  
2133  
54  
unit note  
unit note  
Symbol  
IDD0  
IDD0A  
IDD1  
2400  
342  
Symbol  
IPP0  
2400  
54  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
333  
411  
441  
234  
234  
279  
162  
234  
234  
234  
162  
198  
396  
396  
324  
342  
432  
459  
243  
243  
288  
162  
234  
234  
234  
162  
198  
405  
405  
333  
1116  
1206  
1206  
1080  
1107  
1080  
1026  
1224  
1764  
1278  
1143  
198  
252  
126  
252  
1368  
108  
IPP1  
63  
29  
29  
63  
29  
29  
IPP2N  
IPP2P  
IPP3N  
IPP3P  
IPP4R  
IPP4W  
IPP5B  
IPP5F2  
IPP5F4  
IPP6N  
IPP6E  
IPP6R  
IPP6A  
IPP7  
IDD1A  
IDD2N  
IDD2NA  
IDD2NT  
IDD2NL  
IDD2NG  
IDD2ND  
IDD2NP  
IDD2P  
IDD2Q  
IDD3N  
IDD3NA  
IDD3P  
IDD4R  
IDD4RA  
IDD4RB  
IDD4W  
IDD4WA  
IDD4WB  
IDD4WC  
IDD4WP  
IDD5B  
IDD5F2  
IDD5F4  
IDD6N  
IDD6E  
135  
135  
135  
135  
585  
405  
360  
36  
63  
37  
63  
171  
29  
135  
135  
135  
135  
585  
414  
360  
36  
63  
37  
63  
171  
29  
1035  
1116  
1116  
999  
1026  
990  
IPP8  
954  
1017  
1755  
1260  
1107  
198  
252  
126  
252  
1305  
108  
IDD6R  
IDD6A  
IDD7  
IDD8  
Rev. 1.4 / Sep.2017  
66  
16GB, 2Gx 64 SO-DIMM: HMA82GS6AFR8N  
IDD  
2133  
504  
IPP  
2133  
74  
unit note  
unit note  
Symbol  
IDD0  
IDD0A  
IDD1  
2400  
520  
Symbol  
IPP0  
2400  
74  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
504  
576  
600  
416  
416  
496  
288  
416  
416  
416  
288  
352  
704  
704  
576  
1128  
1200  
1200  
1096  
1120  
1088  
1056  
1112  
1768  
1328  
1192  
352  
448  
224  
448  
1368  
192  
520  
600  
624  
432  
432  
512  
288  
416  
416  
416  
288  
352  
720  
720  
592  
1208  
1288  
1288  
1176  
1200  
1176  
1128  
1304  
1784  
1352  
1232  
352  
448  
224  
448  
1432  
192  
IPP1  
82  
51  
51  
82  
51  
51  
IPP2N  
IPP2P  
IPP3N  
IPP3P  
IPP4R  
IPP4W  
IPP5B  
IPP5F2  
IPP5F4  
IPP6N  
IPP6E  
IPP6R  
IPP6A  
IPP7  
IDD1A  
IDD2N  
IDD2NA  
IDD2NT  
IDD2NL  
IDD2NG  
IDD2ND  
IDD2NP  
IDD2P  
IDD2Q  
IDD3N  
IDD3NA  
IDD3P  
IDD4R  
IDD4RA  
IDD4RB  
IDD4W  
IDD4WA  
IDD4WB  
IDD4WC  
IDD4WP  
IDD5B  
IDD5F2  
IDD5F4  
IDD6N  
IDD6E  
240  
240  
146  
146  
546  
386  
346  
64  
112  
66  
112  
178  
51  
240  
240  
146  
146  
546  
394  
346  
64  
112  
66  
112  
178  
51  
IPP8  
IDD6R  
IDD6A  
IDD7  
IDD8  
Rev. 1.4 / Sep.2017  
67  
16GB, 2Gx 72 SO-DIMM: HMA82GS7AFR8N  
IDD  
2133  
567  
IPP  
2133  
83  
unit note  
unit note  
Symbol  
IDD0  
IDD0A  
IDD1  
2400  
585  
Symbol  
IPP0  
2400  
83  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
567  
648  
675  
468  
468  
558  
324  
468  
468  
468  
324  
396  
792  
792  
648  
1269  
1350  
1350  
1233  
1260  
1224  
1188  
1251  
1989  
1494  
1341  
396  
504  
252  
504  
1539  
216  
585  
675  
702  
486  
486  
576  
324  
468  
468  
468  
324  
396  
810  
810  
666  
1359  
1449  
1449  
1323  
1350  
1323  
1269  
1467  
2007  
1521  
1386  
396  
504  
252  
504  
1611  
216  
IPP1  
92  
58  
58  
92  
58  
58  
IPP2N  
IPP2P  
IPP3N  
IPP3P  
IPP4R  
IPP4W  
IPP5B  
IPP5F2  
IPP5F4  
IPP6N  
IPP6E  
IPP6R  
IPP6A  
IPP7  
IDD1A  
IDD2N  
IDD2NA  
IDD2NT  
IDD2NL  
IDD2NG  
IDD2ND  
IDD2NP  
IDD2P  
IDD2Q  
IDD3N  
IDD3NA  
IDD3P  
IDD4R  
IDD4RA  
IDD4RB  
IDD4W  
IDD4WA  
IDD4WB  
IDD4WC  
IDD4WP  
IDD5B  
IDD5F2  
IDD5F4  
IDD6N  
IDD6E  
270  
270  
164  
164  
614  
434  
389  
72  
126  
74  
126  
200  
58  
270  
270  
164  
164  
614  
443  
389  
72  
126  
74  
126  
200  
58  
IPP8  
IDD6R  
IDD6A  
IDD7  
IDD8  
Rev. 1.4 / Sep.2017  
68  
Module Dimensions  
512Mx64 - HMA851S6AFR6N  
Front  
Side  
3.5mm max  
69.60mm  
1.75  
4.000.10  
SPD  
Detail-A  
pin 1  
pin 260  
1.425  
2.50  
1.675  
1.20±0.10  
35.50  
28.50  
2X1.800.10  
Back  
Detail - A  
1.00  
±0.05  
0.50  
0.35±0.03  
Note-metalized  
keep out area Max 0.30  
Max 0.25  
0.20±0.15  
Note:  
1. 0.13 tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 1.4 / Sep.2017  
69  
1Gx64 - HMA81GS6AFR8N  
Front  
Side  
69.60mm  
3.7mm max  
1.75  
4.000.10  
SPD  
Detail-A  
pin 1  
pin 260  
1.425  
2.50  
1.675  
1.20±0.10  
35.50  
28.50  
2X1.800.10  
Back  
Detail - A  
±0.05  
1.00  
0.50  
0.35±0.03  
Note-metalized  
keep out area Max 0.30  
Max 0.25  
0.20±0.15  
Note:  
1. 0.13 tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 1.4 / Sep.2017  
70  
1Gx72 - HMA81GS7AFR8N  
Front  
Side  
69.60mm  
3.7mm max  
1.75  
4.000.10  
SPD/TS  
Detail-A  
pin 1  
pin 260  
1.425  
2.50  
1.675  
1.20±0.10  
35.50  
28.50  
2X1.800.10  
Back  
Detail - A  
1.00  
±0.05  
0.50  
0.35±0.03  
Note-metalized  
keep out area Max 0.30  
Max 0.25  
0.20±0.15  
Note:  
1. 0.13 tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 1.4 / Sep.2017  
71  
2Gx64 - HMA82GS6AFR8N  
Front  
Side  
3.7mm max  
69.60mm  
1.75  
4.000.10  
SPD  
Detail-A  
pin 1  
pin 260  
1.425  
2.50  
1.675  
1.20±0.10  
35.50  
28.50  
2X1.800.10  
Back  
Detail - A  
1.00  
±0.05  
0.50  
0.35±0.03  
Note-metalized  
keep out area Max 0.30  
Max 0.25  
0.20±0.15  
Note:  
1. 0.13 tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 1.4 / Sep.2017  
72  
2Gx72 - HMA82GS7AFR8N  
Front  
Side  
3.7mm max  
69.60mm  
1.75  
4.000.10  
SPD/TS  
Detail-A  
pin 1  
pin 260  
1.425  
2.50  
1.675  
1.20±0.10  
35.50  
28.50  
2X1.800.10  
Back  
Detail - A  
1.00  
±0.05  
0.50  
0.35±0.03  
Note-metalized  
keep out area Max 0.30  
Max 0.25  
0.20±0.15  
Note:  
1. 0.13 tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 1.4 / Sep.2017  
73  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY