HMT112S6TFR8C [HYNIX]

204pin DDR3 SDRAM SODIMM;
HMT112S6TFR8C
型号: HMT112S6TFR8C
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

204pin DDR3 SDRAM SODIMM

动态存储器 双倍数据速率
文件: 总48页 (文件大小:544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
204pin DDR3 SDRAM SODIMM  
DDR3 SDRAM  
Unbuffered SODIMMs  
Based on 1Gb T-die  
HMT112S6TFR8C  
HMT125S6TFR8C  
*Hynix Semiconductor reserves the right to change products or specifications without notice.  
Rev. 1.0 / Nov. 2009  
1
Revision History  
Revision No.  
History  
Draft Date  
Sep.2009  
Remark  
Preliminary  
Web posting  
0.1  
1.0  
Initial Release  
JEDEC Update  
Nov. 2009  
Rev. 1.0 / Nov. 2009  
2
Description  
Hynix Unbuffered DDR3 SDRAM DIMMs (Unbuffered Double Data Rate Synchronous DRAM Dual In-Line  
Memory Modules) are low power, high-speed operation memory modules that use Hynix DDR3 SDRAM  
devices. These Unbuffered DDR3 SDRAM DIMMs are intended for use as main memory when installed in  
systems such as mobile personal computers.  
Features  
• VDD=1.5V +/- 0.075V  
• VDDQ=1.5V +/- 0.075V  
• VDDSPD=3.0V to 3.6V  
• Functionality and operations comply with the  
DDR3 SDRAM datasheet  
• 8 internal banks  
• Data transfer rates: PC3-10600, PC3-8500, or  
PC3-6400  
• Bi-directional Differential Data Strobe  
• 8 bit pre-fetch  
• Burst Length (BL) switch on-the-fly: BL 8 or BC  
(Burst Chop) 4  
• On Die Termination (ODT) supported  
• RoHS compliant  
* This product is in compliance with the RoHS directive.  
Ordering Information  
# of  
ranks  
Part Number  
Density  
Organization  
Component Composition  
HMT112S6TFR8C-G7/H9  
HMT125S6TFR8C-G7/H9  
1GB  
2GB  
128Mx64  
256Mx64  
128Mx8(H5TQ1G83TFR)*8  
128Mx8(H5TQ1G83TFR)*16  
1
2
Rev. 1.0 / Nov. 2009  
3
Key Parameters  
CAS  
Latency  
(tCK)  
tCK  
(ns)  
tRCD  
(ns)  
tRP  
(ns)  
tRAS  
(ns)  
tRC  
(ns)  
MT/s  
Grade  
CL-tRCD-tRP  
DDR3-1066  
DDR3-1333  
-G7  
-H9  
1.875  
1.5  
7
9
13.125  
13.5  
13.125  
13.5  
37.5  
36  
50.625  
49.5  
7-7-7  
9-9-9  
Speed Grade  
Frequency [MHz]  
CL8  
Grade  
Remark  
CL6  
CL7  
CL9  
CL10  
-G7  
-H9  
800  
800  
1066  
1066  
1066  
1066  
1333  
1333  
Address Table  
1GB(1Rx8)  
2GB(2Rx8)  
Refresh Method  
Row Address  
Column Address  
Bank Address  
Page Size  
8K/64ms  
A0-A13  
A0-A9  
8K/64ms  
A0-A13  
A0-A9  
BA0-BA2  
1KB  
BA0-BA2  
1KB  
Rev. 1.0 / Nov. 2009  
4
Pin Descriptions  
Num  
ber  
Num  
ber  
Pin Name  
Description  
Pin Name  
Description  
Data Input/Output  
CK[1:0]  
CK[1:0]  
CKE[1:0]  
RAS  
Clock Input, positive line  
Clock Input, negative line  
Clock Enables  
2
2
2
1
1
DQ[63:0]  
DM[7:0]  
DQS[7:0]  
DQS[7:0]  
EVENT  
64  
8
Data Masks  
Data strobes  
8
Row Address Strobe  
Column Address Strobe  
Data strobes, negative line  
Temperature event pin  
8
CAS  
1
Logic Analyzer specific test pin (No  
connect on SODIMM)  
WE  
Write Enable  
Chip Selects  
Address Inputs  
1
2
TEST  
RESET  
VDD  
1
1
S[1:0]  
Reset Pin  
A[9:0],A11,  
A[15:13]  
14  
Core and I/O Power  
Ground  
18  
52  
VSS  
A10/AP  
A12/BC  
Address Input/Autoprecharge  
Address Input/Burst chop  
SDRAM Bank Addresses  
1
1
3
2
VREFDQ  
VREFCA  
BA[2:0]  
ODT[1:0]  
1
1
Input/Output Reference  
On Die Termination Inputs  
Serial Presence Detect (SPD)  
Clock Input  
VTT  
SCL  
1
Termination Voltage  
SPD Power  
2
VDDSPD  
NC  
SDA  
SPD Data Input/Output  
SPD Address Inputs  
1
2
1
2
SA[1:0]  
Reserved for future use  
Total:  
204  
Rev. 1.0 / Nov. 2009  
5
Input/Output Functional Descriptions  
Symbol  
Type  
Polarity  
Function  
The system clock inputs. All address and command lines are sampled on the cross point  
of the rising edge of CK and falling edge of CK. A Delay Locked Loop (DLL) circuit is  
driven from the clock inputs and output timing for read operations is synchronized to the  
input clock.  
CK0/CK0  
CK1/CK1  
IN  
Cross Point  
Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when  
low. By deactivating the clocks, CKE low initiates the Power Down mode or the Self  
Refresh mode.  
Active  
High  
CKE[1:0]  
S[1:0]  
IN  
IN  
Enables the associated DDR3 SDRAM command decoder when low and disables the  
command decoder when high. When the command decoder is disabled, new commands  
are ignored but previous operations continue. Rank 0 is selected by S0; Rank 1 is  
selected by S1.  
Active  
Low  
Active  
High  
Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR3  
SDRAM mode register.  
ODT[1:0]  
IN  
IN  
Active  
Low  
When sampled at the cross point of the rising edge of CK, signals CAS, RAS, and WE  
define the operation to be executed by the SDRAM.  
RAS, CAS, WE  
VREFDQ  
VREFCA  
Supply  
IN  
Reference voltage for SSTL15 inputs.  
BA[2:0]  
Selects which SDRAM internal bank of eight is activated.  
During a Bank Activate command cycle, defines the row address when sampled at the  
cross point of the rising edge of CK and falling edge of CK. During a Read of Write com-  
mand cycle, defines the column address when sampled at the cross point of the rising  
edge of CK and falling edge of CK. In addition to the column address, AP is used to  
invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high  
autoprecharge is selected and BA0-BAn defines the bank to be precharged. If AP is low,  
autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction  
with BA0-BAn to control which bank(s) to precharge. If AP is high, all banks will be pre-  
charged regardless of the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used  
to define which bank to precharge. A12(BC) is samples during READ and WRITE com-  
mands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop:  
LOW, burst chopped).  
A[9:0],  
A10/AP,  
A11,  
A12/BC  
A[15:13]  
IN  
DQ[63:0]  
DM[7:0]  
I/O  
IN  
Data Input/Output pins.  
The data write masks, associated with one data byte. In Write mode, DM operates as a  
byte mask by allowing input data to be written if it is low but blocks the write operation  
if it is high. In Read mode, DM lines have no effect.  
Active  
High  
V
DD, VDDSPD  
Supply  
I/O  
Power supplies for core, I/O, Serial Presence Detect, and ground for the module.  
VSS  
The data strobes, associated with one data byte, sourced with data transfers. In Write  
mode, the data strobe is sourced by the controller and is centered in the data window.  
Cross Point In Read mode, the data strobe is sourced by the DDR3 SDRAMs and is sent at the lead-  
ing edge of the data window. DQS signals are complements, and timing is relative to the  
crosspoint of respective DQS and DQS.  
DQS[7:0],  
DQS[7:0]  
These signals are tied at the system planar to either VSS or VDDSPD to configure the  
serial SPD EEPROM address range.  
SA[1:0]  
IN  
Rev. 1.0 / Nov. 2009  
6
Symbol  
Type  
Polarity  
Function  
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor  
must be connected from the SDA bus line to VDDSPD on the system planar to act as a  
SDA  
I/O  
pullup.  
This signal is used to clock data into and out of the SPD EEPROM. A resistor may be con-  
nected from the SCL bus time to VDDSPD on the system planar to act as a pullup.  
SCL  
IN  
This signal indicates that a thermal event has been detected in the thermal sensing  
device.The system should guarantee the electrical level requirement is met for the  
EVENT pin on TS/SPD part.  
OUT  
(open  
drain)  
EVENT  
VDDSPD  
Active Low  
No pull-up resister is provided on DIMM.  
Serial EEPROM positive power supply wired to a separate power pin at the connector  
which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation.  
Supply  
IN  
The RESET pin is connected to the RESET pin on the register and to the RESET pin on  
the DRAM.  
RESET  
TEST  
Used by memory bus analysis tools (unused (NC) on memory DIMMs)  
Rev. 1.0 / Nov. 2009  
7
Pin Assignments  
Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back  
#
Side  
#
Side  
#
Side  
53 DQ19 54  
VSS  
57 DQ24 58 DQ29 109 BA0  
#
Side  
#
Side  
#
Side  
#
Side  
#
Side  
VREFDQ  
VSS  
VSS  
VDD  
VDD  
1
2
105  
106  
157 DQ42 158 DQ46  
159 DQ43 160 DQ47  
VSS  
3
4
DQ4  
DQ5  
VSS  
55  
56  
DQ28 107 A10/AP 108  
BA1  
VSS  
VSS  
5
DQ0  
DQ1  
VSS  
6
110  
112  
114  
RAS 161  
162  
VSS  
VDD  
WE  
VDD  
S0  
7
8
59 DQ25 60  
111  
163 DQ48 164 DQ52  
165 DQ49 166 DQ53  
VSS  
9
10  
DQS0  
61  
62  
DQS3 113  
VSS  
VSS  
11  
13  
15  
17  
19  
21  
23  
25  
DM0  
VSS  
12 DQS0 63  
DM3  
VSS  
64 DQS3 115 CAS  
116 ODT0 167  
VDD  
120 ODT1 171 DQS6 172  
168  
VSS  
VSS  
VDD  
14  
16  
18  
20  
22  
24  
26  
28  
65  
66  
117  
118  
169 DQS6 170 DM6  
A132  
S1  
VSS  
DQ2  
DQ3  
VSS  
DQ6  
DQ7  
VSS  
67 DQ26 68 DQ30 119  
VSS  
69  
71  
DQ27  
VSS  
70  
72  
74  
76  
78  
80  
82  
DQ31 121  
VSS  
122  
124  
NC  
173  
174 DQ54  
VDD  
VDD  
REFCA  
VSS  
123  
175 DQ50 176 DQ55  
V
VSS  
DQ8  
DQ9  
VSS  
DQ12 73 CKE0  
CKE1 125 TEST 126  
177 DQ51 178  
VDD  
VDD  
VSS  
VSS  
DQ13  
VSS  
75  
77  
79  
127  
128  
179  
180 DQ60  
A152  
NC  
BA2  
VDD  
129 DQ32 130 DQ36 181 DQ56 182 DQ61  
A142  
VDD  
VSS  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
DQS1  
DQS1  
VSS  
DM1  
131 DQ33 132 DQ37 183 DQ57 184  
VSS  
VSS  
VSS  
30 RESET 81  
133  
134  
185  
186 DQS7  
VSS  
DQ14 85  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
83 A12/BC 84  
A11 135 DQS4 136 DM4 187 DM7 188 DQS7  
VSS  
140 DQ38 191 DQ58 192 DQ62  
141 DQ34 142 DQ39 193 DQ59 194 DQ63  
VSS  
VSS  
DQ10  
DQ11  
VSS  
A9  
86  
88  
A7  
137 DQS4 138  
189  
190  
VDD  
VDD  
VSS  
DQ15  
VSS  
87  
89  
139  
A8  
A5  
90  
A6  
A4  
VSS  
VSS  
VSS  
198 EVENT  
DQ16  
DQ17  
VSS  
DQ20 91  
92  
143 DQ35 144  
VSS  
147 DQ40 148 DQ45 199  
195  
196  
VDD  
VDD  
DQ21  
VSS  
93  
95  
97  
99  
94  
145  
146 DQ44 197  
SA0  
VDDSPD  
A3  
A1  
96  
A2  
A0  
200  
202  
204  
SDA  
SCL  
VTT  
VSS  
DQS2  
DQS2  
VSS  
DM2  
VSS  
98  
149 DQ41 150  
201 SA1  
VDD  
VDD  
VSS  
VTT  
100  
102  
104  
151  
152 DQS5 203  
DQ22 101 CK0  
DQ23 103 CK0  
CK1 153 DM5 154 DQS5  
VSS VSS  
DQ18  
CK1 155  
156  
NC = No Connect; RFU = Reserved Future Use  
1. TEST (pin 125) is reserved for bus analysis probes and is NC on normal memory modules.  
2. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be con-  
nected to the termination resistor.  
Rev. 1.0 / Nov. 2009  
8
Functional Block Diagram  
1GB, 128Mx64 Module(1Rank of x8)  
SCL  
A0  
A1  
SCL  
SA0  
SA1  
Temp Sensor  
(with SPD)  
240ohm  
+/-1%  
240ohm  
+/-1%  
DQS0  
DQS0  
DM0  
DQS1  
DQS1  
DM1  
DQS  
DQS  
DM  
DQ [0:7]  
DQS  
DQS  
DM  
DQ [0:7]  
SDA  
ZQ  
ZQ  
A2  
EVENT  
EVENT  
DQ[0:7]  
DQ[8:15]  
The SPD may be  
integrated with the Temp  
Sensor or may be  
D0  
D1  
D2  
D3  
D4  
a separate component  
SCL  
A0  
A1  
SCL  
SA0  
SA1  
(SPD)  
WP  
SDA  
A2  
V
Vtt  
tt  
SPD/TS  
D0–D7  
D0–D7  
D0–D7  
V
V
DDSPD  
240ohm  
+/-1%  
240ohm  
+/-1%  
DQS2  
DQS2  
DM2  
DQS3  
DQS3  
DM3  
DQS  
DQS  
DM  
DQ [0:7]  
DQS  
DQS  
DM  
DQ [0:7]  
V
REFCA  
ZQ  
ZQ  
ZQ  
ZQ  
REFDQ  
VDD  
Q[16:23]  
DQ[24:31]  
VSS  
D0–D7, SPD, Temp sensor  
D5  
CK0  
CK0  
CK1  
CK1  
S1  
D0–D7  
D0–D7  
Terminated near  
card edge  
NC  
NC  
NC  
ODT1  
CKE1  
Temp Sensor  
D0-D7  
EVENT  
RESET  
240ohm  
+/-1%  
240ohm  
+/-1%  
DQS4  
DQS4  
DM4  
DQS5  
DQS5  
DM5  
DQS  
DQS  
DM  
DQ [0:7]  
LDQS  
LDQS  
LDM  
DQ [0:7]  
ZQ  
Q[32:39]  
DQ[40:47]  
D6  
V1  
V2  
V3  
D5  
V4  
D4  
D6  
D7  
V1  
V2  
V3  
D1  
V4  
D0  
D2  
D3  
240ohm  
+/-1%  
240ohm  
+/-1%  
DQS3  
DQS3  
DM3  
DQS7  
DQS7  
DM7  
DQS  
DQS  
DM  
DQ [0:7]  
LDQS  
LDQS  
LDM  
ZQ  
Q[48:55]  
DQ[56:63]  
DQ [0:7]  
D7  
Address and Control Lines  
NOTES  
1. DQ wiring may differ from that  
shown however, DQ, DM, DQS, and  
DQS relationships are maintained as  
shown  
Rank 0  
Rev. 1.0 / Nov. 2009  
9
2GB, 256Mx64 Module(2Rank of x8)  
VDD  
VDD  
Cterm  
Vtt  
Cterm  
Vtt  
Vtt  
240ohm  
+/-1%  
240ohm  
+/-1%  
240ohm  
+/-1%  
240ohm  
+/-1%  
DQS3  
DQS3  
DM3  
DQ[24:31]  
DQS4  
DQS4  
DM4  
DQS  
DQS  
DM  
DQ [0:7]  
LDQS  
LDQS  
LDM  
DQ [0:7]  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
ZQ  
ZQ  
ZQ  
ZQ  
DQ[32:39]  
DQ [0:7]  
DQ [0:7]  
D11  
D12  
D3  
D4  
240ohm  
+/-1%  
240ohm  
+/-1%  
240ohm  
+/-1%  
240ohm  
+/-1%  
DQS1  
DQS1  
DM1  
DQ[8:15]  
DQS  
DQS  
DM  
DQ [0:7]  
LDQS  
LDQS  
LDM  
DQS  
DQS  
DM  
DQ [0:7]  
DQS  
DQS  
DM  
DQ [0:7]  
DQS6  
DQS6  
DM6  
ZQ  
ZQ  
ZQ  
ZQ  
DQ [0:7]  
DQ[48:55]  
D9  
D6  
D1  
D14  
240ohm  
+/-1%  
240ohm  
+/-1%  
240ohm  
+/-1%  
ZQ  
240ohm  
+/-1%  
ZQ  
DQS0  
DQS0  
DM0  
DQS  
DQS  
DM  
DQ [0:7]  
LDQS  
LDQS  
LDM  
DQS  
DQS  
DM  
DQ [0:7]  
DQS  
DQS  
DM  
DQ [0:7]  
DQS7  
DQS7  
DM7  
ZQ  
ZQ  
DQ[0:7]  
DQ [0:7]  
DQ[56:43]  
D0  
D8  
D7  
D15  
240ohm  
+/-1%  
ZQ  
240ohm  
+/-1%  
ZQ  
240ohm  
+/-1%  
240ohm  
+/-1%  
DQS2  
DQS2  
DM2  
DQ[6:23]  
DQS  
DQS  
DM  
DQ [0:7]  
DQS  
DQS  
DM  
DQ [0:7]  
DQS  
DQS  
DM  
DQ [0:7]  
LDQS  
LDQS  
LDM  
ZQ  
ZQ  
DQS5  
DQS5  
DM5  
DQ [0:7]  
D5  
D2  
D13  
D10  
DQ[40:47]  
The SPD may be  
integrated with the Temp  
Sensor or may be  
a separate component  
Vtt  
Vtt  
SPD/TS  
D0–D15  
D0–D15  
D0–D15  
V
DDSPD  
V1  
V9  
V5  
V2  
V8  
D6  
D7  
D3  
D12  
D5  
V
REFCA  
D9  
D8  
SCL  
A0  
A1  
SCL  
SA0  
SA1  
V
REFDQ  
(SPD)  
VDD  
SDA  
SDA  
V3  
V7  
VSS  
D0–D15, SPD, Temp sensor  
A2  
WP  
V4  
V6  
CK0  
CK1  
D0–D7  
D10  
D8–D15  
D0–D7  
CK0  
SCL  
A0  
A1  
SCL  
SA0  
SA1  
Temp Sensor  
(with SPD)  
CK1  
D8–D15  
D0-D7  
CKE0  
V4  
V2  
V5  
V6  
V8  
A2  
D8-D15  
D0–D7  
CKE1  
S0  
EVENT  
EVENT  
D15  
D14  
D2  
D13  
D4  
D0  
D1  
S1  
ODT0  
ODT1  
D8–D15  
D0–D7  
V7  
V3  
Vtt  
NOTES  
1. DQ wiring may differ from that shown  
however, DQ, DM, DQS, and DQS rela-  
tionships are maintained as shown  
V1  
V9  
D8–D15  
Temp Sensor  
D0-D15  
Rank 0  
Rank 1  
D11  
EVENT  
RESET  
Rev. 1.0 / Nov. 2009  
10  
Absolute Maximum Ratings  
Absolute Maximum DC Ratings  
Absolute Maximum DC Ratings  
Symbol  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
Rating  
Units  
Notes  
VDD  
- 0.4 V ~ 1.975 V  
V
1,  
VDDQ  
VIN, VOUT  
TSTG  
- 0.4 V ~ 1.975 V  
- 0.4 V ~ 1.975 V  
-55 to +100  
V
1,  
1
V
oC  
1, 2  
Notes:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement  
conditions, please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than  
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.  
DRAM Component Operating Temperature Range  
Temperature Range  
Symbol  
Parameter  
Normal Operating Temperature Range  
Extended Temperature Range  
Rating  
Units  
oC  
Notes  
0 to 85  
1,2  
TOPER  
85 to 95  
oC  
1,3  
Notes:  
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For mea-  
surement conditions, please refer to the JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur-  
ing operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC  
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:  
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It  
is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.  
Please refer to the DIMM SPD for option availability  
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use  
the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b)  
or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). Hynix DDR3 SDRAMs sup-  
port Auto Self-Refresh and Extended Temperature Range and please refer to Hynix component datasheet  
and/or the DIMM SPD for tREFI requirements in the Extended Temperature Range.  
Rev. 1.0 / Nov. 2009  
11  
AC & DC Operating Conditions  
Recommended DC Operating Conditions  
Recommended DC Operating Conditions  
Rating  
Symbol  
Parameter  
Units Notes  
Min.  
Typ.  
Max.  
VDD  
1.425  
1.500  
1.575  
V
V
1,2  
1,2  
Supply Voltage  
Supply Voltage for Output  
VDDQ  
1.425  
1.500  
1.575  
Notes:  
1. Under all conditions, VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
AC & DC Input Measurement Levels  
AC and DC Logic Input Levels for Single-Ended Signals  
AC and DC Input Levels for Signal-Ended Command and Address Signals  
Single Ended AC and DC Input Levels for Command and ADDress  
DDR3-800/1066/1333  
Symbol  
Parameter  
Unit Notes  
Min  
Max  
VIH.CA(DC100)  
VIL.CA(DC100)  
VIH.CA(AC175)  
VIL.CA(AC175)  
VIH.CA(AC150)  
VIL.CA(AC150)  
DC input logic high  
DC input logic low  
Vref + 0.100  
VSS  
VDD  
V
V
V
V
V
V
V
1
Vref - 0.100  
Note2  
1
AC input logic high  
Vref + 0.175  
Note2  
1, 2  
1, 2  
1, 2  
1, 2  
3, 4  
AC input logic low  
Vref - 0.175  
Note2  
AC Input logic high  
Vref + 0.150  
Note2  
AC input logic low  
Vref - 0.150  
0.51 * VDD  
VRefCA(DC  
Notes:  
1. For input only pins except RESET, Vref = VrefCA (DC).  
2. Refer to “Overshoot and Undershoot Specifications” on page 25.  
)
Reference Voltage for ADD, CMD inputs  
0.49 * VDD  
3. The ac peak noise on V may not allow V to deviate from V by more than +/-1% VDD (for  
RefCA(DC)  
Ref  
Ref  
reference: approx. +/- 15 mV).  
4. For reference: approx. VDD/2 +/- 15 mV.  
Rev. 1.0 / Nov. 2009  
12  
AC and DC Input Levels for Signal-Ended Signals  
DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066 as specified in the table  
below. DDR3 SDRAM will also support corresponding tDS values (Table 41 and Table 47 in “ DDR3 Device  
Operation”) as well as derating tables in Table 44 of “DDR3 Device Operation” depending on Vih/Vil AC lev-  
els.  
Single Ended AC and DC Input Levels for DQ and DM  
DDR3-800/1066  
DDR3-1333  
Symbol  
Parameter  
Unit Notes  
Min  
Max  
Min  
Max  
VIH.CA(DC100)  
VIL.CA(DC100)  
VIH.CA(AC175)  
VIL.CA(AC175)  
VIH.CA(AC150)  
VIL.CA(AC150)  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC Input logic high  
AC input logic low  
Vref + 0.100  
VSS  
VDD  
Vref + 0.100  
VDD  
V
V
V
V
V
V
1
Vref - 0.100  
Note2  
VSS  
Vref - 0.100  
1
Vref + 0.175  
Note2  
-
-
-
-
1, 2  
1, 2  
1, 2  
1, 2  
Vref - 0.175  
Note2  
Vref + 0.150  
Note2  
Vref + 0.150  
Note2  
Note2  
Vref - 0.150  
Vref - 0.150  
Reference Voltage for DQ,  
DM inputs  
VRefDQ(DC  
)
0.49 * VDD  
0.51 * VDD  
0.49 * VDD  
0.51 * VDD  
V
3, 4  
Notes:  
1. Vref = VrefDQ (DC).  
2. Refer to “Overshoot and Undershoot Specifications” on page 25.  
3. The ac peak noise on V may not allow V to deviate from V by more than +/-1% VDD (for  
RefDQ(DC)  
Ref  
Ref  
reference: approx. +/- 15 mV).  
4. For reference: approx. VDD/2 +/- 15 mV.  
Rev. 1.0 / Nov. 2009  
13  
Vref Tolerances  
The dc-tolerance limits and ac-noise limits for the reference voltages  
and V  
are illustrated in  
RefDQ  
VRefCA  
figure below. It shows a valid reference voltage V (t) as a function of time. (V stands for V and  
RefCA  
Ref  
Ref  
V
likewise).  
RefDQ  
V
(DC) is the linear average of V (t) over a very long period of time (e.g. 1 sec). This average has to  
Ref  
Ref  
meet the min/max requirements in the table “Differential Input Slew Rate Definition” on page 20. Further-  
more V (t) may temporarily deviate from V  
by no more than +/- 1% VDD.  
Ref  
Ref (DC)  
voltage  
VDD  
V
(t)  
Ref  
V
ac-noise  
Ref  
V
Ref(DC)max  
V
Ref(DC)  
VDD/2  
V
Ref(DC)min  
VSS  
time  
Illustration of V  
tolerance and V  
ac-noise limits  
Ref  
Ref(DC)  
The voltage levels for setup and hold time measurements V  
, V  
, V  
, and V  
are depen-  
IL(DC)  
IH(AC)  
IH(DC)  
IL(AC)  
dent on V  
.
Ref  
“V ” shall be understood as V  
, as defined in figure above.  
Ref  
Ref(DC)  
This clarifies that dc-variations of V affect the absolute voltage a signal has to reach to achieve a valid  
Ref  
high or low level and therefore the time to which setup and hold is measured. System timing and voltage  
budgets need to account for V  
deviations from the optimum position within the data-eye of the input  
Ref(DC)  
signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and  
voltage associated with V ac-noise. Timing and voltage effects due to ac-noise on V up to the speci-  
Ref  
Ref  
fied limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings.  
Rev. 1.0 / Nov. 2009  
14  
AC and DC Logic Input Levels for Differential Signals  
Differential signal definition  
t
DVAC  
VIL.DIFF.AC.MIN  
VIL.DIFF.MIN  
0
half cycle  
V
IL.DIFF.MAX  
VIL.DIFF.AC.MAX  
t
DVAC  
time  
Definition of differential ac-swing and “time above ac-level” t  
DVAC  
Rev. 1.0 / Nov. 2009  
15  
Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS)  
Differential AC and DC Input Levels  
DDR3-800, 1066, 1333  
Symbol  
Parameter  
Unit Notes  
Min  
Max  
VIHdiff  
VILdiff  
Differential input high  
Differential input logic low  
Differential input high ac  
Differential input low ac  
+ 0.200  
Note 3  
Note 3  
- 0.200  
V
V
V
V
1
1
2
2
VIHdiff (ac)  
VILdiff (ac)  
2 x (VIH (ac) - Vref)  
Note 3  
Note 3  
2 x (VIL (ac) - Vref)  
Notes:  
1. Used to define a differential signal slew-rate.  
2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL  
(ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level  
applies also here.  
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU  
need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita-  
tions for overshoot and undershoot. Refer to “Overshoot and Undershoot Specifications” on page 25.  
Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS  
tDVAC [ps]  
tDVAC [ps]  
@ |VIH/Ldiff (ac)| = 350mV  
@ |VIH/Ldiff (ac)| = 300mV  
Slew Rate [V/ns]  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
-
-
-
-
-
-
1.6  
1.4  
1.2  
1.0  
< 1.0  
0
Rev. 1.0 / Nov. 2009  
16  
Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) has  
also to comply with certain requirements for single-ended signals.  
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH  
(ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle.  
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac)  
/ VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition.  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if  
VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the single-  
ended signals CK and CK.  
VDD or VDDQ  
VSEHmin  
VSEH  
VDD/2 or VDDQ/2  
CK or DQS  
VSELmax  
VSEL  
VSS or VSSQ  
time  
Single-ended requirements for differential signals.  
Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended compo-  
nents of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the  
transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended  
components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing,  
but adds a restriction on the common mode characteristics of these signals.  
Rev. 1.0 / Nov. 2009  
17  
Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU  
DDR3-800, 1066, 1333  
Symbol  
Parameter  
Unit Notes  
Min  
Max  
Single-ended high level for strobes  
Single-ended high level for Ck, CK  
Single-ended low level for strobes  
Single-ended low level for CK, CK  
(VDD / 2) + 0.175  
(VDD /2) + 0.175  
Note 3  
Note 3  
V
V
V
V
1,2  
1,2  
1,2  
1,2  
VSEH  
VSEL  
Note 3  
(VDD / 2) = 0.175  
(VDD / 2) = 0.175  
Note 3  
Notes:  
1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac)  
of DQs.  
2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced  
ac-high or ac-low level is used for a signal group, then the reduced level applies also here.  
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU  
need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita-  
tions for overshoot and undershoot. Refer to “Overshoot and Undershoot Specifications” on page 25.  
Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and  
strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the  
requirements in the table below. The differential input cross point voltage VIX is measured from the actual  
cross point of true and complement signals to the midlevel between of VDD and VSS  
VDD  
CK, DQS  
V
IX  
VDD/2  
V
IX  
V
IX  
CK, DQS  
VSS  
Vix Definition  
Rev. 1.0 / Nov. 2009  
18  
Cross point voltage for differential input signals (CK, DQS)  
DDR3-800, 1066, 1333  
Parameter  
Symbol  
Unit Notes  
Min  
Max  
-150  
-175  
150  
175  
mV  
Differential Input Cross Point Voltage  
relative to VDD/2 for CK, CK  
VIX  
VIX  
mV  
1
Differential Input Cross Point Voltage  
relative to VDD/2 for DQS, DQS  
-150  
150  
mV  
Notes:  
1. Extended range for V is only allowed for clock and if single-ended clock input signals CK and CK are  
IX  
monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential  
slew rate of CK - CK is larger than 3 V/ns.  
2. Refer to the table “Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU” on page 18  
for VSEL and VSEH standard values.  
Slew Rate Definitions for Single-Ended Input Signals  
See 7.5 “Address / Command Setup, Hold and Derating” on page 137 in “DDR3 Device Operation” for sin-  
gle-ended slew rate definitions for address and command signals.  
See 7.6 “Data Setup, Hold and Slew Rate Derating” on page 144 in “DDR3 Device Operation” for single-  
ended slew rate definition for data signals.  
Rev. 1.0 / Nov. 2009  
19  
Slew Rate Definitions for Differential Input Signals  
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in table  
and figure below.  
Differential Input Slew Rate Definition  
Measured  
Description  
Defined by  
Max  
Min  
Differential input slew rate for rising edge  
(CK-CK and DQS-DQS)  
VILdiffmax VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff  
VIHdiffmin VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff  
Differential input slew rate for falling edge  
(CK-CK and DQS-DQS)  
Notes:  
The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.  
Delta  
TRdiff  
vIHdiffmin  
0
vILdiffmax  
Delta  
TFdiff  
Differential Input Slew Rate Definition for DQS, DQS# and CK, CK#  
Differential Input Slew Rate Definition for DQS, DQS and CK, CK  
Rev. 1.0 / Nov. 2009  
20  
AC & DC Output Measurement Levels  
Single Ended AC and DC Output Levels  
Table below shows the output levels used for measurements of single ended signals.  
Single-ended AC and DC Output Levels  
DDR3-800, 1066,  
Symbol  
Parameter  
Unit  
Notes  
1333  
VOH(DC)  
VOM(DC)  
VOL(DC)  
VOH(AC)  
VOL(AC)  
0.8 x VDDQ  
V
V
V
V
V
DC output high measurement level (for IV curve linearity)  
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (for IV curve linearity)  
AC output high measurement level (for output SR)  
AC output low measurement level (for output SR)  
0.5 x VDDQ  
0.2 x VDDQ  
VTT + 0.1 x VDDQ  
1
1
V
TT - 0.1 x VDDQ  
Notes:  
1. The swing of ± 0.1 x V  
is based on approximately 50% of the static single ended output high or low  
DDQ  
swing with a driver impedance of 40and an effective test load of 25to V = V  
/ 2.  
DDQ  
TT  
Differential AC and DC Output Levels  
Table below shows the output levels used for measurements of single ended signals.  
Differential AC and DC Output Levels  
DDR3-800, 1066,  
Symbol  
Parameter  
Unit  
Notes  
1333  
VOHdiff (AC)  
VOLdiff (AC)  
Notes:  
1. The swing of ± 0.2 x V  
+ 0.2 x VDDQ  
V
V
1
1
AC differential output high measurement level (for output SR)  
- 0.2 x VDDQ  
AC differential output low measurement level (for output SR)  
is based on approximately 50% of the static differential output high or low  
DDQ  
swing with a driver impedance of 40and an effective test load of 25to V = V  
/2 at each of the  
DDQ  
TT  
differential outputs.  
Rev. 1.0 / Nov. 2009  
21  
Single Ended Output Slew Rate  
When the Reference load for timing measurements, output slew rate for falling and rising edges is defined  
and measured between V  
and V  
for single ended signals are shown in table and figure below.  
OL(AC)  
OH(AC)  
Single-ended Output slew Rate Definition  
Measured  
Description  
Defined by  
From  
VOL(AC)  
VOH(AC)  
To  
VOH(AC)  
VOL(AC)  
[VOH(AC)-VOL(AC)] / DeltaTRse  
[VOH(AC)-VOL(AC)] / DeltaTFse  
Single-ended output slew rate for rising edge  
Single-ended output slew rate for falling edge  
Notes:  
1. Output slew rate is verified by design and characterisation, and may not be subject to production test.  
Delta TRse  
vOH(AC)  
V  
vOl(AC)  
Delta TFse  
Single Ended Output Slew Rate Definition  
Single Ended Output slew Rate Definition  
Output Slew Rate (single-ended)  
DDR3-800  
DDR3-1066  
Min Max  
2.5  
DDR3-1333  
Min Max  
2.5  
Units  
Parameter  
Symbol  
Min  
2.5  
Max  
Single-ended Output Slew Rate  
SRQse  
5
5
5
V/ns  
Description: SR; Slew Rate  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
se: Single-ended Signals  
For Ron = RZQ/7 setting  
Rev. 1.0 / Nov. 2009  
22  
Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined  
and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure  
below.  
Differential Output Slew Rate Definition  
Measured  
Description  
Defined by  
From  
To  
VOHdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTRdiff  
VOLdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTFdiff  
VOLdiff (AC)  
VOHdiff (AC)  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
Notes:  
1. Output slew rate is verified by design and characterization, and may not be subject to production test.  
Delta  
TRdiff  
vOHdiff(AC)  
O
vOLdiff(AC)  
Delta  
TFdiff  
Differential Output Slew Rate Definition  
Differential Output slew Rate Definition  
Differential Output Slew Rate  
DDR3-800  
DDR3-1066  
Min Max  
10  
DDR3-1333  
Min Max  
10  
Units  
Parameter  
Symbol  
Min  
Max  
Differential Output Slew Rate  
Description: SR; Slew Rate  
SRQdiff  
5
10  
5
5
V/ns  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
se: Single-ended Signals  
For Ron = RZQ/7 setting  
Rev. 1.0 / Nov. 2009  
23  
Reference Load for AC Timing and Output Slew Rate  
Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing  
parameters of the device as well as output slew rate measurements.  
It is not intended as a precise representation of any particular system environment or a depiction of the  
actual load presented by a production tester. System designers should use IBIS or other simulation tools to  
correlate the timing reference load to a system environment. Manufacturers correlate to their production  
test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.  
VDDQ  
25 Ohm  
CK, CK  
DQ  
DQS  
DQS  
VTT = VDDQ/2  
DUT  
Reference Load for AC Timing and Output Slew Rate  
Rev. 1.0 / Nov. 2009  
24  
Overshoot and Undershoot Specifications  
Address and Control Overshoot and Undershoot Specifications  
AC Overshoot/Undershoot Specification for Address and Control Pins  
Parameter  
DDR3-800 DDR3-1066DDR3-1333 Units  
Maximum peak amplitude allowed for overshoot area. (See figure below)  
Maximum peak amplitude allowed for undershoot area. (See figure below)  
Maximum overshoot area above VDD (See figure below)  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.4  
0.4  
0.4  
0.4  
V
V
0.67  
0.67  
V-ns  
V-ns  
Maximum undershoot area below VSS (See figure below)  
(A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT)  
See figure below for each parameter definition  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Address and Control Overshoot and Undershoot Definition  
Address and Control Overshoot and Undershoot Definition  
Rev. 1.0 / Nov. 2009  
25  
Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications  
AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask  
Parameter  
DDR3-800 DDR3-1066DDR3-1333 Units  
Maximum peak amplitude allowed for overshoot area (See figure below)  
Maximum peak amplitude allowed for undershoot area (See figure below)  
Maximum overshoot area above VDD (See figure below)  
Maximum undershoot area below VSS (See figure below)  
(CK, CK, DQ, DQS, DQS, DM)  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
0.25  
0.25  
0.19  
0.19  
0.15  
0.15  
V-ns  
V-ns  
See figure below for each parameter definition  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Clock, Data Strobe and Mask Overshoot and Undershoot Definition  
Clock, Data, Strobe and Mask Overshoot and Undershoot Definition  
Rev. 1.0 / Nov. 2009  
26  
Refresh parameters by device density  
Refresh parameters by device density  
Parameter  
RTT_Nom Setting  
512Mb  
1Gb  
2Gb  
4Gb  
8Gb  
Units  
REF command ACT or  
REF command time  
tRFC  
90  
110  
160  
300  
350  
ns  
0 °C T  
85 °C < T  
85 °C  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
us  
us  
Average periodic  
refresh interval  
CASE  
tREFI  
95 °C  
CASE  
Rev. 1.0 / Nov. 2009  
27  
Standard Speed Bins  
DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
DDR3-800 Speed Bins  
For specific Notes See “Speed Bin Table Notes” on page 31.  
Speed Bin  
DDR3-800E  
6-6-6  
Unit  
Notes  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
tAA  
15  
20  
ns  
ns  
ns  
ns  
ns  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tRCD  
15  
15  
tRP  
tRC  
52.5  
37.5  
ACT to ACT or REF command period  
ACT to PRE command period  
tRAS  
9 * tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
Reserved  
ns  
ns  
CL = 5  
CL = 6  
CWL = 5  
CWL = 5  
1, 2, 3, 4  
1, 2, 3  
2.5  
nCK  
nCK  
6
5
Supported CL Settings  
Supported CWL Settings  
Rev. 1.0 / Nov. 2009  
28  
DDR3-1066 Speed Bins  
For specific Notes See “Speed Bin Table Notes” on page 31.  
Speed Bin  
DDR3-1066F  
7-7-7  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
Internal read command to  
first data  
tAA  
13.125  
20  
ns  
ns  
ns  
ns  
ns  
ACT to internal read or  
write delay time  
tRCD  
13.125  
13.125  
50.625  
37.5  
tRP  
PRE command period  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
9 * tREFI  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
Reserved  
Reserved  
ns  
ns  
1, 2, 3, 4, 5  
CWL = 6  
4
CWL = 5  
CL = 6  
2.5  
3.3  
ns  
1, 2, 3, 5  
1, 2, 3, 4  
4
CWL = 6  
Reserved  
Reserved  
ns  
CWL = 5  
CL = 7  
ns  
CWL = 6  
1.875  
1.875  
< 2.5  
< 2.5  
ns  
1, 2, 3, 4  
4
CWL = 5  
CL = 8  
Reserved  
ns  
CWL = 6  
ns  
1, 2, 3  
nCK  
nCK  
Supported CL Settings  
Supported CWL Settings  
6, 7, 8  
5, 6  
Rev. 1.0 / Nov. 2009  
29  
DDR3-1333 Speed Bins  
For specific Notes See “Speed Bin Table Notes” on page 31.  
Speed Bin  
DDR3-1333H  
9-9-9  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
13.5  
max  
Internal read command  
to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
ns  
(13.125)8  
13.5  
(13.125)8  
ACT to internal read or  
write delay time  
13.5  
(13.125)8  
PRE command period  
49.5  
(49.125)8  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
36  
9 * tREFI  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
Reserved  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
1,2, 3,4, 6  
CWL = 6, 7  
4
CWL = 5  
2.5  
3.3  
1, 2, 3, 6  
CL = 6  
CL = 7  
CL = 8  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
1, 2, 3, 4, 6  
4
4
1.875  
1.875  
< 2.5  
< 2.5  
tCK(AVG)  
CWL = 6  
ns  
1, 2, 3, 4, 6  
Reserved  
Reserved  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7  
CWL = 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2, 3, 4  
4
CWL = 6  
1, 2, 3, 6  
1, 2, 3, 4  
4
CWL = 7  
Reserved  
Reserved  
CWL = 5, 6  
CWL = 7  
CL = 9  
1.5  
1.5  
<1.875  
<1.875  
1, 2, 3, 4  
CWL = 5, 6  
Reserved  
Reserved  
4
CL = 10  
ns  
ns  
1, 2, 3  
tCK(AVG)  
CWL = 7  
nCK  
Supported CL Settings  
Supported CWL Settings  
6, 8, (7), 9, (10)  
5, 6, 7  
nCK  
Rev. 1.0 / Nov. 2009  
30  
Speed Bin Table Notes  
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);  
Notes:  
1, The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making  
a selection of tCK (AVG), both need to be fulfilled: Requirements from CL setting as well as requirements  
from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized  
by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the  
next smaller JEDEC standard tCK (AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] =  
tAA [ns] / tCK (AVG) [ns], rounding up to the next ‘Supported CL.  
3. tCK(AVG).MAX limits: Calculate tCK (AVG) = tAA.MAX / CLSELECTED and round the resulting tCK (AVG)  
down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX  
corresponding to CLSE LECTED.  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
8. Hynix DDR3 SDRAM devices support down binning to CL=7 and CL=9, and tAA/tRCD/tRP satisfy mini-  
mum value of 13.125 ns. SPD settings are also programmed to match. For example, DDR3 1333H devices  
supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16),  
tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to DDR3-1333H  
or DDR3 1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRP-  
min (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be pro-  
grammed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333H  
and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.  
Rev. 1.0 / Nov. 2009  
31  
Environmental Parameters  
Symbol  
Parameter  
Operating temperature  
Rating  
Units  
Notes  
o
T
0 to 65  
C
1, 3  
OPR  
H
Operating humidity (relative)  
10 to 90  
-50 to +100  
5 to 95  
%
1
1
OPR  
o
T
Storage temperature  
C
STG  
H
Storage humidity (without condensation)  
Barometric Pressure (operating & storage)  
%
1
STG  
P
105 to 69  
K Pascal  
1, 2  
BAR  
Note:  
1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only,  
and device functional operation at or above the conditions indicated is not implied. Expousure to absolute  
maximum rating conditions for extended periods may affect reliablility.  
2. Up to 9850 ft.  
3. The designer must meet the case temperature specifications for individual module components.  
Rev. 1.0 / Nov. 2009  
32  
Pin Capacitance (VDD=1.5V, VDDQ=1.5V)  
1GB: HMT112S6TFR8C  
Symbol  
CCK  
Min  
TBD  
TBD  
TBD  
TBD  
Max  
TBD  
TBD  
TBD  
TBD  
Unit  
pF  
Pin  
CK0, CK0  
pF  
CCTRL  
CI  
CKE, ODT, CS  
pF  
Address, RAS, CAS, WE  
DQ, DM, DQS, DQS  
pF  
CIO  
2GB: HMT125S6TFR8C  
Pin  
CK0, CK0  
Symbol  
CCK  
Min  
TBD  
TBD  
TBD  
TBD  
Max  
TBD  
TBD  
TBD  
TBD  
Unit  
pF  
pF  
CCTRL  
CI  
CKE, ODT, CS  
pF  
Address, RAS, CAS, WE  
DQ, DM, DQS, DQS  
pF  
CIO  
Note:  
1. Pins not under test are tied to GND.  
2. These value are guaranteed by design and tested on a sample basis only.  
Rev. 1.0 / Nov. 2009  
33  
IDD and IDDQ Specification Parameters and Test Conditions  
IDD and IDDQ Measurement Conditions  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure  
1. shows the setup and test load for IDD and IDDQ measurements.  
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R,  
IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all  
VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD cur-  
rents.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all  
VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ cur-  
rents.  
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can  
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In  
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one  
merged-power layer in Module PCB.  
For IDD and IDDQ measurements, the following definitions apply:  
”0” and “LOW” is defined as VIN <= V  
ILAC(max).  
”1” and “HIGH” is defined as VIN >= V  
IHAC(max).  
“MID_LEVEL” is defined as inputs are VREF = VDD/2.  
Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.  
Basic IDD and IDDQ Measurement Conditions are described in Table 2.  
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.  
IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not lim-  
ited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
Qoff = 0 (Output Buffer enabled in MR1);  
B
RTT_Nom = RZQ/6 (40 Ohm in MR1);  
RTT_Wr = RZQ/2 (120 Ohm in MR2);  
TDQS Feature disabled in MR1  
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time  
before actual IDD or IDDQ measurement is started.  
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}  
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}  
Rev. 1.0 / Nov. 2009  
34  
IDDQ (optional)  
IDD  
VDD  
RESET  
CK/CK  
VDDQ  
DDR3  
SDRAM  
RTT = 25 Ohm  
CKE  
CS  
DQS, DQS  
DQ, DM,  
VDDQ/2  
RAS, CAS, WE  
TDQS, TDQS  
A, BA  
ODT  
ZQ  
VSS  
VSSQ  
Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements  
[Note: DIMM level Output test load condition may be different from above  
Application specific  
memory channel  
environment  
IDDQ  
Test Load  
Channel  
IO Power  
Simulation  
IDDQ  
Simulation  
IDDQ  
Simulation  
Correction  
Channel IO Power  
Number  
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported  
by IDDQ Measurement  
Rev. 1.0 / Nov. 2009  
35  
Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns  
DDR3-1066  
DDR3-1333  
Symbol  
Unit  
7-7-7  
1.875  
7
9-9-9  
1.5  
9
tCK  
ns  
CL  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nRCD  
nRC  
nRAS  
nRP  
7
9
27  
20  
7
33  
24  
9
1KB page size  
2KB page size  
1KB page size  
2KB page size  
20  
27  
4
20  
30  
4
nFAW  
nRRD  
6
5
nRFC -512Mb  
nRFC-1 Gb  
nRFC- 2 Gb  
nRFC- 4 Gb  
nRFC- 8 Gb  
48  
59  
86  
160  
187  
60  
74  
107  
200  
234  
Table 2 -Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and  
PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL;  
DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output  
IDD0  
Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3.  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT,  
RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM:  
stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and  
IDD1  
RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4.  
Rev. 1.0 / Nov. 2009  
36  
Symbol  
Description  
Precharge Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all  
IDD2N  
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details:  
see Table 5.  
Precharge Standby ODT Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all  
IDD2NT  
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6;  
Pattern Details: see Table 6.  
IDDQ2NT Precharge Standby ODT IDDQ Current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Power-Down Current Slow Exit  
(optional)  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output  
IDD2P0  
Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow  
Exitc)  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output  
IDD2P1  
Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc)  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output  
IDD2Q  
Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all  
IDD3N  
banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see  
Table 5.  
Rev. 1.0 / Nov. 2009  
37  
Symbol  
IDD3P  
Description  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer  
and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
IDDQ4R Operating Burst Read IDDQ Current  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
Operating Burst Read Current  
(optional)  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command, Address,  
Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different  
data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open,  
RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode  
IDD4R  
Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7.  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command, Address,  
Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different  
data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open,  
WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode  
IDD4W  
Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8.  
Burst Refresh Current  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Command,  
Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0;  
IDD5B  
Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registersb);  
ODT Signal: stable at 0; Pattern Details: see Table 9.  
Self-Refresh Current: Normal Temperature Range  
TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:  
IDD6  
Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank  
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer  
and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Rev. 1.0 / Nov. 2009  
38  
Symbol  
Description  
Self-Refresh Current: Extended Temperature Range  
TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede);  
IDD6ET  
CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank  
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh  
operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Auto Self-Refresh Current  
TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Enabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:  
IDD6TC  
Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank  
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Auto Self-Refresh operation; Output  
Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a,f); AL: CL-1; CS:  
High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table  
10; Data IO: read data burst with different data between one burst and the next one according to Table 10;  
DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different address-  
IDD7  
ing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern  
Details: see Table 10.  
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2]  
= 011B; RTT_Wr enable: set MR2 A[10,9] = 10B  
c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit  
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature  
e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature  
range  
f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B  
Rev. 1.0 / Nov. 2009  
39  
a)  
Table 3 - IDD0 Measurement-Loop Pattern  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
0
0
-
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1, 2  
1*nRC+3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
-
repeat pattern 1...4 until 2*nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2009  
40  
a)  
Table 4 - IDD1 Measurement-Loop Pattern  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRCD - 1, truncate if necessary  
RD 00  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRCD  
...  
0
1
0
1
0
0
0
0
0
0
0
0
00000000  
-
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1,2  
1*nRC+3,4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary  
RD 00  
repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRCD  
...  
0
1
0
1
0
0
0
0
F
0
00110011  
-
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-  
LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are  
MID_LEVEL.  
Rev. 1.0 / Nov. 2009  
41  
a)  
Table 5 - IDD2N and IDD3N Measurement-Loop Pattern  
Datab)  
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
0
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
a)  
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern  
Datab)  
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
0
1
0
F
F
0
0
0
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2009  
42  
a)  
Table 7 - IDD4R and IDDQ24RMeasurement-Loop Pattern  
Datab)  
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
0
1
-
2,3  
D,D  
RD  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
a)  
Table 8 - IDD4W Measurement-Loop Pattern  
Datab)  
0
WR  
D
D,D  
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
0
1
2,3  
4
5
6,7  
-
-
00110011  
-
-
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2009  
43  
a)  
Table 9 - IDD5B Measurement-Loop Pattern  
Datab)  
0
1
REF  
D, D  
D, D  
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
0
0
0
-
-
-
0
1.2  
00  
00  
3,4  
5...8  
repeat cycles 1...4, but BA[2:0] = 1  
repeat cycles 1...4, but BA[2:0] = 2  
repeat cycles 1...4, but BA[2:0] = 3  
repeat cycles 1...4, but BA[2:0] = 4  
repeat cycles 1...4, but BA[2:0] = 5  
repeat cycles 1...4, but BA[2:0] = 6  
repeat cycles 1...4, but BA[2:0] = 7  
9...12  
13...16  
17...20  
21...24  
25...28  
29...32  
33...nRFC-1  
2
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2009  
44  
a)  
Table 10 - IDD7 Measurement-Loop Pattern  
ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9  
Datab)  
0
1
0
1
2
...  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
repeat above D Command until nRRD - 1  
nRRD  
nRRD+1  
nRRD+2  
...  
2*nRRD  
3*nRRD  
4*nRRD  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
repeat above D Command until 2* nRRD - 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 1, but BA[2:0] = 3  
2
3
D
1
0
0
0
0
3
00  
0
0
F
0
0
-
-
4
Assert and repeat above D Command until nFAW - 1, if necessary  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 1, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 1, but BA[2:0] = 7  
5
6
7
8
nFAW  
nFAW+nRRD  
nFAW+2*nRRD  
nFAW+3*nRRD  
nFAW+4*nRRD  
D
1
0
0
0
0
7
00  
0
0
F
9
Assert and repeat above D Command until 2* nFAW - 1, if necessary  
2*nFAW+0  
2*nFAW+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
10  
2&nFAW+2  
Repeat above D Command until 2* nFAW + nRRD - 1  
2*nFAW+nRRD  
2*nFAW+nRRD+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
11  
2&nFAW+nRRD+2  
Repeat above D Command until 2* nFAW + 2* nRRD - 1  
repeat Sub-Loop 10, but BA[2:0] = 2  
repeat Sub-Loop 11, but BA[2:0] = 3  
12 2*nFAW+2*nRRD  
13 2*nFAW+3*nRRD  
D
1
0
0
0
0
3
00  
0
0
0
0
-
14 2*nFAW+4*nRRD  
Assert and repeat above D Command until 3* nFAW - 1, if necessary  
repeat Sub-Loop 10, but BA[2:0] = 4  
15 3*nFAW  
16 3*nFAW+nRRD  
17 3*nFAW+2*nRRD  
18 3*nFAW+3*nRRD  
repeat Sub-Loop 11, but BA[2:0] = 5  
repeat Sub-Loop 10, but BA[2:0] = 6  
repeat Sub-Loop 11, but BA[2:0] = 7  
D
1
0
0
0
0
7
00  
0
0
0
0
-
19 3*nFAW+4*nRRD  
Assert and repeat above D Command until 4* nFAW - 1, if necessary  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 1.0 / Nov. 2009  
45  
IDD Specifications (Tcase: 0 to 95oC)  
* Module IDD values in the datasheet are only a calculation based on the component IDD spec.  
The actual measurements may vary according to DQ loading cap.  
1GB, 128M x 64 SO-DIMM: HMT112S6TFR8C  
Symbol  
IDD0  
DDR3 1066  
360  
DDR3 1333  
400  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
note  
IDD1  
480  
520  
IDD2N  
IDD2NT  
IDD2P0  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
IDD4R  
IDD4W  
IDD5B  
IDD6  
240  
280  
280  
320  
80  
80  
200  
280  
240  
280  
280  
320  
160  
200  
720  
840  
720  
840  
1080  
80  
1120  
80  
IDD6ET  
IDD6TC  
IDD7  
96  
96  
96  
96  
1040  
1280  
2GB, 256M x 64 SO-DIMM: HMT125S6TFR8C  
Symbol  
IDD0  
DDR3 1066  
600  
DDR3 1333  
680  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
note  
IDD1  
720  
800  
IDD2N  
IDD2NT  
IDD2P0  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
IDD4R  
IDD4W  
IDD5B  
IDD6  
480  
560  
560  
640  
160  
160  
400  
560  
480  
560  
560  
640  
320  
400  
960  
1120  
1120  
1400  
160  
960  
1320  
160  
IDD6ET  
IDD6TC  
IDD7  
192  
192  
192  
192  
1280  
1560  
Rev. 1.0 / Nov. 2009  
46  
Module Dimensions  
128Mx64 - HMT112S6TFR8C  
Front  
Side  
3.80mm max  
67.60mm  
2.0  
4.00±0.10  
SPD  
Detail-A  
1.00±0.08 mm  
pin 1  
pin 203  
21.00  
39.00  
2.15  
2Xφ1.80±0.10  
1.65±0.10  
3.00  
Back  
Detail of Contacts A  
0.3~1.0  
±0.03  
0.45  
0.60  
1.00  
±0.05  
Note:  
1. ±0.13tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 1.0 / Nov. 2009  
47  
256Mx64 - HMT125S6TFR8C  
Front  
67.60mm  
Side  
3.80mm max  
2.0  
4.00±0.10  
Detail-  
A
Detail-B  
1.00±0.08 mm  
pin 1  
pin 203  
21.00  
1.65±0.10  
39.00  
2.15  
2Xφ1.80±0.10  
3.00  
Back  
SPD  
Detail of Contacts A  
0.3~1.0  
±0.03  
0.45  
0.60  
1.00  
±0.05  
Note:  
1. ±0.13tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 1.0 / Nov. 2009  
48  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY