HMT84GR7MMR4C-PB [HYNIX]

DDR DRAM Module, 4GX72, 0.225ns, CMOS, ROHS COMPLIANT, DIMM-240;
HMT84GR7MMR4C-PB
型号: HMT84GR7MMR4C-PB
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

DDR DRAM Module, 4GX72, 0.225ns, CMOS, ROHS COMPLIANT, DIMM-240

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总60页 (文件大小:883K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
240pin DDR3 SDRAM Registered DIMM  
DDR3 SDRAM Registered DIMM  
Based on 4Gb M-die  
HMT42GR7MFR4C  
HMT84GR7MMR4C  
*Hynix Semiconductor reserves the right to change products or specifications without notice.  
Rev. 0.1 /Aug. 2011  
1
Revision History  
Revision No.  
History  
Draft Date  
Remark  
0.1  
Initial Release  
Aug.2011  
Rev. 0.1 / Aug. 2011  
2
Description  
Hynix Registered DDR3 SDRAM DIMMs (Registered Double Data Rate Synchronous DRAM Dual In-Line  
Memory Modules) are low power, high-speed operation memory modules that use Hynix DDR3 SDRAM  
devices. These Registered SDRAM DIMMs are intended for use as main memory when installed in systems  
such as servers and workstations.  
Features  
• Power Supply: VDD=1.5V (1.425V to 1.575V)  
• VDDQ = 1.5V (1.425V to 1.575V)  
• VDDSPD=3.0V to 3.6V  
• Functionality and operations comply with the DDR3L SDRAM datasheet  
• 8 internal banks  
• Data transfer rates: PC3-12800, PC3-10600, PC3-8500  
• Bi-Directional Differential Data Strobe  
• 8 bit pre-fetch  
• Burst Length (BL) switch on-the-fly BL8 or BC4(Burst Chop)  
• Supports ECC error correction and detection  
• On-Die Termination (ODT)  
Temperature sensor with integrated SPD  
* This product is in compliance with the RoHS directive.  
Ordering Information  
# of  
ranks  
Part Number  
Density Organization  
Component Composition  
FDHS  
HMT42GR7MFR4C-G7/H9/PB  
HMT84GR7MMR4C-G7/H9/PB  
16GB  
32GB  
2Gx72  
4Gx72  
1Gx4(H5TQ4G43MFR)*36  
2
4
O
O
DDP 2Gx4(H5TQ8G43MMR)*36  
* In order to uninstall FDHS, please contact sales administrator  
Rev. 0.1 / Aug. 2011  
3
Key Parameters  
CAS  
Latency  
(tCK)  
tCK  
(ns)  
tRCD  
(ns)  
tRP  
(ns)  
tRAS  
(ns)  
tRC  
(ns)  
MT/s  
Grade  
CL-tRCD-tRP  
DDR3-1066  
DDR3-1333  
DDR3-1600  
-G7  
-H9  
-PB  
1.875  
1.5  
7
9
13.125  
13.5  
13.125  
13.5  
37.5  
36  
50.625  
49.5  
7-7-7  
9-9-9  
1.25  
11  
13.75  
13.75  
35  
48.75  
11-11-11  
Speed Grade  
Frequency [MHz]  
Grade  
CL6  
Remark  
CL7  
CL8  
CL9  
CL10  
CL11  
-G7  
-H9  
-PB  
800  
800  
800  
1066  
1066  
1066  
1066  
1066  
1066  
1333  
1333  
1333  
1333  
1600  
Address Table  
16GB(2Rx4)  
32GB(4Rx4)  
Refresh Method  
Row Address  
Column Address  
Bank Address  
Page Size  
8K/64ms  
A0-A15  
8K/64ms  
A0-A15  
A0-A9,A11  
BA0-BA2  
1KB  
A0-A9,A11  
BA0-BA2  
1KB  
Rev. 0.1 / Aug. 2011  
4
Pin Descriptions  
Num  
ber  
Num  
ber  
Pin Name  
Description  
Pin Name  
Description  
CK0  
CK0  
Clock Input, positive line  
Clock Input, negative line  
Clock Input, positive line  
Clock Input, negative line  
Clock Enables  
1
1
1
1
2
ODT[1:0]  
DQ[63:0]  
CB[7:0]  
On Die Termination Inputs  
Data Input/Output  
2
64  
8
CK1  
Data check bits Input/Output  
Data strobes  
CK1  
DQS[8:0]  
DQS[8:0]  
9
CKE[1:0]  
Data strobes, negative line  
9
DM[8:0]/  
DQS[17:9],  
TDQS[17:9]  
Data Masks / Data strobes,  
Termination data strobes  
RAS  
Row Address Strobe  
1
1
9
9
Data strobes, negative line,  
Termination data strobes  
DQS[17:9],  
TDQS[17:9]  
CAS  
WE  
Column Address Strobe  
Reserved for optional hardware  
temperature sensing  
Write Enable  
Chip Selects  
Address Inputs  
1
4
EVENT  
TEST  
1
1
1
Memory bus test tool (Not Con-  
nected and Not Usable on DIMMs)  
S[3:0]  
A[9:0],A11,  
A[15:13]  
14  
RESET  
Register and SDRAM control pin  
VDD  
VSS  
A10/AP  
A12/BC  
BA[2:0]  
Address Input/Autoprecharge  
Address Input/Burst chop  
SDRAM Bank Addresses  
1
1
3
Power Supply  
22  
59  
1
Ground  
VREFDQ  
Reference Voltage for DQ  
Serial Presence Detect (SPD)  
Clock Input  
VREFCA  
SCL  
1
Reference Voltage for CA  
1
VTT  
SDA  
SPD Data Input/Output  
SPD Address Inputs  
1
3
Termination Voltage  
SPD Power  
4
1
VDDSPD  
SA[2:0]  
Parity bit for the Address and  
Control bus  
Par_In  
1
1
Parity error found on the  
Address and Control bus  
Err_Out  
Rev. 0.1 / Aug. 2011  
5
Input/Output Functional Descriptions  
Symbol  
Type  
Polarity  
Function  
Positive  
Line  
Positive line of the differential pair of system clock inputs that drives input to the on-  
DIMM Clock Driver.  
CK0  
IN  
Negative Negative line of the differential pair of system clock inputs that drives the input to the  
CK0  
CK1  
CK1  
IN  
IN  
IN  
Line  
on-DIMM Clock Driver.  
Positive  
Line  
Terminated but not used on RDIMMs.  
Negative  
Line  
Terminated but not used on RDIMMs.  
CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input  
buffers and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE  
POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN  
(row ACTIVE in any bank)  
Active  
High  
CKE[1:0]  
IN  
Enables the command decoders for the associated rank of SDRAM when low and dis-  
ables decoders when high. When decoders are disabled, new commands are ignored  
and previous operations continue. Other combinations of these input signals perform  
unique functions, including disabling all outputs (except CKE and ODT) of the register(s)  
on the DIMM or accessing internal control words in the register device(s). For modules  
with two registers, S[3:2] operate similarly to S[1:0] for the second set of register out-  
puts or register control words.  
Active  
Low  
S[3:0]  
IN  
IN  
Active  
High  
ODT[1:0]  
On-Die Termination control signals  
Active  
Low  
When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the  
operation to be executed by the SDRAM.  
RAS, CAS, WE  
VREFDQ  
IN  
Supply  
Supply  
Reference voltage for DQ0-DQ63 and CB0-CB7.  
Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In,  
ODT0 and ODT1.  
VREFCA  
Selects which SDRAM bank of eight is activated.  
BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being  
applied. Bank address also determines mode register is to be accessed during an MRS  
cycle.  
BA[2:0]  
IN  
IN  
Provided the row address for Active commands and the column address  
and Auto Precharge bit for Read/Write commands to select one location out of the mem-  
ory array in the respective bank. A10 is sampled during a Precharge command to deter-  
mine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If  
only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL  
4/8 identification for ‘’BL on the fly’’ during CAS command. The address inputs also pro-  
vide the op-code during Mode Register Set commands.  
A[15:13,  
12/BC,11,  
10/AP,[9:0]  
DQ[63:0],  
CB[7:0]  
I/O  
IN  
Data and Check Bit Input/Output pins  
Active  
High  
DM[8:0]  
Masks write data when high, issued concurrently with input data.  
V
DD, VSS  
VTT  
Supply  
Supply  
Power and ground for the DDR SDRAM input buffers and core logic.  
Termination Voltage for Address/Command/Control/Clock nets.  
Rev. 0.1 / Aug. 2011  
6
Symbol  
Type  
Polarity  
Function  
Positive  
Edge  
DQS[17:0]  
I/O  
Positive line of the differential data strobe for input and output data.  
Negative  
Edge  
DQS[17:0]  
I/O  
Negative line of the differential data strobe for input and output data.  
TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in  
MR1,DRAM will enable the same termination resistance function on TDQS/TDQS that is  
applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will  
provide the data mask function and TDQS is not used. X4/X16 DRAMs must disable the  
TDQS function via mode register A11=0 in MR1  
TDQS[17:9]  
TDQS[17:9]  
OUT  
These signals are tied at the system planar to either VSS or VDDSPD to configure the  
serial SPD EEPROM address range.  
SA[2:0]  
SDA  
IN  
I/O  
IN  
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor  
must be connected from the SDA bus line to VDDSPD on the system planar to act as a  
pullup.  
This signal is used to clock data into and out of the SPD EEPROM. A resistor may be con-  
nected from the SCL bus time to VDDSPD on the system planar to act as a pullup.  
SCL  
This signal indicates that a thermal event has been detected in the thermal sensing  
device.The system should guarantee the electrical level requirement is met for the  
EVENT pin on TS/SPD part.  
OUT  
(open  
drain)  
EVENT  
VDDSPD  
Active Low  
No pull-up resister is provided on DIMM.  
Serial EEPROM positive power supply wired to a separate power pin at the connector  
which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation.  
Supply  
The RESET pin is connected to the RESET pin on the register and to the RESET pin on  
the DRAM.  
RESET  
Par_In  
IN  
IN  
Parity bit for the Address and Control bus. (“1 “: Odd, “0 “: Even)  
OUT  
(open  
drain)  
Parity error detected on the Address and Control bus. A resistor may be connected from  
Err_Out bus line to VDD on the system planar to act as a pull up.  
Err_Out  
TEST  
Used by memory bus analysis tools (unused (NC) on memory DIMMs)  
Rev. 0.1 / Aug. 2011  
7
Pin Assignments  
Front Side  
(left 1–60)  
Back Side  
(right 121–180)  
Front Side  
(left 61–120)  
Back Side  
(right 181–240)  
Pin #  
Pin #  
Pin #  
Pin #  
1
2
3
4
VREFDQ  
121  
122  
123  
124  
V
SS  
61  
62  
63  
64  
A2  
181  
182  
183  
184  
A1  
VSS  
DQ4  
DQ5  
VDD  
VDD  
VDD  
CK0  
DQ0  
DQ1  
NC, CK1  
NC, CK1  
VSS  
DM0,DQS9,  
TDQS9  
5
6
V
SS  
125  
126  
65  
66  
VDD  
VDD  
185  
186  
CK0  
VDD  
NC,DQS9,  
TDQS9  
DQS0  
DQS0  
7
8
127  
128  
129  
130  
131  
132  
133  
VSS  
67  
68  
69  
70  
71  
72  
73  
VREFCA  
Par_In, NC  
VDD  
187  
188  
189  
190  
191  
192  
193  
EVENT, NC  
A0  
VSS  
DQ6  
DQ7  
9
DQ2  
DQ3  
VDD  
10  
11  
12  
13  
VSS  
A10 / AP  
BA0  
BA1  
VSS  
DQ12  
DQ13  
VDD  
DQ8  
DQ9  
VDD  
RAS  
VSS  
WE  
S0  
DM1,DQS10,  
TDQS10  
14  
15  
V
SS  
134  
135  
74  
75  
CAS  
VDD  
194  
195  
VDD  
NC,DQS10,  
TDQS10  
DQS1  
DQS1  
ODT0  
16  
17  
18  
19  
20  
21  
22  
136  
137  
138  
139  
140  
141  
142  
VSS  
76  
77  
78  
79  
80  
81  
82  
S1, NC  
ODT1, NC  
VDD  
196  
197  
198  
199  
200  
201  
202  
A13  
VDD  
VSS  
DQ14  
DQ15  
DQ10  
DQ11  
S3, NC  
VSS  
S2, NC  
VSS  
VSS  
DQ20  
DQ21  
VSS  
DQ36  
DQ37  
DQ16  
DQ17  
DQ32  
DQ33  
VSS  
VSS  
DM2,DQS11,  
TDQS11  
DM4,DQS13,  
TDQS13  
23  
24  
V
SS  
143  
144  
83  
84  
V
SS  
203  
204  
NC,DQS11,  
TDQS11  
NC,DQS13,  
TDQS13  
DQS2  
DQS2  
DQS4  
DQS4  
25  
26  
27  
28  
29  
30  
31  
145  
146  
147  
148  
149  
150  
151  
VSS  
85  
86  
87  
88  
89  
90  
91  
205  
206  
207  
208  
209  
210  
211  
VSS  
VSS  
DQ22  
DQ23  
VSS  
DQ38  
DQ39  
DQ18  
DQ19  
DQ34  
DQ35  
VSS  
VSS  
VSS  
DQ28  
DQ29  
VSS  
DQ44  
DQ45  
DQ24  
DQ25  
DQ40  
DQ41  
VSS  
VSS  
NC = No Connect; RFU = Reserved Future Use  
Rev. 0.1 / Aug. 2011  
8
Front Side  
(left 1–60)  
Back Side  
Front Side  
Back Side  
Pin #  
32  
Pin #  
152  
Pin #  
92  
Pin #  
212  
(right 121–180)  
(left 61–120)  
(right 181–240)  
DM3,DQS12,  
TDQS12  
DM5,DQS14,  
TDQS14  
VSS  
VSS  
NC,DQS12,  
TDQS12  
NC,DQS14,  
TDQS14  
33  
DQS3  
DQS3  
153  
93  
DQS5  
DQS5  
213  
34  
35  
36  
37  
38  
39  
40  
154  
155  
156  
157  
158  
159  
160  
VSS  
94  
95  
214  
215  
216  
217  
218  
219  
220  
VSS  
VSS  
DQ30  
DQ31  
VSS  
DQ46  
DQ47  
DQ26  
DQ27  
96  
DQ42  
DQ43  
VSS  
97  
VSS  
VSS  
CB4, NC  
CB5, NC  
98  
VSS  
DQ52  
DQ53  
CB0, NC  
CB1, NC  
99  
DQ48  
DQ49  
VSS  
100  
VSS  
NC,DM8,DQS17,  
TDQS17  
DM6,DQS15,  
TDQS15  
41  
42  
V
SS  
161  
162  
101  
102  
V
SS  
221  
222  
NC,DQS17,  
TDQS17  
NC,DQS15,  
TDQS15  
DQS8  
DQS8  
DQS6  
DQS6  
43  
44  
45  
46  
47  
48  
163  
164  
165  
166  
167  
168  
VSS  
103  
104  
105  
106  
107  
108  
109  
223  
224  
225  
226  
227  
228  
229  
VSS  
VSS  
CB6, NC  
CB7, NC  
VSS  
DQ54  
DQ55  
CB2, NC  
CB3, NC  
DQ50  
DQ51  
VSS  
VSS  
VSS  
NC(TEST)  
RESET  
VSS  
DQ60  
DQ61  
VTT, NC  
KEY  
DQ56  
DQ57  
KEY  
VSS  
DM7,DQS16,  
TDQS16  
49  
50  
VTT, NC  
CKE0  
169  
170  
CKE1, NC  
VDD  
110  
111  
V
SS  
230  
231  
NC,DQS16,  
TDQS16  
DQS7  
DQS7  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
VDD  
BA2  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
A15  
A14  
VDD  
A12 / BC  
A9  
112  
113  
114  
115  
116  
117  
118  
119  
120  
232  
233  
234  
235  
236  
237  
238  
239  
240  
VSS  
VSS  
DQ62  
DQ63  
Err_Out, NC  
VDD  
DQ58  
DQ59  
VSS  
A11  
VSS  
VDDSPD  
SA1  
A7  
VDD  
A8  
SA0  
SCL  
SA2  
VTT  
VDD  
SDA  
A5  
A6  
VSS  
A4  
VDD  
A3  
VTT  
VDD  
NC = No Connect; RFU = Reserved Future Use  
Rev. 0.1 / Aug. 2011  
9
Registering Clock Driver Specifications  
Capacitance Values  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Input capacitance, Data inputs  
1.5  
2
-
-
2.5  
3
pF  
pF  
Input capacitance, CK, CK, FBIN, FBIN  
CI  
Input capacitance, CK, CK, FBIN, FBIN  
(DDR3-1600)  
1.5  
-
-
-
2.5  
3
pF  
pF  
Input capacitance, RESET, MIRROR,  
QCSEN  
CIR  
VI = VDD or GND; VDD = 1.5v  
Input & Output Timing Requirements  
DDR3-800  
1066/1333/1600  
Symbol  
Parameter  
Conditions  
Unit  
Min  
300  
70  
Max  
fclock  
fTEST  
tSU  
Input clock frequency  
Input clock frequency  
Setup time  
Application frequency  
Test frequency  
670  
300  
-
Mhz  
Mhz  
ps  
Input valid before CK/CK  
Input to remain valid after CK/CK  
100  
175  
tH  
Hold time  
-
ps  
Propagation delay, single-  
bit switching  
tPDM  
tDIS  
tEN  
CK/CK to output  
Yn/Yn to output float  
Output driving to Yn/Yn  
0.65  
1.0  
ns  
ps  
ps  
Output disable time (1/2-  
Clock prelaunch)  
0.5 tCK +  
tQSK1(min)  
-
-
Output enable time (1/2-  
Clock prelaunch)  
0.5 tCK -  
tQSK1(max)  
Rev. 0.1 / Aug. 2011  
10  
On DIMM Thermal Sensor  
The DDR3 SDRAM DIMM temperature is monitored by integrated thermal sensor. The integrated thermal  
sensor comply with JEDEC “TSE2002av, Serial Presence Detect with Temperature Sensor.  
Connection of Thermal Sensor  
EVENT  
SCL  
SDA  
SA0  
SA1  
SA2  
EVENT  
SCL  
SPD with  
Integrated  
TS  
SA0  
SA1  
SA2  
SDA  
Temperature-to-Digital Conversion Performance  
Parameter  
Temperature Sensor Accuracy (Grade B)  
Resolution  
Condition  
Min  
Typ  
Max  
Unit  
Active Range,  
75°C < TA < 95°C  
-
± 0.5  
± 1.0  
± 1.0  
°C  
Monitor Range,  
40°C < TA < 125°C  
-
-
± 2.0  
± 3.0  
°C  
-20°C < TA < 125°C  
± 2.0  
°C  
°C  
0.25  
Rev. 0.1 / Aug. 2011  
11  
Functional Block Diagram  
16GB, 2Gx72 Module(2Rank of x4) - page1  
DQS  
DQS  
DQS  
DQS  
DQS17  
DQS8  
DQS17  
VSS  
DQS  
DM  
DQS  
DM  
DQS8  
VSS  
DQS  
DM  
DQS  
DM  
CB[7:4]  
DQ [3:0]  
D17  
D12  
D11  
D10  
D0  
DQ [3:0]  
D35  
D30  
D29  
D28  
D18  
CB[3:0]  
DQ [3:0]  
D8  
D3  
D2  
D1  
D9  
DQ [3:0]  
D26  
D21  
D20  
D19  
D27  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS12  
DQS12  
VSS  
DQS3  
DQS3  
VSS  
DQ[31:28]  
DQ[27:24]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS11  
DQS11  
VSS  
DQS2  
DQS2  
VSS  
DQ[23:20]  
DQ[19:16]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS10  
DQS10  
VSS  
DQS1  
DQS1  
VSS  
DQ[15:12]  
DQ[11:8]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS0  
DQS0  
VSS  
DQS9  
DQS9  
VSS  
DQ[3:0]  
DQ[7:4]  
Vtt  
Vtt  
Rev. 0.1 / Aug. 2011  
12  
16GB, 2Gx72 Module(2Rank of x4) - page2  
DQS  
DQS  
DQS  
DQS  
DQS14  
DQS13  
DQS14  
VSS  
DQS  
DM  
DQS  
DM  
DQS13  
VSS  
DQS  
DM  
DQS  
DM  
DQ[47:44]  
DQ [3:0]  
D14  
DQ [3:0]  
D32  
D22  
D34  
D25  
DQ[39:36]  
DQ [3:0]  
D13  
DQ [3:0]  
D31  
D23  
D33  
D24  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS4  
DQS4  
VSS  
DQS5  
DQS5  
VSS  
DQ[35:32]  
D4  
DQ[43:40]  
D5  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS16  
DQS16  
VSS  
DQS15  
DQS15  
VSS  
DQ[63:60]  
D16  
DQ[55:52]  
D15  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS  
DQS  
DM  
DQ [3:0]  
DQS7  
DQS7  
VSS  
DQS6  
DQS6  
VSS  
DQ[59:56]  
D7  
DQ[51:48]  
D6  
Vtt  
Vtt  
V
SPD  
DDSPD  
VDDSPD  
EVENT  
SCL  
VDDSPD  
SA0  
SA0  
SA1  
SA2  
VSS  
V
DD  
D0–D35  
D0–D35  
D0–D35  
D0–D35  
EVENT SPD with SA1  
V
TT  
Integrated  
SCL  
SA2  
VSS  
VREFCA  
VREFDQ  
TS  
SDA  
SDA  
V
SS  
D0–D35  
Plan to use SPD with Integrated TS of Class B and  
might be changed on customer’s requests. For more  
details of SPD and Thermal sensor, please contact  
local Hynix sales representative  
Note:  
1. DQ-to-I/O wiring may be changed within a nibble.  
2. See wiring diagrams for all resistors values.  
3. ZQ pins of each SDRAM are connected to individual RZQ resistors (240+/-1%) ohms.  
Rev. 0.1 / Aug. 2011  
13  
16GB, 2Gx72 Module(2Rank of x4) - page3  
S0  
S1  
RS0A  
RS0B  
RS1A  
RS1B  
CS0: SDRAMs D[3:0], D[12:8], D17  
CS0: SDRAMs D[7:4], D[16:13]  
1:2  
CS1: SDRAMs D[21:18], D[30:26], D35  
CS1: SDRAMs D[25:22], D[34:31]  
R
E
G
I
S
T
E
R
/
BA[N:0]  
A[N:0]  
RBA[N:0]A  
BA[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35  
BA[N:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]  
RBA[N:0]B  
RA[N:0]A  
RA[N:0]B  
A[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35  
A[N:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]  
RAS  
CAS  
RRASA  
RRASB  
RAS: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35  
RAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]  
RCASA  
RCASB  
RWEA  
RWEB  
RCKE0A  
RCKE0B  
RCKE1A  
RCKE1B  
CAS: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35  
CAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]  
WE  
WE: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35  
WE: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]  
CKE0: SDRAMs D[3:0], D[12:8], D17  
CKE0: SDRAMs D[7:4], D[16:13]  
CKE1: SDRAMs D[21:18], D[30:26], D35  
CKE1: SDRAMs D[25:22], D[34:31]  
CKE0  
CKE1  
P
L
L
ODT0  
RODT0A  
RODT0B  
ODT0: SDRAMs D[3:0], D[12:8], D17  
ODT0: SDRAMs D[7:4], D[16:13]  
ODT1  
CK0  
RODT1A  
RODT1A  
ODT1: SDRAMs D[21:18], D[30:26], D35  
ODT1: SDRAMs D[25:22], D[34:31]  
PCK0A  
PCK0B  
PCK1A  
PCK1B  
PCK0A  
PCK0B  
PCK1A  
PCK1B  
CK: SDRAMs D[3:0], D[12:8], D17  
CK: SDRAMs D[7:4], D[16:13]  
CK: SDRAMs D[21:18], D[30:26], D35  
CK: SDRAMs D[25:22], D[34:31]  
CK: SDRAMs D[3:0], D[12:8], D17  
CK: SDRAMs D[7:4], D[16:13]  
CK: SDRAMs D[21:18], D[30:26], D35  
CK: SDRAMs D[25:22], D[34:31]  
CK0  
CK1  
120  
±5%  
CK1  
PAR_IN  
Err_Out  
RESET  
RST  
RST: SDRAMs D[35:0]  
* S[3:2], CK1 and CK1 are NC  
Rev. 0.1 / Aug. 2011  
14  
32GB, 4Gx72 Module(4Rank of x4) - page1  
VSS  
DQS8  
DQS8  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
D9  
D7  
D5  
D3  
D1  
D8  
D6  
D4  
D2  
D0  
D45  
D47  
D49  
D51  
D53  
D44  
D46  
D48  
D50  
D52  
CB[3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
DQS3  
DQS3  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQ[27:24]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS2  
DQS2  
VSS  
DQ[19:16]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS1  
DQS1  
VSS  
DQS  
DQS  
DM  
DQ[11:8]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS0  
DQS0  
VSS  
DQS  
DQS  
DM  
DQ[3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
Vtt  
Rev. 0.1 / Aug. 2011  
15  
32GB, 4Gx72 Module(4Rank of x4) - page2  
VSS  
DQS17  
DQS17  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
D27  
D25  
D23  
D21  
D19  
D26  
D24  
D22  
D20  
D18  
D63  
D65  
D67  
D69  
D71  
D62  
D64  
D66  
D68  
D70  
CB[7:4]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
DQS12  
DQS12  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQ[31:28]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS11  
DQS11  
VSS  
DQ[23:20]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS10  
DQS10  
VSS  
DQS  
DQS  
DM  
DQ[11:8]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS9  
DQS9  
VSS  
DQS  
DQS  
DM  
DQ[7:4]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
Vtt  
Rev. 0.1 / Aug. 2011  
16  
32GB, 4Gx72 Module(4Rank of x4) - page3  
VSS  
DQS4  
DQS4  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
D11  
D13  
D15  
D17  
D10  
D12  
D14  
D16  
D13  
D41  
D39  
D37  
D42  
D40  
D38  
D36  
DQ[35:32]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
DQS5  
DQS5  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQ[43:40]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS6  
DQS6  
VSS  
DQ[51:48]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS7  
DQS7  
VSS  
DQS  
DQS  
DM  
DQ[59:56  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
Vtt  
Rev. 0.1 / Aug. 2011  
17  
32GB, 4Gx72 Module(4Rank of x4) - page4  
VSS  
DQS13  
DQS13  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
D29  
D31  
D33  
D35  
D28  
D30  
D32  
D34  
D61  
D59  
D57  
D55  
D60  
D58  
D56  
D54  
DQ[39:36]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
DQS14  
DQS14  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQ[47:44]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS15  
DQS15  
VSS  
DQ[55:52]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS16  
DQS16  
VSS  
DQS  
DQS  
DM  
DQ[63:60]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
DQ [3:0]  
Vtt  
V
SPD  
DDSPD  
VDDSPD  
EVENT  
SCL  
VDDSPD  
SA0  
SA0  
SA1  
SA2  
VSS  
VDD  
D0–D71  
EVENT SPD with SA1  
V
TT  
Integrated  
SCL  
SA2  
VSS  
D0–D71  
D0–D71  
VREFCA  
VREFDQ  
TS  
SDA  
SDA  
VSS  
D0–D71  
Plan to use SPD with Integrated TS of Class B and  
might be changed on customer’s requests. For more  
details of SPD and Thermal sensor, please contact  
local Hynix sales representative  
Note:  
1. DQ-to-I/O wiring may be changed within a nibble.  
2. Unless otherwise noted, resistor values are 15 Ohms ±5%.  
3. See the wiring diagrams for all resistors associated with the command, address and  
control bus.  
4. ZQ resistors are 240 Ohms ±1%. For all other resistor values refer to the appropriate  
wiring diagram.  
Rev. 0.1 / Aug. 2011  
18  
32GB, 4Gx72 Module(4Rank of x4) - page5  
S0  
S1  
ARS0A  
ARS0B  
CS1: SDRAMs D1,D3,D5,D7 D9,  
D19, D21, D23, D25, D27  
CS1: SDRAMs D11, D13, D15, D17,  
D29, D31, D33, D35  
S2  
S3  
BRS2A  
BRS2B  
CS1: SDRAMs D45,D47,D49,D51,D53  
D63,D65,D67,D69,D71  
CS1: SDRAMs D37,D39,D41,D43,  
D55,D57,D59,D61  
1:2  
1:2  
R
E
G
I
S
T
E
R
/
R
E
G
I
S
T
E
R
/
ARS1A  
ARS1B  
CS0: SDRAMs D0, D2, D4, D6, D8,  
D18, D20, D22, D24, D26  
CS0: SDRAMs D10, D12, D14, D16,  
BRS3A  
BRS3B  
CS0: SDRAMs D44.D46,D48,D50,D52,  
D62,D64,D66,D68,D70  
CS0: SDRAMs D36,D38,D40,D42,  
D28, D30, D32, D34  
D54,D56,D58,D60  
BA[N:0]  
A[N:0]  
ARBA[N:0]A  
ARBA[N:0]B  
BA[N:0]: SDRAMs D[9:0],D[27:18] BA[N:0]  
BA[N:0]: SDRAMs D[17:10],D[35:28]  
BRBA[N:0]A  
BRBA[N:0]B  
BA[N:0]: SDRAMs D[53:44],D[71:62]  
BA[N:0]: SDRAMs D[43:36],D[61:54]  
ARA[N:0]A  
A[N:0]: SDRAMs D[9:0],D[27:18]  
BRA[N:0]A  
A[N:0]: SDRAMs D[55:44],D[71:62]  
A[N:0]  
ARA[N:0]B  
A[N:0]: SDRAMs D[17:10],D[35:28]  
BRA[N:0]B  
A[N:0]: SDRAMs D[43:36],D[61:54]  
RAS  
CAS  
RAS  
ARRASA  
ARRASB  
RAS: SDRAMs D[9:0],D[27:18]  
RAS: SDRAMs D[17:10],D[35:28]  
BRRASA  
BRRASB  
RAS: SDRAMs D[53:44],D[71:62]  
RAS: SDRAMs D[43:36],D[61:54]  
P
L
L
P
L
L
ARCASA  
ARCASB  
ARWEA  
ARWEB  
CAS: SDRAMs D[9:0],D[27:18]  
CAS: SDRAMs D[17:10],D[35:28]  
BRCASA  
BRCASB  
BRWEA  
CAS: SDRAMs D[53:44],D[71:62]  
CAS: SDRAMs D[43:36],D[61:54]  
CAS  
WE: SDRAMs D[9:0],D[27:18]  
WE: SDRAMs D[17:10],D[35:28]  
WE: SDRAMs D[53:44],D[71:62]  
WE  
WE  
BRWEB WE: SDRAMs D[43:36],D[61:54]  
ARCKE0A  
ARCKE0B  
ARCKE1A  
ARCKE1B  
CKE1: SDRAMs D1,D3,D5,D7,D9,  
D19, D21, D23, D25, D27  
CKE1: SDRAMs D11,D13,D15,D17,  
D29, D31, D33, D35  
CKE0: SDRAMs D0,D2,D4,D6,D8,  
D18, D20, D22, D24, D26  
CKE0: SDRAMs D10,D12,D14,D16,  
D28, D30, D32, D34  
ODT1: SDRAMs D1,D3,D5,D7,D9,  
D19, D21, D23, D25, D27  
ODT0: SDRAMs D11,D13,D15,D17,  
BRCKE0A  
BRCKE0B  
BRCKE1A  
BRCKE1B  
CKE1: SDRAMs D45,D47,D49,D51,D53,  
D63,D65,D67,D69,D71  
CKE1: SDRAMs D37,D39,D41,D43,  
D55,D57,D59,D61  
CKE0: SDRAMs D44.D46,D48,D50,D52,  
D62,D64,D66,D68,D70  
CKE0: SDRAMs D36,D38,D40,D42,  
D54,D56,D58,D60  
ODT1: SDRAMs D45,D47,D49,D51,D53  
D63,D65,D67,D69,D71  
ODT0: SDRAMs D37,D39,D41,D43  
CKE0  
CKE0  
A
B
CKE1  
ODT0  
CKE1  
ODT1  
ARODT0A  
ARODT0B  
BRODT1A  
BRODT1B  
D29, D31, D33, D35  
D55,D57,D59,D61  
APCK0A  
APCK0B  
APCK1A  
APCK1B  
APCK0A  
APCK0B  
APCK1A  
APCK1B  
CK: SDRAMs D[9:0]  
CK: SDRAMs D[17:10]  
CK: SDRAMs D[27:18]  
CK: SDRAMs D[35:28]  
CK: SDRAMs D[9:0]  
CK: SDRAMs D[17:10]  
CK: SDRAMs D[27:18]  
CK: SDRAMs D[35:28]  
BPCK0A  
BPCK0B  
BPCK1A  
BPCK1B  
BPCK0A  
BPCK0B  
BPCK1A  
BPCK1B  
CK: SDRAMs D[53:44]  
CK: SDRAMs D[43:36]  
CK: SDRAMs D[71:62]  
CK: SDRAMs D[61:54]  
CK: SDRAMs D[53:44]  
CK: SDRAMs D[43:36]  
CK: SDRAMs D[71:62]  
CK: SDRAMs D[61:54]  
CK0  
CK0  
CK0  
CK0  
120  
120  
±5%  
±5%  
PAR_IN  
PAR_IN  
Err_Out  
Err_Out  
RESET  
RST  
RESET  
RST  
RST: SDRAMs D[35:0]  
CK1  
CK1  
120  
±5%  
1. CK0 and CK0 are differentially terminated with a single 120 Ohms ±5% resistor.  
2. CK1 and CK1 are differentially terminated with a single 120 Ohms ±5% resistor, but is not used.  
3. Unused register inputs ODT1 for Register A and ODT0 for Register B are tied to ground.  
4. The module drawing on this page is not drawn to scale.  
Rev. 0.1 / Aug. 2011  
19  
Absolute Maximum Ratings  
Absolute Maximum DC Ratings  
Absolute Maximum DC Ratings  
Symbol  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
Rating  
Units  
Notes  
VDD  
- 0.4 V ~ 1.975 V  
V
1,  
VDDQ  
VIN, VOUT  
TSTG  
- 0.4 V ~ 1.975 V  
- 0.4 V ~ 1.975 V  
-55 to +100  
V
1,  
1
V
oC  
1, 2  
Notes:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement  
conditions, please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than  
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.  
DRAM Component Operating Temperature Range  
Temperature Range  
Symbol  
Parameter  
Normal Operating Temperature Range  
Extended Temperature Range  
Rating  
Units  
oC  
Notes  
0 to 85  
1,2  
TOPER  
85 to 95  
oC  
1,3  
Notes:  
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For mea-  
surement conditions, please refer to the JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur-  
ing operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC  
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:  
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It  
is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.  
Please refer to the DIMM SPD for option availability  
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use  
the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b)  
or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). Hynix DDR3 SDRAMs sup-  
port Auto Self-Refresh and in Extended Temperature Range and please refer to Hynix component datasheet  
and/or the DIMM SPD for tREFI requirements in the Extended Temperature Range  
Rev. 0.1 / Aug. 2011  
20  
AC & DC Operating Conditions  
Recommended DC Operating Conditions  
Recommended DC Operating Conditions  
Rating  
Symbol  
Parameter  
Units Notes  
Min.  
Typ.  
Max.  
VDD  
1.425  
1.500  
1.575  
V
V
1,2  
1,2  
Supply Voltage  
Supply Voltage for Output  
VDDQ  
1.425  
1.500  
1.575  
Notes:  
1. Under all conditions, VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
Rev. 0.1 / Aug. 2011  
21  
AC & DC Input Measurement Levels  
AC and DC Logic Input Levels for Single-Ended Signals  
AC and DC Input Levels for Single-Ended Command and Address Signals  
Single Ended AC and DC Input Levels for Command and ADDress  
DDR3-800/1066/1333/1600  
Symbol  
Parameter  
Unit  
Notes  
Min  
Max  
VIH.CA(DC100)  
VIL.CA(DC100)  
VIH.CA(AC175)  
VIL.CA(AC175)  
VIH.CA(AC150)  
VIL.CA(AC150)  
VIH.CA(AC135)  
VIL.CA(AC135)  
VIH.CA(AC125)  
VIL.CA(AC125)  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC Input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
AC Input logic high  
AC input logic low  
Vref + 0.100  
VDD  
V
V
V
V
V
V
V
V
V
V
1, 5  
VSS  
Vref - 0.100  
1, 6  
Vref + 0.175  
Note2  
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
Note2  
Vref - 0.175  
Vref + 0.150  
Note2  
Note2  
Vref - 0.150  
-
-
-
-
-
-
-
-
Reference Voltage for  
ADD, CMD inputs  
VRefCA(DC  
)
0.49 * VDD  
0.51 * VDD  
V
3, 4, 9  
Notes:  
1. For input only pins except RESET, Vref = VrefCA (DC).  
2. Refer to "Overshoot and Undershoot Specifications" on page 35.  
3. The ac peak noise on V may not allow V to deviate from V by more than +/-1% VDD (for  
RefCA(DC)  
Ref  
Ref  
reference: approx. +/- 15 mV).  
4. For reference: approx. VDD/2 +/- 15 mV.  
5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)  
6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)  
7. VIH(ac) is used as simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135), and  
VIH.CA(AC125); VIH.CA(AC175) value is used when Vref + 0.175V is referenced, VIH.CA(AC150) value is  
used when Vref + 0.150V is referenced, VIH.CA(AC135) value is used when Vref + 0.135V is referenced,  
and VIH.CA(AC125) value is used when Vref + 0.125V is referenced.  
8. VIL(ac) is used as simplified symbol for VIL.CA(AC175), VIL.CA(AC150), VIL.CA(AC135), and  
VIL.CA(AC125); VIL.CA(AC175) value is used when Vref - 0.175V is referenced, VIL.CA(AC150) value is  
used when Vref - 0.150V is referenced, VIL.CA(AC135) value is used when Vref - 0.135V is referenced, and  
VIL.CA(AC125) value is used when Vref - 0.125V is referenced.  
9. Vref is measured relative to VDD at the same point, time and same device.  
Rev. 0.1 / Aug. 2011  
22  
AC and DC Input Levels for Single-Ended Signals  
DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066 as specified in the table  
below. DDR3 SDRAM will also support corresponding tDS values (Table 41 and Table 47 in “ DDR3 Device  
Operation”) as well as derating tables in Table 44 of “DDR3 Device Operation” depending on Vih/Vil AC lev-  
els.  
Single Ended AC and DC Input Levels for DQ and DM  
DDR3-800/1066  
DDR3-1333/1600  
Symbol  
Parameter  
Unit Notes  
Min  
VIH.DQ(DC100) DC input logic high Vref + 0.100  
VIL.DQ(DC100) DC input logic low VSS  
VIH.DQ(AC175) AC input logic high Vref + 0.175  
VIL.DQ(AC175) AC input logic low Note2  
VIH.DQ(AC150) AC Input logic high Vref + 0.150  
Max  
Min  
Max  
VDD  
Vref - 0.100  
Note2  
Vref + 0.100  
VDD  
V
V
V
V
V
V
V
V
1
VSS  
Vref - 0.100  
1
-
-
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
Vref - 0.175  
Note2  
-
-
Vref + 0.150  
Note2  
VIL.DQ(AC150) AC input logic low  
VIH.CA(AC135) AC input logic high  
VIL.CA(AC135) AC input logic low  
Reference Voltage  
Note2  
Vref - 0.150  
-
Note2  
Vref - 0.150  
-
-
-
-
-
-
-
VRefDQ(DC  
)
0.49 * VDD  
0.51 * VDD  
0.49 * VDD  
0.51 * VDD  
V
3, 4, 9  
for DQ, DM inputs  
Notes:  
1. Vref = VrefDQ (DC).  
2. Refer to "Overshoot and Undershoot Specifications" on page 35.  
3. The ac peak noise on V may not allow V to deviate from V by more than +/-1% VDD (for  
RefDQ(DC)  
Ref  
Ref  
reference: approx. +/- 15 mV).  
4. For reference: approx. VDD/2 +/- 15 mV.  
5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)  
6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)  
7. VIH(ac) is used as simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150), and VIH.DQ(AC135);  
VIH.DQ(AC175) value is used when Vref + 0.175V is referenced, VIH.DQ(AC150) value is used when Vref  
+ 0.150V is referenced, and VIH.DQ(AC135) value is used when Vref + 0.135V is referenced.  
8. VIL(ac) is used as simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150), and VIL.DQ(AC135);  
VIL.DQ(AC175) value is used when Vref - 0.175V is referenced, VIL.DQ(AC150) value is used when Vref -  
0.150V is referenced, and VIL.DQ(AC135) value is used when Vref - 0.135V is referenced.  
9. Vref is measured relative to VDD at the same point, time and same device.  
Rev. 0.1 / Aug. 2011  
23  
Vref Tolerances  
The dc-tolerance limits and ac-noise limits for the reference voltages  
and V  
are illustrated in  
RefDQ  
VRefCA  
figure below. It shows a valid reference voltage V (t) as a function of time. (V stands for V and  
RefCA  
Ref  
Ref  
V
likewise).  
RefDQ  
V
(DC) is the linear average of V (t) over a very long period of time (e.g. 1 sec). This average has to  
Ref  
Ref  
meet the min/max requirements in the table ?$paratext>? on page 30. Furthermore V (t) may tempo-  
Ref  
rarily deviate from V  
by no more than +/- 1% VDD.  
Ref (DC)  
voltage  
VDD  
V
(t)  
Ref  
V
ac-noise  
Ref  
V
Ref(DC)max  
V
Ref(DC)  
VDD/2  
V
Ref(DC)min  
VSS  
time  
Illustration of V  
tolerance and V  
ac-noise limits  
Ref  
Ref(DC)  
The voltage levels for setup and hold time measurements V  
, V  
, V  
, and V  
are depen-  
IL(DC)  
IH(AC)  
IH(DC)  
IL(AC)  
dent on V  
.
Ref  
“V ” shall be understood as V  
, as defined in figure above.  
Ref  
Ref(DC)  
This clarifies that dc-variations of V affect the absolute voltage a signal has to reach to achieve a valid  
Ref  
high or low level and therefore the time to which setup and hold is measured. System timing and voltage  
budgets need to account for V  
deviations from the optimum position within the data-eye of the input  
Ref(DC)  
signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and  
voltage associated with V ac-noise. Timing and voltage effects due to ac-noise on V up to the speci-  
Ref  
Ref  
fied limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings.  
Rev. 0.1 / Aug. 2011  
24  
AC and DC Logic Input Levels for Differential Signals  
Differential signal definition  
t
DVAC  
VIL.DIFF.AC.MIN  
VIL.DIFF.MIN  
0
half cycle  
V
IL.DIFF.MAX  
VIL.DIFF.AC.MAX  
t
DVAC  
time  
Definition of differential ac-swing and “time above ac-level” t  
DVAC  
Rev. 0.1 / Aug. 2011  
25  
Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS)  
Differential AC and DC Input Levels  
DDR3-800, 1066, 1333, 1600  
Symbol  
Parameter  
Unit Notes  
Min  
Max  
VIHdiff  
VILdiff  
Differential input high  
Differential input logic low  
Differential input high ac  
Differential input low ac  
+ 0.200  
Note 3  
Note 3  
- 0.200  
V
V
V
V
1
1
2
2
VIHdiff (ac)  
VILdiff (ac)  
2 x (VIH (ac) - Vref)  
Note 3  
Note 3  
2 x (VIL (ac) - Vref)  
Notes:  
1. Used to define a differential signal slew-rate.  
2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL  
(ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level  
applies also here.  
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU  
need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita-  
tions for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 35.  
Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS  
tDVAC [ps]  
tDVAC [ps]  
@ |VIH/Ldiff (ac)| = 350mV  
@ |VIH/Ldiff (ac)| = 300mV  
Slew Rate [V/ns]  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
-
-
-
-
-
-
1.6  
1.4  
1.2  
1.0  
< 1.0  
0
Rev. 0.1 / Aug. 2011  
26  
Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) has  
also to comply with certain requirements for single-ended signals.  
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH  
(ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle.  
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac)  
/ VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition.  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if  
VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the single-  
ended signals CK and CK.  
VDD or VDDQ  
VSEHmin  
VSEH  
VDD/2 or VDDQ/2  
CK or DQS  
VSELmax  
VSEL  
VSS or VSSQ  
time  
Single-ended requirements for differential signals.  
Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended compo-  
nents of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the  
transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended  
components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing,  
but adds a restriction on the common mode characteristics of these signals.  
Rev. 0.1 / Aug. 2011  
27  
Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU  
DDR3-800, 1066, 1333, 1600  
Symbol  
Parameter  
Unit Notes  
Min  
Max  
Single-ended high level for strobes  
Single-ended high level for Ck, CK  
Single-ended low level for strobes  
Single-ended low level for CK, CK  
(VDD / 2) + 0.175  
(VDD /2) + 0.175  
Note 3  
Note 3  
V
V
V
V
1,2  
1,2  
1,2  
1,2  
VSEH  
VSEL  
Note 3  
(VDD / 2) = 0.175  
(VDD / 2) = 0.175  
Note 3  
Notes:  
1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac)  
of DQs.  
2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced  
ac-high or ac-low level is used for a signal group, then the reduced level applies also here.  
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU  
need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita-  
tions for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 35.  
Rev. 0.1 / Aug. 2011  
28  
Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and  
strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the  
requirements in table below. The differential input cross point voltage VIX is measured from the actual  
cross point of true and complement signals to the midlevel between of VDD and VSS  
VDD  
CK, DQS  
V
IX  
VDD/2  
V
IX  
V
IX  
CK, DQS  
VSS  
Vix Definition  
Cross point voltage for differential input signals (CK, DQS)  
DDR3-800, 1066, 1333, 1600  
Parameter  
Symbol  
Unit Notes  
Min  
Max  
-150  
-175  
150  
175  
mV  
Differential Input Cross Point Voltage  
relative to VDD/2 for CK, CK  
VIX  
VIX  
mV  
1
Differential Input Cross Point Voltage  
relative to VDD/2 for DQS, DQS  
-150  
150  
mV  
Notes:  
1. Extended range for V is only allowed for clock and if single-ended clock input signals CK and CK are  
IX  
monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential  
slew rate of CK - CK is larger than 3 V/ns.  
2. Refer to the table ?$paratext>? on page 28 for VSEL and VSEH standard values.  
Rev. 0.1 / Aug. 2011  
29  
Slew Rate Definitions for Single-Ended Input Signals  
See 7.5 “Address / Command Setup, Hold and Derating” on page 137 in “DDR3 Device Operation” for sin-  
gle-ended slew rate definitions for address and command signals.  
See 7.6 “Data Setup, Hold and Slew Rate Derating” on page 144 in “DDR3 Device Operation” for single-  
ended slew rate definition for data signals.  
Slew Rate Definitions for Differential Input Signals  
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in table  
and figure below.  
Differential Input Slew Rate Definition  
Measured  
Description  
Defined by  
Max  
Min  
Differential input slew rate for rising edge  
(CK-CK and DQS-DQS)  
VILdiffmax VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff  
VIHdiffmin VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff  
Differential input slew rate for falling edge  
(CK-CK and DQS-DQS)  
Notes:  
The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.  
Delta  
TRdiff  
vIHdiffmin  
0
vILdiffmax  
Delta  
TFdiff  
Differential Input Slew Rate Definition for DQS, DQS# and CK, CK#  
Differential Input Slew Rate Definition for DQS, DQS and CK, CK  
Rev. 0.1 / Aug. 2011  
30  
AC & DC Output Measurement Levels  
Single Ended AC and DC Output Levels  
Table below shows the output levels used for measurements of single ended signals.  
Single-ended AC and DC Output Levels  
DDR3-800, 1066,  
Symbol  
Parameter  
Unit  
Notes  
1333 and 1600  
VOH(DC)  
VOM(DC)  
VOL(DC)  
VOH(AC)  
VOL(AC)  
0.8 x VDDQ  
V
V
V
V
V
DC output high measurement level (for IV curve linearity)  
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (for IV curve linearity)  
AC output high measurement level (for output SR)  
AC output low measurement level (for output SR)  
0.5 x VDDQ  
0.2 x VDDQ  
V
TT + 0.1 x VDDQ  
1
1
VTT - 0.1 x VDDQ  
Notes:  
1. The swing of ±0.1 x V  
is based on approximately 50% of the static single ended output high or low  
DDQ  
swing with a driver impedance of 40and an effective test load of 25to V = V  
/ 2.  
DDQ  
TT  
Differential AC and DC Output Levels  
Table below shows the output levels used for measurements of single ended signals.  
Differential AC and DC Output Levels  
DDR3-800, 1066,  
Symbol  
Parameter  
Unit  
Notes  
1333 and 1600  
VOHdiff (AC)  
VOLdiff (AC)  
Notes:  
1. The swing of ±0.2 x V  
+ 0.2 x VDDQ  
V
V
1
1
AC differential output high measurement level (for output SR)  
AC differential output low measurement level (for output SR)  
- 0.2 x VDDQ  
is based on approximately 50% of the static differential output high or low  
DDQ  
swing with a driver impedance of 40and an effective test load of 25to V = V  
/2 at each of the  
DDQ  
TT  
differential outputs.  
Rev. 0.1 / Aug. 2011  
31  
Single Ended Output Slew Rate  
When the Reference load for timing measurements, output slew rate for falling and rising edges is defined  
and measured between V  
and V  
for single ended signals are shown in table and figure below.  
OL(AC)  
OH(AC)  
Single-ended Output slew Rate Definition  
Measured  
Description  
Defined by  
From  
VOL(AC)  
VOH(AC)  
To  
VOH(AC)  
VOL(AC)  
[VOH(AC)-VOL(AC)] / DeltaTRse  
[VOH(AC)-VOL(AC)] / DeltaTFse  
Single-ended output slew rate for rising edge  
Single-ended output slew rate for falling edge  
Notes:  
1. Output slew rate is verified by design and characterisation, and may not be subject to production test.  
Delta TRse  
vOH(AC)  
V  
vOl(AC)  
Delta TFse  
Single Ended Output Slew Rate Definition  
Single Ended Output slew Rate Definition  
Output Slew Rate (single-ended)  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Single-ended Output Slew Rate SRQse  
2.5  
5
2.5  
5
2.5  
5
TBD  
5
V/ns  
Description: SR; Slew Rate  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
se: Single-ended Signals  
For Ron = RZQ/7 setting  
Note 1): In two cases, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.  
Case 1 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high  
to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low).  
Case 2 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high  
to low or low to high) while all remaining DQ signals in the same byte lane switching into the opposite direction (i.e. from  
low to high of high to low respectively). For the remaining DQ signal switching in to the opposite direction, the regular  
maximum limite of 5 V/ns applies.  
Rev. 0.1 / Aug. 2011  
32  
Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined  
and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure  
below.  
Differential Output Slew Rate Definition  
Measured  
Description  
Defined by  
From  
To  
VOHdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTRdiff  
VOLdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTFdiff  
VOLdiff (AC)  
VOHdiff (AC)  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
Notes:  
1. Output slew rate is verified by design and characterization, and may not be subject to production test.  
Delta  
TRdiff  
vOHdiff(AC)  
O
vOLdiff(AC)  
Delta  
TFdiff  
Differential Output Slew Rate Definition  
Differential Output slew Rate Definition  
Differential Output Slew Rate  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
Parameter  
Symbol Min  
SRQdiff  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Differential Output Slew Rate  
Description: SR; Slew Rate  
5
10  
5
10  
5
10  
TBD  
10  
V/ns  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
se: Single-ended Signals  
For Ron = RZQ/7 setting  
Rev. 0.1 / Aug. 2011  
33  
Reference Load for AC Timing and Output Slew Rate  
Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing  
parameters of the device as well as output slew rate measurements.  
It is not intended as a precise representation of any particular system environment or a depiction of the  
actual load presented by a production tester. System designers should use IBIS or other simulation tools to  
correlate the timing reference load to a system environment. Manufacturers correlate to their production  
test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.  
VDDQ  
25 Ohm  
CK, CK  
DQ  
DQS  
DQS  
VTT = VDDQ/2  
DUT  
Reference Load for AC Timing and Output Slew Rate  
Rev. 0.1 / Aug. 2011  
34  
Overshoot and Undershoot Specifications  
Address and Control Overshoot and Undershoot Specifications  
AC Overshoot/Undershoot Specification for Address and Control Pins  
DDR3- DDR3- DDR3- DDR3-  
Parameter  
Units  
800  
1066  
1333  
1600  
Maximum peak amplitude allowed for overshoot area. (See Figure below)  
Maximum peak amplitude allowed for undershoot area. (See Figure below)  
Maximum overshoot area above VDD (See Figure below)  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
0.67  
0.67  
0.33 V-ns  
0.33 V-ns  
Maximum undershoot area below VSS (See Figure below)  
(A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT)  
See figure below for each parameter definition  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Address and Control Overshoot and Undershoot Definition  
Address and Control Overshoot and Undershoot Definition  
Rev. 0.1 / Aug. 2011  
35  
Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications  
AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask  
DDR3- DDR3- DDR3- DDR3-  
Parameter  
Units  
800  
1066  
1333  
1600  
Maximum peak amplitude allowed for overshoot area. (See Figure below)  
Maximum peak amplitude allowed for undershoot area. (See Figure below)  
Maximum overshoot area above VDD (See Figure below)  
Maximum undershoot area below VSS (See Figure below)  
(CK, CK, DQ, DQS, DQS, DM)  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
0.25  
0.25  
0.19  
0.19  
0.15  
0.15  
0.13 V-ns  
0.13 V-ns  
See figure below for each parameter definition  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Clock, Data Strobe and Mask Overshoot and Undershoot Definition  
Clock, Data, Strobe and Mask Overshoot and Undershoot Definition  
Rev. 0.1 / Aug. 2011  
36  
Refresh parameters by device density  
Refresh parameters by device density  
Parameter  
RTT_Nom Setting  
512Mb  
90  
1Gb  
2Gb  
4Gb  
8Gb Units Notes  
REF command ACT or  
REF command time  
tRFC  
110  
160  
260  
350  
ns  
0 C T  
85 C T  
85 C  
7.8  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
us  
us  
Average periodic  
refresh interval  
CASE  
tREFI  
95 C 3.9  
1
CASE  
Rev. 0.1 / Aug. 2011  
37  
Standard Speed Bins  
DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
DDR3-800 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 42.  
Speed Bin  
DDR3-800E  
6-6-6  
Unit  
Notes  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
tAA  
15  
20  
ns  
ns  
ns  
ns  
ns  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tRCD  
15  
15  
tRP  
tRC  
52.5  
37.5  
ACT to ACT or REF command period  
ACT to PRE command period  
tRAS  
9 * tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
Reserved  
ns  
ns  
CL = 5  
CL = 6  
CWL = 5  
CWL = 5  
1, 2, 3, 4  
1, 2, 3  
2.5  
nCK  
nCK  
6
5
Supported CL Settings  
Supported CWL Settings  
Rev. 0.1 / Aug. 2011  
38  
DDR3-1066 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 42.  
Speed Bin  
DDR3-1066F  
7-7-7  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
Internal read command to  
first data  
tAA  
13.125  
20  
ns  
ns  
ns  
ns  
ns  
ACT to internal read or  
write delay time  
tRCD  
13.125  
13.125  
50.625  
37.5  
tRP  
PRE command period  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
9 * tREFI  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
Reserved  
Reserved  
ns  
ns  
1, 2, 3, 4, 5  
CWL = 6  
4
CWL = 5  
CL = 6  
2.5  
3.3  
ns  
1, 2, 3, 5  
1, 2, 3, 4  
4
CWL = 6  
Reserved  
Reserved  
ns  
CWL = 5  
CL = 7  
ns  
CWL = 6  
1.875  
1.875  
< 2.5  
< 2.5  
ns  
1, 2, 3, 4  
4
CWL = 5  
CL = 8  
Reserved  
ns  
CWL = 6  
ns  
1, 2, 3  
nCK  
nCK  
Supported CL Settings  
Supported CWL Settings  
6, 7, 8  
5, 6  
Rev. 0.1 / Aug. 2011  
39  
DDR3-1333 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 42.  
Speed Bin  
DDR3-1333H  
9-9-9  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
13.5  
max  
Internal read command  
to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
ns  
(13.125)8  
13.5  
(13.125)8  
ACT to internal read or  
write delay time  
13.5  
(13.125)8  
PRE command period  
49.5  
(49.125)8  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
36  
9 * tREFI  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
Reserved  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
1,2, 3,4, 6  
CWL = 6, 7  
4
CWL = 5  
2.5  
3.3  
1, 2, 3, 6  
CL = 6  
CL = 7  
CL = 8  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
1, 2, 3, 4, 6  
4
4
1.875  
1.875  
< 2.5  
< 2.5  
tCK(AVG)  
CWL = 6  
ns  
1, 2, 3, 4, 6  
Reserved  
Reserved  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7  
CWL = 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2, 3, 4  
4
CWL = 6  
1, 2, 3, 6  
1, 2, 3, 4  
4
CWL = 7  
Reserved  
Reserved  
CWL = 5, 6  
CWL = 7  
CL = 9  
1.5  
1.5  
<1.875  
<1.875  
1, 2, 3, 4  
CWL = 5, 6  
Reserved  
Reserved  
4
CL = 10  
ns  
ns  
1, 2, 3  
tCK(AVG)  
CWL = 7  
nCK  
Supported CL Settings  
Supported CWL Settings  
6, 8, (7), 9, (10)  
5, 6, 7  
nCK  
Rev. 0.1 / Aug. 2011  
40  
DDR3-1600 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 42.  
Speed Bin  
DDR3-1600K  
11-11-11  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
13.75  
max  
Internal read command  
to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
ns  
(13.125)8  
13.75  
(13.125)8  
ACT to internal read or  
write delay time  
13.75  
(13.125)8  
PRE command period  
48.75  
(48.125)8  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
35  
9 * tREFI  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
Reserved  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2, 3, 4, 7  
CWL = 6, 7  
4
CWL = 5  
2.5  
3.3  
1, 2, 3, 7  
CL = 6  
CL = 7  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5, 6  
CWL = 7  
CWL = 8  
CWL = 5, 6  
Reserved  
Reserved  
Reserved  
1, 2, 3, 4, 7  
4
4
1.875  
1.875  
1.5  
< 2.5  
< 2.5  
1, 2, 3, 4, 7  
1, 2, 3, 4, 7  
4
Reserved  
Reserved  
Reserved  
4
1, 2, 3, 7  
1, 2, 3, 4, 7  
1, 2, 3, 4  
4
CL = 8  
CL = 9  
Reserved  
Reserved  
Reserved  
<1.875  
1, 2, 3, 4, 7  
1, 2, 3, 4  
4
Reserved  
Reserved  
CL = 10  
CL = 11  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7  
CWL = 8  
1.5  
<1.875  
<1.5  
ns  
ns  
1, 2, 3, 7  
1,2,3,4  
Reserved  
Reserved  
CWL = 5, 6,7  
CWL = 8  
ns  
ns  
4
tCK(AVG)  
1.25  
1, 2, 3  
nCK  
Supported CL Settings  
Supported CWL Settings  
6, (7), 8, (9), 10, 11  
5, 6, 7, 8  
nCK  
Rev. 0.1 / Aug. 2011  
41  
Speed Bin Table Notes  
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);  
Notes:  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making  
a selection of tCK (AVG), both need to be fulfilled: Requirements from CL setting as well as requirements  
from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized  
by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the  
next smaller JEDEC standard tCK (AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] =  
tAA [ns] / tCK (AVG) [ns], rounding up to the next ‘Supported CL.  
3. tCK(AVG).MAX limits: Calculate tCK (AVG) = tAA.MAX / CLSELECTED and round the resulting tCK (AVG)  
down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX  
corresponding to CLSE LECTED.  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
8. Hynix DDR3 SDRAM devices support down binning to CL=7 and CL=9, and tAA/tRCD/tRP satisfy mini-  
mum value of 13.125ns. SPD settings are also programmed to match. For example, DDR3 1333H devices  
supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16),  
tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to DDR3-1333H  
or DDR3 1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRP-  
min (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be pro-  
grammed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333H  
and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.  
Rev. 0.1 / Aug. 2011  
42  
Environmental Parameters  
Symbol  
Parameter  
Operating temperature  
Rating  
Units  
Notes  
T
See Note  
3
OPR  
H
Operating humidity (relative)  
10 to 90  
-50 to +100  
5 to 95  
%
1
1
OPR  
o
T
Storage temperature  
C
STG  
H
Storage humidity (without condensation)  
Barometric Pressure (operating & storage)  
%
1
STG  
P
105 to 69  
K Pascal  
1, 2  
BAR  
Note:  
1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only,  
and device functional operation at or above the conditions indicated is not implied. Expousure to absolute  
maximum rating conditions for extended periods may affect reliablility.  
2. Up to 9850 ft.  
3. The designer must meet the case temperature specifications for individual module components.  
Rev. 0.1 / Aug. 2011  
43  
IDD and IDDQ Specification Parameters and Test Conditions  
IDD and IDDQ Measurement Conditions  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure  
1. shows the setup and test load for IDD and IDDQ measurements.  
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R,  
IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all  
VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD cur-  
rents.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all  
VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ cur-  
rents.  
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can  
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In  
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one  
merged-power layer in Module PCB.  
For IDD and IDDQ measurements, the following definitions apply:  
”0” and “LOW” is defined as VIN <= V  
ILAC(max).  
”1” and “HIGH” is defined as VIN >= V  
IHAC(max).  
“MID_LEVEL” is defined as inputs are VREF = VDD/2.  
Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.  
Basic IDD and IDDQ Measurement Conditions are described in Table 2.  
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.  
IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not lim-  
ited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
Qoff = 0 (Output Buffer enabled in MR1);  
B
RTT_Nom = RZQ/6 (40 Ohm in MR1);  
RTT_Wr = RZQ/2 (120 Ohm in MR2);  
TDQS Feature disabled in MR1  
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time  
before actual IDD or IDDQ measurement is started.  
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}  
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}  
Rev. 0.1 / Aug. 2011  
44  
IDDQ (optional)  
IDD  
VDD  
RESET  
CK/CK  
VDDQ  
DDR3  
SDRAM  
RTT = 25 Ohm  
CKE  
CS  
DQS, DQS  
DQ, DM,  
VDDQ/2  
RAS, CAS, WE  
TDQS, TDQS  
A, BA  
ODT  
ZQ  
VSS  
VSSQ  
Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements  
[Note: DIMM level Output test load condition may be different from above  
Application specific  
memory channel  
environment  
IDDQ  
Test Load  
Channel  
IO Power  
Simulation  
IDDQ  
Simulation  
IDDQ  
Simulation  
Correction  
Channel IO Power  
Number  
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported  
by IDDQ Measurement  
Rev. 0.1 / Aug. 2011  
45  
Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Symbol  
Unit  
7-7-7  
1.875  
7
9-9-9  
1.5  
9
11-11-11  
tCK  
1.25  
11  
11  
39  
28  
11  
24  
32  
5
ns  
CL  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nRCD  
nRC  
nRAS  
nRP  
7
9
27  
20  
7
33  
24  
9
1KB page size  
2KB page size  
1KB page size  
2KB page size  
20  
27  
4
20  
30  
4
nFAW  
nRRD  
6
5
6
nRFC -512Mb  
nRFC-1 Gb  
nRFC- 2 Gb  
nRFC- 4 Gb  
nRFC- 8 Gb  
48  
59  
86  
160  
187  
60  
74  
107  
200  
234  
72  
88  
128  
240  
280  
Table 2 -Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and  
PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL;  
DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buf-  
IDD0  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3.  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT,  
RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM:  
stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and  
IDD1  
RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4.  
Rev. 0.1 / Aug. 2011  
46  
Symbol  
Description  
Precharge Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all  
IDD2N  
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details:  
see Table 5.  
Precharge Standby ODT Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all  
IDD2NT  
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6;  
Pattern Details: see Table 6.  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf-  
IDD2P0  
IDD2P1  
IDD2Q  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc)  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf-  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc)  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf-  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all  
IDD3N  
banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see  
Table 5.  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer  
IDD3P  
and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Rev. 0.1 / Aug. 2011  
47  
Symbol  
Description  
Operating Burst Read Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command, Address,  
Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different  
data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open,  
RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode  
IDD4R  
Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7.  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command, Address,  
Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different  
data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open,  
WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode  
IDD4W  
Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8.  
Burst Refresh Current  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Command,  
Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0;  
IDD5B  
Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registersb);  
ODT Signal: stable at 0; Pattern Details: see Table 9.  
Self-Refresh Current: Normal Temperature Range  
TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:  
IDD6  
Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank  
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer  
and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Self-Refresh Current: Extended Temperature Range (optional)  
TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede);  
IDD6ET  
CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank  
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh  
operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Auto Self-Refresh Current (optional)  
TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Enabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:  
IDD6TC  
Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank  
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Auto Self-Refresh operation; Output Buf-  
fer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Rev. 0.1 / Aug. 2011  
48  
Symbol  
Description  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a),f); AL: CL-1; CS:  
High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table  
10; Data IO: read data burst with different data between one burst and the next one according to Table 10;  
DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different address-  
IDD7  
ing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern  
Details: see Table 10.  
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2]  
= 011B; RTT_Wr enable: set MR2 A[10,9] = 10B  
c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit  
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature  
e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature  
range  
f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B  
Rev. 0.1 / Aug. 2011  
49  
a)  
Table 3 - IDD0 Measurement-Loop Pattern  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
0
0
-
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1, 2  
1*nRC+3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
-
repeat pattern 1...4 until 2*nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 0.1 / Aug. 2011  
50  
a)  
Table 4 - IDD1 Measurement-Loop Pattern  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRCD - 1, truncate if necessary  
RD 00  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRCD  
...  
0
1
0
1
0
0
0
0
0
0
0
0
00000000  
-
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1,2  
1*nRC+3,4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary  
RD 00  
repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRCD  
...  
0
1
0
1
0
0
0
0
F
0
00110011  
-
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-  
LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are  
MID_LEVEL.  
Rev. 0.1 / Aug. 2011  
51  
a)  
Table 5 - IDD2N and IDD3N Measurement-Loop Pattern  
Datab)  
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
0
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
a)  
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern  
Datab)  
0
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
1
0
F
F
0
0
0
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 0.1 / Aug. 2011  
52  
a)  
Table 7 - IDD4R and IDDQ4R Measurement-Loop Pattern  
Datab)  
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
0
1
-
2,3  
D,D  
RD  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
a)  
Table 8 - IDD4W Measurement-Loop Pattern  
Datab)  
0
0
1
2,3  
4
5
6,7  
WR  
D
D,D  
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
-
-
00110011  
-
-
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 0.1 / Aug. 2011  
53  
a)  
Table 9 - IDD5B Measurement-Loop Pattern  
Datab)  
0
1
REF  
D, D  
D, D  
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
0
0
0
-
-
-
0
1.2  
00  
00  
3,4  
5...8  
repeat cycles 1...4, but BA[2:0] = 1  
repeat cycles 1...4, but BA[2:0] = 2  
repeat cycles 1...4, but BA[2:0] = 3  
repeat cycles 1...4, but BA[2:0] = 4  
repeat cycles 1...4, but BA[2:0] = 5  
repeat cycles 1...4, but BA[2:0] = 6  
repeat cycles 1...4, but BA[2:0] = 7  
9...12  
13...16  
17...20  
21...24  
25...28  
29...32  
33...nRFC-1  
2
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 0.1 / Aug. 2011  
54  
a)  
Table 10 - IDD7 Measurement-Loop Pattern  
ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9  
Datab)  
0
1
0
1
2
...  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
repeat above D Command until nRRD - 1  
nRRD  
nRRD+1  
nRRD+2  
...  
2*nRRD  
3*nRRD  
4*nRRD  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
repeat above D Command until 2* nRRD - 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 1, but BA[2:0] = 3  
2
3
D
1
0
0
0
0
3
00  
0
0
F
0
0
-
-
4
Assert and repeat above D Command until nFAW - 1, if necessary  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 1, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 1, but BA[2:0] = 7  
5
6
7
8
nFAW  
nFAW+nRRD  
nFAW+2*nRRD  
nFAW+3*nRRD  
nFAW+4*nRRD  
D
1
0
0
0
0
7
00  
0
0
F
9
Assert and repeat above D Command until 2* nFAW - 1, if necessary  
2*nFAW+0  
2*nFAW+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
10  
2&nFAW+2  
Repeat above D Command until 2* nFAW + nRRD - 1  
2*nFAW+nRRD  
2*nFAW+nRRD+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
11  
2&nFAW+nRRD+2  
Repeat above D Command until 2* nFAW + 2* nRRD - 1  
repeat Sub-Loop 10, but BA[2:0] = 2  
repeat Sub-Loop 11, but BA[2:0] = 3  
12 2*nFAW+2*nRRD  
13 2*nFAW+3*nRRD  
D
1
0
0
0
0
3
00  
0
0
0
0
-
14 2*nFAW+4*nRRD  
Assert and repeat above D Command until 3* nFAW - 1, if necessary  
repeat Sub-Loop 10, but BA[2:0] = 4  
15 3*nFAW  
16 3*nFAW+nRRD  
17 3*nFAW+2*nRRD  
18 3*nFAW+3*nRRD  
repeat Sub-Loop 11, but BA[2:0] = 5  
repeat Sub-Loop 10, but BA[2:0] = 6  
repeat Sub-Loop 11, but BA[2:0] = 7  
D
1
0
0
0
0
7
00  
0
0
0
0
-
19 3*nFAW+4*nRRD  
Assert and repeat above D Command until 4* nFAW - 1, if necessary  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 0.1 / Aug. 2011  
55  
IDD Specifications (Tcase: 0 to 95oC)  
* Module IDD values in the datasheet are only a calculation based on the component IDD spec.  
The actual measurements may vary according to DQ loading cap.  
16GB, 2G x 72 R-DIMM: HMT42GR7MFR4C  
Symbol  
IDD0  
DDR3 1066  
2024  
2204  
1664  
1844  
948  
DDR3 1333  
2204  
2384  
1844  
2024  
948  
DDR3 1600  
2294  
2474  
1844  
2024  
948  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
note  
IDD1  
IDD2N  
IDD2NT  
IDD2P0  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
IDD4R  
IDD4W  
IDD5B  
IDD6  
1020  
1664  
2024  
1128  
2744  
2744  
3734  
948  
1020  
1844  
2024  
1128  
3104  
3104  
3914  
948  
1020  
1844  
2024  
1128  
3464  
3374  
4004  
948  
IDD6ET  
IDD6TC  
IDD7  
1020  
1020  
3914  
1020  
1020  
4274  
1020  
1020  
4454  
32GB, 4G x 72 R-DIMM: HMT84GR7MMR4C  
Symbol  
IDD0  
DDR3 1066  
2924  
3104  
2564  
2924  
1668  
1812  
2564  
3284  
2028  
3644  
3644  
4634  
1668  
1812  
1812  
4814  
DDR3 1333  
3284  
3464  
2924  
3284  
1668  
1812  
2924  
3284  
2028  
4184  
4184  
4944  
1688  
1812  
1812  
5354  
DDR3 1600  
3554  
3734  
2924  
3284  
1668  
1812  
2924  
3284  
2028  
4724  
4634  
5264  
1688  
1812  
1812  
5714  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
note  
IDD1  
IDD2N  
IDD2NT  
IDD2P0  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD6ET  
IDD6TC  
IDD7  
Rev. 0.1 / Aug. 2011  
56  
Module Dimensions  
2Gx72 - HMT42GR7MFR4C  
Front  
133.35  
128.95  
Detail B  
SPD/TS  
2.10±0.15  
Detail A  
4X3.00±0.10  
1
120  
1
2X3.00±0.10  
47.00  
Detail C  
71.00  
5.175  
Detail D  
5.0  
Back  
121  
240  
1
Side  
3.43mm max  
Detail of Contacts D  
Detail of Contacts A  
Detail of Contacts B  
Detail of Contacts C  
1.20± 0.15  
0.80± 0.05  
2.50  
14.90  
0.4  
13.60  
3
± 0.1  
0.3~0.1  
1.00  
1.50  
±0.10  
5.00  
1.27±010mm  
max  
Note:  
1. 0.13tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 0.1 / Aug. 2011  
57  
2Gx72 - HMT42GR7MFR4C - Heat Spreader  
Front  
133.75  
133.35  
127  
42.7  
2.786  
20.9  
6.35  
8
3.69  
5.39  
7.74  
6.3  
2.1
36.7  
120  
1
7.36  
33.4  
33.4  
46.46  
80.54  
119.64  
Back  
57.2  
2.7  
121  
240  
Side  
7.19mm max  
1.27±010mm  
max  
Note:  
1. 0.13tolerance on all dimensions unless otherwise stated.  
2.In order to uninstall FDHS, please contact sales administrator.  
Units: millimeters  
Rev. 0.1 / Aug. 2011  
58  
4Gx72 - HMT84GR7MMR4C  
Front  
133.35  
128.95  
Detail B  
SPD/TS  
2.10±0.15  
Detail A  
DDP  
DDP  
DDP  
DDP  
4X3.00±0.10  
DDP  
DDP  
DDP  
DDP  
DDP  
1
120  
1
2X3.00±0.10  
47.00  
71.00  
5.175  
Detail D  
5.0  
Detail C  
Back  
DDP  
DDP  
DDP  
DDP  
DDP  
DDP  
DDP  
DDP  
DDP  
121  
240  
1
Side  
3.43mm max  
Detail of Contacts D  
Detail of Contacts A  
Detail of Contacts B  
Detail of Contacts C  
1.20± 0.15  
0.80± 0.05  
2.50  
14.90  
0.4  
13.60  
3
± 0.1  
0.3~0.1  
1.00  
1.50  
±0.10  
5.00  
1.27±010mm  
max  
Note:  
1. 0.13tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 0.1 / Aug. 2011  
59  
4Gx72 - HMT84GR7MMR4C - Heat Spreader  
Front  
133.75  
133.35  
127  
41.9  
3.59  
20.9  
6.35  
8
4.49  
5.39  
8.04  
6.3  
2.155  
120  
1
7.36  
33.4  
33.4  
46.46  
80.54  
119.64  
Back  
57.2  
2.7  
121  
240  
Side  
7.19mm max  
1.27±010mm  
max  
Note:  
1. 0.13tolerance on all dimensions unless otherwise stated.  
2.In order to uninstall FDHS, please contact sales administrator.  
Units: millimeters  
Rev. 0.1 / Aug. 2011  
60  

相关型号:

HMTA8GL7AHR4A

DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die
HYNIX

HMTA8GL7AHR4A-H9

DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die
HYNIX

HMTA8GL7AHR4C

DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die
HYNIX

HMTA8GL7AHR4C-PB

DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die
HYNIX

HMTMS-101-01-G-S-230-XX

Board Connector, 1 Contact(s), 1 Row(s), Male, Straight, 0.05 inch Pitch, Solder Terminal, Black Insulator, Receptacle
SAMTEC

HMTMS-101-01-L-D-230

Board Stacking Connector, 2 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-D-100

Board Stacking Connector, 2 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-D-390

Board Stacking Connector, 2 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-S-100

Board Stacking Connector, 1 Contact(s), 1 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-S-230

Board Stacking Connector, 1 Contact(s), 1 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-S-230-XX

Board Connector, 1 Contact(s), 1 Row(s), Male, Straight, 0.05 inch Pitch, Solder Terminal, Black Insulator, Receptacle
SAMTEC

HMTMS-101-01-S-S-390

Board Stacking Connector, 1 Contact(s), 1 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC