HY5DU113222FM-22 [HYNIX]

512M(16Mx32) GDDR SDRAM; 512M ( 16Mx32 ) GDDR SDRAM
HY5DU113222FM-22
型号: HY5DU113222FM-22
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

512M(16Mx32) GDDR SDRAM
512M ( 16Mx32 ) GDDR SDRAM

存储 内存集成电路 动态存储器 双倍数据速率 时钟
文件: 总30页 (文件大小:295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HY5DU113222FM(P)  
512M(16Mx32) GDDR SDRAM  
HY5DU113222FM(P)  
This document is a general product description and is subject to change without notice. Hynix Electronics does not assume any respon-  
sibility for use of circuits described. No patent licenses are implied.  
Rev. 0.1 / Oct. 2004  
1
HY5DU113222FM(P)  
Revision History  
Revision No.  
History  
Draft Date Remark  
0.1  
1) Defined target spec.  
Oct. 2004  
Rev. 0.1 / Oct. 2004  
2
HY5DU113222FM(P)  
Preliminary  
DESCRIPTION  
The Hynix HY5DU113222FM(P) is a 536,870,912-bit CMOS Double Data Rate(DDR) Synchronous DRAM which consists  
of two 256Mbit(x32) - Multi-chip-, ideally suited for the point-to-point applications which requires high bandwidth.  
The Hynix 16Mx32 DDR SDRAMs offer fully synchronous operations referenced to both rising and falling edges of the  
clock. While all addresses and control inputs are latched on the rising edges of the CK (falling edges of the /CK), Data,  
Data strobes and Write data masks inputs are sampled on both rising and falling edges of it. The data paths are inter-  
nally pipelined and 2-bit prefetched to achieve very high bandwidth. All input and output voltage levels are compatible  
with SSTL_2.  
FEATURES  
The Hynix HY5DU113222FM(P) guarantee until  
200MHz speed at DLL_off condition  
Data(DQ) and Write masks(DM) latched on the both  
rising and falling edges of the data strobe  
2.5V VDD and VDDQ wide range max power supply  
All addresses and control inputs except Data, Data  
strobes and Data masks latched on the rising edges  
of the clock  
All inputs and outputs are compatible with SSTL_2  
interface  
Write mask byte controls by DM (DM0 ~ DM3)  
Programmable /CAS Latency 5 / 4 supported  
12mm x 12mm, 144ball FBGA with 0.8mm pin pitch  
Fully differential clock inputs (CK, /CK) operation  
Programmable Burst Length 2 / 4 / 8 with both  
sequential and interleave mode  
The signals of Chip select control the each chip with  
CS0 and CS1, individually.  
Internal 4 bank operations with single pulsed /RAS  
tRAS Lock-Out function supported  
Double data rate interface  
Source synchronous - data transaction aligned to  
bidirectional data strobe (DQS0 ~ DQS3)  
Auto refresh and self refresh supported  
4096 refresh cycles / 32ms  
Data outputs on DQS edges when read (edged DQ)  
Data inputs on DQS centers when write (centered  
DQ)  
(Both chips do refresh operation, simultaneously)  
Half strength and Matched Impedance driver option  
controlled by EMRS  
ORDERING INFORMATION  
Clock  
Frequency  
Max Data  
Rate  
Part No.  
Power Supply  
interface  
Package  
HY5DU113222FM(P)-2  
HY5DU113222FM(P)-22  
HY5DU113222FM(P)-25  
HY5DU113222FM(P)-28  
HY5DU113222FM(P)-33  
HY5DU113222FM(P)-36  
HY5DU113222FM(P)-4  
500MHz  
450MHz  
400MHz  
350MHz  
300MHz  
275MHz  
250MHz  
1000Mbps/pin  
900Mbps/pin  
800Mbps/pin  
700Mbps/pin  
600Mbps/pin  
550Mbps/pin  
500Mbps/pin  
12mmx12mm  
144Ball FBGA  
VDD 2.5V  
SSTL_2  
VDDQ 2.5V  
Note) Hynix supports Lead free parts for each speed grade with same specification, except Lead free materials.  
We'll add "P" character after "FM" for lead free product. For example, the part number of 300MHz Lead free  
product is HY5DU113222FM(P) - 33.  
Rev. 0.1 / Oct. 2004  
3
HY5DU113222FM(P)  
PIN CONFIGURATION (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
DQS0  
DQ4  
DM0  
VDDQ  
DQ5  
VSSQ  
NC  
DQ3  
VDDQ  
VSSQ  
VSS  
DQ2  
DQ1  
DQ0  
VDDQ  
VDD  
VSS  
DQ31  
VDDQ  
VDD  
DQ29  
DQ30  
VSSQ  
VSSQ  
DQ28  
VDDQ  
VSSQ  
VSS  
VSSQ  
NC  
DM3  
VDDQ  
DQ26  
VDDQ  
DQ15  
DQ13  
DM1  
DQ11  
DQ9  
DQS3  
DQ27  
DQ25  
DQ24  
DQ14  
DQ12  
DQS1  
DQ10  
DQ8  
DQ6  
VSSQ  
VDD  
VSSQ  
VSSQ  
VSSQ  
VDD  
DQ7  
VDDQ  
DQ16  
DQ18  
DM2  
DQ20  
DQ23  
/WE  
NC  
VSS  
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
F
DQ17  
DQ19  
DQS2  
DQ21  
DQ22  
/CAS  
/RAS  
/CS0  
VDDQ  
VDDQ  
NC  
VSSQ  
VSSQ  
VSSQ  
VSSQ  
VSSQ  
VSS  
VSSQ  
VSSQ  
VSSQ  
VSSQ  
VSSQ  
VSS  
VDDQ  
VDDQ  
NC  
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
G
H
J
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
VSS  
Termal  
VDDQ  
VDDQ  
VDD  
VDDQ  
VDDQ  
VDD  
K
L
VSS  
A10  
A2  
VSS  
VDD  
A11  
A3  
VSS  
VDD  
A9  
VSS  
NC2  
A5  
NC  
NC  
M
N
P
/CS1  
BA0  
BA1  
NC3  
CLK  
/CLK  
CKE  
NC  
NC  
A0  
A1  
A4  
A6  
A7  
A8/AP  
VREF  
Note :  
1. Outer ball, A1~A14, P1~P14, A1~P1, A14~P14 are depopulated.  
2. Ball L9(NC2) is reserved for A12.  
3. Ball M10(NC3) is reserved for BA2.  
ROW and COLUMN ADDRESS TABLE  
Items  
16Mx32  
Organization  
Row Address  
2M x 32 x 4banks x 2chip  
A0 ~ A11  
A0 ~ A7, A9  
BA0, BA1  
A8  
Column Address  
Bank Address  
Auto Precharge Flag  
Refresh  
4K  
Chip Selection  
CS0, CS1  
Note:  
1. 16Mx32 DDR is composed of two 8Mx32 DDR.  
2. Multi-chip(16Mx32 DDR) is controlled by CS0 and CS1, individually.  
Rev. 0.1 / Oct. 2004  
4
HY5DU113222FM(P)  
PIN DESCRIPTION  
PIN  
TYPE  
DESCRIPTION  
Clock: CK and /CK are differential clock inputs. All address and control input signals are  
sampled on the crossing of the positive edge of CK and negative edge of /CK. Output  
(read) data is referenced to the crossings of CK and /CK (both directions of crossing).  
CK, /CK  
Input  
Clock Enable: CKE HIGH activates, and CKE LOW deactivates internal clock signals, and  
device input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER  
DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row  
ACTIVE in any bank). CKE is synchronous for POWER DOWN entry and exit, and for SELF  
REFRESH entry. CKE is asynchronous for SELF REFRESH exit, and for output disable. CKE  
must be maintained high throughout READ and WRITE accesses. Input buffers, excluding  
CK, /CK and CKE are disabled during POWER DOWN. Input buffers, excluding CKE are  
disabled during SELF REFRESH. CKE is an SSTL_2 input, but will detect an LVCMOS LOW  
level after Vdd is applied.  
CKE  
Input  
Chip Select : Enables or disables all inputs except CK, /CK, CKE, DQS and DM. All com-  
mands are masked when CS0 or CS1 is registered high. CS0 or CS1 provides for external  
bank selection on systems with multiple banks. CS0 and CS1 are considered part of the  
command code. When it is the operationg state of MRS, Power up sequence, EMRS, it  
should be enabled in pairs. Except this case, it can be operated, individually.  
/CS0, /CS1  
BA0, BA1  
Input  
Input  
Bank Address Inputs: BA0 and BA1 define to which bank an ACTIVE, Read, Write or PRE-  
CHARGE command is being applied.  
Address Inputs: Provide the row address for ACTIVE commands, and the column address  
and AUTO PRECHARGE bit for READ/WRITE commands, to select one location out of the  
memory array in the respective bank. A8 is sampled during a precharge command to  
determine whether the PRECHARGE applies to one bank (A8 LOW) or all banks (A8  
HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The  
address inputs also provide the op code during a MODE REGISTER SET command. BA0  
and BA1 define which mode register is loaded during the MODE REGISTER SET command  
(MRS or EMRS).  
A0 ~ A11  
Input  
Command Inputs: /RAS, /CAS and /WE (along with /CS) define the command being  
entered.  
/RAS, /CAS, /WE  
DM0 ~ DM3  
Input  
Input  
Input Data Mask: DM(0~3) is an input mask signal for write data. Input data is masked  
when DM is sampled HIGH along with that input data during a WRITE access. DM is sam-  
pled on both edges of DQS. Although DM pins are input only, the DM loading matches the  
DQ and DQS loading. DM0 corresponds to the data on DQ0-Q7; DM1 corresponds to the  
data on DQ8-Q15; DM2 corresponds to the data on DQ16-Q23; DM3 corresponds to the  
data on DQ24-Q31.  
Data Strobe: Output with read data, input with write data. Edge aligned with read data,  
centered in write data. Used to capture write data. DQS0 corresponds to the data on  
DQ0-Q7; DQS1 corresponds to the data on DQ8-Q15; DQS2 corresponds to the data on  
DQ16-Q23; DQS3 corresponds to the data on DQ24-Q31  
D Q S 0 ~ D Q S 3  
I / O  
DQ0 ~ DQ31  
VDD/VSS  
VDDQ/VSSQ  
VREF  
I/O  
Data input / output pin : Data Bus  
Supply  
Supply  
Supply  
NC  
Power supply for internal circuits and input buffers.  
Power supply for output buffers for noise immunity.  
Reference voltage for inputs for SSTL interface.  
No connection.  
NC  
Rev. 0.1 / Oct. 2004  
5
HY5DU113222FM(P)  
FUNCTIONAL BLOCK DIAGRAM  
(4Banks x 2Mbit x 32 I/O) x 2Chips Double Data Rate Synchronous DRAM  
32  
Write Data Register  
2-bit Prefetch Unit  
DS  
64  
CLK  
Bank  
Control  
2Mx32/Bank0  
CLK  
/CLK  
/CLK  
CKE  
DQ[0:31]  
2Mx32/Bank1  
2Mx32/Bank2  
CKE  
CS1  
64  
32  
CS0  
/RAS  
/CAS  
/WE  
/RAS  
/CAS  
2Mx32/Bank3  
/WE  
DM(0~3)  
DM(0~3)  
Mode  
Register  
Row  
Decoder  
Column  
Decoder  
Data Strobe  
Transmitter  
CLK_DLL  
DS  
Column  
Address  
Counter  
DQS(0~3)  
A0~A11  
Data Strobe  
Receiver  
A0~A11  
BA0,BA1  
Mode Register  
CLK, /CLK  
BA0,BA1  
DLL  
Block  
Rev. 0.1 / Oct. 2004  
6
HY5DU113222FM(P)  
SIMPLIFIED COMMAND TRUTH TABLE  
CS0/  
CS1  
A8/  
AP  
Command  
CKEn-1  
CKEn  
RAS  
CAS  
WE  
ADDR  
BA  
Note  
Extended Mode Register Set  
Mode Register Set  
Device Deselect  
No Operation  
H
H
X
X
L
L
L
L
L
L
L
L
OP code  
OP code  
1,2,6  
1,2,6  
H
L
X
H
L
X
H
H
X
H
H
H
H
H
X
X
X
X
1
Bank Active  
L
RA  
V
V
1
1,7  
1,3,7  
1,7  
1,4,7  
1,5  
1
Read  
L
H
L
L
L
L
H
H
L
L
L
H
L
CA  
CA  
X
Read with Autoprecharge  
Write  
H
H
X
X
V
Write with Autoprecharge  
Precharge All Banks  
Precharge selected Bank  
Read Burst Stop  
Auto Refresh  
H
H
L
X
V
H
L
H
H
H
X
H
L
L
L
H
L
H
L
L
H
H
X
H
X
H
X
H
X
V
X
X
1
1
Entry  
L
L
L
1,6  
Self Refresh  
Exit  
H
L
X
H
X
H
X
H
X
V
X
H
X
H
X
H
X
V
X
X
X
L
H
L
H
L
1,6  
H
L
1,6  
1,6  
1,6  
1,6  
1,6  
1,6  
1,6  
Entry  
Precharge Power  
Down Mode  
H
L
Exit  
H
H
L
Entry  
H
L
L
Active Power  
Down Mode  
Exit  
H
X
( H=Logic High Level, L=Logic Low Level, X=Don’t Care, V=Valid Data Input, OP Code=Operand Code, NOP=No Operation )  
Note :  
1. DM(0~3) states are Don’t Care. Refer to below Write Mask Truth Table.  
2. OP Code(Operand Code) consists of A0~A11 and BA0~BA1 used for Mode Register setting during Extended MRS or MRS.  
Before entering Mode Register Set mode, all banks must be in a precharge state and MRS command can be issued after tRP  
period from Prechagre command.  
3. If a Read with Autoprecharge command is detected by memory component in CK(n), then there will be no command presented  
to activated bank until CK(n+BL/2+tRP).  
4. If a Write with Autoprecharge command is detected by memory component in CK(n), then there will be no command presented  
to activated bank until CK(n+BL/2+1+tDPL+tRP). Last Data-In to Prechage delay(tDPL) which is also called Write Recovery Time  
(tWR) is needed to guarantee that the last data has been completely written.  
5. If A8/AP is High when Precharge command being issued, BA0/BA1 are ignored and all banks are selected to be  
precharged.  
6. Both of CS0 & CS1 should be enabled simultaneously.  
Rev. 0.1 / Oct. 2004  
7
HY5DU113222FM(P)  
WRITE MASK TRUTH TABLE  
/CS0, /CS1, /RAS,  
/CAS, /WE  
A8/  
AP  
ADDR  
Note  
Function  
Data Write  
CKEn-1  
CKEn  
DM(0~3)  
BA  
H
H
X
X
X
X
L
X
X
1,2  
1,2  
Data-In Mask  
H
Note :  
1. Write Mask command masks burst write data with reference to DQS(0~3) and it is not related with read data.  
2. DM0 corresponds to the data on DQ0-Q7; DM1 corresponds to the data on DQ8-Q15; DM2 corresponds to the data on DQ16-Q23;  
DM3 corresponds to the data on DQ24-Q31.  
Rev. 0.1 / Oct. 2004  
8
HY5DU113222FM(P)  
OPERATION COMMAND TRUTH TABLE - I  
Current  
State  
/CS0  
/CS1  
/RAS  
/CAS  
/WE  
Address  
Command  
Action  
NOP or power down3  
NOP or power down3  
ILLEGAL4  
H
L
L
L
X
H
H
H
X
H
H
L
X
H
L
X
DSEL  
NOP  
X
X
BST  
ILLEGAL4  
H
BA, CA, AP  
READ/READAP  
IDLE  
ILLEGAL4  
Row Activation  
NOP  
L
L
L
L
L
H
L
L
H
L
L
H
H
L
L
H
L
BA, CA, AP  
WRITE/WRITEAP  
ACT  
BA, RA  
L
BA, AP  
PRE/PALL  
AREF/SREF  
MRS *12  
DSEL  
Auto Refresh or Self Refresh5  
L
H
L
X
L
L
OPCODE  
Mode Register Set  
X
H
H
X
H
H
X
H
L
X
X
X
NOP  
NOP  
NOP  
ILLEGAL4  
Begin read : optional AP6  
Begin write : optional AP6  
ILLEGAL4  
BST  
L
L
L
L
L
H
H
L
L
L
H
L
BA, CA, AP  
BA, CA, AP  
BA, RA  
BA, AP  
X
READ/READAP*13  
WRITE/WRITEAP*13  
ACT  
ROW  
ACTIVE  
H
H
L
H
L
Precharge7  
L
PRE/PALL  
ILLEGAL11  
L
H
AREF/SREF  
ILLEGAL11  
L
H
L
L
L
L
L
L
L
L
X
H
H
H
H
L
L
X
H
H
L
L
X
H
L
OPCODE  
MRS  
DSEL  
X
Continue burst to end  
Continue burst to end  
Terminate burst  
X
X
NOP  
BST  
Term burst, new read:optional AP8  
ILLEGAL  
H
L
BA, CA, AP  
BA, CA, AP  
BA, RA  
BA, AP  
X
READ/READAP*13  
WRITE/WRITEAP  
ACT  
L
READ  
ILLEGAL4  
H
H
L
H
L
L
PRE/PALL  
AREF/SREF  
Term burst, precharge  
ILLEGAL11  
L
H
ILLEGAL11  
L
H
L
L
X
H
H
L
X
H
H
L
X
H
L
OPCODE  
MRS  
DSEL  
NOP  
BST  
X
X
X
Continue burst to end  
Continue burst to end  
L
WRITE  
ILLEGAL4  
Term burst, new read:optional AP8  
Term burst, new write:optional AP  
L
L
H
H
L
L
H
L
BA, CA, AP  
BA, CA, AP  
READ/READAP*13  
WRITE/WRITEAP*13  
Rev. 0.1 / Oct. 2004  
9
HY5DU113222FM(P)  
OPERATION COMMAND TRUTH TABLE - II  
Current  
State  
/CS0  
/CS1  
/RAS  
/CAS  
/WE  
Address  
Command  
Action  
ILLEGAL4  
L
L
L
L
L
L
H
H
L
H
L
BA, RA  
BA, AP  
X
ACT  
PRE/PALL  
AREF/SREF  
Term burst, precharge  
WRITE  
ILLEGAL11  
H
ILLEGAL11  
Continue burst to end  
Continue burst to end  
ILLEGAL  
L
H
L
L
X
L
X
H
H
L
L
X
H
L
OPCODE  
MRS  
DSEL  
X
H
H
H
X
X
NOP  
L
BST  
ILLEGAL10  
ILLEGAL10  
ILLEGAL4,10  
ILLEGAL4,10  
ILLEGAL11  
L
H
BA, CA, AP  
READ/READAP  
READ  
WITH  
AUTOPRE-  
CHARGE  
L
L
L
L
H
L
L
L
L
H
H
L
L
H
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRITE/WRITEAP  
ACT  
PRE/PALL  
AREF/SREF  
H
ILLEGAL11  
Continue burst to end  
Continue burst to end  
ILLEGAL  
L
H
L
L
X
L
X
H
H
L
L
X
H
L
OPCODE  
MRS  
DSEL  
X
H
H
H
X
X
NOP  
L
BST  
ILLEGAL10  
ILLEGAL10  
ILLEGAL4,10  
ILLEGAL4,10  
ILLEGAL11  
L
H
BA, CA, AP  
READ/READAP  
WRITE  
AUTOPRE-  
CHARGE  
L
L
L
L
H
L
L
L
L
H
H
L
L
H
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRITE/WRITEAP  
ACT  
PRE/PALL  
AREF/SREF  
H
ILLEGAL11  
L
H
L
L
X
H
H
L
X
H
H
L
X
H
L
OPCODE  
MRS  
DSEL  
NOP  
BST  
X
X
X
NOP-Enter IDLE after tRP  
NOP-Enter IDLE after tRP  
ILLEGAL4  
ILLEGAL4,10  
ILLEGAL4,10  
L
L
L
L
L
L
L
H
H
L
L
L
H
L
BA, CA, AP  
BA, CA, AP  
BA, RA  
BA, AP  
READ/READAP  
WRITE/WRITEAP  
ACT  
PRE-  
CHARGE  
ILLEGAL4,10  
H
H
L
H
L
L
PRE/PALL  
AREF/SREF  
MRS  
NOP-Enter IDLE after tRP  
ILLEGAL11  
ILLEGAL11  
L
H
L
X
L
L
OPCODE  
Rev. 0.1 / Oct. 2004  
10  
HY5DU113222FM(P)  
OPERATION COMMAND TRUTH TABLE - III  
Current  
State  
/CS0  
/CS1  
/RAS  
/CAS  
/WE  
Address  
Command  
Action  
H
L
X
H
H
X
H
H
X
H
L
X
X
X
DSEL  
NOP  
BST  
NOP - Enter ROW ACT after tRCD  
NOP - Enter ROW ACT after tRCD  
ILLEGAL4  
ILLEGAL4,10  
ILLEGAL4,10  
ILLEGAL4,9,10  
ILLEGAL4,10  
ILLEGAL11  
L
L
L
L
L
L
H
H
L
L
L
H
L
BA, CA, AP  
BA, CA, AP  
BA, RA  
BA, AP  
X
READ/READAP  
WRITE/WRITEAP  
ACT  
ROW  
ACTIVATING  
H
H
L
H
L
L
PRE/PALL  
L
H
AREF/SREF  
ILLEGAL11  
L
H
L
L
L
L
L
L
X
H
H
H
H
L
L
X
H
H
L
L
X
H
L
OPCODE  
MRS  
DSEL  
X
X
NOP - Enter ROW ACT after tWR  
NOP - Enter ROW ACT after tWR  
NOP  
ILLEGAL4  
ILLEGAL  
ILLEGAL  
X
BST  
H
L
BA, CA, AP  
BA, CA, AP  
BA, RA  
READ/READAP  
WRITE/WRITEAP  
ACT  
WRITE  
RECOVERING  
L
ILLEGAL4,10  
ILLEGAL4,11  
ILLEGAL11  
H
H
L
L
L
L
H
L
L
BA, AP  
X
PRE/PALL  
H
AREF/SREF  
ILLEGAL11  
L
H
L
L
X
H
H
L
X
H
H
L
X
H
L
OPCODE  
MRS  
DSEL  
NOP  
BST  
X
X
X
NOP - Enter precharge after tDPL  
NOP - Enter precharge after tDPL  
ILLEGAL4  
ILLEGAL4,8,10  
ILLEGAL4,10  
ILLEGAL4,10  
ILLEGAL4,11  
ILLEGAL11  
L
WRITE  
RECOVERING  
WITH  
AUTOPRE-  
CHARGE  
L
L
L
L
L
H
H
L
L
L
H
L
BA, CA, AP  
BA, CA, AP  
BA, RA  
BA, AP  
X
READ/READAP  
WRITE/WRITEAP  
ACT  
H
H
L
H
L
L
PRE/PALL  
L
H
AREF/SREF  
ILLEGAL11  
L
H
L
L
X
H
H
L
X
H
H
L
X
H
L
OPCODE  
MRS  
DSEL  
NOP  
BST  
X
X
X
NOP - Enter IDLE after tRC  
NOP - Enter IDLE after tRC  
REFRESHING  
ILLEGAL11  
ILLEGAL11  
L
L
H
L
H
BA, CA, AP  
READ/READAP  
Rev. 0.1 / Oct. 2004  
11  
HY5DU113222FM(P)  
OPERATION COMMAND TRUTH TABLE - IV  
Current  
State  
/CS0  
/CS1  
/RAS  
/CAS  
/WE  
Address  
Command  
Action  
ILLEGAL11  
ILLEGAL11  
ILLEGAL11  
ILLEGAL11  
L
L
L
L
H
L
L
L
L
H
H
L
L
H
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRITE/WRITEAP  
ACT  
WRITE  
PRE/PALL  
AREF/SREF  
H
ILLEGAL11  
L
H
L
L
X
H
H
L
X
H
H
L
X
H
L
OPCODE  
MRS  
DSEL  
NOP  
BST  
X
X
X
NOP - Enter IDLE after tMRD  
NOP - Enter IDLE after tMRD  
ILLEGAL11  
ILLEGAL11  
ILLEGAL11  
ILLEGAL11  
ILLEGAL11  
ILLEGAL11  
ILLEGAL11  
L
L
L
L
L
L
L
H
H
L
L
L
H
L
BA, CA, AP  
BA, CA, AP  
BA, RA  
BA, AP  
READ/READAP  
WRITE/WRITEAP  
ACT  
MODE  
REGISTER  
ACCESSING  
H
H
L
H
L
L
PRE/PALL  
AREF/SREF  
MRS  
L
H
L
X
L
L
OPCODE  
Note :  
1. H - Logic High Level, L - Logic Low Level, X - Don’t Care, V - Valid Data Input,  
BA - Bank Address, AP - AutoPrecharge Address, CA - Column Address, RA - Row Address, NOP - NO Operation.  
2. All entries assume that CKE was active(high level) during the preceding clock cycle.  
3. If both banks are idle and CKE is inactive(low level), then in power down mode.  
4. Illegal to bank in specified state. Function may be legal in the bank indicated by Bank Address(BA) depending on the state of  
that bank.  
5. If both banks are idle and CKE is inactive(low level), then self refresh mode.  
6. Illegal if tRCD is not met.  
7. Illegal if tRAS is not met.  
8. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
9. Illegal if tRRD is not met.  
10. Illegal for single bank, but legal for other banks in multi-bank devices.  
11. Illegal for all banks.  
12. Both of CS0 & CS1 should be enabled in pairs.  
13. One of CS0 & CS1 should be enabled, individually.  
Rev. 0.1 / Oct. 2004  
12  
HY5DU113222FM(P)  
CKE FUNCTION TRUTH TABLE  
Current  
State  
CKEn-  
1
/CS0  
/CS1  
CKEn  
/RAS  
/CAS  
/WE  
/ADD  
Action  
H
L
X
H
H
H
H
H
L
X
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
Exit self refresh, enter idle after tSREX*  
Exit self refresh, enter idle after tSREX*  
ILLEGAL  
L
SELF  
REFRESH1  
L
L
L
L
X
X
X
X
X
H
L
ILLEGAL  
L
L
X
X
X
X
H
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
NOP, continue self refresh  
INVALID  
H
L
X
H
H
H
H
H
L
Exit power down, enter idle*  
Exit power down, enter idle*  
ILLEGAL  
L
POWER  
DOWN2  
L
L
L
L
X
X
X
X
H
X
H
L
ILLEGAL  
L
L
X
X
X
L
ILLEGAL  
L
X
X
L
X
X
L
NOP, continue power down mode  
See operation command truth table  
Enter self refresh*  
Exit power down*  
Exit power down*  
ILLEGAL  
H
H
H
H
H
H
H
H
L
H
L
L
H
L
X
H
H
H
L
X
H
H
L
L
ALL BANKS  
IDLE4  
L
L
L
L
X
X
L
ILLEGAL  
L
L
H
L
ILLEGAL  
L
L
L
ILLEGAL  
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
H
H
L
H
L
See operation command truth table  
ANY STATE  
OTHER  
THAN  
ILLEGAL5  
INVALID  
INVALID  
H
L
ABOVE  
L
Note :  
When CKE=L, all DQ and DQS(0~3) must be in Hi-Z state.  
1. CKE and /CS must be kept high for a minimum of 200 stable input clocks before issuing any command.  
2. All command can be stored after 2 clocks from low to high transition of CKE.  
3. Illegal if CK is suspended or stopped during the power down mode.  
4. Self refresh can be entered only from the all banks idle state.  
5. Disabling CK may cause malfunction of any bank which is in active state.  
6. * Both CSO & CSI should be emabled, simultaneouly.  
Rev. 0.1 / Oct. 2004  
13  
HY5DU113222FM(P)  
SIMPLIFIED STATE DIAGRAM  
MRS  
SREF  
SREX  
MODE  
SELF  
REFRESH  
REGISTER  
SET  
IDLE  
*1  
PDEN  
PDEX  
AREF  
ACT  
POWER  
DOWN  
AUTO  
REFRESH  
POWER  
DOWN  
PDEN  
BST  
PDEX  
BANK  
ACTIVE  
READ  
READAP  
WRITE  
READ  
*2  
WRITE  
WITH  
AUTOPRE-  
CHARGE  
READ  
WITH  
*2  
READAP  
WRITE  
*2  
READ  
*2  
AUTOPRE-  
CHARGE  
WRITEAP  
WRITEAP  
WRITE  
PRE(PALL)  
PRE(PALL)  
PRE-  
CHARGE  
Command Input  
POWER-UP  
Automatic Sequence  
POWER APPLIED  
Note:  
*1.Both of CS0 and CS1 should be enabled in pairs.  
*2.Both of CS0 and CS1 should be enabled, individually.  
Rev. 0.1 / Oct. 2004  
14  
HY5DU113222FM(P)  
POWER-UP SEQUENCE AND DEVICE INITIALIZATION  
DDR SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those  
specified may result in undefined operation. Except for CKE, inputs are not recognized as valid until after VREF is  
applied. CKE is an SSTL_2 input, but will detect an LVCMOS LOW level after VDD is applied. Maintaining an LVCMOS  
LOW level on CKE during power-up is required to guarantee that the DQ and DQS outputs will be in the High-Z state,  
where they will remain until driven in normal operation (by a read access). After all power supply and reference volt-  
ages are stable, and the clock is stable, the DDR SDRAM requires a 200us delay prior to applying an executable com-  
mand.  
Once the 200us delay has been satisfied, a DESELECT or NOP command should be applied, and CKE should be  
brought HIGH. Following the NOP command, a PRECHARGE ALL command should be applied. Next a EXTENDED  
MODE REGISTER SET command should be issued for the Extended Mode Register, to enable the DLL, then a MODE  
REGISTER SET command should be issued for the Mode Register, to reset the DLL, and to program the operating  
parameters. After the DLL reset, tXSRD(DLL locking time) should be satisfied for read command. After the Mode Reg-  
ister set command, a PRECHARGE ALL command should be applied, placing the device in the all banks idle state.  
Once in the idle state, two AUTO REFRESH cycles must be performed. Additionally, a MODE REGISTER SET command  
for the Mode Register, with the reset DLL bit deactivated low (i.e. to program operating parameters without resetting  
the DLL) must be performed. Following these cycles, the DDR SDRAM is ready for normal operation.  
1. Apply power - VDD, VDDQ, VTT, VREF in the following power up sequencing and attempt to maintain CKE at LVC-  
MOS low state. (All the other input pins may be undefined.  
No power sequencing is specified during power up or power down given the following cirteria :  
• VDD and VDDQ are driven from a single power converter output.  
• VTT is limited to 1.44V (reflecting VDDQ(max)/2 + 50mV VREF variation + 40mV VTT variation).  
• VREF tracks VDDQ/2.  
• A minimum resistance of 42 ohms (22 ohm series resistor + 22 ohm parallel resistor - 5% tolerance) limits the  
input current from the VTT supply into any pin.  
If the above criteria cannot be met by the system design, then the following sequencing and voltage relationship must  
be adhered to during power up :  
Voltage description  
Sequencing  
Voltage relationship to avoid latch-up  
< VDD + 0.3V  
VDDQ  
VTT  
After or with VDD  
After or with VDDQ  
After or with VDDQ  
< VDDQ + 0.3V  
VREF  
< VDDQ + 0.3V  
2. Start clock and maintain stable clock for a minimum of 200usec.  
3. After stable power and clock, apply NOP condition and take CKE high.  
4. Issue Extended Mode Register Set (EMRS) to enable DLL.  
5. Issue Mode Register Set (MRS) to reset DLL and set device to idle state with bit A8=high. (An additional 200  
cycles(tXSRD) of clock are required for locking DLL)  
6. Issue Precharge commands for all banks of the device.  
Rev. 0.1 / Oct. 2004  
15  
HY5DU113222FM(P)  
7. Issue 2 or more Auto Refresh commands.  
8. Issue a Mode Register Set command to initialize the mode register with bit A8 = Low.  
Power-Up Sequence  
VDD  
VDDQ  
tVTD  
VTT  
VREF  
/CLK  
CLK  
tIS tIH  
LVCMOS Low Level  
CKE  
NOP  
PRE  
EMRS  
MRS  
NOP  
PRE  
AREF  
MRS  
ACT  
RD  
CMD  
DM  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
ADDR  
A10  
CODE  
CODE  
CODE  
CODE  
CODE  
BA0, BA1  
DQS  
DQ'S  
T=200usec  
tRP  
tMRD  
tMRD  
tRP  
tRFC  
tMRD  
tXSRD*  
Power UP  
VDD and CK stable  
EMRS Set  
MRS Set  
(with A8=L)  
MRS Set  
Reset DLL  
(with A8=H)  
READ  
Precharge All  
Non-Read  
Command  
2 or more  
Auto Refresh  
Precharge All  
* 200 cycle(tXSRD) of CK are required (for DLL locking) before Read Command  
Rev. 0.1 / Oct. 2004  
16  
HY5DU113222FM(P)  
MODE REGISTER SET (MRS)  
The mode register is used to store the various operating modes such as /CAS latency, addressing mode, burst length,  
burst type, test mode, DLL reset. The mode register is program via MRS command. This command is issued by the low  
signals of /RAS, /CAS, /CS0 ,/CS1, /WE and BA0. This command can be issued only when all banks are in idle state and  
CKE must be high at least one cycle before the Mode Register Set Command can be issued. Two cycles are required to  
write the data in mode register. During the the MRS cycle, any command cannot be issued. Once mode register field is  
determined, the information will be held until resetted by another MRS command.  
BA1 BA0 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
0
0
RFU  
DR  
TM  
CAS Latency  
Burst Length  
BA0  
0
MRS Type  
A7  
0
Test Mode  
MRS  
Normal  
1
EMRS  
Vendor  
test mode  
1
Burst Length  
A2  
A1  
A0  
A8  
0
DLL Reset  
No  
Sequential  
Interleave  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
2
1
Yes  
4
4
8
8
A6  
0
A5  
0
A4  
0
CAS Latency  
Reserved  
Reserved  
Reserved  
Reserved  
4
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
1
0
1
0
0
1
1
1
0
0
A3  
0
Burst Type  
Sequential  
Interleave  
1
0
1
5
1
1
0
Reserved  
Reserved  
1
1
1
1
Rev. 0.1 / Oct. 2004  
17  
HY5DU113222FM(P)  
BURST DEFINITION  
Burst Length  
2
Starting Address (A2,A1,A0)  
Sequential  
0, 1  
Interleave  
0, 1  
XX0  
XX1  
X00  
X01  
X10  
X11  
000  
001  
010  
011  
100  
101  
110  
111  
1, 0  
1, 0  
0, 1, 2, 3  
0, 1, 2, 3  
1, 2, 3, 0  
1, 0, 3, 2  
4
2, 3, 0, 1  
2, 3, 0, 1  
3, 0, 1, 2  
3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
8
BURST LENGTH & TYPE  
Read and write accesses to the DDR SDRAM are burst oriented, with the burst length being programmable. The burst  
length determines the maximum number of column locations that can be accessed for a given Read or Write com-  
mand. Burst lengths of 2, 4 or 8 locations are available for both the sequential and the interleaved burst types.  
Reserved states should not be used, as unknown operation or incompatibility with future versions may result.  
When a Read or Write command is issued, a block of columns equal to the burst length is effectively selected. All  
accesses for that burst take place within this block, meaning that the burst wraps within the block if a boundary is  
reached. The block is uniquely selected by A1-Ai when the burst length is set to two, by A2-Ai when the burst length is  
set to four and by A3-Ai when the burst length is set to eight (where Ai is the most significant column address bit for a  
given configuration). The remaining (least significant) address bit(s) is (are) used to select the starting location within  
the block. The programmed burst length applies to both Read and Write bursts.  
Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the  
burst type and is selected via bit A3. The ordering of accesses within a burst is determined by the burst length, the  
burst type and the starting column address, as shown in Burst Definitionon Table  
Rev. 0.1 / Oct. 2004  
18  
HY5DU113222FM(P)  
CAS LATENCY  
The Read latency or CAS latency is the delay in clock cycles between the registration of a Read command and the  
availability of the first burst of output data. The latency can be programmed 5 / 4 clocks.  
If a Read command is registered at clock edge n, and the latency is m clocks, the data is available nominally coincident  
with clock edge n + m.  
Reserved states should not be used as unknown operation or incompatibility with future versions may result.  
DLL RESET  
The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon return-  
ing to normal operation after having disabled the DLL for the purpose of debug or evaluation. The DLL is automatically  
disabled when entering self refresh operation and is automatically re-enabled upon exit of self refresh operation. Any  
time the DLL is enabled, 200 clock cycles must occur to allow time for the internal clock to lock to the externally  
applied clock before an any command can be issued.  
OUTPUT DRIVER IMPEDANCE CONTROL  
This device supports both Half strength driver and Matched impedance driver, intended for lighter load and/or point-to-  
point environments. Half strength driver is to define about 50% of Full drive strength which is specified to be SSTL_2,  
Class II, and Matched impedance driver, about 30% of Full drive strength.  
Rev. 0.1 / Oct. 2004  
19  
HY5DU113222FM(P)  
EXTENDED MODE REGISTER SET (EMRS)  
The Extended Mode Register controls functions beyond those controlled by the Mode Register; these additional func-  
tions include DLL enable/disable, output driver strength selection(optional). These functions are controlled via the bits  
shown below. The Extended Mode Register is programmed via the Mode Register Set command ( BA0=1 and BA1=0)  
and will retain the stored information until it is programmed again or the device loses power.  
The Extended Mode Register must be loaded when all banks are idle and no bursts are in progress, and the controller  
must wait the specified time before initiating any subsequent operation. Violating either of these requirements will  
result in unspecified operation.  
BA1 BA0 A11 A10  
A9  
A8  
A7  
A6  
DS  
A5  
A4  
A3  
A2  
DS  
A1  
DS  
A0  
0
1
RFU*  
RFU*  
DLL  
A0  
0
DLL enable  
Enable  
BA0  
0
MRS Type  
MRS  
1
Diable  
1
EMRS  
A6  
A1  
0
Output Driver Impedance Control  
0
0
1
1
Full  
Half  
1
0
RFU*  
Weak  
1
* All bits in RFU address fields must be programmed to Zero, all other states are reserved for future usage.  
Rev. 0.1 / Oct. 2004  
20  
HY5DU113222FM(P)  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
Unit  
oC  
Ambient Temperature  
TA  
0 ~ 70  
oC  
V
Storage Temperature  
TSTG  
VIN, VOUT  
VDD  
-55 ~ 125  
-0.5 ~ 3.6  
-0.5 ~ 3.6  
-0.5 ~ 3.6  
50  
Voltage on Any Pin relative to VSS  
Voltage on VDD relative to VSS  
Voltage on VDDQ relative to VSS  
Output Short Circuit Current  
Power Dissipation  
V
VDDQ  
IOS  
V
mA  
W
PD  
2
oC sec  
Soldering Temperature Time  
TSOLDER  
260 10  
Note : Operation at above absolute maximum rating can adversely affect device reliability  
DC OPERATING CONDITIONS (TA=0 to 70oC, Voltage referenced to VSS = 0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Power Supply Voltage  
Power Supply Voltage  
VDD  
2.375  
2.375  
2.5  
2.5  
2.7  
2.7  
V
V
1
1
VDDQ  
Input High Voltage  
Input Low Voltage  
Termination Voltage  
Reference Voltage  
VIH  
VIL  
VREF + 0.15  
-0.3  
-
-
VDDQ + 0.3  
VREF - 0.15  
VREF + 0.04  
0.51*VDDQ  
V
V
V
V
2
3
VTT  
VREF  
VREF - 0.04  
0.49*VDDQ  
VREF  
0.5*VDDQ  
Note : 1. VDDQ must not exceed the level of VDD.  
2. VIL (min) is acceptable -1.5V AC pulse width with 5ns of duration.  
3. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the DC level of the same.  
Peak to peak noise on VREF may not exceed ± 2% of the DC value.  
DC CHARACTERISTICS I (TA=0 to 70oC, Voltage referenced to VSS = 0V)  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input Leakage Current  
Output Leakage Current  
Output High Voltage  
Output Low Voltage  
ILI  
ILO  
-2  
2
uA  
uA  
V
1
-5  
5
2
VOH  
VOL  
VTT + 0.76  
-
-
IOH = -15.2mA  
IOL = +15.2mA  
VTT - 0.76  
V
Note : 1. VIN = 0 to 3.6V, All other pins are not tested under VIN =0V. 2. DOUT is disabled, VOUT=0 to 2.7V  
Rev. 0.1 / Oct. 2004  
21  
HY5DU113222FM(P)  
DC CHARACTERISTICS II (TA=0 to 70oC, Voltage referenced to VSS = 0V)  
Speed  
Sym  
bol  
Parameter  
Test Condition  
Unit Note  
2
22  
25  
28  
33  
36  
4
One bank; Active - Precharge;  
tRC=tRC(min); tCK=tCK(min);  
DQ,DM and DQS inputs changing  
twice per clock cycle; address and  
control inputs changing once per  
clock cycle  
Operating Current  
IDD0  
IDD1  
mA  
1
1
690 650 610 570 540 520 500  
B u r s t le n g t h = 2 , O n e b a n k a c t iv e  
tRC tRC(min), IOL=0mA  
Operating Current  
Precharge Standby  
mA  
mA  
730 690 650 610 580 560 540  
100 100 100 100 100 100 100  
Current in Power Down IDD2P CKE VIL(max), tCK=min  
Mode  
Precharge Standby  
CKE VIH(min), /CS VIH(min),  
Current in Non Power IDD2N tCK = min, Input signals are  
mA  
mA  
610 580 550 510 480 470 460  
140 140 140 120 100 100 100  
Down Mode  
changed one time during 2clks  
Active Standby Cur-  
rent in Power Down  
Mode  
IDD3P CKE VIL(max), tCK=min  
Active Standby Cur-  
rent in Non Power  
Down Mode  
CKE VIH(min), /CS VIH(min),  
IDD3N tCK=min, Input signals are  
changed one time during 2clks  
680 640 600 560 540 520 500 mA  
1190 1120 1050 980 870 810 800 mA  
Burst Mode Operating  
Current  
tCKtCK(min),IOL=0mA  
IDD4  
1
All banks active  
tRC tRFC(min),  
IDD5  
Auto Refresh Current  
Self Refresh Current  
mA  
mA  
1,2  
940 920 900 880 770 760 750  
All banks active  
CKE 0.2V  
IDD6  
16  
16  
16  
16  
16  
16  
16  
Four bank interleaving with BL=4,  
IDD7 Refer to the following page for  
detailed test condition  
Operating Current -  
Four Bank Operation  
mA  
1440 1320 1200 1080 970 860 850  
Note :  
1. IDD1, IDD4 and IDD5 depend on output loading and cycle rates. Specified values are measured with the output open.  
2. Min. of tRFC (Auto Refresh Row Cycle Time) is shown at AC CHARACTERISTICS.  
Rev. 0.1 / Oct. 2004  
22  
HY5DU113222FM(P)  
AC OPERATING CONDITIONS (TA=0 to 70oC, Voltage referenced to VSS = 0V)  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input High (Logic 1) Voltage, DQ, DQS and DM signals  
Input Low (Logic 0) Voltage, DQ, DQS and DM signals  
Input Differential Voltage, CK and /CK inputs  
VIH(AC)  
VIL(AC)  
VID(AC)  
VIX(AC)  
VREF + 0.35  
V
V
V
V
VREF - 0.35  
VDDQ + 0.6  
0.7  
1
2
Input Crossing Point Voltage, CK and /CK inputs  
0.5*VDDQ-0.2  
0.5*VDDQ+0.2  
Note :  
1. VID is the magnitude of the difference between the input level on CK and the input on /CK.  
2. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the DC level of the same.  
AC OPERATING TEST CONDITIONS (TA=0 to 70oC, Voltage referenced to VSS = 0V)  
Parameter  
Value  
Unit  
Reference Voltage  
VDDQ x 0.5  
V
V
Termination Voltage  
VDDQ x 0.5  
AC Input High Level Voltage (VIH, min)  
AC Input Low Level Voltage (VIL, max)  
Input Timing Measurement Reference Level Voltage  
Output Timing Measurement Reference Level Voltage  
Input Signal maximum peak swing  
VREF + 0.35  
V
VREF - 0.35  
V
VREF  
VTT  
1.5  
1
V
V
V
Input minimum Signal Slew Rate  
V/ns  
Termination Resistor (RT)  
50  
Series Resistor (RS)  
25  
Output Load Capacitance for Access Time Measurement (CL)  
30  
pF  
Rev. 0.1 / Oct. 2004  
23  
HY5DU113222FM(P)  
AC CHARACTERISTICS - I (AC operating conditions unless otherwise noted)  
2
22  
25  
28  
Unit Note  
Parameter  
Symbol  
Min  
23  
25  
15  
8
Max  
Min  
22  
24  
14  
7
Max  
Min  
19  
21  
12  
6
Max  
Min  
17  
19  
11  
6
Max  
-
-
-
-
Row Cycle Time  
tRC  
tRFC  
tRAS  
tRCDRD  
tRCDWR  
tRRD  
tCCD  
tRP  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
ns  
-
-
-
-
Auto Refresh Row Cycle Time  
Row Active Time  
100K  
100K  
100K  
100K  
-
-
-
-
Row Address to Column Address Delay for Read  
Row Address to Column Address Delay for Write  
Row Active to Row Active Delay  
Column Address to Column Address Delay  
Row Precharge Time  
5
-
-
4
-
-
3
-
-
3
-
-
5
4
4
4
1
-
1
-
1
-
1
-
8
-
7
-
6
-
6
-
5
-
4
-
3
-
3
-
Write Recovery Time  
tWR  
3
-
2
-
2
-
2
-
Last Data-In to Read Command  
Auto Precharge Write Recovery + Precharge Time  
tDRL  
tDAL  
tCK  
13  
2
-
11  
2.2  
0.45  
0.45  
-0.6  
-0.6  
-
-
9
-
9
-
10  
0.55  
0.55  
0.6  
0.6  
0.35  
10  
0.55  
0.55  
0.6  
0.6  
0.35  
2.5  
0.45  
0.45  
-0.6  
-0.6  
-
10  
0.55  
0.55  
0.6  
0.6  
0.35  
2.8  
0.45  
0.45  
-0.6  
-0.6  
-
10  
0.55  
0.55  
0.6  
0.6  
0.35  
System Clock Cycle Time  
CL=5  
Clock High Level Width  
tCH  
0.45  
0.45  
-0.6  
-0.6  
-
CK  
CK  
ns  
Clock Low Level Width  
tCL  
Data-Out edge to Clock edge Skew  
DQS-Out edge to Clock edge Skew  
DQS-Out edge to Data-Out edge Skew  
tAC  
tDQSCK  
tDQSQ  
ns  
ns  
tHPmin  
-tQHS  
tHPmin  
-tQHS  
tHPmin  
-tQHS  
tHPmin  
-tQHS  
-
-
-
-
-
-
-
-
1,6  
1,5  
Data-Out hold time from DQS  
Clock Half Period  
tQH  
tHP  
ns  
ns  
tCH/L  
min  
tCH/L  
min  
tCH/L  
min  
tCH/L  
min  
Data Hold Skew Factor  
Input Setup Time  
tQHS  
tIS  
-
0.35  
-
0.35  
-
0.35  
-
0.35  
ns  
ns  
ns  
CK  
CK  
CK  
ns  
ns  
6
2
2
0.6  
-
-
0.75  
0.75  
0.4  
-
-
0.75  
0.75  
0.4  
-
-
0.75  
0.75  
0.4  
-
-
0.6  
Input Hold Time  
tIH  
Write DQS High Level Width  
Write DQS Low Level Width  
Clock to First Rising edge of DQS-In  
tDQSH  
tDQSL  
tDQSS  
tDS  
0.4  
0.6  
0.6  
1.15  
-
0.6  
0.6  
1.15  
-
0.6  
0.6  
1.15  
-
0.6  
0.6  
1.15  
-
0.4  
0.4  
0.4  
0.4  
0.85  
0.35  
0.35  
0.85  
0.35  
0.35  
0.85  
0.35  
0.35  
0.85  
0.35  
0.35  
Data-In Setup Time to DQS-In (DQ & DM)  
Data-In Hold Time to DQS-In (DQ & DM)  
3
3
-
-
-
-
tDH  
Rev. 0.1 / Oct. 2004  
24  
HY5DU113222FM(P)  
AC CHARACTERISTICS - I (AC operating conditions unless otherwise noted)  
2
22  
25  
28  
Unit Note  
Parameter  
Symbol  
Min  
0.9  
0.4  
0
Max  
Min  
0.9  
0.4  
0
Max  
Min  
0.9  
0.4  
0
Max  
Min  
0.9  
0.4  
0
Max  
Read DQS Preamble Time  
tRPRE  
tRPST  
tWPRES  
tWPREH  
tWPST  
tMRD  
1.1  
0.6  
-
1.1  
0.6  
-
1.1  
0.6  
-
1.1  
0.6  
-
CK  
CK  
ns  
Read DQS Postamble Time  
Write DQS Preamble Setup Time  
Write DQS Preamble Hold Time  
Write DQS Postamble Time  
0.35  
0.4  
2
-
0.35  
0.4  
2
-
0.35  
0.4  
2
-
0.35  
0.4  
2
-
CK  
CK  
CK  
CK  
0.6  
-
0.6  
-
0.6  
-
0.6  
-
Mode Register Set Delay  
200  
-
200  
-
200  
-
200  
-
4
Exit Self Refresh to Any Execute Command  
tXSC  
2tCK  
+ tIS  
2tCK  
+ tIS  
2tCK  
+ tIS  
2tCK  
+ tIS  
-
-
-
-
Power Down Exit Time  
tPDEX  
tREFI  
CK  
us  
-
7.8  
-
7.8  
-
7.8  
-
7.8  
Average Periodic Refresh Interval  
Note :  
1. This calculation accounts for tDQSQ(max), the pulse width distortion of on-chip circuit and jitter.  
2. Data sampled at the rising edges of the clock : A0~A11, BA0~BA1, CKE, /CS, /RAS, /CAS, /WE.  
3. Data latched at both rising and falling edges of Data Strobes(DQS0~DQS3) : DQ, DM(0~3).  
4. Minimum of 200 cycles of stable input clocks after Self Refresh Exit command, where CKE is held high, is required to complete  
Self Refresh Exit and lock the internal DLL circuit of DDR SDRAM.  
5. Min (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this  
value can be greater than the minimum specification limits for tCL and tCH).  
6. tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL).  
tQHS consists of tDQSQmax, the pulse width distortion of on-chip clock circuits, data pin to pin skew and  
output pattern effects, and p-channel to n-channel variation of the output drivers.  
7.  
DQS, DM and DQ input slew rate is specified to prevent double clocking of data and preserve setup and hold times.  
Signal transitions through the DC region must be monotonic.  
Rev. 0.1 / Oct. 2004  
25  
HY5DU113222FM(P)  
AC CHARACTERISTICS - I (continue)  
33  
36  
4
Unit Note  
Parameter  
Symbol  
Min  
15  
17  
10  
6
Max  
Min  
14  
16  
9
Max  
Min  
13  
15  
8
Max  
Row Cycle Time  
tRC  
tRFC  
tRAS  
tRCDRD  
tRCDWR  
tRRD  
tCCD  
tRP  
-
-
-
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
ns  
Auto Refresh Row Cycle Time  
-
-
-
Row Active Time  
100K  
100K  
100K  
-
5
-
5
-
Row Address to Column Address Delay for Read  
Row Address to Column Address Delay for Write  
Row Active to Row Active Delay  
Column Address to Column Address Delay  
Row Precharge Time  
3
-
-
2
-
-
2
-
-
3
3
3
1
-
1
-
1
-
6
-
5
-
5
-
3
-
3
-
3
-
Write Recovery Time  
tWR  
2
-
2
-
2
-
Last Data-In to Read Command  
Auto Precharge Write Recovery + Precharge Time  
tDRL  
tDAL  
tCK  
9
-
8
-
8
-
3.3  
0.45  
0.45  
-0.6  
-0.6  
-
10  
0.55  
0.55  
0.6  
0.6  
0.35  
3.6  
0.45  
0.45  
-0.6  
-0.6  
-
10  
0.55  
0.55  
0.6  
0.6  
0.4  
4
10  
0.55  
0.55  
0.6  
0.6  
0.4  
System Clock Cycle Time  
CL=4  
0.45  
0.45  
-0.6  
-0.6  
-
Clock High Level Width  
tCH  
CK  
CK  
ns  
Clock Low Level Width  
tCL  
Data-Out edge to Clock edge Skew  
DQS-Out edge to Clock edge Skew  
DQS-Out edge to Data-Out edge Skew  
tAC  
tDQSCK  
tDQSQ  
ns  
ns  
tHPmin  
-tQHS  
tHPmin  
-tQHS  
tHPmin  
-tQHS  
-
-
-
-
-
-
1,6  
1,5  
Data-Out hold time from DQS  
Clock Half Period  
tQH  
tHP  
ns  
ns  
tCH/L  
min  
tCH/L  
min  
tCH/L  
min  
-
0.35  
-
0.4  
-
0.4  
6
2
2
Data Hold Skew Factor  
Input Setup Time  
tQHS  
tIS  
ns  
ns  
ns  
CK  
CK  
CK  
ns  
ns  
0.75  
0.75  
0.4  
-
-
0.75  
0.75  
0.4  
-
-
0.75  
0.75  
0.4  
-
-
Input Hold Time  
tIH  
0.6  
0.6  
1.15  
-
0.6  
0.6  
1.15  
-
0.6  
0.6  
1.15  
-
Write DQS High Level Width  
Write DQS Low Level Width  
Clock to First Rising edge of DQS-In  
tDQSH  
tDQSL  
tDQSS  
tDS  
0.4  
0.4  
0.4  
0.85  
0.35  
0.35  
0.85  
0.4  
0.85  
0.4  
3
3
Data-In Setup Time to DQS-In (DQ & DM)  
Data-In Hold Time to DQS-In (DQ & DM)  
-
0.4  
-
0.4  
-
tDH  
Rev. 0.1 / Oct. 2004  
26  
HY5DU113222FM(P)  
AC CHARACTERISTICS - I (continue)  
33  
36  
4
Unit Note  
Parameter  
Symbol  
Min  
0.9  
0.4  
0
Max  
Min  
0.9  
0.4  
0
Max  
Min  
0.9  
0.4  
0
Max  
Read DQS Preamble Time  
tRPRE  
tRPST  
1.1  
0.6  
-
1.1  
0.6  
-
1.1  
0.6  
-
CK  
CK  
ns  
Read DQS Postamble Time  
Write DQS Preamble Setup Time  
Write DQS Preamble Hold Time  
Write DQS Postamble Time  
tWPRES  
tWPREH  
tWPST  
tMRD  
0.35  
0.4  
2
-
0.35  
0.4  
2
-
0.35  
0.4  
2
-
CK  
CK  
CK  
CK  
0.6  
-
0.6  
-
0.6  
-
Mode Register Set Delay  
200  
-
200  
-
200  
-
4
Exit Self Refresh to Any Execute Command  
tXSC  
2tCK  
+ tIS  
1tCK  
+ tIS  
1tCK  
+ tIS  
-
-
-
Power Down Exit Time  
tPDEX  
tREFI  
CK  
us  
-
7.8  
-
7.8  
-
7.8  
Average Periodic Refresh Interval  
Note :  
1. This calculation accounts for tDQSQ(max), the pulse width distortion of on-chip circuit and jitter.  
2. Data sampled at the rising edges of the clock : A0~A11, BA0~BA1, CKE, /CS, /RAS, /CAS, /WE.  
3. Data latched at both rising and falling edges of Data Strobes(DQS0~DQS3) : DQ, DM(0~3).  
4. Minimum of 200 cycles of stable input clocks after Self Refresh Exit command, where CKE is held high, is required to complete  
Self Refresh Exit and lock the internal DLL circuit of DDR SDRAM.  
5. Min (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this  
value can be greater than the minimum specification limits for tCL and tCH).  
6. tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL).  
tQHS consists of tDQSQmax, the pulse width distortion of on-chip clock circuits, data pin to pin skew and  
output pattern effects, and p-channel to n-channel variation of the output drivers.  
7.  
DQS, DM and DQ input slew rate is specified to prevent double clocking of data and preserve setup and hold times.  
Signal transitions through the DC region must be monotonic.  
Rev. 0.1 / Oct. 2004  
27  
HY5DU113222FM(P)  
AC CHARACTERISTICS - II  
Frequency  
CL  
tRC  
tRFC  
tRAS  
tRCDRD  
tRCDWR  
tRP  
tDAL  
Unit  
500MHz (2.0ns)  
450MHz (2.2ns)  
400MHz (2.5ns)  
350MHz (2.8ns)  
300MHz (3.3ns)  
275MHz (3.6ns)  
250MHz (4.0ns)  
5
5
5
5
4
4
4
23  
22  
19  
17  
15  
14  
13  
25  
24  
21  
19  
17  
16  
15  
15  
14  
12  
11  
10  
9
8
7
6
6
6
5
5
5
4
3
3
3
2
2
8
7
6
6
6
5
5
13  
11  
9
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
9
9
8
8
8
Rev. 0.1 / Oct. 2004  
28  
HY5DU113222FM(P)  
CAPACITANCE (TA=25oC, f=1MHz )  
Parameter  
Pin  
Symbol  
Min  
Max  
Unit  
Input Clock Capacitance  
Input Capacitance  
CK, /CK  
CCK  
CIN  
CIO  
1.5  
1.5  
5.5  
5.5  
5.5  
9.5  
pF  
pF  
pF  
All other input-only pins  
DQ, DQS, DM  
Input / Output Capacitance  
Note :  
1. VDD = min. to max., VDDQ = 2.3V to 2.7V, VODC = VDDQ/2, VOpeak-to-peak = 0.2V  
2. Pins not under test are tied to GND.  
3. These values are guaranteed by design and are tested on a sample basis only.  
OUTPUT LOAD CIRCUIT  
VTT  
RT=50Ω  
Output  
Zo=50Ω  
VREF  
CL=30pF  
Rev. 0.1 / Oct. 2004  
29  
HY5DU113222FM(P)  
PACKAGE INFORMATION  
12mm x 12mm, 144ball Fine-pitch Ball Grid Array  
12mm±0.1mm  
1.2mm±0.1mm  
0.86mm±0.05  
12mm±0.1mm  
Detailed "A"  
0.35mm±0.05  
8.8mm  
0.8mm  
Detailed "A"  
8.8mm  
0.12mm  
0.5mm Diameter  
0.55Max  
0.45 Min  
(MO 205-D, AE in JEDEC)  
[ Ball Location ]  
Ball existing  
Optional (Thermal ball, NC, No ball)  
Depopulated ball  
Rev. 0.1 / Oct. 2004  
30  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY