HY5DU121622DTP [HYNIX]

; - 12号的铝制车身绘( RAL 7032 )
HY5DU121622DTP
型号: HY5DU121622DTP
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:


- 12号的铝制车身绘( RAL 7032 )

文件: 总29页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
512Mb DDR SDRAM  
HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any  
responsibility for use of circuits described. No patent licenses are implied.  
Rev. 1.0 / May 2007  
1
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
Revision History  
Revision No.  
History  
Draft Date Remark  
0.1  
First version for internal review  
Jan. 2007  
1.0  
Final Version Release  
May 2007  
Rev. 1.0 / May 2007  
2
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
DESCRIPTION  
The HY5DU12822D(L)T(P) and HY5DU121622D(L)T(P) are a 536,870,912-bit CMOS Double Data Rate(DDR) Synchro-  
nous DRAM, ideally suited for the main memory applications which requires large memory density and high bandwidth.  
This Hynix 512Mb DDR SDRAMs offer fully synchronous operations referenced to both rising and falling edges of the  
clock. While all addresses and control inputs are latched on the rising edges of the CK (falling edges of the /CK), Data,  
Data strobes and Write data masks inputs are sampled on both rising and falling edges of it. The data paths are inter-  
nally pipelined and 2-bit prefetched to achieve very high bandwidth. All input and output voltage levels are compatible  
with SSTL_2.  
FEATURES  
VDD, VDDQ = 2.3V min ~ 2.7V max  
(Typical 2.5V Operation +/- 0.2V for DDR266, 333)  
All addresses and control inputs except data, data  
strobes and data masks latched on the rising edges  
of the clock  
VDD, VDDQ = 2.4V min ~ 2.7V max  
(Typical 2.6V Operation +0.1/- 0.2V for DDR400  
product )  
Programmable CAS latency 2/2.5 (DDR266, 333)  
and 3 (DDR400 product) supported  
All inputs and outputs are compatible with SSTL_2  
interface  
Programmable burst length 2/4/8 with both sequen-  
tial and interleave mode  
Fully differential clock inputs (CK, /CK) operation  
Double data rate interface  
Internal four bank operations with single pulsed  
/RAS  
Auto refresh and self refresh supported  
tRAS lock out function supported  
8192 refresh cycles/64ms  
Source synchronous - data transaction aligned to  
bidirectional data strobe (DQS)  
x16 device has two bytewide data strobes (UDQS,  
LDQS) per each x8 I/O  
JEDEC standard 400mil 66pin TSOP-II with 0.65mm  
pin pitch  
Data outputs on DQS edges when read (edged DQ)  
Data inputs on DQS centers when write (centered  
DQ)  
Lead free (*ROHS Compliant)  
On chip DLL align DQ and DQS transition with CK  
transition  
DM mask write data-in at the both rising and falling  
edges of the data strobe  
ORDERING INFORMATION  
OPERATING FREQUENCY  
Part No.  
Configuration  
Package  
Grade  
Clock Rate  
Remark  
-D43  
200MHz@CL3  
DDR400B (3-3-3)  
HY5DU12822D(L)T(P)-X*  
64M x 8  
400mil  
66pin  
166MHz @CL2.5  
DDR333 (2.5-3-3)  
DDR333 (3-3-3)  
- J  
133MHz@CL2  
& @CL3  
TSOP-II  
(Lead free)  
HY5DU121622D(L)T(P)-X*  
32M x 16  
- K  
- H  
- L  
133MHz@CL2  
100MHz@CL2  
133MHz@CL2.5  
133MHz@CL2.5  
DDR266A (2-3-3)  
DDR266B (2.5-3-3)  
DDR200 (2-2-2)  
*X means speed grade  
*ROHS (Restriction Of Hazardous Substance)  
100MHz@CL2  
Rev. 1.0 / May 2007  
3
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
PIN CONFIGURATION  
x8  
x16  
x16  
x8  
VSS  
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
NC  
VSSQ  
UDQS  
NC  
VREF  
VSS  
UDM  
/CK  
CK  
CKE  
NC  
A12  
A11  
A9  
A8  
A7  
A6  
VSS  
DQ7  
VSSQ  
NC  
DQ6  
VDDQ  
NC  
DQ5  
VSSQ  
NC  
DQ4  
VDDQ  
NC  
1
2
3
4
5
6
7
8
9
VDD  
DQ0  
VDDQ  
NC  
DQ1  
VSSQ  
NC  
DQ2  
VDDQ  
NC  
DQ3  
VSSQ  
NC  
NC  
VDDQ  
NC  
NC  
VDD  
NC  
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
NC  
VDDQ  
LDQS  
NC  
VDD  
NC  
LDM  
/WE  
/CAS  
/RAS  
/CS  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NC  
VSSQ  
DQS  
NC  
VREF  
VSS  
DM  
/CK  
CK  
CKE  
NC  
A12  
A11  
A9  
A8  
A7  
400mil X 875mil  
66pin TSOP -II  
0.65mm pin pitch  
NC  
(Lead free)  
/WE  
/CAS  
/RAS  
/CS  
NC  
NC  
BA0  
BA1  
A10/AP  
A0  
A1  
A2  
A3  
VDD  
BA0  
BA1  
A10/AP  
A0  
A1  
A2  
A3  
VDD  
A6  
A5  
A4  
VSS  
A5  
A4  
VSS  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
64Mx8  
32Mx16  
Organization  
Row Address  
16M x 8 x 4banks  
A0 - A12  
A0-A9, A11  
BA0, BA1  
A10  
8M x 16 x 4banks  
A0 - A12  
A0-A9  
Column Address  
Bank Address  
Auto Precharge Flag  
Refresh  
BA0, BA1  
A10  
8K  
8K  
Rev. 1.0 / May 2007  
4
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
PIN DESCRIPTION  
PIN  
TYPE  
DESCRIPTION  
Clock: CK and /CK are differential clock inputs. All address and control input  
signals are sampled on the crossing of the positive edge of CK and negative  
edge of /CK. Output (read) data is referenced to the crossings of CK and /CK  
(both directions of crossing).  
CK, /CK  
Input  
Clock Enable: CKE HIGH activates, and CKE LOW deactivates internal clock sig-  
nals, and device input buffers and output drivers. Taking CKE LOW provides  
PRECHARGE POWER DOWN and SELF REFRESH operation (all banks idle), or  
ACTIVE POWER DOWN (row ACTIVE in any bank). CKE is synchronous for  
POWER DOWN entry and exit, and for SELF REFRESH entry. CKE is asynchro-  
nous for SELF REFRESH exit, and for output disable. CKE must be maintained  
high throughout READ and WRITE accesses. Input buffers, excluding CK, /CK  
and CKE are disabled during POWER DOWN. Input buffers, excluding CKE are  
disabled during SELF REFRESH. CKE is an SSTL_2 input, but will detect an LVC-  
MOS LOW level after VDD is applied.  
CKE  
Input  
Chip Select: Enables or disables all inputs except CK, /CK, CKE, DQS and DM.  
All commands are masked when CS is registered high. CS provides for external  
bank selection on systems with multiple banks. CS is considered part of the  
command code.  
/CS  
Input  
Input  
Bank Address Inputs: BA0 and BA1 define to which bank an ACTIVE, Read,  
Write or PRECHARGE command is being applied.  
BA0, BA1  
Address Inputs: Provide the row address for ACTIVE commands, and the col-  
umn address and AUTO PRECHARGE bit for READ/WRITE commands, to select  
one location out of the memory array in the respective bank. A10 is sampled  
during a Precharge command to determine whether the PRECHARGE applies to  
one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be pre-  
charged, the bank is selected by BA0, BA1. The address inputs also provide the  
op code during a MODE REGISTER SET command. BA0 and BA1 define which  
mode register is loaded during the MODE REGISTER SET command (MRS or  
EMRS).  
A0 ~ A12  
Input  
/RAS, /CAS, /  
WE  
Command Inputs: /RAS, /CAS and /WE (along with /CS) define the command  
being entered.  
Input  
Input  
Input Data Mask: DM is an input mask signal for write data. Input data is  
masked when DM is sampled HIGH along with that input data during a WRITE  
access. DM is sampled on both edges of DQS. Although DM pins are input only,  
the DM loading matches the DQ and DQS loading. For the x16, LDM corre-  
sponds to the data on DQ0-Q7; UDM corresponds to the data on DQ8-Q15.  
DM  
(LDM,UDM)  
Data Strobe: Output with read data, input with write data. Edge aligned with  
read data, centered in write data. Used to capture write data. For the x16,  
LDQS corresponds to the data on DQ0-Q7; UDQS corresponds to the data on  
DQ8-Q15.  
DQS  
(LDQS,UDQS)  
I/O  
DQ  
VDD/VSS  
VDDQ/VSSQ  
VREF  
I/O  
Data input / output pin: Data bus  
Supply  
Supply  
Supply  
NC  
Power supply for internal circuits and input buffers.  
Power supply for output buffers for noise immunity.  
Reference voltage for inputs for SSTL interface.  
No connection.  
NC  
Rev. 1.0 / May 2007  
5
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
FUNCTIONAL BLOCK DIAGRAM (64Mx8)  
4Banks x 16Mbit x 8 I/O Double Data Rate Synchronous DRAM  
Write Data Register  
8
2-bit Prefetch Unit  
DS  
16  
16Mx8 BANK 3  
16Mx8 BANK 2  
DQ0  
Bank  
Control  
CLK  
/CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
DM  
16Mx8 BANK 1  
16Mx8 BANK 0  
Command  
Decoder  
8
16  
Mode  
Register  
Row  
Decoder  
Memory  
Cell  
Array  
DQ7  
Column  
Decoder  
A0  
DQS  
A1  
CLK_DLL  
Address  
Buffer  
Column Address  
Counter  
Data Strobe  
Transmitter  
DS  
Data Strobe  
Receiver  
Amax  
BA0  
BA1  
CLK,  
/CLK  
DLL  
Block  
Mode  
Register  
Rev. 1.0 / May 2007  
6
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
FUNCTIONAL BLOCK DIAGRAM (32Mx16)  
4Banks x 8Mbit x 16 I/O Double Data Rate Synchronous DRAM  
Write Data Register  
16  
2-bit Prefetch Unit  
DS  
32  
8Mx16 BANK 3  
8Mx16 BANK 2  
DQ0  
Bank  
Control  
CLK  
/CLK  
CKE  
8Mx16 BANK 1  
8Mx16 BANK 0  
/CS  
Command  
Decoder  
/RAS  
/CAS  
/WE  
UDQM  
LDQM  
16  
32  
Mode  
Register  
Row  
Decoder  
Memory  
Cell  
Array  
DQ15  
Column  
Decoder  
A0  
A1  
UDQS,  
LDQS  
CLK_DLL  
Address  
Buffer  
Column Address  
Counter  
Data Strobe  
Transmitter  
UDQS,  
LDQS  
Data Strobe  
Receiver  
Amax  
BA0  
BA1  
CLK,  
/CLK  
DLL  
Block  
Mode  
Register  
Rev. 1.0 / May 2007  
7
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
SIMPLIFIED COMMAND TRUTH TABLE  
A10  
/AP  
Command  
CKEn-1  
CKEn  
CS  
RAS  
CAS  
WE  
ADDR  
BA Note  
Extended Mode Register  
Set  
H
H
X
X
L
L
L
L
OP code  
OP code  
1,2  
1,2  
Mode Register Set  
Device Deselect  
No Operation  
L
H
L
L
X
H
L
L
X
H
H
L
X
H
H
H
H
H
X
X
X
X
1
Bank Active  
L
RA  
V
V
1
1
Read  
L
H
L
L
L
L
H
H
L
L
L
H
L
CA  
CA  
X
Read with Autoprecharge  
Write  
1,3  
1
H
H
X
X
V
Write with Autoprecharge  
Precharge All Banks  
Precharge selected Bank  
Read Burst Stop  
Auto Refresh  
H
H
L
1,4  
1,5  
1
X
V
H
L
H
H
H
X
H
L
L
L
H
L
H
L
L
H
H
X
H
X
H
X
H
X
V
X
X
1
1
Entry  
L
L
L
1
H
L
X
H
X
H
X
H
X
V
X
H
X
H
X
H
X
V
X
X
X
Self Refresh  
Exit  
L
H
L
H
L
1
H
L
1
1
1
1
1
1
1
Entry  
Precharge  
Power Down  
H
L
Mode  
Exit  
H
H
L
Entry  
Exit  
H
L
L
Active Power  
Down Mode  
H
X
( H=Logic High Level, L=Logic Low Level, X=Don’t Care, V=Valid Data Input, OP Code=Operand Code, NOP=No Operation )  
Rev. 1.0 / May 2007  
8
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
Note :  
1. UDM, LDM states are Don’t Care. Refer to below Write Mask Truth Table.(note 6)  
2. OP Code(Operand Code) consists of A0~A12 and BA0~BA1 used for Mode Register setting during Extended MRS or MRS. Before  
entering Mode Register Set mode, all banks must be in a precharge state and MRS command can be issued after tRP period from  
Prechagre command.  
3. If a Read with Auto-precharge command is detected by memory component in CK(n), then there will be no command presented  
to activate bank until CK(n+BL/2+tRP).  
4. If a Write with Auto-precharge command is detected by memory component in CK(n), then there will be no command presented  
to activate bank until CK(n+BL/2+1+tDPL+tRP). Last Data-In to Prechage delay(tDPL) which is also called Write Recovery  
Time(tWR) is needed to guarantee that the last data have been completely written.  
5. If A10/AP is High when Precharge command being issued, BA0/BA1 are ignored and all banks are selected to be precharged.  
6. In here, Don’t Care means logical value only, it doesn’t mean ’Don’t care for DC level of each signals. DC level should be out of  
VIHmin ~ VILmax  
WRITE MASK TRUTH TABLE  
/CS, /RAS,  
/CAS, /WE  
A10/  
AP  
Function  
Data Write  
CKEn-1 CKEn  
DM  
ADDR  
BA  
Note  
H
H
X
X
X
X
L
X
X
1,2  
1,2  
Data-In Mask  
H
Note :  
1. Write Mask command masks burst write data with reference to LDQS/UDQS(Data Strobes) and it is not related with read data.  
In case of x16 data I/O, LDM and UDM control lower byte(DQ0~7) and Upper byte(DQ8~15) respectively.  
2. In here, Don’t Care means logical value only, it doesn’t mean ’Don’t care for DC level of each signals. DC level should be out of  
VIHmin ~ VILmax  
Rev. 1.0 / May 2007  
9
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
SIMPLIFIED STATE DIAGRAM  
(E)MRS  
Mode  
REGISTER  
SET  
SREF  
SREX  
SELF  
REFRESH  
IDLE  
IDLE  
POWER  
DOWN  
AUTO  
REFRESH  
ACTIVE  
POWER  
DOWN  
BANK  
ACTIVE  
READ  
WITH  
AUTOPRE  
CHARGE  
WRITE  
WITH  
AUTOPRE  
CHARGE  
WRITEAP  
WRITE  
READ  
WRITEAP  
PRE(PALL)  
BANK  
PRE(PALL)  
ACTIVE  
POWER-UP  
Command Input  
Automatic Sequence  
POWER APPLIED  
Rev. 1.0 / May 2007  
10  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
POWER-UP SEQUENCE AND DEVICE INITIALIZATION  
DDR SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those  
specified may result in undefined operation. Power must first be applied to VDD, then to VDDQ, and finally to VREF  
(and to the system VTT). VTT must be applied after VDDQ to avoid device latch-up, which may cause permanent dam-  
age to the device. VREF can be applied anytime after VDDQ, but is expected to be nominally coincident with VTT.  
Except for CKE, inputs are not recognized as valid until after VREF is applied. CKE is an SSTL_2 input, but will detect an  
LVCMOS LOW level after VDD is applied. Maintaining an LVCMOS LOW level on CKE during power-up is required to  
guarantee that the DQ and DQS outputs will be in the High-Z state, where they will remain until driven in normal oper-  
ation (by a read access). After all power supply and reference voltages are stable, and the clock is stable, the DDR  
SDRAM requires a 200us delay prior to applying an executable command.  
Once the 200us delay has been satisfied, a DESELECT or NOP command should be applied, and CKE should be  
brought HIGH. Following the NOP command, a PRECHARGE ALL command should be applied. Next a EXTENDED  
MODE REGISTER SET command should be issued for the Extended Mode Register, to enable the DLL, then a MODE  
REGISTER SET command should be issued for the Mode Register, to reset the DLL, and to program the operating  
parameters. After the DLL reset, tXSRD(DLL locking time) should be satisfied for read command. After the Mode Reg-  
ister set command, a PRECHARGE ALL command should be applied, placing the device in the all banks idle state.  
Once in the idle state, two AUTO REFRESH cycles must be performed. Additionally, a MODE REGISTER SET command  
for the Mode Register, with the reset DLL bit deactivated low (i.e. to program operating parameters without resetting  
the DLL) must be performed. Following these cycles, the DDR SDRAM is ready for normal operation.  
1. Apply power - VDD, VDDQ, VTT, VREF in the following power up sequencing and attempt to maintain CKE at LVC-  
MOS low state. (All the other input pins may be undefined.)  
• VDD and VDDQ are driven from a single power converter output.  
• VTT is limited to 1.44V (reflecting VDDQ(max)/2 + 50mV VREF variation + 40mV VTT variation.  
• VREF tracks VDDQ/2.  
• A minimum resistance of 42 Ohms (22 ohm series resistor + 22 ohm parallel resistor - 5% tolerance) limits the  
input current from the VTT supply into any pin.  
• If the above criteria cannot be met by the system design, then the following sequencing and voltage relation-  
ship must be adhered to during power up.  
Voltage description  
Sequencing  
Voltage relationship to avoid latch-up  
< VDD + 0.3V  
VDDQ  
VTT  
After or with VDD  
After or with VDDQ  
After or with VDDQ  
< VDDQ + 0.3V  
VREF  
< VDDQ + 0.3V  
2. Start clock and maintain stable clock for a minimum of 200usec.  
3. After stable power and clock, apply NOP condition and take CKE high.  
4. Issue Extended Mode Register Set (EMRS) to enable DLL.  
5. Issue Mode Register Set (MRS) to reset DLL and set device to idle state with bit A8=high. (An additional 200  
cycles(tXSRD) of clock are required for locking DLL)  
6. Issue Precharge commands for all banks of the device.  
7. Issue 2 or more Auto Refresh commands.  
8. Issue a Mode Register Set command to initialize the mode register with bit A8 = Low  
Rev. 1.0 / May 2007  
11  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
Power-Up Sequence  
VDD  
VDDQ  
tVTD  
VTT  
VREF  
/CLK  
CLK  
tIS tIH  
LVCMOS Low Level  
CKE  
NOP  
PRE  
EMRS  
MRS  
NOP  
PRE  
AREF  
MRS  
ACT  
RD  
CMD  
DM  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
CODE  
ADDR  
A10  
BA0, BA1  
DQS  
CODE  
CODE  
CODE  
CODE  
CODE  
DQ'S  
T=200usec  
tRP  
tMRD  
tMRD  
tRP  
tRFC  
tMRD  
tXSRD*  
Power UP  
VDD and CK stable  
EMRS Set  
MRS Set  
(with A8=L)  
MRS Set  
Reset DLL  
(with A8=H)  
READ  
Precharge All  
Non-Read  
Command  
2 or more  
Auto Refresh  
Precharge All  
* 200 cycle(tXSRD) of CK are required (for DLL locking) before Read Command  
Rev. 1.0 / May 2007  
12  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
MODE REGISTER SET (MRS)  
The mode register is used to store the various operating modes such as /CAS latency, addressing mode, burst length,  
burst type, test mode, DLL reset. The mode register is programed via MRS command. This command is issued by the  
low signals of /RAS, /CAS, /CS, /WE and BA0. This command can be issued only when all banks are in idle state and  
CKE must be high at least one cycle before the Mode Register Set Command can be issued. Two cycles are required to  
write the data in mode register. During the MRS cycle, any command cannot be issued. Once mode register field is  
determined, the information will be held until reset by another MRS command.  
BA1 BA0 A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
0
Operating Mode  
CAS Latency  
BT  
Burst Length  
A6 A5  
A4  
CAS Latency  
Reserved  
Reserved  
2
BA0 MRS Type  
A3 Burst Type  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
MRS  
0
1
Sequential  
Interleave  
EMRS  
3
Reserved  
1.5  
2.5  
Reserved  
A12~A9 A8 A7 A6~A0  
Operating Mode  
Burst Length  
A2 A1 A0  
0
0
0
-
0
1
0
-
0
0
1
-
Valid  
Normal Operation  
Sequential  
Reserved  
2
Interleave  
Reserved  
2
Valid Normal Operation/ Reset DLL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
VS  
-
Vendor specific Test Mode  
All other states reserved  
4
4
8
8
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Rev. 1.0 / May 2007  
13  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
BURST DEFINITION  
Burst Length  
Starting Address  
Sequential  
Interleave  
(A2,A1,A0)  
XX0  
0, 1  
0, 1  
2
XX1  
1, 0  
1, 0  
X00  
0, 1, 2, 3  
0, 1, 2, 3  
X01  
1, 2, 3, 0  
1, 0, 3, 2  
4
X10  
2, 3, 0, 1  
2, 3, 0, 1  
X11  
3, 0, 1, 2  
3, 2, 1, 0  
000  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
001  
010  
011  
8
100  
101  
110  
111  
BURST LENGTH & TYPE  
Read and write accesses to the DDR SDRAM are burst oriented, with the burst length being programmable. The burst  
length determines the maximum number of column locations that can be accessed for a given Read or Write com-  
mand. Burst lengths of 2, 4 or 8 locations are available for both the sequential and the interleaved burst types.  
Reserved states should not be used, as unknown operation or incompatibility with future versions may result.  
When a Read or Write command is issued, a block of columns equal to the burst length is effectively selected. All  
accesses for that burst take place within this block, meaning that the burst wraps within the block if a boundary is  
reached. The block is uniquely selected by A1-Ai when the burst length is set to two, by A2 -Ai when the burst length  
is set to four and by A3 -Ai when the burst length is set to eight (where Ai is the most significant column address bit  
for a given configuration). The remaining (least significant) address bit(s) is (are) used to select the starting location  
within the block. The programmed burst length applies to both Read and Write bursts.  
Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the  
burst type and is selected via bit A3. The ordering of accesses within a burst is determined by the burst length, the  
burst type and the starting column address, as shown in Burst Definition Table  
Rev. 1.0 / May 2007  
14  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
CAS LATENCY  
The Read latency or CAS latency is the delay in clock cycles between the registration of a Read command and the  
availability of the first burst of output data. The latency can be programmed 2 or 2.5 clocks for DDR266/333 or 3  
clocks for DDR400 product.  
If a Read command is registered at clock edge n, and the latency is m clocks, the data is available nominally coincident  
with clock edge n + m.  
Reserved states should not be used as unknown operation or incompatibility with future versions may result.  
DLL RESET  
The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon return-  
ing to normal operation after having disabled the DLL for the purpose of debug or evaluation. The DLL is automatically  
disabled when entering self refresh operation and is automatically re-enabled upon exit of self refresh operation. Any  
time the DLL is enabled, 200 clock cycles must occur to allow time for the internal clock to lock to the externally  
applied clock before an any command can be issued.  
OUTPUT DRIVER IMPEDANCE CONTROL  
The normal drive strength for all outputs is specified to be SSTL_2, Class II. Hynix also supports a half strength driver  
option, intended for lighter load and/or point-to-point environments. Selection of the half strength driver option will  
reduce the output drive strength by 50% of that of the full strength driver. I-V curves for both the full strength driver  
and the half strength driver are included in this document.  
Rev. 1.0 / May 2007  
15  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
EXTENDED MODE REGISTER SET (EMRS)  
The Extended Mode Register controls functions beyond those controlled by the Mode Register; these additional func-  
tions include DLL enable/disable, output driver strength selection(optional). These functions are controlled via the bits  
shown below. The Extended Mode Register is programmed via the Mode Register Set command (BA0=1 and BA1=0)  
and will retain the stored information until it is programmed again or the device loses power.  
The Extended Mode Register must be loaded when all banks are idle and no bursts are in progress, and the controller  
must wait the specified time before initiating any subsequent operation. Violating either of these requirements will result  
in unspecified operation.  
BA1 BA0 A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
1
Operating Mode  
0*  
DS  
DLL  
A0 DLL enable  
BA0 MRS Type  
0
1
Enable  
Disable  
0
1
MRS  
EMRS  
An~A3  
A2~A0  
Valid  
_
Operating Mode  
Output Driver  
A1  
Impedance Control  
Full Strength Driver  
Half Strength Driver  
0
_
Normal Operation  
0
1
All other states reserved  
* This part do not support/QFC function, A2 must be programmed to Zero.  
Rev. 1.0 / May 2007  
16  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
Unit  
oC  
Operating Temperature (Ambient)  
TA  
0 ~ 70  
oC  
V
V
V
Storage Temperature  
TSTG  
VDD  
VDDQ  
VINPUT  
VIO  
-55 ~ 150  
-1.0 ~ 3.6  
-1.0 ~ 3.6  
-1.0 ~ 3.6  
-0.5 ~3.6  
50  
Voltage on VDD relative to VSS  
Voltage on VDDQ relative to VSS  
Voltage on inputs relative to VSS  
Voltage on I/O pins relative to VSS  
Output Short Circuit Current  
Soldering Temperature Time  
V
mA  
oC Sec  
IOS  
TSOLDER  
260 10  
Note: Operation at above absolute maximum rating can adversely affect device reliability  
DC OPERATING CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)  
Parameter  
Symbol  
Min  
Typ.  
Max  
Unit  
Power Supply Voltage (DDR200, 266, 333)  
Power Supply Voltage (DDR200, 266, 333)1  
Power Supply Voltage (DDR400 product)  
Power Supply Voltage (DDR400 product)1  
Input High Voltage  
VDD  
VDDQ  
VDD  
VDDQ  
VIH  
2.3  
2.3  
2.5  
2.5  
2.6  
2.6  
-
2.7  
2.7  
V
V
2.4  
2.7  
V
V
2.4  
2.7  
VREF + 0.15  
-0.3  
VDDQ + 0.3  
VREF - 0.15  
V
V
Input Low Voltage2  
VIL  
-
Termination Voltage  
Reference Voltage3  
VTT  
VREF  
VREF - 0.04  
0.49*VDDQ  
VREF  
0.5*VDDQ  
VREF + 0.04  
0.51*VDDQ  
V
V
Input Voltage Level, CK and CK inputs  
VIN(DC)  
VID(DC)  
VI(RATIO)  
ILI  
-0.3  
0.36  
0.71  
-2  
-
-
-
-
-
VDDQ+0.3  
V
V
Input Differential Voltage, CK and CK inputs4  
V-I Matching: Pullup to Pulldown Current Ratio5  
Input Leakage Current6  
VDDQ+0.6  
1.4  
2
-
uA  
uA  
Output Leakage Current7  
ILO  
-5  
5
Output High Current  
(min VDDQ, min VREF, min  
VTT)  
Output Low Current  
(min VDDQ, max VREF, max  
VTT)  
Normal Strength  
Output Driver  
(VOUT=VTT ±  
0.84)  
IOH  
IOL  
IOH  
IOL  
-16.8  
16.8  
-13.6  
13.6  
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
Output High Current  
(min VDDQ, min VREF, min  
VTT)  
Output Low Current  
(min VDDQ, max VREF, max  
VTT)  
Half Strength  
Output Driver  
(VOUT=VTT ±  
0.68)  
Note:  
1. VDDQ must not exceed the level of VDD.  
2. VIL (min) is acceptable -1.5V AC pulse width with < 5ns of duration.  
3. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the dc level of the same.  
Peak to peak noise on VREF may not exceed ± 2% of the DC value.  
4. VID is the magnitude of the difference between the input level on CK and the input level on /CK.  
Rev. 1.0 / May 2007  
17  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
5. The ratio of the pullup current to the pulldown current is specified for the same temperature and voltage, over the entire temper-  
ature and voltage range, for device drain to source voltages from 0.25V to 1.0V. For a given output, it represents the maximum dif-  
ference between pullup and pulldown drivers due to process variation. The full variation in the ratio of the maximum to minimum  
pullup and pulldown current will not exceed 1/7 for device drain to source voltages from 0.1 to 1.0.  
6. VIN=0 to VDD, All other pins are not tested under VIN =0V.  
7. DQs are disabled, VOUT=0 to VDDQ  
IDD SPECIFICATION AND CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)  
Test Conditions  
Test Condition  
Symbol  
Operating Current:  
One bank; Active - Precharge; tRC=tRC(min); tCK=tCK(min); DQ,DM and DQS inputs changing twice  
per clock cycle; address and control inputs changing once per clock cycle  
IDD0  
Operating Current:  
One bank; Active - Read - Precharge;  
Burst Length=2; tRC=tRC(min); tCK=tCK(min); address and control inputs changing once per clock  
cycle  
Precharge Power Down Standby Current:  
All banks idle; Power down mode; CKE=Low, tCK=tCK(min)  
IDD1  
IDD2P  
IDD2F  
Idle Standby Current:  
/CS=High, All banks idle; tCK=tCK(min);  
CKE=High; address and control inputs changing once per clock cycle.  
VIN=VREF for DQ, DQS and DM  
Idle Quiet Standby Current:  
/CS>=Vih(min); All banks idle; CKE>=Vih(min); Addresses and other control inputs stable, Vin=Vref  
for DQ, DQS and DM  
Active Power Down Standby Current:  
IDD2Q  
IDD3P  
One bank active; Power down mode; CKE=Low, tCK=tCK(min)  
Active Standby Current:  
/CS=HIGH; CKE=HIGH; One bank; Active-Precharge; tRC=tRAS(max); tCK=tCK(min);  
DQ, DM and DQS inputs changing twice per clock cycle; Address and other control inputs changing  
once per clock cycle  
IDD3N  
Operating Current:  
Burst=2; Reads; Continuous burst; One bank active; Address and control inputs changing once per  
clock cycle; tCK=tCK(min); IOUT=0mA  
Operating Current:  
Burst=2; Writes; Continuous burst; One bank active; Address and control inputs changing once per  
clock cycle; tCK=tCK(min); DQ, DM and DQS inputs changing twice per clock cycle  
IDD4R  
IDD4W  
Auto Refresh Current:  
tRC=tRFC(min) - 8*tCK for DDR200 at 100Mhz, 10*tCK for DDR266A & DDR266B at 133Mhz;  
distributed refresh  
IDD5  
tRC=tRFC(min) - 14*tCK for DDR400 at 200Mhz  
Self Refresh Current:  
CKE =< 0.2V; External clock on; tCK=tCK(min)  
Operating Current - Four Bank Operation:  
Four bank interleaving with BL=4, Refer to the following page for detailed test condition  
IDD6  
IDD7  
Rev. 1.0 / May 2007  
18  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
DETAILED TEST CONDITIONS FOR DDR SDRAM IDD1 & IDD7  
IDD1: Operating current: One bank operation  
1. Typical Case: VDD = 2.5V, T=25 oC for DDR200, 266, 333; VDD = 2.6V, T=25 oC for DDR400  
2. Worst Case: VDD = 2.7V, T= 0 oC  
3. Only one bank is accessed with tRC(min), Burst Mode, Address and Control inputs on NOP edge are  
changing once per clock cycle. lout = 0mA  
4. Timing patterns  
- DDR200(100Mhz, CL=2): tCK = 10ns, CL2, BL=2, tRCD = 2*tCK, tRC = 10*tCK, tRAS = 5*tCK  
Read: A0 N R0 N N P0 N A0 N - repeat the same timing with random address changing  
50% of data changing at every burst  
- DDR266B(133Mhz, CL=2.5): tCK = 7.5ns, CL=2.5, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 5*tCK  
Read: A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing  
50% of data changing at every burst  
- DDR266A (133Mhz, CL=2): tCK = 7.5ns, CL=2, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 5*tCK  
Read: A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing  
50% of data changing at every burst  
- DDR333(166Mhz, CL=2.5): tCK = 6ns, CL=2, BL=4, tRCD = 3*tCK, tRC = 10*tCK, tRAS = 7*tCK  
Read: A0 N N R0 N N N P0 N N A0 N - repeat the same timing with random address changing  
50% of data changing at every burst  
- DDR400(200Mhz, CL=3): tCK = 5ns, CL=3, BL=4, tRCD = 3*tCK, tRC = 11*tCK, tRAS = 8*tCK  
Read: A0 N N R0 N N N N P0 N N - repeat the same timing with random address changing  
50% of data changing at every burst  
Legend: A=Activate, R=Read, W=Write, P=Precharge, N=NOP  
IDD7: Operating current: Four bank operation  
1. Typical Case: VDD = 2.5V, T=25 oC for DDR200, 266, 333; VDD = 2.6V, T=25 oC for DDR400  
2. Worst Case: VDD = 2.7V, T= 0 oC  
3. Four banks are being interleaved with tRC(min), Burst Mode, Address and Control inputs on NOP edge are not  
changing. lout = 0mA  
4. Timing patterns  
- DDR200(100Mhz, CL=2): tCK = 10ns, CL2, BL=4, tRRD = 2*tCK, tRCD= 3*tCK, Read with Autoprecharge  
Read: A0 N A1 R0 A2 R1 A3 R2 A0 R3 A1 R0 - repeat the same timing with random address changing  
50% of data changing at every burst  
- DDR266B(133Mhz, CL=2.5): tCK = 7.5ns, CL=2.5, BL=4, tRRD = 2*tCK, tRCD = 3*tCK Read with autoprecharge  
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
50% of data changing at every burst  
- DDR266A (133Mhz, CL=2): tCK = 7.5ns, CL2=2, BL=4, tRRD = 2*tCK, tRCD = 3*tCK  
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
50% of data changing at every burst  
- DDR333(166Mhz, CL=2.5): tCK = 6ns, CL=2.5, BL=4, tRRD = 2*tCK, tRCD = 3*tCK, Read with autoprecharge  
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
50% of data changing at every burst  
- DDR400(200Mhz, CL=3): tCK = 5ns, CL = 2, BL = 4, tRRD = 2*tCK, tRCD = 3*tCK, Read with autoprecharge  
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
50% of data changing at every burst  
Legend: A=Activate, R=Read, W=Write, P=Precharge, N=NOP  
Rev. 1.0 / May 2007  
19  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
IDD Specification  
64Mx8  
Speed  
DDR400B DDR333 DDR266A DDR266B DDR200  
Parameter  
Symbol  
Unit  
Operating Current  
Operating Current  
IDD0  
IDD1  
130  
170  
120  
150  
100  
120  
mA  
mA  
Precharge Power Down Standby  
Current  
IDD2P  
10  
mA  
Idle Standby Current  
Idle Quiet Standby Current  
Active Power Down Standby Current IDD3P  
Active Standby Current  
Operating Current  
IDD2F  
IDD2Q  
35  
30  
45  
60  
mA  
mA  
mA  
mA  
IDD3N  
IDD4R  
IDD4W  
IDD5  
210  
230  
260  
190  
210  
240  
170  
180  
220  
Operating Current  
Auto Refresh Current  
mA  
Normal  
Low Power  
5
3
mA  
mA  
Self Refresh Current  
IDD6  
IDD7  
Operating Current - Four Bank  
Operation  
360  
350  
340  
mA  
32Mx16  
Speed  
Parameter  
Symbol  
Unit  
DDR400B DDR333 DDR266A DDR266B DDR200  
Operating Current  
Operating Current  
IDD0  
IDD1  
130  
170  
120  
150  
100  
120  
mA  
mA  
Precharge Power Down Standby  
Current  
IDD2P  
10  
mA  
Idle Standby Current  
Idle Quiet Standby Current  
Active Power Down Standby Current IDD3P  
Active Standby Current  
Operating Current  
IDD2F  
IDD2Q  
35  
30  
45  
60  
mA  
mA  
mA  
mA  
IDD3N  
IDD4R  
IDD4W  
IDD5  
210  
230  
260  
190  
210  
240  
170  
180  
220  
Operating Current  
Auto Refresh Current  
mA  
Normal  
Low Power  
5
3
mA  
mA  
Self Refresh Current  
IDD6  
IDD7  
Operating Current - Four Bank  
Operation  
360  
350  
340  
mA  
Rev. 1.0 / May 2007  
20  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
AC OPERATING CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)  
Parameter  
Symbol  
Min  
Max  
Unit  
Input High (Logic 1) Voltage, DQ, DQS and DM signals VIH(AC)  
VREF + 0.31  
-
V
V
V
Input Low (Logic 0) Voltage, DQ, DQS and DM signals  
Input Differential Voltage, CK and /CK inputs1  
Input Crossing Point Voltage, CK and /CK inputs2  
VIL(AC)  
VID(AC)  
-
VREF - 0.31  
VDDQ + 0.6  
0.7  
VIX(AC)  
0.5*VDDQ-0.2  
0.5*VDDQ+0.2  
V
Note:  
1. VID is the magnitude of the difference between the input level on CK and the input on /CK.  
2. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the DC level of the same.  
*For more information about AC Overshoot/Undershoot Specifications, refer to “Device Operation” section in hynix website.  
AC OPERATING TEST CONDITIONS (TA=0 to 70oC, Voltage referenced to VSS = 0V)  
Parameter  
Value  
Unit  
Reference Voltage  
Termination Voltage  
VDDQ x 0.5  
V
V
VDDQ x 0.5  
AC Input High Level Voltage (VIH, min)  
AC Input Low Level Voltage (VIL, max)  
Input Timing Measurement Reference Level Voltage  
Output Timing Measurement Reference Level Voltage  
Input Signal maximum peak swing  
VREF + 0.31  
V
VREF - 0.31  
V
VREF  
VTT  
1.5  
1
V
V
V
Input minimum Signal Slew Rate  
V/ns  
Termination Resistor (RT)  
50  
Ω
W
pF  
Series Resistor (RS)  
25  
Output Load Capacitance for Access Time Measurement (CL)  
30  
Rev. 1.0 / May 2007  
21  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
AC CHARACTERISTICS (note: 1 - 9 / AC operating conditions unless otherwise noted)  
DDR400B  
DDR333  
Min Max  
DDR266A  
DDR266B  
DDR200  
Parameter  
Symbol  
UNIT  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Row Cycle Time  
tRC  
55  
-
-
60  
72  
42  
-
-
65  
-
65  
-
70  
-
ns  
ns  
ns  
ns  
Auto Refresh Row  
Cycle Time  
tRFC  
tRAS  
tRAP  
70  
40  
75  
45  
-
120K  
-
75  
45  
-
120K  
-
80  
50  
-
120K  
-
Row Active Time  
70K  
-
70K  
-
Active to Read with  
tRCD or  
tRASmin  
tRCD or  
tRASmin  
tRCD or  
tRASmin  
tRCD or  
tRASmin  
tRCD or  
tRASmin  
Auto Precharge Delay  
Row Address to  
Column Address Delay  
tRCD  
tRRD  
tCCD  
15  
10  
1
-
-
-
18  
12  
1
-
-
-
20  
15  
1
-
-
-
20  
15  
1
-
-
-
20  
15  
1
-
-
-
ns  
ns  
Row Active to Row  
Active Delay  
Column Address to  
Column Address Delay  
tCK  
Row Precharge Time  
Write Recovery Time  
tRP  
15  
15  
-
-
18  
15  
-
-
20  
15  
-
-
20  
15  
-
-
20  
15  
-
-
ns  
ns  
tWR  
Internal Write to Read  
Command Delay  
tWTR  
2
-
1
-
1
-
1
-
1
-
tCK  
(tWR/  
tCK)  
+
(tWR/  
tCK)  
+
(tWR/  
tCK)  
+
(tWR/  
tCK)  
+
(tWR/  
tCK)  
+
Auto Precharge Write  
Recovery + Precharge  
Time22  
tDAL  
-
-
-
-
-
tCK  
(tRP/tCK)  
(tRP/tCK)  
(tRP/tCK)  
(tRP/tCK)  
(tRP/tCK)  
CL = 3  
System  
5
10  
12  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
Clock Cycle  
Time24  
CL = 2.5  
tCK  
6
6
12  
7.5  
12  
7.5  
12  
8.0  
10  
12  
12  
CL = 2  
7.5  
0.45  
0.45  
12  
7.5  
0.45  
0.45  
12  
7.5  
12  
10  
12  
Clock High Level Width  
Clock Low Level Width  
tCH  
tCL  
0.55  
0.55  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55 tCK  
0.55 tCK  
Data-Out edge to Clock  
edge Skew  
tAC  
-0.7  
-0.55  
-
0.7  
0.55  
0.4  
-0.7  
-0.6  
-
0.7  
0.6  
-0.75  
-0.75  
-
0.75  
0.75  
0.5  
-0.75  
-0.75  
-
0.75  
0.75  
0.5  
-0.75  
-0.75  
-
0.75  
0.75  
0.6  
ns  
ns  
ns  
DQS-Out edge to Clock  
edge Skew  
tDQSCK  
tDQSQ  
DQS-Out edge to Data-  
Out edge Skew21  
0.45  
Data-Out hold time  
from DQS20  
tHP  
-tQHS  
tHP  
-tQHS  
tHP  
-tQHS  
tHP  
-tQHS  
tHP  
-tQHS  
tQH  
tHP  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
min  
(tCL,tCH)  
min  
(tCL,tCH)  
min  
(tCL,tCH)  
min  
(tCL,tCH)  
min  
(tCL,tCH)  
Clock Half Period19,20  
Data Hold Skew  
Factor20  
tQHS  
tDV  
-
0.5  
-
0.55  
-
0.75  
-
0.75  
-
0.75  
Valid Data Output  
Window  
tQH-tDQSQ  
tQH-tDQSQ  
tQH-tDQSQ  
tQH-tDQSQ  
tQH-tDQSQ  
Rev. 1.0 / May 2007  
22  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
- Continue  
DDR400B  
DDR333  
DDR266A  
Min Max  
DDR266B  
DDR200  
Parameter  
Symbol  
UNIT  
Min Max  
Min Max  
Min  
Max  
Min  
Max  
Data-out high-impedance window  
from CK,/CK10  
tHZ  
tLZ  
tIS  
tIH  
tIS  
-0.7  
-0.7  
0.6  
0.6  
0.7  
0.7  
-0.7  
-0.7  
0.75  
0.75  
0.8  
0.7  
-0.75 0.75  
-0.75 0.75  
-0.75  
0.75  
-0.8  
-0.8  
1.1  
1.1  
1.1  
1.1  
0.8  
ns  
ns  
ns  
ns  
ns  
ns  
Data-out low-impedance window  
from CK, /CK10  
0.7  
0.7  
-0.75  
0.9  
0.75  
0.8  
Input Setup Time (fast slew  
rate)14,16-18  
-
-
-
-
-
-
-
-
0.9  
0.9  
1.0  
1.0  
-
-
-
-
-
-
-
-
-
-
-
-
Input Hold Time (fast slew  
rate)14,16-18  
0.9  
Input Setup Time (slow slew  
rate)15-18  
1.0  
Input Hold Time (slow slew  
rate)15-18  
tIH  
0.7  
2.2  
0.8  
1.0  
Input Pulse Width17  
tIPW  
-
-
-
2.2  
-
-
-
2.2  
-
-
-
2.2  
-
-
-
2.5  
-
-
-
ns  
Write DQS High Level Width  
Write DQS Low Level Width  
tDQSH 0.35  
tDQSL 0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
tCK  
tCK  
Clock to First Rising edge of DQS-  
In  
tDQSS 0.72  
1.25  
0.75  
0.2  
1.25  
0.75  
0.2  
1.25  
0.75  
0.2  
1.25  
0.75  
0.2  
1.25  
tCK  
tCK  
tCK  
DQS falling edge to CK setup time  
tDSS  
tDSH  
0.2  
0.2  
-
-
-
-
-
-
-
-
-
-
DQS falling edge hold time from  
CK  
0.2  
0.2  
0.2  
0.2  
DQ & DM input setup time25  
DQ & DM input hold time25  
tDS  
tDH  
0.4  
0.4  
-
-
0.45  
0.45  
-
-
0.5  
0.5  
-
-
0.5  
0.5  
-
-
0.6  
0.6  
-
-
ns  
ns  
DQ & DM Input Pulse Width17  
Read DQS Preamble Time  
Read DQS Postamble Time  
tDIPW 1.75  
-
1.1  
0.6  
-
1.75  
0.9  
0.4  
0
-
1.1  
0.6  
-
1.75  
0.9  
0.4  
0
-
1.1  
0.6  
-
1.75  
0.9  
0.4  
0
-
1.1  
0.6  
-
2
0.9  
0.4  
0
-
1.1  
0.6  
-
ns  
tRPRE  
tRPST  
0.9  
0.4  
0
tCK  
tCK  
ns  
Write DQS Preamble Setup Time12  
Write DQS Preamble Hold Time  
tWPRES  
tWPREH 0.25  
-
0.25  
0.4  
2
-
0.25  
0.4  
2
-
0.25  
0.4  
2
-
0.25  
0.4  
2
-
tCK  
tCK  
tCK  
Write DQS Postamble Time11  
Mode Register Set Delay  
tWPST  
tMRD  
0.4  
2
0.6  
-
0.6  
-
0.6  
-
0.6  
-
0.6  
-
Exit Self Refresh to non-Read  
command23  
tXSNR  
tXSRD  
tREFI  
75  
200  
-
-
-
75  
200  
-
-
-
75  
200  
-
-
-
75  
200  
-
-
-
80  
200  
-
-
-
ns  
tCK  
us  
Exit Self Refresh to Read  
command  
Average Periodic Refresh  
Interval13,25  
7.8  
7.8  
7.8  
7.8  
7.8  
Rev. 1.0 / May 2007  
23  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
Note:  
1. All voltages referenced to Vss.  
2. Tests for ac timing, IDD, and electrical, ac and dc characteristics, may be conducted at nominal reference/supply voltage levels,  
but the related specifications and device operation are guaranteed for the full voltage range specified.  
3. Below figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to  
be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production  
tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment.  
Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester elec-  
tronics).  
VDDQ  
50 Ω  
Output  
(VOUT)  
30 pF  
Figure: Timing Reference Load  
4. AC timing and IDD tests may use a VIL to VIHswing of up to 1.5 V in the test environment, but input timing is still referenced to  
VREF (or to the crossing point for CK, /CK), and parameter specifications are guaranteed for the specified ac input levels under  
normal use conditions. The minimum slew rate for the input signals is 1 V/ns in the range between VIL(ac) and VIH(ac).  
5. The ac and dc input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result  
of the signal crossing the ac input level and will remain in that state as long as the signal does not ring back above (below) the  
dc input LOW (HIGH) level.  
6. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, CKE < 0.2VDDQ is  
recognized as LOW.  
7. The CK, /CK input reference level (for timing referenced to CK, /CK) is the point at which CK and /CK cross; the input reference  
level for signals other than CK, /CK is VREF.  
8. The output timing reference voltage level is VTT.  
9. Operation or timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must  
be powered down and then restarted through the specified initialization sequence before normal operation can continue.  
10. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to  
a specific voltage level but specify when the device output is no longer driving (HZ), or begins driving (LZ).  
11. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but  
system performance (bus turnaround) will degrade accordingly.  
12. The specific requirement is that DQS be valid (HIGH, LOW, or at some point on a valid transition) on or before this CK edge. A  
valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previ-  
ously in progress on the bus, DQS will be transitioning from High-Z to logic LOW. If a previous write was in progress, DQS could  
be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS.  
13. A maximum of eight AUTO REFRESH commands can be posted to any given DDR SDRAM device.  
14. For command/address input slew rate 1.0 V/ns.  
15. For command/address input slew rate 0.5 V/ns and 1.0 V/ns  
16. For CK & /CK slew rate 1.0 V/ns (single-ended)  
17. These parameters guarantee device timing, but they are not necessarily tested on each device.  
They may be guaranteed by device design or tester correlation.  
18. Slew Rate is measured between VOH(ac) and VOL(ac).  
19. Min (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this  
value can be greater than the minimum specification limits for tCL and tCH).  
For example, tCL and tCH are = 50% of the period, less the half period jitter (tJIT(HP)) of the clock source, and less the half  
period jitter due to crosstalk (tJIT(crosstalk)) into the clock traces.  
Rev. 1.0 / May 2007  
24  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
20.tQH = tHP - tQHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL). tQHS accounts for 1) The  
pulse duration distortion of on-chip clock circuits; and 2) The worst case push--out of DQS on one transition followed by the  
worst case pull--in of DQ on the next transition, both of which are, separately, due to data pin skew and output pattern effects,  
and p-channel to n-channel variation of the output drivers.  
21. tDQSQ:  
Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers for any given  
cycle.  
22. tDAL = (tWR/tCK) + (tRP/tCK)  
For each of the terms above, if not already an integer, round to the next highest integer.  
Example: For DDR266B at CL=2.5 and tCK=7.5 ns  
tDAL = ((15 ns / 7.5 ns) + (20 ns / 7.5 ns)) clocks  
= ((2) + (3)) clocks  
= 5 clocks  
23. In all circumstances, tXSNR can be satisfied using  
tXSNR = tRFCmin + 1*tCK  
24. The only time that the clock frequency is allowed to change is during self-refresh mode.  
25. If refresh timing or tDS/tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid  
READ can be executed.  
Rev. 1.0 / May 2007  
25  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
SYSTEM CHARACTERISTICS CONDITIONS for DDR SDRAMS  
The following tables are described specification parameters that required in systems using DDR devices to ensure  
proper performannce. These characteristics are for system simulation purposes and are guaranteed by design.  
Input Slew Rate for DQ/DM/DQS (Table a.)  
AC CHARACTERISTICS  
PARAMETER  
DDR400  
DDR333  
DDR266  
DDR200  
UNIT Note  
Symbol  
min  
max  
min  
max  
min  
max  
min  
max  
DQ/DM/DQS input slew rate  
measured between VIH(DC),  
VIL(DC) and VIL(DC), VIH(DC)  
DCSLEW  
0.5  
4.0  
0.5  
4.0  
0.5  
4.0  
0.5  
4.0  
V/ns  
1,12  
Address & Control Input Setup & Hold Time Derating (Table b.)  
Input Slew Rate  
0.5 V/ns  
Delta tIS  
0
Delta tIH  
UNIT  
Note  
0
0
0
ps  
ps  
ps  
9
9
9
0.4 V/ns  
+50  
0.3 V/ns  
+100  
DQ & DM Input Setup & Hold Time Derating (Table c.)  
Input Slew Rate  
0.5 V/ns  
Delta tDS  
0
Delta tDH  
UNIT  
ps  
Note  
11  
0
0
0
0.4 V/ns  
+75  
ps  
11  
0.3 V/ns  
+150  
ps  
11  
DQ & DM Input Setup & Hold Time Derating for Rise/Fall Delta Slew Rate (Table d.)  
Input Slew Rate  
Delta tDS  
0
Delta tDH  
UNIT  
ps  
Note  
10  
0
± 0.0 ns/V  
+50  
+50  
+100  
ps  
10  
± 0.25 ns/V  
± 0.5 ns/V  
+100  
ps  
10  
Output Slew Rate Characteristics (for x8 Devices) (Table e.)  
Typical Range  
(V/ns)  
Minimum  
(V/ns)  
Maximum  
(V/ns)  
Slew Rate Characteristic  
Note  
Pullup Slew Rate  
1.2 - 2.5  
1.2 - 2.5  
1.0  
1.0  
4.5  
1,3,4,6,7,8  
2,3,4,6,7,8  
Pulldown Slew Rate  
4.5  
Output Slew Rate Characteristics (for x16 Device) (Table f.)  
Typical Range  
(V/ns)  
Minimum  
(V/ns)  
Maximum  
(V/ns)  
Slew Rate Characteristic  
Note  
Pullup Slew Rate  
1.2 - 2.5  
1.2 - 2.5  
1.0  
1.0  
4.5  
4.5  
1,3,4,6,7,8  
2,3,4,6,7,8  
Pulldown Slew Rate  
Output Slew Rate Matching Ratio Characteristics (Table g.)  
Slew Rate Characteristic  
Parameter  
DDR266A  
DDR266B  
DDR200  
Note  
min  
max  
min  
max  
min  
max  
Output Slew Rate Matching Ratio  
(Pullup to Pulldown)  
-
-
-
-
0.71  
1.4  
5,12  
Rev. 1.0 / May 2007  
26  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
Note:  
1. Pullup slew rate is characterized under the test conditions as shown in below Figure.  
Test Point  
Output  
(VOUT)  
Ω
50  
VSSQ  
Figure: Pullup Slew rate  
2. Pulldown slew rate is measured under the test conditions shown in below Figure.  
VDDQ  
Ω
50  
Output  
(VOUT)  
Test Point  
Figure: Pulldown Slew rate  
3. Pullup slew rate is measured between (VDDQ/2 - 320 mV ± 250mV)  
Pulldown slew rate is measured between (VDDQ/2 + 320mV ± 250mV)  
Pullup and Pulldown slew rate conditions are to be met for any pattern of data, including all outputs switching and only one output  
switching.  
Example: For typical slew, DQ0 is switching  
For minimum slew rate, all DQ bits are switching worst case pattern  
For maximum slew rate, only one DQ is switching from either high to low, or low to high.  
The remaining DQ bits remain the same as for previous state.  
4. Evaluation conditions  
Typical: 25 oC (Ambient), VDDQ = nominal, typical process  
Minimum: 70 oC (Ambient), VDDQ = minimum, slow-slow process  
Maximum: 0 oC (Ambient), VDDQ = Maximum, fast-fast process  
5. The ratio of pullup slew rate to pulldown slew rate is specified for the same temperature and voltage, over the entire temperature  
and voltage range. For a given output, it represents the maximum difference between pullup and pulldown drivers due to process  
variation.  
6. Verified under typical conditions for qualification purposes.  
7. TSOP-II package devices only.  
8. Only intended for operation up to 256 Mbps per pin.  
9. A derating factor will be used to increase tIS and tIH in the case where the input slew rate is below 0.5 V/ns as shown in Table b.  
The Input slew rate is based on the lesser of the slew rates determined by either VIH(AC) to VIL(AC) or VIH(DC) to VIL(DC), sim-  
ilarly for rising transitions.  
10. A derating factor will be used to increase tDS and tDH in the case where DQ, DM, and DQS slew rates differ, as shown in Tables c  
& d. Input slew rate is based on the larger of AC-AC delta rise, fall rate and DC-DC delta rise, fall rate. Input slew rate is based on  
the lesser of the slew rates determined by either VIH(AC) to VIL(AC) or VIH(DC) to VIL(DC), similarly for rising transitions. The  
delta rise/fall rate is calculated as:  
{1/(Slew Rate1)} - {1/(slew Rate2)}  
For example:  
If Slew Rate 1 is 0.5 V/ns and Slew Rate 2 is 0.4 V/ns, then the delta rise, fall rate is -0.5 ns/V. Using the table given, this would  
result in the need for an increase in tDS and tDH of 100ps.  
11. Table c is used to increase tDS and tDH in the case where the I/O slew rate is below 0.5 V/ns. The I/O slew rate is based on the  
lesser of the AC-AC slew rate and the DC-DC slew rate. The input slew rate is based on the lesser of the slew rates determined by  
either VIH(ac) to VIL(AC) or VIH(DC) to VIL(DC), and similarly for rising transitions.  
12. DQS, DM, and DQ input slew rate is specified to prevent double clocking of data and preserve setup and hold times. Signal tran-  
sitions through the DC region must be monotonic.  
Rev. 1.0 / May 2007  
27  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
CAPACITANCE (TA=25oC, f=100MHz)  
Parameter  
Pin  
Symbol  
Min  
Max  
Unit  
Input Clock Capacitance  
Delta Input Clock Capacitance  
Input Capacitance  
CK, /CK  
CK, /CK  
CI1  
Delta CI1  
CI1  
2.0  
-
3.0  
0.25  
3.0  
0.5  
5.0  
0.5  
pF  
pF  
pF  
pF  
pF  
pF  
All other input-only pins  
All other input-only pins  
DQ, DQS, DM  
2.0  
-
Delta Input Capacitance  
Input / Output Capacitance  
Delta Input / Output Capacitance  
Delta CI2  
CIO  
4.0  
-
DQ, DQS, DM  
Delta CIO  
Note:  
1. VDD = min. to max., VDDQ = 2.3V to 2.7V, VODC = VDDQ/2, VOpeak-to-peak = 0.2V  
2. Pins not under test are tied to GND.  
3. These values are guaranteed by design and are tested on a sample basis only.  
OUTPUT LOAD CIRCUIT  
VTT  
RT=50Ω  
Output  
Zo=50Ω  
VREF  
CL=30pF  
Rev. 1.0 / May 2007  
28  
1HY5DU12822D(L)TP  
HY5DU121622D(L)TP  
PACKAGE INFORMATION  
400mil 66pin Thin Small Outline Package  
max  
min  
Unit : mm(Inch)  
,
11.94 (0.470)  
11.79 (0.462)  
10.26 (0.404)  
10.05 (0.396)  
BASE PLANE  
22.33 (0.879)  
22.12 (0.871)  
0 ~ 5 Deg.  
0.35 (0.0138)  
0.65 (0.0256) BSC  
0.25 (0.0098)  
SEATING PLANE  
1.194 (0.0470)  
0.991 (0.0390)  
0.15 (0.0059)  
0.05 (0.0020)  
0.597 (0.0235)  
0.406 (0.0160)  
0.210 (0.0083)  
0.120 (0.0047)  
Rev. 1.0 / May 2007  
29  

相关型号:

HY5DU121622DTP-J

DDR DRAM, 32MX16, 0.7ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
HYNIX

HY5DU121622DTP-JI

DDR DRAM, 32MX16, 0.7ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
HYNIX

HY5DU121622LT-H

DDR DRAM, 32MX16, 0.75ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
HYNIX

HY5DU121622LT-K

DDR DRAM, 32MX16, 0.75ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
HYNIX

HY5DU121622LT-L

DDR DRAM, 32MX16, 0.8ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
HYNIX

HY5DU121622T-H

DDR DRAM, 32MX16, 0.75ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
HYNIX

HY5DU121622T-K

DDR DRAM, 32MX16, 0.75ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
HYNIX

HY5DU121622T-L

DDR DRAM, 32MX16, 0.8ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
HYNIX

HY5DU12422A

512Mb DDR SDRAM
HYNIX

HY5DU12422ALT

512Mb DDR SDRAM
HYNIX

HY5DU12422ALT-D43

DDR DRAM, 128MX4, 0.7ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
HYNIX

HY5DU12422ALT-H

暂无描述
HYNIX