HY5PS1G1631CFR-Y5 [HYNIX]

DDR DRAM, 64MX16, 0.45ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84;
HY5PS1G1631CFR-Y5
型号: HY5PS1G1631CFR-Y5
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

DDR DRAM, 64MX16, 0.45ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总45页 (文件大小:565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
1Gb DDR2 SDRAM  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
HY5PS1G431CFR  
HY5PS1G831CFR  
HY5PS1G1631CFR  
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any  
responsibility for use of circuits described. No patent licenses are implied.  
Rev. 0.7 / Nov. 2008  
1
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Revision Details  
Rev.  
History  
Draft Date  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Nov. 2006  
Initial data sheet released  
IDD Values added  
Dec. 2006  
Mar. 2007  
May. 2007  
Jun. 2007  
Jul. 2008  
Nov. 2008  
Inserted Pin Description & Corrected typos  
Adjusted IDD values & Corrected typos  
Adjusted IDD values  
Updated IDD values and Halogen-free added  
Editorial change on TOPER  
Rev. 0.7 / Nov. 2008  
2
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Contents  
1. Description  
1.1 Device Features and Ordering Information  
1.1.1 Key Features  
1.1.2 Ordering Information  
1.1.3 Operating Frequency  
1.2 Pin configuration  
1.3 Pin Description  
2. Maximum DC ratings  
2.1 Absolute Maximum DC Ratings  
2.2 Operating Temperature Condition  
3. AC & DC Operating Conditions  
3.1 DC Operating Conditions  
3.1.1 Recommended DC Operating Conditions(SSTL_1.8)  
3.1.2 ODT DC Electrical Characteristics  
3.2 DC & AC Logic Input Levels  
3.2.1 Input DC Logic Level  
3.2.2 Input AC Logic Level  
3.2.3 AC Input Test Conditions  
3.2.4 Differential Input AC Logic Level  
3.2.5 Differential AC Output Parameters  
3.3 Output Buffer Levels  
3.3.1 Output AC Test Conditions  
3.3.2 Output DC Current Drive  
3.3.3 OCD default characteristics  
3.4 IDD Specifications & Measurement Conditions  
3.5 Input/Output Capacitance  
4. AC Timing Specifications  
5. Package Dimensions  
Rev. 0.7 / Nov. 2008  
3
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
1. Description  
1.1 Device Features & Ordering Information  
1.1.1 Key Features  
• VDD = 1.8 +/- 0.1V  
• VDDQ = 1.8 +/- 0.1V  
• All inputs and outputs are compatible with SSTL_18 interface  
• 8 banks  
• Fully differential clock inputs (CK, /CK) operation  
• Double data rate interface  
• Source synchronous-data transaction aligned to bidirectional data strobe (DQS, DQS)  
• Differential Data Strobe (DQS, DQS)  
• Data outputs on DQS, DQS edges when read (edged DQ)  
• Data inputs on DQS centers when write (centered DQ)  
• On chip DLL align DQ, DQS and DQS transition with CK transition  
• DM mask write data-in at the both rising and falling edges of the data strobe  
• All addresses and control inputs except data, data strobes and data masks latched on the rising  
edges of the clock  
• Programmable CAS latency 3, 4, 5 and 6 supported  
• Programmable additive latency 0, 1, 2, 3, 4 and 5 supported  
• Programmable burst length 4/8 with both nibble sequential and interleave mode  
• Internal eight bank operations with single pulsed RAS  
• Auto refresh and self refresh supported  
• tRAS lockout supported  
• 8K refresh cycles /64ms  
• JEDEC standard 60ball FBGA(x4/x8), 84ball FBGA(x16)  
• Full strength driver option controlled by EMR  
• On Die Termination supported  
• Off Chip Driver Impedance Adjustment supported  
• Read Data Strobe supported (x8 only)  
• Self-Refresh High Temperature Entry  
Rev. 0.7 / Nov. 2008  
4
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
1.1.2 Ordering Information  
Part No.  
Configuration  
Package  
HY5PS1G431C(L)FP-XX*  
HY5PS1G431CFR-XX*  
HY5PS1G831C(L)FP-XX*  
HY5PS1G831CFR-XX*  
HY5PS1G1631C(L)FP-XX*  
HY5PS1G1631CFR-XX*  
256Mx4  
60 Ball  
84 Ball  
128Mx8  
64Mx16  
Note:  
-XX* is the speed bin, refer to the Operating Frequency table for complete part number.  
Hynix lead-free products are compliant to RoHS.  
1.1.3 Operating Frequency  
Grade  
tCK(ns)  
CL  
3
tRCD  
tRP  
3
Unit  
E3  
Clk  
5
3.75  
3
3
4
5
6
5
C4  
Y5  
S6  
S5  
Clk  
Clk  
Clk  
Clk  
4
4
5
5
2.5  
2.5  
6
6
5
5
Rev. 0.7 / Nov. 2008  
5
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
1.2 Pin Configuration & Address Table  
256Mx4 DDR2 Pin Configuration(Top view: see balls through package)  
7
8
3
9
1
2
VSSQ  
DQS  
VSS  
VDDQ  
VDD  
NC  
NC  
A
B
C
DQS  
VDDQ  
DQ2  
VSSQ  
DQ0  
VSSQ  
CK  
DM  
VDDQ  
DQ3  
VSS  
NC  
VDDQ  
NC  
VSSQ  
DQ1  
VDDQ  
NC  
VSSQ  
VREF  
CKE  
D
E
VSSDL  
RAS  
VDD  
ODT  
VDDL  
F
G
H
J
CK  
WE  
CAS  
A2  
CS  
A0  
BA1  
A1  
BA2  
VSS  
VDD  
BA0  
A10  
A3  
VDD  
VSS  
A6  
A4  
A5  
K
A11  
NC  
A8  
A9  
A7  
L
A13  
NC  
A12  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
256Mx4  
# of Bank  
Bank Address  
Auto Precharge Flag  
Row Address  
8
BA0,BA1,BA2  
A10/AP  
A0 - A13  
A0-A9, A11  
1 KB  
Column Address  
Page size  
Rev. 0.7 / Nov. 2008  
6
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
128Mx8 DDR2 PIN CONFIGURATION(Top view: see balls through package)  
7
8
3
9
1
2
VSSQ  
DQS  
VSS  
VDDQ  
VDD  
DQ6  
NU/RDQS  
A
B
C
DQS  
VDDQ  
DQ2  
VSSQ  
DQ0  
VSSQ  
CK  
DM/RDQS  
VDDQ  
DQ3  
DQ7  
VDDQ  
DQ5  
VSSQ  
DQ1  
VDDQ  
DQ4  
VSSQ  
VREF  
CKE  
D
E
VSSDL  
RAS  
VSS  
VDD  
VDDL  
F
G
H
J
CK  
WE  
ODT  
CAS  
A2  
CS  
A0  
BA1  
A1  
BA2  
VSS  
VDD  
BA0  
A10  
A3  
VDD  
VSS  
A6  
A4  
A5  
K
A11  
NC  
A8  
A9  
A7  
L
A13  
NC  
A12  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
128Mx8  
# of Bank  
Bank Address  
Auto Precharge Flag  
Row Address  
8
BA0, BA1, BA2  
A10/AP  
A0 - A13  
A0-A9  
Column Address  
Page size  
1 KB  
Rev. 0.7 / Nov. 2008  
7
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
64Mx16 DDR2 PIN CONFIGURATION(Top view: see balls through package)  
7
8
3
9
1
2
A
B
C
D
E
VSSQ  
UDQS  
VDDQ  
DQ10  
VSSQ  
LDQS  
VDDQ  
DQ2  
UDQS  
VSSQ  
DQ8  
VSS  
UDM  
VDDQ  
DQ11  
VSS  
VDDQ  
DQ15  
VDDQ  
DQ13  
VDDQ  
DQ7  
VDD  
DQ14  
VDDQ  
DQ12  
VDD  
NC  
VSSQ  
DQ9  
VSSQ  
NC  
VSSQ  
LDQS  
VSSQ  
DQ0  
F
LDM  
DQ6  
VSSQ  
DQ1  
VSSQ  
G
VDDQ  
DQ3  
VDDQ  
DQ5  
VDDQ  
DQ4  
H
J
VSSQ  
VSSDL  
RAS  
CK  
CK  
VSS  
WE  
VDD  
ODT  
VDDL  
VREF  
CKE  
K
L
CAS  
A2  
CS  
A0  
BA1  
A1  
NC, BA2  
VSS  
BA0  
A10/AP  
A3  
M
VDD  
VSS  
A6  
A4  
A5  
N
P
A11  
A8  
A9  
A7  
NC, A15  
NC, A13  
NC, A14  
VDD  
A12  
R
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
64Mx16  
# of Bank  
8
BA0, BA1, BA2  
A10/AP  
Bank Address  
Auto Precharge Flag  
Row Address  
A0 - A12  
A0-A9  
Column Address  
Page size  
2 KB  
Rev. 0.7 / Nov. 2008  
8
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
1.3 PIN DESCRIPTION  
PIN  
TYPE  
DESCRIPTION  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled  
on the crossing of the positive edge of CK and negative edge of CK. Output (read) data is refer-  
enced to the crossings of CK and CK (both directions of crossing).  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device  
input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER DOWN and SELF  
REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank). CKE is  
synchronous for POWER DOWN entry and exit, and for SELF REFRESH entry. CKE is asynchro-  
nous for SELF REFRESH exit. After VREF has become stable during the power on and initialization  
sequence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh  
entry and exit, VREF must be maintained to this input. CKE must be maintained HIGH throughout  
READ and WRITE accesses. Input buffers, excluding CK, CK and CKE are disabled during POWER  
DOWN. Input buffers, excluding CKE are disabled during SELF REFRESH.  
CKE  
CS  
Input  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external  
bank selection on systems with multiple banks. CS is considered part of the command code.  
Input  
Input  
On Die Termination Control: ODT (registered HIGH) enables on die termination resistance  
internal to the DDR2 SDRAM. When enabled, ODT is only applied to DQ, DQS, DQS, RDQS,  
RDQS, and DM signal for x4,x8 configurations. For x16 configuration ODT is applied to each DQ,  
UDQS/UDQS.LDQS/LDQS, UDM and LDM signal. The ODT pin will be ignored if the Extended  
Mode Register(EMR(1)) is programmed to disable ODT.  
ODT  
RAS, CAS, WE  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input Data is masked when DM is  
sampled High coincident with that input data during a WRITE access. DM is sampled on both  
edges of DQS, Although DM pins are input only, the DM loading matches the DQ and DQS load-  
ing. For x8 device, the function of DM or RDQS/ RDQS is enabled by EMR command to EMR(1).  
DM  
(LDM, UDM)  
Bank Address Inputs: BA0 - BA2 define to which bank an ACTIVE, Read, Write or PRECHARGE  
command is being applied (For 256Mb and 512Mb, BA2 is not applied). Bank address also deter-  
mines if one of the mode register or extended mode register is to be accessed during a MR or  
EMR command cycle.  
BA0 - BA2  
Input  
Input  
Address Inputs: Provide the row address for ACTIVE commands, and the column address and  
AUTO PRECHARGE bit for READ/WRITE commands to select one location out of the memory  
array in the respective bank. A10 is sampled during a precharge command to determine whether  
the PRECHARGE applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to  
be precharged, the bank is selected by BA0-BA2. The address inputs also provide the op code  
during MRS or EMRS commands.  
A0 -A15  
DQ  
Input/Output Data input / output: Bi-directional data bus  
Data Strobe: Output with read data, input with write data. Edge aligned with read data, cen-  
tered in write data. For the x16, LDQS correspond to the data on DQ0~DQ7; UDQS corresponds  
to the data on DQ8~DQ15. For the x8, an RDQS option using DM pin can be enabled via the  
EMR(1) to simplify read timing. The data strobes DQS, LDQS, UDQS, and RDQS may be used in  
single ended mode or paired with optional complementary signals DQS, LDQS,UDQS and RDQS  
to provide differential pair signaling to the system during both reads and writes. An EMR(1) con-  
trol bit enables or disables all complementary data strobe signals.  
DQS, (DQS)  
(UDQS),(UDQS)  
(LDQS),(LDQS)  
(RDQS),(RDQS)  
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMR(1)  
x4 DQS/DQS  
Input/Output  
x8 DQS/DQS  
if EMR(1)[A11] = 0  
if EMR(1)[A11] = 1  
x8 DQS/DQS, RDQS/RDQS,  
x16 LDQS/LDQS and UDQS/UDQS  
"single-ended DQS signals" refers to any of the following with A10 = 1 of  
EMR(1)  
x4 DQS  
x8 DQS  
x8 DQS, RDQS,  
if EMR(1)[A11] = 0  
if EMR(1)[A11] = 1  
x16 LDQS and UDQS  
Rev. 0.7 / Nov. 2008  
9
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
-Continued-  
PIN  
TYPE  
DESCRIPTION  
NC  
VDDQ  
VSSQ  
VDDL  
VSSDL  
VDD  
No Connect: No internal electrical connection is present.  
DQ Power Supply: 1.8V +/- 0.1V  
DQ Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DLL Power Supply: 1.8V +/- 0.1V  
DLL Ground  
Power Supply: 1.8V +/- 0.1V  
Ground  
VSS  
VREF  
Reference voltage.  
Rev. 0.7 / Nov. 2008  
10  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
2. Maximum DC Ratings  
2.1 Absolute Maximum DC Ratings  
Symbol  
Parameter  
Rating  
Units  
Notes  
VDD  
- 1.0 V ~ 2.3 V  
V
1
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on VDDL pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
VDDQ  
VDDL  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
V
V
1
1
V
IN, VOUT  
V
1
TSTG  
°C  
1, 2  
Input leakage current; any input 0V VIN VDD;  
all other balls not under test = 0V)  
II  
-2 uA ~ 2 uA  
-5 uA ~ 5 uA  
uA  
uA  
Output leakage current; 0V VOUT VDDQ; DQ  
and ODT disabled  
IOZ  
Note:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement  
conditions. please refer to JESD51-2 standard.  
2.2 Operating Temperature Condition  
Symbol  
Parameter  
Rating  
Units  
Notes  
TOPER  
0 to 95  
°C  
1,2  
Operating Temperature  
Note:  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measure-  
ment conditions, please refer to JESD51-2 standard.  
2. At 85~95° TOPER , Double refresh rate(tREFI: 3.9us) is required, and to enter the self refresh mode at this tem-  
perature range it must be required an EMRS command to change itself refresh rate.  
Rev. 0.7 / Nov. 2008  
11  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
3. AC & DC Operating Conditions  
3.1 DC Operating Conditions  
3.1.1 Recommended DC Operating Conditions (SSTL_1.8)  
Rating  
Symbol  
Parameter  
Supply Voltage  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
1.7  
1.8  
1.9  
V
V
1
1.7  
1.8  
1.8  
1.9  
1,2  
1,2  
3,4  
5
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
Note:  
1. Min. Typ. and Max. values increase by 100mV for C3(DDR2-533 3-3-3) speed option.  
2. VDDQ tracks with VDD,VDDL tracks with VDD. AC parameters are measured with VDD,VDDQ and VDD.  
3. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the  
value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track varia-  
tions in VDDQ  
4. Peak to peak ac noise on VREF may not exceed +/-2% VREF (dc).  
5. VTT of transmitting device must track VREF of receiving device.  
3.1.2 ODT DC electrical characteristics  
PARAMETER/CONDITION  
SYMBOL MIN NOM MAX UNITS NOTES  
Rtt effective impedance value for EMR(A6,A2)=0,1; 75 ohm  
Rtt effective impedance value for EMR(A6,A2)=1,0; 150 ohm  
Rtt effective impedance value for EMR(A6,A2)=1,1; 50 ohm  
Deviation of VM with respect to VDDQ/2  
Rtt1(eff)  
Rtt2(eff)  
Rtt3(eff)  
delta VM  
60  
120  
40  
75  
150  
50  
90  
180  
60  
ohm  
ohm  
ohm  
%
1
1
1
1
-6  
+6  
Note:  
1. Test condition for Rtt measurements  
Measurement Definition for Rtt(eff): Apply VIH (ac) and VIL (ac) to test pin separately, then measure current I(VIH (ac))  
and I(VIL(ac)) respectively. VIH (ac), VIL (ac), and VDDQ values defined in SSTL_18  
V
IH (ac) - VIL (ac)  
Rtt(eff) =  
I(VIH (ac)) - I(VIL (ac))  
Measurement Definition for VM: Measurement Voltage at test pin (mid point) with no load.  
2 x Vm  
delta VM =(  
- 1) x 100%  
VDDQ  
Rev. 0.7 / Nov. 2008  
12  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
3.2 DC & AC Logic Input Levels  
3.2.1 Input DC Logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
Notes  
VIH(dc)  
VREF + 0.125  
VDDQ + 0.3  
V
dc input logic HIGH  
dc input logic LOW  
VIL(dc)  
- 0.3  
VREF - 0.125  
V
3.2.2 Input AC Logic Level  
DDR2 400,533  
DDR2 667,800  
Symbol  
Parameter  
Units  
Min.  
Max.  
Min.  
Max.  
V
IH (ac)  
VREF + 0.250  
-
VREF + 0.200  
-
-
V
V
ac input logic HIGH  
ac input logic LOW  
VIL (ac)  
-
VREF - 0.250  
VREF - 0.200  
3.2.3 AC Input Test Conditions  
Symbol  
Condition  
Input reference voltage  
Value  
Units  
Notes  
VREF  
0.5 * VDDQ  
1.0  
V
V
1
VSWING(MAX)  
SLEW  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1
1.0  
V/ns  
2, 3  
Note:  
1. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device  
under test.  
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(ac) min for rising  
edges and the range from VREF to VIL(ac) max for falling edges as shown in the figure below.  
3. AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions  
and VIH(ac) to VIL(ac) on the negative transitions.  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VREF  
VSWING(MAX)  
V
IL(dc) max  
VIL(ac) max  
VSS  
delta TF  
delta TR  
VREF - VIL(ac) max  
delta TF  
VIH(ac) min - VREF  
Falling Slew =  
Rising Slew =  
delta TR  
< Figure: AC Input Test Signal Waveform>  
Rev. 0.7 / Nov. 2008  
13  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
3.2.4 Differential Input AC logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units Notes  
VID (ac)  
0.5  
VDDQ + 0.6  
V
V
1
2
ac differential input voltage  
ac differential cross point voltage  
VIX (ac)  
0.5 * VDDQ - 0.175 0.5 * VDDQ + 0.175  
Note:  
1. VIN(DC) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS, LDQS,  
LDQS, UDQS and UDQS.  
2. VID(DC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input  
(such as CK, DQS, LDQS or UDQS) level and VCP is the complementary input (such as CK, DQS, LDQS or UDQS)  
level.  
The minimum value is equal to VIH(DC) - V IL(DC).  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
Note:  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input sig-  
nal  
(such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS).  
The minimum value is equal to V IH(AC) - V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is  
expected to track variations in VDDQ. VIX(AC) indicates the voltage at which differential input signals must cross.  
3.2.5 Differential AC output parameters  
Symbol  
Parameter  
Min.  
Max.  
Units Notes  
VOX (ac)  
0.5 * VDDQ - 0.125 0.5 * VDDQ + 0.125  
V
1
ac differential cross point voltage  
Note:  
1. The typical value of VOX(AC) is expected to be about 0.5 * V DDQ of the transmitting device and VOX(AC) is  
expected to track variations in VDDQ. VOX(AC) indicates the voltage at w hich differential output signals must  
cross.  
Rev. 0.7 / Nov. 2008  
14  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
3.3 Output Buffer Characteristics  
3.3.1 Output AC Test Conditions  
Symbol  
Parameter  
SSTL_18 Class II  
Units  
Notes  
VOTR  
Output Timing Measurement Reference Level  
0.5 * VDDQ  
V
1
Note:  
1. The VDDQ of the device under test is referenced.  
3.3.2 Output DC Current Drive  
Symbol  
IOH(dc)  
IOL(dc)  
Parameter  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
SSTl_18  
- 13.4  
Units  
mA  
Notes  
1, 3, 4  
2, 3, 4  
13.4  
mA  
Note:  
1. VDDQ = 1.7 V; VOUT = 1420 mV. (VOUT - VDDQ)/IOH must be less than 21 ohm for values of VOUT between VDDQ  
and VDDQ - 280 mV.  
2. VDDQ = 1.7 V; VOUT = 280 mV. VOUT/IOL must be less than 21 ohm for values of VOUT between 0 V and 280 mV.  
3. The dc value of VREF applied to the receiving device is set to VTT  
4. The values of IOH(dc) and IOL(dc) are based on the conditions given in Notes 1 and 2. They are used to test  
device drive current capability to ensure VIH min plus a noise margin and VIL max minus a noise margin are  
delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating  
point (see Section 3.3) along a 21 ohm load line to define a convenient driver current for measurement.  
Rev. 0.7 / Nov. 2008  
15  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
3.3.3 OCD default characteristics  
Description  
Parameter  
Min  
Nom  
Max  
Unit  
ohms  
ohms  
ohms  
V/ns  
Notes  
Output impedance  
-
0
-
-
1.5  
4
1
6
Output impedance step size for OCD calibration  
Pull-up and pull-down mismatch  
Output slew rate  
0
1,2,3  
Sout  
1.5  
-
5
1,4,5,6,7,8  
Note :  
1. Absolute Specifications ( Toper; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
2. Impedance measurement condition for output source dc current: VDDQ=1.7V; VOUT=1420mV; (VOUT-  
VDDQ)/Ioh must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ-280mV.  
Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV; VOUT/Iol must be  
less than 23.4 ohms for values of VOUT between 0V and 280mV.  
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
4. Slew rate measured from vil(ac) to vih(ac).  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as  
measured from AC to AC. This is guaranteed by design and characterization.  
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process  
corners/variations and represents only the DRAM uncertainty. A 0 ohm value(no calibration) can only be achieved  
if the OCD impedance is 18 ohms +/- 0.75 ohms under nominal conditions.  
Output Slew rate load:  
VTT  
25 ohms  
Reference  
point  
Output  
(Vout)  
7. DRAM output slew rate specification applies to 400, 533 and 667 MT/s speed bins.  
8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in  
tDQSQ and tQHS specification.  
Rev. 0.7 / Nov. 2008  
16  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
3.4 IDD Specifications & Test Conditions  
IDD Specifications(max)  
DDR2  
400  
DDR2 533  
DDR2 667  
DDR2 800  
Units  
Symbol  
x4/x8  
x4/x8  
x16  
x4/x8  
x16  
x4/x8  
x16  
IDD0  
IDD1  
60  
65  
75  
85  
70  
90  
75  
95  
mA  
70  
10  
110  
10  
80  
10  
115  
10  
85  
10  
120  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
10  
22  
27  
27  
30  
30  
32  
32  
30  
35  
35  
40  
40  
45  
45  
F
S
20  
20  
20  
25  
25  
25  
25  
IDD3P  
12  
12  
12  
12  
12  
12  
12  
IDD3N  
IDD4W  
IDD4R  
IDD5  
35  
45  
45  
50  
50  
55  
55  
100  
100  
165  
10  
125  
125  
165  
10  
160  
160  
165  
10  
155  
150  
175  
10  
210  
195  
175  
10  
180  
170  
180  
10  
240  
225  
175  
10  
Normal  
IDD6  
Low  
power  
5
5
5
5
5
5
5
mA  
mA  
IDD7  
165  
175  
260  
200  
265  
235  
295  
Rev. 0.7 / Nov. 2008  
17  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
IDD Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1-5)  
Symbol  
IDD0  
Conditions  
Units  
t
t
t
t
t
t
Operating one bank active-precharge current; CK = CK(IDD), RC = RC(IDD), RAS = RAS  
min(IDD); CKE is HIGH, CS is HIGH between valid commands;Address bus inputs are SWITCH-  
ING;Data bus inputs are SWITCHING  
mA  
Operating one bank active-read-precharge current; IOUT = 0mA;BL = 4, CL = CL(IDD), AL  
t
t
t
t
t
t
t
t
= 0; CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD = RCD(IDD); CKE is HIGH, CS  
is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as  
IDD4W  
IDD1  
mA  
t
t
Precharge power-down current; All banks idle; CK = CK(IDD); CKE is LOW; Other control and  
IDD2P  
IDD2Q  
IDD2N  
mA  
mA  
mA  
address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge quiet standby current;All banks idle; CK = CK(IDD);CKE is HIGH, CS is HIGH;  
Other control and address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge standby current; All banks idle; CK = CK(IDD); CKE is HIGH, CS is HIGH; Other  
control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
mA  
mA  
Active power-down current; All banks open; CK = CK(IDD);  
CKE is LOW; Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
Fast PDN Exit MR(12) = 0  
Slow PDN Exit MR(12) = 1  
IDD3P  
IDD3N  
IDD4W  
t
t
t
t
t
Active standby current; All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP  
t
mA  
mA  
= RP(IDD); CKE is HIGH, CS is HIGH between valid commands; Other control and address bus  
inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst write current; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD),  
AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH between  
valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
t
t
t
t
Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL  
t
t
t
t
t
t
= CL(IDD), AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is  
HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as  
IDD4W  
IDD4R  
mA  
t
t
t
Burst refresh current; CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is  
HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCH-  
ING; Data bus inputs are SWITCHING  
IDD5B  
IDD6  
mA  
mA  
Self refresh current; CK and CK at 0V; CKE 0.2V; Other control and address bus inputs are  
FLOATING; Data bus inputs are FLOATING  
Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL  
t
t
t
t
t
t
t
t
= CL(IDD), AL = RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC = RC(IDD), RRD = RRD(IDD),  
IDD7  
t
t
mA  
RCD = 1* CK(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are  
STABLE during DESELECTs; Data pattern is same as IDD4R; - Refer to the following page for  
detailed timing conditions  
Rev. 0.7 / Nov. 2008  
18  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Note :  
1. VDDQ = 1.8 +/- 0.1V ; VDD = 1.8 +/- 0.1V (exclusively VDDQ = 1.9 +/- 0.1V ; VDD = 1.9 +/- 0.1V for C3 speed  
grade)  
2. IDD specifications are tested after the device is properly initialized  
3. Input slew rate is specified by AC Parametric Test Condition  
4. IDD parameters are specified with ODT disabled.  
5. Data bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS, and UDQS. IDD values must be met  
with all combinations of EMR bits 10 and 11.  
6. For DDR2-667/800 testing, tCK in the COnditions should be interpreted as tCK (avg).  
7. Definitions for IDD  
LOW is defined as Vin VILAC (max)  
HIGH is defined as Vin VIHAC (min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as: inputs changing between HIGH and LOW every other clock cycle (once per two clocks)  
for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per  
clock) for DQ signals not including masks or strobes.  
Rev. 0.7 / Nov. 2008  
19  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
IDD Testing Parameters  
For purposes of IDD testing, the following parameters are to be utilized.  
DDR2-800  
DDR2-  
667  
DDR2-  
533  
DDR2-  
400  
Parameter  
5-5-5  
6-6-6  
6
5-5-5  
5
4-4-4  
4
3-3-3  
3
Units  
CL(IDD)  
5
tCK  
t
12.5  
15  
15  
15  
15  
RCD(IDD)  
ns  
ns  
t
57.5  
7.5  
60  
60  
60  
RC(IDD)  
55  
t
7.5  
ns  
ns  
RRD(IDD)-x4/x8  
7.5  
7.5  
7.5  
t
10  
5
RRD(IDD)-x16  
10  
10  
10  
3
10  
t
2.5  
2.5  
3.75  
CK(IDD)  
ns  
ns  
t
45  
70000  
12.5  
75  
45  
70000  
15  
45  
70000  
15  
45  
70000  
15  
40  
RASmin(IDD)  
t
70000  
15  
ns  
ns  
ns  
ns  
ns  
ns  
RASmax(IDD)  
t
RP(IDD)  
t
t
75  
75  
75  
75  
RFC(IDD)-256Mb  
105  
105  
105  
105  
105  
127.5  
197.5  
RFC(IDD)-512Mb  
t
t
127.5  
197.5  
127.5  
197.5  
127.5  
197.5  
127.5  
197.5  
RFC(IDD)-1Gb  
RFC(IDD)-2Gb  
Detailed IDD7  
The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the  
specification.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
t
t
All banks are being interleaved at minimum RC(IDD) without violating RRD(IDD) and tFAW (IDD) using a burst length  
of 4. Control and address bus inputs are STABLE during DESELECTs. IOUT = 0mA  
Timing Patterns for 4 bank devices x4/ x8/ x16  
-DDR2-400 4/4/4: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D D  
-DDR2-400 3/3/3: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D  
-DDR2-533 4/4/4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D  
-DDR2-533 3/3/3: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D  
-DDR2-667 5/5/5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D  
-DDR2-667 4/4/4: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D  
-DDR2-800 6/6/6: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D D  
-DDR2-800 5/5/5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D  
-DDR2-800 4/4/4: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D  
Timing Patterns for 8 bank devices x4/8  
-DDR2-400 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 A4 RA4 A5 RA5 A6 RA6 A7 RA7  
-DDR2-533 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
-DDR2-667 all bins: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D  
-DDR2-800 all bins: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D  
Rev. 0.7 / Nov. 2008  
20  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Timing Patterns for 8 bank devices x16  
-DDR2-400 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
-DDR2-533 all bins: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 D A6 RA6 D A7 RA7 D D D  
-DDR2-667 all bins: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7  
D D D  
-DDR2-800 all bins: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7  
D D D D  
3.5. Input/Output Capacitance  
DDR2 400  
DDR2 533  
DDR2 667  
DDR2 800  
Parameter  
Symbol  
Units  
Min  
1.0  
x
Max  
Min  
1.0  
x
Max  
Min  
1.0  
x
Max  
Input capacitance, CK and CK  
Input capacitance delta, CK and CK  
CCK  
CDCK  
CI  
2.0  
0.25  
2.0  
2.0  
0.25  
2.0  
2.0  
0.25  
1.75  
0.25  
3.5  
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
1.0  
x
1.0  
x
CDI  
0.25  
4.0  
0.25  
3.5  
CIO  
2.5  
x
2.5  
x
2.5  
x
CDIO  
0.5  
0.5  
0.5  
Rev. 0.7 / Nov. 2008  
21  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
4. Electrical Characteristics & AC Timing Specification  
(T  
; V  
= 1.8 +/- 0.1V; V = 1.8 +/- 0.1V)  
OPER  
DDQ DD  
Refresh Parameters by Device Density  
Symbol  
Parameter  
256Mb 512Mb 1Gb 2Gb 4Gb Units Notes  
Refresh to Active/Refresh  
command time  
tRFC  
75  
105  
127.5 195 327.5  
ns  
1
0 TCASE 85℃  
85TCASE 95℃  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
us  
us  
1
Average periodic  
refresh interval  
tREFI  
1,2  
Note:  
1: If refresh timing is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be  
executed.  
2. This is an optional feature. For detailed information, please refer to “operating temperature condition” in this data sheet.  
DDR2 SDRAM speed bins and tRCD, tRP and tRC for corresponding bin  
Speed  
DDR2-800  
DDR2-667  
DDR2-533 DDR2-400 Units Notes  
Parameter  
min  
min  
6-6-6  
6
min  
min  
5-5-5  
5
min  
4-4-4  
4
min  
3-3-3  
3
Bin(CL-tRCD-tRP)  
CAS Latency  
tRCD  
5-5-5  
5
4-4-4  
4
tCK  
ns  
12.5  
12.5  
45  
15  
12  
15  
15  
15  
2
2
tRP*1  
15  
12  
15  
15  
15  
ns  
tRAS  
45  
45  
57  
45  
45  
40  
ns  
2,3  
2
tRC  
57.5  
60  
60  
60  
55  
ns  
Note:  
1. 8 bank device Precharge All Allowance: tRP for a Precharge All command for an 8 Bank device will equal to tRP+1*tCK, where tRP  
are the values for a single bank Precharge, which are shown in the table above.  
2. Refer to Specific Notes 32.  
3. Refer to Specific Notes 3.  
Rev. 0.7 / Nov. 2008  
22  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Timing Parameters by Speed Grade (DDR2-400 and DDR2-533)  
DDR2-400  
DDR2-533  
Symbol  
Unit  
Note  
Parameter  
min  
max  
+600  
+500  
0.55  
0.55  
-
min  
max  
+500  
+450  
0.55  
0.55  
-
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK HIGH pulse width  
tAC  
-600  
-500  
0.45  
0.45  
-500  
-450  
0.45  
0.45  
ps  
ps  
tDQSCK  
tCH  
tCK  
tCK  
ps  
CK LOW pulse width  
tCL  
tHP  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
11,12  
15  
CK half period  
Clock cycle time, CL=x  
tCK  
5000  
150  
8000  
-
3750  
100  
8000  
-
ps  
ps  
6,7,8,20  
,28  
DQ and DM input setup time(differential strobe)  
tDS(base)  
6,7,8,21  
,28  
DQ and DM input hold time(differential strobe)  
tDH(base)  
275  
-
225  
-
ps  
DQ and DM input setup time(single ended strobe)  
DQ and DM input hold time(single ended strobe)  
tDS(base)  
tDH(base)  
25  
25  
-
-
-25  
-25  
-
-
ps  
ps  
6,7,8,25  
6,7,8,26  
Control & Address input pulse width for each  
input  
tIPW  
0.6  
-
0.6  
-
tCK  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
tDIPW  
tHZ  
0.35  
-
-
0.35  
-
-
tCK  
ps  
tAC max  
tAC max  
18  
18  
tLZ  
(DQS)  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
tAC min  
2*tAC min  
-
tAC max  
tAC max  
350  
tAC min  
2*tAC min  
-
tAC max  
tAC max  
300  
ps  
ps  
ps  
tLZ  
(DQ)  
18  
DQS-DQ skew for DQS and associated DQ  
signals  
tDQSQ  
13  
12  
DQ hold skew factor  
tQHS  
tQH  
-
tHP - tQHS  
WL - 0.25  
0.35  
0.35  
0.2  
450  
-
tHP - tQHS  
WL - 0.25  
0.35  
0.35  
0.2  
400  
ps  
DQ/DQS output hold time from DQS  
Write command to first DQS latching transition  
DQS input HIGH pulse width  
DQS input LOW pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write preamble  
-
-
ps  
tDQSS  
tDQSH  
tDQSL  
tDSS  
tDSH  
tMRD  
tWPRE  
tWPST  
tIS  
WL + 0.25  
WL + 0.25  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ps  
-
-
-
-
-
-
0.2  
-
-
0.2  
-
-
2
2
0.35  
0.4  
-
0.35  
0.4  
-
Write postamble  
0.6  
-
0.6  
-
10  
5,7,9,23  
5,7,9,23  
19  
Address and control input setup time  
Address and control input hold time  
Read preamble  
350  
250  
tIH  
475  
-
375  
-
ps  
tRPRE  
tRPST  
0.9  
1.1  
0.6  
0.9  
1.1  
0.6  
tCK  
tCK  
Read postamble  
0.4  
0.4  
19  
Active to active command period for 1KB  
page size products (x4, x8)  
ns  
ns  
4
tRRD  
tRRD  
7.5  
10  
-
-
7.5  
10  
-
-
Active to active command period for 2KB  
page size products (x16)  
4
Rev. 0.7 / Nov. 2008  
23  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
-Continued-  
DDR2-400  
DDR2-533  
Symbol  
Units  
Notes  
Parameter  
min  
max  
min  
max  
Four Active Window for 1KB page size  
products  
ns  
ns  
tFAW  
tFAW  
37.5  
50  
-
37.5  
-
Four Active Window for 2KB page size  
products  
-
50  
-
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
2
tCK  
ns  
15  
-
-
-
15  
-
-
-
Auto precharge write recovery +  
precharge time  
tDAL  
WR+tRP*  
WR+tRP*  
tCK  
14  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tWTR  
tRTP  
10  
7.5  
7.5  
7.5  
ns  
ns  
24  
3
tXSNR  
tXSRD  
tRFC + 10  
200  
tRFC + 10  
200  
ns  
-
-
-
-
tCK  
Exit precharge power down to any non-  
read command  
tXP  
2
2
2
2
tCK  
tCK  
tCK  
Exit active power down to read command  
tXARD  
tXARDS  
1
Exit active power down to read command  
(Slow exit, Lower power)  
6 - AL  
6 - AL  
1, 2  
CKE minimum pulse width  
(HIGH and LOW pulse width)  
tCKE  
tAOND  
tAON  
3
2
3
2
tCK  
tCK  
ns  
27  
16  
16  
ODT turn-on delay  
ODT turn-on  
2
2
tAC(max)  
+1  
tAC(max)  
+1  
tAC(min)  
tAC(min)  
2tCK+tAC  
(max)  
+1  
tAC(min)+  
2
tAC(min)+  
2
2tCK+tA  
C(max)+1  
ODT turn-on(Power-Down mode)  
tAONPD  
ns  
ODT turn-off delay  
ODT turn-off  
tAOFD  
tAOF  
2.5  
2.5  
2.5  
2.5  
tCK  
ns  
17,44  
17,44  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
tAC(min)  
tAC(min)  
2.5tCK+t  
AC(max)  
+1  
tAC(min)+  
2
2.5tCK+tA  
C(max)+1  
tAC(min)+  
2
ODT turn-off (Power-Down mode)  
tAOFPD  
ns  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
tCK  
tCK  
ns  
12  
12  
Minimum time clocks remains ON after  
CKE asynchronously drops LOW  
tIS+tCK+tI  
H
tIS+tCK+tI  
H
tDelay  
ns  
15  
Rev. 0.7 / Nov. 2008  
24  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
(DDR2-667 and DDR2-800)  
DDR2-667  
DDR2-800  
Symbol  
Unit  
Note  
Parameter  
min  
max  
+450  
+400  
0.52  
min  
-400  
-350  
0.48  
0.48  
max  
+400  
+350  
0.52  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK HIGH pulse width  
tAC  
-450  
-400  
0.48  
0.48  
ps  
40  
40  
tDQSCK  
tCH(avg)  
tCL(avg)  
ps  
tCK(avg)  
tCK(avg)  
35,36  
35,36  
CK LOW pulse width  
0.52  
0.52  
min(tCL(abs),  
tCH(abs))  
min(tCL(abs),  
tCH(abs))  
CK half period  
tHP  
-
-
ps  
37  
Clock cycle time, CL=x  
tCK(avg)  
3000  
8000  
2500  
8000  
ps  
35,36  
DQ and DM input setup time  
DQ and DM input hold time  
tDS(base)  
tDH(base)  
100  
-
50  
-
ps  
6,7,8,20,28,31  
6,7,8,21,28,31  
175  
-
125  
-
ps  
Control & Address input pulse width for each input tIPW  
0.6  
-
-
0.6  
-
-
tCK(avg)  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
DQS-DQ skew for DQS and associated DQ signals  
DQ hold skew factor  
tDIPW  
tHZ  
0.35  
0.35  
tCK(avg)  
-
tAC max  
tAC max  
tAC max  
240  
-
tAC max  
tAC max  
tAC max  
200  
ps  
ps  
ps  
ps  
ps  
ps  
18,40  
18,40  
18,40  
13  
tLZ(DQS)  
tLZ(DQ)  
tDQSQ  
tQHS  
tAC min  
tAC min  
2*tAC min  
2*tAC min  
-
-
-
340  
-
300  
38  
DQ/DQS output hold time from DQS  
tQH  
tHP - tQHS  
-
tHP - tQHS  
-
39  
First DQS latching transition to associated clock  
edge  
tDQSS  
- 0.25  
+ 0.25  
- 0.25  
+ 0.25  
tCK(avg)  
30  
DQS input HIGH pulse width  
DQS input LOW pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write preamble  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
-
0.35  
0.35  
0.2  
0.2  
2
-
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
ps  
-
-
-
-
30  
30  
tDSH  
-
-
tMRD  
-
-
-
-
tWPRE  
tWPST  
tIS(base)  
tIH(base)  
tRPRE  
tRPST  
tRAS  
0.35  
0.4  
200  
275  
0.9  
0.4  
45  
0.35  
0.4  
175  
250  
0.9  
0.4  
45  
Write postamble  
0.6  
-
0.6  
-
10  
5,7,9,22,29  
5,7,9,23,29  
19,41  
Address and control input setup time  
Address and control input hold time  
Read preamble  
-
-
ps  
1.1  
0.6  
70000  
1.1  
0.6  
70000  
tCK(avg)  
tCK(avg)  
ns  
Read postamble  
19,42  
Activate to precharge command  
3
Active to active command period for 1KB page size  
products (x4, x8)  
tRRD  
tRRD  
7.5  
10  
-
-
7.5  
10  
-
-
ns  
ns  
4,32  
4,32  
Active to active command period for 2KB page size  
products (x16)  
Four Active Window for 1KB page size products  
Four Active Window for 2KB page size products  
CAS to CAS command delay  
tFAW  
tFAW  
tCCD  
tWR  
37.5  
-
-
35  
-
-
ns  
ns  
32  
32  
50  
45  
2
15  
2
15  
nCK  
ns  
Write recovery time  
-
-
-
-
32  
33  
Auto precharge write recovery + precharge time  
tDAL  
WR+tnRP  
WR+tnRP  
nCK  
Rev. 0.7 / Nov. 2008  
25  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
-Continued-  
DDR2-667  
DDR2-800  
Symbol  
Unit  
Notes  
Parameter  
min  
max  
min  
7.5  
max  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tWTR  
tRTP  
7.5  
7.5  
-
-
ns  
ns  
24,32  
3,32  
32  
7.5  
tXSNR  
tXSRD  
tRFC + 10  
200  
tRFC + 10  
200  
ns  
-
-
-
-
nCK  
Exit precharge power down to any non-read  
command  
tXP  
2
2
2
2
nCK  
nCK  
nCK  
Exit active power down to read command  
tXARD  
tXARDS  
1
Exit active power down to read command  
(Slow exit, Lower power)  
7 - AL  
8 - AL  
1, 2  
CKE minimum pulse width  
(HIGH and LOW pulse width)  
tCKE  
3
2
3
2
nCK  
nCK  
ns  
27  
16  
ODT turn-on delay  
ODT turn-on  
tAOND  
tAON  
2
2
tAC(max)  
+0.7  
tAC(max)  
+0.7  
tAC(min)  
tAC(min)  
6,16,40  
2tCK(avg)+  
tAC(max)+1  
tAC(min)  
+2  
2tCK(avg)+  
tAC(max)+1  
ODT turn-on(Power-Down mode)  
ODT turn-off delay  
tAONPD  
tAOFD  
tAOF  
tAC(min)+2  
2.5  
ns  
nCK  
ns  
2.5  
2.5  
2.5  
17,45  
tAC(max)  
+0.6  
17,43,4  
5
ODT turn-off  
tAC(min)  
tAC(max)+ 0.6  
tAC(min)  
tAC(min)  
+2  
2.5tCK(avg)+  
tAC(max)+1  
tAC(min)  
+2  
2.5tCK(avg)+  
tAC(max)+1  
ODT turn-off (Power-Down mode)  
tAOFPD  
ns  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
nCK  
nCK  
ns  
12  
12  
32  
15  
tIS + tCK  
(avg)  
+ tIH  
Minimum time clocks remains ON after CKE  
asynchronously drops LOW  
tIS + tCK (avg)  
+ tIH  
tDelay  
ns  
Rev. 0.7 / Nov. 2008  
26  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
General notes, which may apply for all AC parameters  
1. DDR2 SDRAM AC timing reference load  
The following figure represents the timing reference load used in defining the relevant timing parameters  
of the part. It is not intended to be either a precise representation of the typical system environment nor a  
depiction of the actual load presented by a production tester. System designers will use IBIS or other simula-  
tion tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their  
production test conditions (generally a coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
DQS  
Output  
DUT  
VTT = VDDQ/2  
RDQS  
RDQS  
Timing  
reference  
point  
25Ω  
AC Timing Reference Load  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output tim-  
ing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement  
(e.g. DQS) signal.  
2. Slew Rate Measurement Levels  
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for  
single ended signals. For differential signals (e.g. DQS - DQS) output slew rate is measured between  
DQS - DQS = -500 mV and DQS - DQS = +500mV. Output slew rate is guaranteed by design, but is  
not necessarily tested on each device.  
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VREF - 125 mV to  
VREF + 250 mV for rising edges and from VREF + 125 mV and VREF - 250 mV for falling edges.  
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV  
to CK - CK = +500 mV (+250mV to -500 mV for falling edges).  
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or  
between DQS and DQS for differential strobe.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown below.  
VDDQ  
DUT  
DQ  
Output  
DQS, DQS  
VTT = VDDQ/2  
RDQS, RDQS  
25Ω  
Test point  
Slew Rate Test Load  
Rev. 0.7 / Nov. 2008  
27  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the  
setting of the EMR “Enable DQS” mode bit; timing advantages of differential mode are realized in system  
design. The method by which the DDR2 SDRAM pin timings are measured is mode dependent. In single  
ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF.  
In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its com-  
plement, DQS. This distinction in timing methods is guaranteed by design and characterization. Note that  
when differential data strobe mode is disabled via the EMR, the complementary pin, DQS, must be tied exter-  
nally to VSS through a 20 to 10 Kresistor to insure proper operation.  
t
t
DQSL  
DQSH  
DQS  
DQS  
DQS/  
DQS  
t
t
WPST  
WPRE  
V
(dc)  
V
(ac)  
IH  
IH  
DQ  
DM  
D
D
D
t
D
t
V
(ac)  
V
(dc)  
IL  
IL  
t
t
DH  
DH  
DS  
DS  
V
(dc)  
V
(ac)  
IH  
IH  
DMin  
DMin  
DMin  
(ac)  
DMin  
(dc)  
V
IL  
V
IL  
Figure -- Data input (write) timing  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
t
QH  
QH  
Figure -- Data output (read) timing  
5. AC timings are for linear signal transitions. See System Derating for other signal transitions.  
6. All voltages referenced to VSS.  
7. These parameters guarantee device behavior, but they are not necessarily tested on each device. They  
may be guaranteed by device design or tester correlation.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal refer-  
ence/supply voltage levels, but the related specifications and device operation are guaranteed for the full  
voltage range specified.  
Rev. 0.7 / Nov. 2008  
28  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Specific Notes for dedicated AC parameters  
1. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be  
used for fast active power down exit timing. tXARDS is expected to be used for slow active power down exit  
timing where a lower power value is defined by each vendor data sheet.  
2. AL = Additive Latency  
3. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and  
tRAS(min) have been satisfied.  
4. A minimum of two clocks (2 * tCK or 2 * nCK) is required irrespective of operating frequency  
5. Timings are specified with command/address input slew rate of 1.0 V/ns. See System Derating for other  
slew rate values.  
6. Timings are guaranteed with DQs, DM, and DQS’s (DQS/RDQS in singled ended mode) input slew rate of  
1.0 V/ns. See System Derating for other slew rate values.  
7. Timings are specified with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals  
with a differential slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1V/ns in single ended  
mode. See System Derating for other slew rate values.  
8. tDS and tDH derating  
tDS, tDH Derating Values for DDR2-400, DDR2-533(ALL units in 'ps', Note 1 applies to entire Table)  
DQS, DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0 125  
45 125  
45 +125 +45  
21 +83 +21  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
83  
0
-
21  
0
-
83  
0
95  
12  
1
33  
12  
-2  
-
-
-
-
-
0
0
0
24  
13  
-1  
24  
10  
-7  
-
-
-
-
-
-
-
DQ  
Slew  
rate  
V/ns  
-11 -14 -11 -14  
25  
11  
-7  
22  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-25 -31 -13 -19  
23  
5
17  
-6  
-
-
-
-
-
-
-
-
-
-
-
-31 -42 -42 -19  
-8  
17  
-7  
6
-
-
-
-
-
-
-
-
-43 -59 -31 -47 -19 -35  
-23  
5
-11  
-
-
-
-
-74 -89 -62 -77 -50 -65 -38 -53  
tDS, tDH Derating Values for DDR2-667, DDR2-800(ALL units in 'ps', Note 1 applies to entire Table)  
DQS, DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0 100  
45 100  
45 100  
45  
21  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
67  
0
-
21  
0
-
67  
0
-5  
-
21  
67  
0
79  
12  
7
33  
12  
-2  
-
-
-
-
0
24  
19  
11  
2
24  
10  
-7  
-
-
-
-
-
-
-
-
DQ  
Slew  
rate  
V/ns  
-14  
-5  
-14  
31  
23  
14  
2
22  
5
-
-
-
-
-
-
-
-
-
-
-
-
-13 -31  
-1  
-19  
35  
26  
14  
17  
-6  
-35  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-10 -42  
-30  
-18  
-47  
38  
26  
0
6
-
-
-
-
-
-
-
-
-
-
-
-10 -59  
-23  
-65  
38  
12  
-11  
-53  
-
-
-
-
-
-
-
-24 -89 -12 -77  
-
-
-
-
-
-52 -140 -40 -128 -28 -116  
1) For all input signals the total tDS(setup time) and tDH(hold time) required is calculated by adding the datasheet value to the derating  
Rev. 0.7 / Nov. 2008 29  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
tDS, tDH Derating Values for DDR2-400, DDR2-533(ALL units in 'ps', Note 1 applies to entire Table)  
DQS, DQS Single-ended Slew Rate  
1.8 V/ns 1.6 V/ns 1.4 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0 188 188 167 146 125  
63  
42  
0
-
-
43  
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5 146 167 125 125  
83  
0
81  
-2  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
63 125  
42  
31  
-
83  
69  
-
-7  
-13  
DQ  
Slew  
rate  
V/ns  
-
-
-
-
-
-
-
-
-
-
-
-
-11 -14 -13 -13 -18 -27 -29 -45  
-25 -31 -27 -30 -32 -44 -43 -62 -60 -86  
-
-
-
-
-
-
-
-
-
-
-45 -53 -50 -67 -61 -85 -78 -109 -108 -152  
-
-
-
-
-
-
-
-
-74 -96 -85 -114 -102 -138 -132 -181 -183 -248  
-
-
-
-
-
-
-128 -156 -145 -180 -175 -223 -226 -288  
-210 -243 -240 -286 -291 -351  
-
-
-
-
value listed in Table x.  
Setup(tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing  
of Vih(ac)min. Setup(tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and the  
first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line between shaded ‘ VREF(dc) to ac region’,  
use nominal slew rate for derating value(see Fig a.) If the actual signal is later than the nominal slew rate line anywhere between shaded  
‘VREF(dc) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value(see Fig b.)  
Hold(tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc) max and the first crossing  
of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vih(dc) min and the  
first crossing of VREF(dc). If the actual signal is always later than the nominal slew rate line anywhere between shaded ‘dc to VREF(dc)  
region’, the slew rate of a tangent line to the actual signal from the dc level to VREF(dc) level is used for derating value(see Fig c.) If the  
actual signal is earlier than the nominal slew rate line anywhere between shaded ‘dc to VREF(dc) region’, the slew rate of a tangent line  
to the actual signal from the dc level to VREF(dc) level is used for derating value(see Fig d.)  
Although for slow slew rates the total setup time might be negative(i.e. a valid input signal will not have reached VIH/IL(ac) at the time  
of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).  
For slew rate in between the values listed in table x, the derating valued may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Rev. 0.7 / Nov. 2008  
30  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Fig. a. Illustration of nominal slew rate for tIS,tDS  
CK,DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VREF to ac  
region  
VIL(ac)max  
Vss  
Delta TF  
Delta TR  
Setup Slew Rate  
Falling Signal  
V
REF(dc)-VIL(ac)max  
Setup Slew Rate  
Rising Signal  
VIH(ac)min-VREF(dc)  
Delta TR  
=
=
Delta TF  
Rev. 0.7 / Nov. 2008  
31  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Fig. b. Illustration of tangent line for tIS,tDS  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
nominal  
line  
VIH(ac)min  
VIH(dc)min  
tangent  
line  
VREF(dc)  
Tangent  
line  
VIL(dc)max  
VREF to ac  
region  
VIL(ac)max  
Nomial  
line  
Vss  
Delta TR  
Setup Slew Rate  
Rising Signal  
Tangent line[VIH(ac)min-VREF(dc)]  
Delta TR  
=
Delta TF  
Tangent line[VREF(dc)-VIL(ac)max]  
Delta TF  
Setup Slew Rate  
Falling Signal  
=
Rev. 0.7 / Nov. 2008  
32  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Fig. c. Illustration of nominal line for tIH, tDH  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
dc to VREF  
region  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VIL(ac)max  
Vss  
Delta TR  
Hold Slew Rate  
Delta TF  
VIH(dc)min - VREF(dc)  
Delta TF  
Hold Slew Rate  
Rising Signal  
VREF(dc)-VIL(dc)max  
Delta TR  
=
=
Falling Signal  
Rev. 0.7 / Nov. 2008  
33  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Fig. d. Illustration of tangent line for tIH, tDH  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIS,  
tDS  
tIH,  
tDH  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
nominal  
line  
VIH(dc)min  
tangent  
line  
VREF(dc)  
dc to VREF  
region  
Tangent  
line  
nominal  
line  
VIL(dc)max  
VIL(ac)max  
Vss  
Delta TR  
Delta TF  
Hold Slew Rate Tangent line[VREF(dc)-VIL(ac)max]  
=
Rising Signal  
Delta TR  
Tangent line[VIH(ac)min-VREF(dc)]  
Delta TF  
Hold Slew Rate  
Falling Signal  
=
Rev. 0.7 / Nov. 2008  
34  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
9. tIS and tIH (input setup and hold) derating  
tIS, tIH Derating Values for DDR2-400, DDR2-533  
CK, CK Differential Slew Rate  
1.5 V/ns  
2.0 V/ns  
tIS  
1.0 V/ns  
tIS tIH  
tIH  
tIS  
tIH  
Units  
Notes  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+187  
+179  
+167  
+150  
+125  
+83  
+94  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
+124  
+119  
+113  
+105  
+75  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
+154  
+149  
+143  
+135  
+105  
+81  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+89  
+83  
+75  
+45  
+21  
0
+51  
+0  
+30  
+60  
-11  
-14  
+19  
+16  
+49  
+46  
Command /  
Address  
Slew  
-25  
-31  
+5  
-1  
+35  
+29  
-43  
-54  
-13  
-24  
+17  
+6  
rate(V/ns)  
-67  
-83  
-37  
-53  
-7  
-23  
-110  
-175  
-285  
-350  
-525  
-800  
-1450  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-80  
-95  
-80  
-65  
-145  
-255  
-320  
-495  
-770  
-1420  
-158  
-262  
-345  
-470  
-678  
-1095  
-115  
-225  
-290  
-465  
-740  
-1390  
-128  
-232  
-315  
-440  
-648  
-1065  
Rev. 0.7 / Nov. 2008  
35  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
tIS, tIH Derating Values for DDR2-667, DDR2-800  
CK, CK Differential Slew Rate  
1.5 V/ns  
2.0 V/ns  
tIS  
1.0 V/ns  
tIS tIH  
tIH  
tIS  
tIH  
Units  
Notes  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+15  
+94  
+180  
+173  
+163  
+150  
+130  
+97  
+30  
+25  
+17  
+8  
+124  
+119  
+113  
+105  
+75  
+210  
+203  
+193  
+180  
+150  
+127  
+60  
+154  
+149  
+143  
+135  
+105  
+81  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+143  
+133  
+120  
+100  
+67  
0
+89  
+83  
+75  
+45  
+21  
0
+51  
+30  
+60  
-5  
-14  
+16  
+55  
+46  
Command /  
Address  
Slew  
-13  
-31  
-1  
+47  
+29  
-22  
-54  
-24  
+38  
+6  
rate(V/ns)  
-34  
-83  
-4  
-53  
+26  
-23  
-60  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-30  
-95  
0
-65  
-100  
-168  
-200  
-325  
-517  
-1000  
-70  
-158  
-262  
-345  
-470  
-678  
-1095  
-40  
-128  
-232  
-315  
-440  
-648  
-1065  
-138  
-170  
-395  
-487  
-970  
-108  
-140  
-265  
-457  
-940  
1) For all input signals the total tIS(setup time) and tIH(hold) time) required is calculated by adding the  
datasheet value to the derating value listed in above Table.  
Setup(tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
V
(dc) and the first crossing of V (ac)min. Setup(tIS) nominal slew rate for a falling signal is defined as  
REF  
IH  
the slew rate between the last crossing of VREF(dc) and the first crossing of V (ac)max. If the actual signal is  
IL  
always earlier than the nominal slew rate for line between shaded ‘V (dc) to ac region, use nominal slew  
REF  
rate for derating value(see fig a.) If the actual signal is later than the nominal slew rate line anywhere  
between shaded ‘V (dc) to ac region, the slew rate of a tangent line to the actual signal from the ac level  
REF  
to dc level is used for derating value(see Fig b.)  
Hold(tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VIL(dc)max and the first crossing of V (dc). Hold(tIH) nominal slew rate for a falling signal is defined as the  
REF  
slew rate between the last crossing of V (dc). If the actual signalis always later than the nominal slew rate  
REF  
line between shaded ‘dc to V (dc) region, use nominal slew rate for derating value(see Fig.c) If the actual  
REF  
signal is earlier than the nominal slew rate line anywhere between shaded ‘dc to V (dc) region, the slew  
REF  
rate of a tangent line to the actual signal from the dc level to V (dc) level is used for derating value(see Fig  
REF  
d.)  
Although for slow rates the total setup time might be negative(i.e. a valid input signal will not have reached  
V
(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transi-  
IH/IL  
tion and reach V  
(ac).  
IH/IL  
For slew rates in between the values listed in table, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Rev. 0.7 / Nov. 2008  
36  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
10. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for  
this parameter, but system performance (bus turnaround) will degrade accordingly.  
11. MIN (t CL, t CH) refers to the smaller of the actual clock LOW time and the actual clock HIGH time as  
provided to the device (i.e. this value can be greater than the minimum specification limits for t CL and t CH).  
For example, t CL and t CH are = 50% of the period, less the half period jitter (t JIT(HP)) of the clock source,  
and less the half period jitter due to crosstalk (t JIT(crosstalk)) into the clock traces.  
12. t QH = t HP – t QHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock HIGH or clock LOW (tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the  
next transition, both of which are, separately, due to data pin skew and output pattern effects, and  
p-channel to n-channel variation of the output drivers.  
13. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the  
output drivers as well as output slew rate mismatch between DQS/ DQS and associated DQ in any given cycle.  
14. t DAL = (nWR) + (tRP/tCK):  
For each of the terms above, if not already an integer, round to the next highest integer. tCK refers to the appli-  
cation clock period. nWR refers to the t WR parameter stored in the MR.  
Example: For DDR533 at t CK = 3.75 ns with t WR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns)  
clocks =4 +(4)clocks=8clocks.  
15. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode.  
In case of clock frequency change during precharge power-down, a specific procedure is required as described  
in section 2.9.  
16. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
17. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
18. tHZ and tLZ transitions occur in the same access time as valid data transitions. Thesed parameters are  
referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or  
begins driving (tLZ). Below figure shows a method to calculate the point when device is no longer driving  
(tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage measure-  
ment points are not critical as long as the calculation is consistent.  
Rev. 0.7 / Nov. 2008  
37  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
19. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when  
the device output is no longer driving (tRPST), or begins driving (tRPRE). Below figure shows a method to  
calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE). Below Fig-  
ure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driv-  
ing (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are  
not critical as long as the calculation is consistent.  
VOH + xmV  
VTT + 2xmV  
VTT + xmV  
VOH + 2xmV  
tHZ  
tLZ  
tRPST end point  
tRPRE begin point  
T1  
T2  
VOL + 1xmV  
VOL + 2xmV  
VTT -xmV  
T1  
VTT - 2xmV  
T2  
tHZ , tRPST end point = 2*T1-T2  
tLZ , tRPRE begin point = 2*T1-T2  
20. Input waveform timing with differential data strobe enabled MR[bit10] =0, is referenced from the input  
signal crossing at the V (ac) level to the differential data strobe crosspoint for a rising signal, and from  
IH  
the input signal crossing at the V (ac) level to the differential data strobe crosspoint for a falling signal  
IL  
applied to the device under test.  
21. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input  
signal crossing at the V (dc) level to the differential data strobe crosspoint for a rising signal and V (dc)  
IH  
IL  
to the differential data strobe crosspoint for a falling signal applied to the device under test.  
Differential Input waveform timing  
DQS  
DQS  
tDS tDH  
tDS tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
VREF(dc)  
VIL(dc)max  
VIL(ac)max  
VSS  
Rev. 0.7 / Nov. 2008  
38  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
22. Input waveform timing is referenced from the input signal crossing at the V (ac) level for a rising sig-  
IH  
nal and V (ac) for a falling signal applied to the device under test.  
IL  
23. Input waveform timing is referenced from the input signal crossing at the V (dc) level for a rising sig-  
IL  
nal and V (dc) for a falling signal applied to the device under test.  
IH  
24. tWTR is at least two clocks (2 x tCK or 2 x nCK) independent of operation frequency.  
25. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the  
input signal crossing at the VIH (ac) level to the single-ended data strobe crossing VIH/L (dc) at the start  
of its transition for a rising signal, and from the input signal crossing at the VIL (ac) level to the single-  
ended data strobe crossing VIH/L (dc) at the start of its transition for a falling signal applied to the device  
under test. The DQS signal must be monotonic between Vil(dc)max and Vih (dc) min.  
26. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the  
input signal crossing at the VIH(dc) level to the single-ended data strobe crossing VIH/L(ac) at the end of  
its transition for a rising signal, and from the input signal crossing at the VIL(dc) level to the single-ended  
data strobe crossing VIH/L(ac) at the end of its transition for a falling signal applied to the device under  
test. The DQS signal must be monotonic between Vil(dc)max and Vih (dc) min.  
27. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE  
must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus,  
after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK  
+ tIH.  
28. If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data  
before a valid READ can be executed.  
29. These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0,  
A0, A1, etc.) transition edge to its respective clock signal (CK/CK) crossing. The spec values are not  
affected by the amount of clock jitter applied (i.e. tJIT (per), tJIT (cc), etc.), as the setup and hold are rel-  
ative to the clock signal crossing that latches the command/address. That is, these parameters should be  
met whether clock jitter is present or not.  
30. These parameters are measured from a data strobe signal ((L/U/R)DQS/DQS) crossing to its respective  
clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.  
tJIT (per), tJIT (cc), etc.), as these are relative to the clock signal crossing. That is, these parameters  
should be met whether clock jitter is present or not.  
31. These parameters are measured from a data signal ((L/U) DM, (L/U) DQ0, (L/U) DQ1, etc.) transition  
edge to its respective data strobe signal ((L/U/R)DQS/DQS) crossing.  
32. For these parameters, the DDR2 SDRAM device is characterized and verified to support  
tnPARAM = RU {tPARAM / tCK (avg)}, which is in clock cycles, assuming all input clock jitter specifications  
Rev. 0.7 / Nov. 2008  
39  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
are satisfied.  
For example, the device will support tnRP = RU {tRP / tCK (avg)}, which is in clock cycles, if all input clock  
jitter specifications are met. This means: For DDR2-667 5-5-5, of which tRP = 15ns, the device will support  
tnRP =RU {tRP / tCK (avg)} = 5, i.e. as long as the input clock jitter specifications are met, Precharge  
command at Tm and Active command at Tm+5 is valid even if (Tm+5 - Tm) is less than 15ns due to input  
clock jitter.  
33. tDAL [nCK] = WR [nCK] + tnRP [nCK] = WR + RU {tRP [ps] / tCK (avg) [ps]}, where WR is the value  
programmed in the mode register set.  
34. New units, ‘tCK (avg)’ and ‘nCK, are introduced in DDR2-667 and DDR2-800.  
Unit ‘tCK (avg)’ represents the actual tCK (avg) of the input clock under operation.  
Unit ‘nCK, represents one clock cycle of the input clock, counting the actual clock edges.  
Note that in DDR2-400 and DDR2-533, ‘tCK, is used for both concepts.  
ex) tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered  
at Tm+2, even if (Tm+2 - Tm) is 2 x tCK (avg) + tERR(2per),min.  
35. Input clock jitter spec parameter. These parameters and the ones in the table below are referred to as  
'input clock jitter spec parameters' and these parameters apply to DDR2-667 and DDR2-800 only. The jitter  
specified is a random jitter meeting a Gaussian distribution.  
DDR2-667  
DDR2-800  
Parameter  
Symbol  
tJIT (per)  
Units  
Notes  
min  
max  
125  
100  
250  
min  
max  
100  
80  
Clock period jitter  
-125  
-100  
-250  
-100  
-80  
ps  
ps  
ps  
35  
35  
35  
Clock period jitter during DLL locking period tJIT (per, lck)  
Cycle to cycle clock period jitter  
tJIT (cc)  
-200  
200  
Cycle to cycle clock period jitter during DLL  
locking period  
tJIT (cc, lck)  
-200  
200  
-160  
160  
ps  
35  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
-175  
-225  
-250  
-250  
175  
225  
250  
250  
-150  
-175  
-200  
-200  
150  
175  
200  
200  
ps  
ps  
ps  
ps  
35  
35  
35  
35  
Cumulative error across n cycles,  
n=6...10, inclusive  
tERR(6~10per)  
-350  
350  
-300  
300  
ps  
35  
Cumulative error across n cycles,  
n=11...50, inclusive  
tERR(11~50per)  
tJIT (duty)  
-450  
-125  
450  
125  
-450  
-100  
450  
100  
ps  
ps  
35  
35  
Duty cycle jitter  
Rev. 0.7 / Nov. 2008  
40  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
36. These parameters are specified per their average values, however it is understood that the following  
relationship between the average timing and the absolute instantaneous timing holds at all times. (Min and  
max of SPEC values are to be used for calculations in the table below.)  
Parameter  
Symbol  
min  
max  
Units  
Absolute clock period  
tCK (abs)  
tCK (avg), min + tJIT (per), min tCK (avg), max + tJIT (per), max  
ps  
tCH (avg), min* CK (avg), min + tCH (avg), max* tCK (avg), max  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
tCH (abs)  
tCL (abs)  
ps  
ps  
tJIT (per), min  
+ tJIT(per), max  
tCL (avg), min* tCK (avg), min + tCL (avg), max* tCK (avg), max +  
tJIT (per), min tJIT (per), max  
Example: For DDR2-667, tCH (abs), min = (0.48 x 3000 ps) - 125 ps = 1315 ps  
37. tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but  
not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing  
tQH.  
The value to be used for tQH calculation is determined by the following equation;  
tHP = Min (tCH (abs), tCL (abs)),  
where,  
tCH (abs) is the minimum of the actual instantaneous clock HIGH time;  
tCL (abs) is the minimum of the actual instantaneous clock LOW time;  
38. tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the  
input is transferred to the output; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next  
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and  
p-channel to n-channel variation of the output drivers  
39. tQH = tHP? tQHS, where:  
tHP is the minimum of the absolute half period of the actual input clock; and  
tQHS is the specification value under the max column.  
{The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye  
will be.}  
Examples:  
1) If the system provides tHP of 1315 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975 ps min-  
imum.  
2) If the system provides tHP of 1420 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 ps  
minimum.  
40. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per),min = - 272 ps and  
tERR(6-10per), max = + 293 ps, then tDQSCK, min (derated) = tDQSCK, min - tERR(6-10per),max = -  
400 ps - 293 ps = - 693 ps and tDQSCK, max (derated) = tDQSCK, max - tERR(6-10per),min = 400 ps +  
Rev. 0.7 / Nov. 2008  
41  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
272 ps = + 672 ps. Similarly, tLZ (DQ) for DDR2-667 derates to tLZ (DQ), min (derated) = - 900 ps - 293  
ps = - 1193 ps and tLZ (DQ), max (derated) = 450 ps + 272 ps = + 722 ps. (Caution on the min/max  
usage!)  
41. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tJIT (per) of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT (per), min = - 72 ps and tJIT (per),  
max = + 93 ps, then tRPRE, min (derated) = tRPRE, min + tJIT (per), min = 0.9 x tCK (avg) - 72 ps = +  
2178 ps and tRPRE, max (derated) = tRPRE, max + tJIT (per), max = 1.1 x tCK (avg) + 93 ps = + 2843  
ps. (Caution on the min/max usage!)  
42. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tJIT (duty) of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT (duty), min = - 72 ps and tJIT (duty),  
max = + 93 ps, then tRPST, min (derated) = tRPST, min + tJIT (duty), min = 0.4 x tCK (avg) - 72 ps = +  
928 ps and tRPST, max (derated) = tRPST, max + tJIT (duty), max = 0.6 x tCK (avg) + 93 ps = + 1592 ps.  
(Caution on the min/max usage!)  
43. When the device is operated with input clock jitter, this parameter needs to be derated by {-  
tJIT (duty), max - tERR(6-10per),max} and {- tJIT (duty), min - tERR(6-10per),min} of the actual input  
clock.(output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per),min = - 272 ps, tERR(6-  
10per), max = + 293 ps, tJIT (duty), min = - 106 ps and tJIT (duty), max = + 94 ps, then tAOF, min (der-  
ated) = tAOF, min + {- tJIT (duty), max - tERR(6-10per),max} = - 450 ps + {- 94 ps - 293 ps} = - 837 ps  
and tAOF, max (derated) = tAOF, max + {- tJIT (duty), min - tERR(6-10per),min} = 1050 ps + {106 ps +  
272 ps} = + 1428 ps. (Caution on the min/max usage!)  
44. For tAOFD of DDR2-400/533, the 1/2 clock of tCK in the 2.5 x tCK assumes a tCH, input clock HIGH  
pulse width of 0.5 relative to tCK. tAOF, min and tAOF, max should each be derated by the same amount  
as the actual amount of tCH offset present at the DRAM input with respect to 0.5. For example, if an input  
clock has a worst case tCH of 0.45, the tAOF, min should be derated by subtracting 0.05 x tCK from it,  
whereas if an input clock has a worst case tCH of 0.55, the tAOF, max should be derated by adding 0.05 x  
tCK to it. Therefore, we have;  
tAOF, min (derated) = tAC, min - [0.5 - Min(0.5, tCH, min)] x tCK  
tAOF, max (derated) = tAC, max + 0.6 + [Max(0.5, tCH, max) - 0.5] x tCK  
or  
tAOF, min (derated) = Min (tAC, min, tAC, min - [0.5 - tCH, min] x tCK)  
tAOF, max (derated) = 0.6 + Max (tAC, max, tAC, max + [tCH, max - 0.5] x tCK)  
where tCH, min and tCH, max are the minimum and maximum of tCH actually measured at the DRAM  
input balls.  
45. For tAOFD of DDR2-667/800, the 1/2 clock of nCK in the 2.5 x nCK assumes a tCH (avg), average input  
clock HIGH pulse width of 0.5 relative to tCK (avg). tAOF, min and tAOF, max should each be derated by  
the same amount as the actual amount of tCH (avg) offset present at the DRAM input with respect to 0.5.  
For example, if an input clock has a worst case tCH (avg) of 0.48, the tAOF, min should be derated by sub-  
Rev. 0.7 / Nov. 2008  
42  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
tracting 0.02 x tCK (avg) from it, whereas if an input clock has a worst case tCH (avg) of 0.52, the tAOF,  
max should be derated by adding 0.02 x tCK (avg) to it. Therefore, we have;  
tAOF, min (derated) = tAC, min - [0.5 - Min(0.5, tCH (avg), min)] x tCK (avg)  
tAOF, max (derated) = tAC, max + 0.6 + [Max(0.5, tCH (avg), max) - 0.5] x tCK (avg)  
or  
tAOF, min (derated) = Min (tAC, min, tAC, min - [0.5 - tCH (avg), min] x tCK (avg))  
tAOF, max (derated) = 0.6 + Max (tAC, max, tAC, max + [tCH (avg), max - 0.5] x tCK (avg))  
where tCH (avg), min and tCH (avg), max are the minimum and maximum of tCH (avg) actually measured  
at the DRAM input balls.  
Note that these deratings are in addition to the tAOF derating per input clock jitter, i.e. tJIT (duty) and  
tERR(6-10per). However tAC values used in the equations shown above are from the timing parameter  
table and are not derated. Thus the final derated values for tAOF are;  
tAOF, min (derated_final) = tAOF, min (derated) + {- tJIT (duty), max - tERR(6-10per),max}  
tAOF, max (derated_final) = tAOF, max (derated) + {- tJIT (duty), min - tERR(6-10per),min}  
Rev. 0.7 / Nov. 2008  
43  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
5. Package Dimensions  
Package Dimension(x4,x8)  
60Ball Fine Pitch Ball Grid Array Outline  
8.00 ± 0.10  
A1 BALL MARK  
2-R0.13MAX  
< Top View>  
< SIDE View>  
1.10 ± 0.10  
0.34 ± 0.05  
0.80 X 8 = 6.40  
2.10 ± 0.10  
A1 BALL MARK  
8
9
7
3 2 1  
A
B
C
D
E
F
G
H
J
K
L
60X Φ0.45 ± 0.05  
1.60 1.60  
0.80  
< Bottom View>  
Note: All dim ensions are in m illim eters.  
Rev. 0.7 / Nov. 2008  
44  
HY5PS1G4(8,16)31C(L)FP  
HY5PS1G4(8,16)31CFR  
Package Dimension(x16)  
84Ball Fine Pitch Ball Grid Array Outline  
8.00 ± 0.10  
A1 BALL MARK  
2-R0.13MAX  
< Top View>  
< SIDE View>  
1.10 ± 0.10  
0.34 ± 0.05  
0.80 X 8 = 6.40  
2.10 ± 0.10  
A1 BALL MARK  
3 2 1  
9
8 7  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
0.80  
84X Φ0.45 ± 0.05  
1.60 1.60  
< Bottom View>  
Note: All dim ensions are in m illim eters.  
45  
Rev. 0.7 / Nov. 2008  

相关型号:

HY5PS1G1631CFR-Y5I

DDR DRAM, 64MX16, 0.45ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS1G1631CLFP

1Gb DDR2 SDRAM
HYNIX

HY5PS1G1631CLFP-C4

1Gb DDR2 SDRAM
HYNIX

HY5PS1G1631CLFP-E3

1Gb DDR2 SDRAM
HYNIX

HY5PS1G1631CLFP-E3I

DDR DRAM, 64MX16, 0.6ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS1G1631CLFP-S5

1Gb DDR2 SDRAM
HYNIX

HY5PS1G1631CLFP-S5I

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS1G1631CLFP-S6I

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS1G1631CLFP-Y5

1Gb DDR2 SDRAM
HYNIX

HY5PS1G1631CLFP-Y5I

DDR DRAM, 64MX16, 0.45ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS1G421LM

1Gb DDR2 SDRAM(DDP)
HYNIX

HY5PS1G421LM-C4

1Gb DDR2 SDRAM(DDP)
HYNIX