IC-MR [ICHAUS]

13-BIT S&H SIN/COS INTERPOLATOR WITH CONTROLLER INTERFACES; 13位S &H SIN / COS插补算法Controller接口
IC-MR
型号: IC-MR
厂家: IC-HAUS GMBH    IC-HAUS GMBH
描述:

13-BIT S&H SIN/COS INTERPOLATOR WITH CONTROLLER INTERFACES
13位S &H SIN / COS插补算法Controller接口

文件: 总44页 (文件大小:1160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 1/44  
FEATURES  
APPLICATIONS  
Fast position decoding for  
safety-oriented encoder systems  
Motor feedback systems  
Fast 13-bit sine-to-digital conversion within 2 µs  
Precision PGA for differential and single-ended signals of  
up to 500 kHz  
Voltage or current input mode with signal monitoring  
Adjustable signal conditioning for offset, amplitude, and phase  
Input signal stabilization through LED or MR bridge current  
control of up to 50 mA  
8-bit parallel and serial I/O interfaces (BiSS, SSI, and SPI)  
Absolute data interface (ADI: BiSS/SSI) for position preset  
Period counter of up to 50 bits with selectable  
singleturn/multiturn splitting  
Position data preset using ST/MT offset registers  
12-bit A/D converter for temperature sensing  
Special functions for safety applications (signal monitoring, life  
counter, and extended CRC)  
PACKAGES  
Current-limited, differential 1 Vpp sine/cosine outputs to 100  
Device configurable through I/O interfaces or a serial  
EEPROM  
QFN48 7x7  
Single-sided 5 V operation from -40 to +110 °C  
BLOCK DIAGRAM  
TMS T0  
T1  
T2  
ACO  
VDD  
VDDA  
SIGNAL CONDITIONING  
U / U  
Conditioning  
PSO  
NSO  
PSI  
NSI  
I / U  
U / U  
Conditioning  
Conditioning  
I / U  
VREF  
PCI  
SIN 2+ COS2 = 1  
Amplitude  
Control  
Filter  
U / U  
PCO  
NCO  
I / U  
NCI  
U / U  
Conditioning  
I / U  
SCL  
SDA  
ASLI  
ABSOLUTE DATA  
INTERFACE  
(ADI)  
iC-MR  
AMAO  
PERIOD COUNTER  
INTERPOLATOR  
EEPROM  
INTERFACE  
37...34-bit  
13-bit  
SAFETY  
RESET  
NERR  
FEATURES  
OFFSET  
NRES  
REGISTER  
Configuration / CRC  
Error Monitor  
Life Counter  
SERIAL I/O INTERFACE  
BiSS SSI SPI  
12-bit  
ADC  
PARALLEL I/O INTERFACE  
A/D CONVERTER  
D7 D6 D5 D4 D3 D2 D1 D0  
NWR  
NRD NL NCS  
MAI  
SLO  
SLI  
GND  
GNDA  
Copyright © 2013 iC-Haus  
http://www.ichaus.com  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 2/44  
DESCRIPTION  
Device iC-MR is a universal sine-to-digital converter The control unit operating limits are also monitored  
with signal conditioning and various interfaces for so that an alarm can be signaled through the I/O in-  
configuration and data communication. Microcon- terface and/or at error output NERR, depending on  
trollers can be connected up through a parallel I/O the configuration, with dirt or ageing of optical sys-  
interface with an 8-bit bus width (12.5 MHz) or using tems.  
a serial I/O interface (4-pin SPI, 20 MHz). The serial  
I/O interface can function as a sensor interface either Sine-to-digital conversion is performed by a fast inter-  
in BiSS C protocol (up to 10 MHz, bidirectional) or in polator with a sample-&-hold circuit which resolves a  
SSI protocol (up to 4 MHz).  
sine period with 13 bits either continuously or on re-  
quest. In parallel and independent of the interpola-  
In the analog signal path iC-MR has precision input tor a configurable 37-bit period counter logs the sine  
amplifiers with an adjustable gain for differential or and cosine zero crossings. This period counter is  
referenced voltage signals of 10 mV peak to 1 V peak programmable and can take its start value from the  
or for current signals of approx. 10 µA to 300 µA (in- serial absolute data interface (ADI); the correspond-  
put pins PSI, NSI, PCI, and NCI). A separate mea- ing interface master operates either in BiSS C or SSI  
surement input (VREF) enables signals to be refer- protocol.  
enced to the sensor’s reference voltage.  
For position measurement applications iC-MR differ-  
The downstream signal conditioning unit can com- entiates between multiturn and singleturn data using  
pensate for typical sine/cosine sensor signal errors, a selectable intersection on the period counter. The  
such as offset, amplitude, and phase errors. The position can be corrected accordingly using the mul-  
conditioned signals are filtered and output through titurn and singleturn offset values.  
analog line drivers with an amplitude of typically  
250 mV (output pins PSO, NSO, PCO, and NCO). A An integrated 12-bit A/D converter digitizes linear  
differential 1 Vpp signal to 100 is available for line measurement voltages at pin ADC for the evaluation  
transmission.  
of KTY temperature sensors, for example. Measure-  
ment of the calibratable converter is observed by set-  
A control signal is gained from the conditioned sig- table threshold values so that a permissible operating  
nals to stabilize the sine/cosine output signals. This temperature range with a lower and upper tempera-  
can adjust the transmitting LED of optical encoder ture threshold can be monitored.  
systems using the integrated 50 mA driver stage (out-  
put ACO). With magnetic sensors this driver output After power-on iC-MR collects its CRC protected  
supplies the MR measuring bridges or can be used configuration data from an external I2C-EEPROM or  
to feedback the bridge supply voltage. By tracking waits for the configuration from one of the I/O inter-  
the sensor supply, sensor temperature and ageing ef- faces. An undervoltage reset zeroes internal reg-  
fects are compensated for, the input signals are sta- isters and is shown as a reset pulse at pin NRES,  
bilized, and precise calibration of the input signals is which also serves as a reset input (low active).  
maintained. This makes a constant interpolation ac-  
curacy possible across the entire operating tempera- Errors can always be masked and allocated to an  
ture range.  
error byte (and displayed at error message output  
NERR) or a warning byte. The internal status reg-  
At the same time the sensor is monitored for proper isters are available to the I/O interfaces which have a  
functioning. The amplitude and offset of the input sig- number of different commands (software reset, mem-  
nals at pins PSI, NSI, PCI, and NCI are checked, en- ory verification, and error simulation).  
abling wire-breakage or short circuits to be detected.  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 3/44  
CONTENTS  
PACKAGING INFORMATION  
4
Acquiring position data . . . . . . . . . . . . . 28  
EEPROM INTERFACE 29  
PIN CONFIGURATION QFN48-7x7  
(topview) . . . . . . . . . . . . . . . . .  
4
5
5
6
Address range . . . . . . . . . . . . . . . . . 29  
Accessing external memory banks . . . . . . 30  
Startup and selection of I/O interface . . . . . 30  
ABSOLUTE MAXIMUM RATINGS  
THERMAL DATA  
PARALLEL I/O INTERFACE  
31  
ELECTRICAL CHARACTERISTICS  
Reading out registers . . . . . . . . . . . . . 31  
Writing to registers . . . . . . . . . . . . . . . 31  
Reading out position data . . . . . . . . . . . 31  
OPERATING CONDITIONS:  
PARALLEL I/O INTERFACE  
11  
OPERATING CONDITIONS:  
SERIAL I/O INTERFACE  
SERIAL I/O INTERFACE: BiSS C  
34  
12  
14  
15  
18  
Configuration . . . . . . . . . . . . . . . . . . 34  
Register communication . . . . . . . . . . . . 35  
Commands . . . . . . . . . . . . . . . . . . . 35  
Configuration examples . . . . . . . . . . . . 35  
CONFIGURATION PARAMETERS  
REGISTER MAP  
SERIAL I/O INTERFACE: SSI  
36  
OPERATING MODES  
Configuration . . . . . . . . . . . . . . . . . . 36  
Configuration examples . . . . . . . . . . . . 36  
Calibration modes . . . . . . . . . . . . . . . 18  
BIAS CURRENT SOURCE AND SIGNAL  
FILTER  
18  
SERIAL I/O INTERFACE: SPI  
37  
Bias current source . . . . . . . . . . . . . . . 18  
Signal filter . . . . . . . . . . . . . . . . . . . 18  
Register access . . . . . . . . . . . . . . . . 37  
Cyclic readout . . . . . . . . . . . . . . . . . 37  
SIGNAL CONDITIONING  
19  
ABSOLUTE DATA INTERFACE (ADI)  
SAFETY FEATURES  
37  
40  
Input configuration . . . . . . . . . . . . . . . 19  
Gain settings SIN and COS . . . . . . . . . . 20  
Offset calibration SIN and COS . . . . . . . . 20  
Phase correction SIN vs. COS . . . . . . . . 21  
Diagnostic data . . . . . . . . . . . . . . . . . 22  
CRC Verification . . . . . . . . . . . . . . . . 40  
Safety register . . . . . . . . . . . . . . . . . 40  
Status and command register . . . . . . . . . 41  
Error mask . . . . . . . . . . . . . . . . . . . 41  
Life counter . . . . . . . . . . . . . . . . . . . 42  
AMPLITUDE CONTROL  
23  
12-BIT A/D CONVERTER  
24 DESIGN REVIEW: Application notes  
26 REVISION HISTORY  
43  
43  
INTERPOLATOR AND CYCLE COUNTER  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 4/44  
PACKAGING INFORMATION  
PIN CONFIGURATION QFN48-7x7  
(topview)  
PIN FUNCTIONS  
No. Name Function  
13 D7  
14 D6  
15 D5  
16 D4  
17 D3  
18 D2  
19 D1  
20 D0  
Par. Interface, data line  
Par. Interface, data line  
Par. Interface, data line  
Par. Interface, data line  
Par. Interface, data line  
Par. Interface, data line  
Par. Interface, data line  
Par. Interface, data line  
21 NWR Par. Interface, write signal*  
22 NRD Par. Interface, read signal*  
23 NL  
Par. Interface, storage signal*  
Ser. Interface, data acquisition*  
24 NCS Par. Interface, chip select*  
Ser. Interface, chip select*  
25 MAI  
26 SLO Ser. Interface, data output  
27 SLI Ser. Interface, data input  
Ser. Interface, clock input  
28 ASLI Absolute Data Interface, data input  
29 AMAO Absolute Data Interface, clock output  
30 TMS Test Mode Selection Input  
31 NRES Reset Signal, input/indication output*  
32 n.c.  
33 T2  
Test Pin  
34 n.c.  
35 ADC 12-bit ADC Input, temperature sensor  
36 n.c.  
PIN FUNCTIONS  
No. Name Function  
37 T0  
38 T1  
39 n.c.  
40 NSI  
41 PSI  
Test Pin  
Test Pin  
1 ACO Signal Level Controller, high-side current  
source output  
2 VDDA +5V Supply Voltage, analog  
3 GNDA Ground, analog  
Sine Input, inverted  
Sine Input  
42 VREF Reference Voltage, input/output  
4 PSO Sine Output  
5 NSO Sine Output, inverted  
6 PCO Cosine Output  
43 PCI  
44 NCI  
45 n.c.  
46 n.c.  
47 n.c.  
48 n.c.  
Cosine Input  
Cosine Input, inverted  
7 NCO Cosine Output, inverted  
8 NERR Error Signal, input/indication output*  
9 VDD +5V Supply Voltage, digital  
10 GND Ground, digital  
11 SDA EEPROM Interface, data line I2C  
12 SCL EEPROM Interface, clock line I2C  
n.c.:  
Pin is not connected.  
*) Pin is low active.  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 5/44  
ABSOLUTE MAXIMUM RATINGS  
Beyond these values damage may occur; device operation is not guaranteed.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
-0.3  
-0.3  
-0.3  
Max.  
G001 VDDA  
G002 VDD  
G003 V()  
Voltage at VDDA  
Voltage at VDD  
6
6
V
V
V
Voltage at ACO, PSO, NSO, PCO,  
NCO, NERR, SDA, SCL, D(7...0),  
NWR, NRD, NL, NCS, MAI, SLO, SLI,  
ASLI, AMAO, TMS, NRES, ADC, PSI,  
NSI, VREF, PCI, NCI  
VDDA  
+0.3  
G004 I(VDDA)  
G005 I(VDD)  
G006 Vd()  
Current in VDDA  
-100  
-100  
400  
100  
2
mA  
mA  
kV  
Current in VDD  
ESD Susceptibility at all pins  
HBM 100 pF discharged through 1.5 k, all  
pins versus GNDA  
G007 Tj  
G008 Ts  
Chip Temperature  
-40  
-40  
150  
150  
°C  
°C  
Storage Temperature  
THERMAL DATA  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min. Typ. Max.  
-40 110  
T01 Ta  
Operating Ambient Temperature Range package QFN48  
°C  
T02 Rthja  
Thermal Resistance  
Chip to Ambient  
QFN48 soldered to PCB according to  
JEDEC 51  
30  
K/W  
All voltages are referenced to ground unless otherwise stated.  
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 6/44  
ELECTRICAL CHARACTERISTICS  
Operating conditions:  
VDDA = VDD = 4.5...5.5 V, GNDA = GND = 0 V, IBP calibrated to 200 µA, Tj = -40...125 °C, unless otherwise noted.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
General  
001 VDDA,  
VDD  
Permissible Supply Voltage  
4.5  
5
5.5  
V
002 I(VDDA)  
003 I(VDD)  
VDDA Supply Current  
VDD Supply Current  
Clamp Voltage hi  
at digital inputs ASLI, SLI, MAI, I() = 4 mA  
NCS, NL, NRD, NWR, NRES,  
NERR, SDA, SCL, TMS  
25  
5
50  
50  
mA  
mA  
V
004  
Vc()hi  
Vc()hi = V() - V(VDD),  
0.3  
0.3  
1.2  
005  
Vc()hi  
Clamp Voltage hi  
at digital inputs D(7...0)  
Vc()hi = V() - V(VDD),  
I() = 1.6 mA  
1.2  
11  
V
V
006 Vcz()hi  
007 Vc()lo  
Clamp Voltage hi  
I() = 4 mA  
at ACO, VDDA, PSO, NSO, PCO,  
NCO, AMAO, SLO, ADC, PSI,  
NSI, VREF, PCI, NCI  
Clamp Voltage lo  
I() = -4 mA  
-1.2  
-0.3  
V
at ACO, VDDA, PSO, NSO, PCO,  
NCO, AMAO, SLO, ADC, PSI,  
NSI, VREF, PCI, NCI  
Bias Current Source, Reference Voltages, Input/Output VREF  
101 IBP  
102 VPAH  
103 V05  
Bias Current Source  
IBP calibrated to 200 µA  
referenced to GNDA  
92.5  
45  
100  
50  
107.5  
55  
%
Reference Voltage VPAH  
Reference Voltage V05  
Internal Ref. Voltage VREFI  
%VDDA  
mV  
450  
500  
550  
104  
VREFI  
DCPOS = 1  
DCPOS = 0  
1.35  
2.25  
1.5  
2.5  
1.65  
2.75  
V
V
105 Vin()  
106 Rin()  
Permissible Input Voltage at  
VREF  
SELREF = 0x3  
0.5  
VDDA  
2  
30  
V
Input Resistance at VREF  
SELREF = 0x3, REFVOS = 0x3, UIN = 1,  
TUIN = 0, Rin() referenced to VREFin()  
20  
26  
kΩ  
107 Vref()out  
108 I0()  
Output Voltage at VREF  
Leakage Current at VREF  
SELREF = 0x2, I() = 0  
SELREF = 0x0 or 0x1  
100  
%VREFI  
µA  
-1  
+1  
12-bit A/D Converter, Measuring Input ADC  
601 RESOadc A/D Converter Resolution  
12  
bit  
602 t()adc  
603  
A/D Conversion Time  
1.1  
ms  
Vin()FS  
Maximum Full Scale Input  
Voltage  
ADCSLOP = 0xFF  
ADCSLOP = 0x00  
2.5  
2.0  
V
V
604 INL()  
A/D Conversion Nonlinearity  
±0.95  
LSB  
Signal Conditioning, Inputs: PSI, NSI, PCI, NCI  
701  
Vin()sig  
Permissible V Mode Input Voltage  
UIN = 1, TUIN = 0  
0.75  
-0.1  
VDDA  
1.5  
VDDA  
+ 0.1  
V
V
UIN = 1, TUIN = 1, DCPOS = 1  
702 Iin()  
703 Rin()  
V Mode Input Current  
UIN = 1, TUIN = 0  
-100  
16.4  
100  
nA  
V Mode Input Resistance  
Permissible I Mode Input Current  
UIN = 1, TUIN = 1, vs. VREFin, Tj = 27 °C,  
20  
23.6  
kΩ  
704  
Iin()sig  
UIN = 0, DCPOS = 0  
UIN = 0, DCPOS = 1  
-300  
10  
-10  
300  
µA  
µA  
705 CTR()sig Permissible Signal Contrast Ratio current ratio of Iin()pkpk vs. Iin()dc  
0.125  
1
706  
Rin()  
I Mode Input Resistance  
Tj = 27 °C, vs. VREFin;  
UIN = 0, RIN = 00  
UIN = 0, RIN = 01  
UIN = 0, RIN = 10  
UIN = 0, RIN = 11  
1.1  
1.6  
2.2  
3.2  
1.6  
2.3  
3.2  
4.6  
2.1  
3.0  
4.2  
6.0  
kΩ  
kΩ  
kΩ  
kΩ  
707 TC(Rin)  
708 Vin()os  
Temperature Coefficient of Rin  
Offset Voltage of Input Stage  
0.15  
%/K  
µV  
referenced to side of input;  
300  
GR = 0x4, GFC = 0x1F, GFS = 0x7C0  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 7/44  
ELECTRICAL CHARACTERISTICS  
Operating conditions:  
VDDA = VDD = 4.5...5.5 V, GNDA = GND = 0 V, IBP calibrated to 200 µA, Tj = -40...125 °C, unless otherwise noted.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
709  
Vin()diff  
Recommended Differential Input  
Voltage  
Vin()diff = V(PSI) V(NSI), respectively  
Vin()diff = V(PCI) V(NCI);  
TUIN = 0  
20  
80  
1000  
4000  
mVpp  
mVpp  
TUIN = 1  
710 Vcore()  
711  
Recommended Internal Signal  
Level  
G * Vin()diff, MODE = 0x01  
6
Vpp  
GF, GC  
Selectable Gain Factors  
TUIN = 0  
TUIN = 1  
2
0.5  
100  
25  
712 GFdiff  
713 GFabs  
Differential Gain Accuracy  
Absolute Gain Accuracy  
referenced to fine gain range (GFS, GFC)  
-1  
1
LSB  
LSB  
referenced to fine gain range (GFS, GFC),  
guaranteed range of monotony  
-20  
20  
714 GRabs Gain Accuracy  
referenced to coarse gain range (GR)  
-8  
8
%
715  
716  
717  
718  
VOScal1  
VOScal2  
VOScal3  
VOScal4  
Offset Calibration Range  
Offset Calibration Range  
Offset Calibration Range  
Offset Calibration Range  
measured at output, source V(ACO) = 3 V,  
REFVOS = 00, MODE =0x01;  
ORS, ORC = 00  
ORS, ORC = 01  
ORS, ORC = 10  
±450  
±900  
±2700  
±5400  
mV  
mV  
mV  
mV  
ORS, ORC = 11  
measured at output, source V05,  
REFVOS = 01, MODE = 0x01;  
ORS, ORC = 00  
ORS, ORC = 01  
ORS, ORC = 10  
±1500  
±3000  
±9000  
±18000  
mV  
mV  
mV  
mV  
ORS, ORC = 11  
measured at output, source V025,  
REFVOS = 10, MODE = 0x01;  
ORS, ORC = 00  
ORS, ORC = 01  
ORS, ORC = 10  
±750  
±1500  
±4500  
±9000  
mV  
mV  
mV  
mV  
ORS, ORC = 11  
measured at output, source VDC = 125 mV,  
REFVOS = 11, MODE = 0x01;  
ORS, ORC = 00  
ORS, ORC = 01  
ORS, ORC = 10  
±375  
±750  
±2250  
±4500  
mV  
mV  
mV  
mV  
ORS, ORC = 11  
719 VOSdiff Differential Linearity Error of  
-0.5  
0.5  
LSB  
Offset Correction  
720 VOSint Integral Linearity Error of Offset  
-100  
100  
LSB  
Correction  
721 PHIcal  
Phase Correction Range  
sine vs. cosine signal  
±10.4  
°
722 PHIdiff  
Differential Linearity Error of  
Phase Correction  
-0.25  
-20  
0.25  
20  
LSB  
723 PHIint  
Integral Linearity Error of Phase  
Correction  
LSB  
kHz  
kHz  
724  
fin()max  
Permissible Input Frequency  
angle accuracy better 8 bit  
500  
250  
725 fhc()  
Input Amplifier Cut-off Frequency  
(-3 dB)  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 8/44  
ELECTRICAL CHARACTERISTICS  
Operating conditions:  
VDDA = VDD = 4.5...5.5 V, GNDA = GND = 0 V, IBP calibrated to 200 µA, Tj = -40...125 °C, unless otherwise noted.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Amplitude Control, Output ACO  
801  
Vs()hi  
Saturation Voltage hi  
Vs()hi = VDD V();  
ACOR = 00, I() = -5 mA  
ACOR = 01, I() = -10 mA  
ACOR = 10, I() = -25 mA  
ACOR = 11, I() = -50 mA  
1
1
1
1
V
V
V
V
802  
Isc()hi  
Short-Circuit Current hi in ACO  
V() = 0 V ... VDD 1 V;  
ACOR = 00  
-10  
-20  
-50  
-5  
mA  
mA  
mA  
mA  
ACOR = 01  
ACOR = 10  
ACOR = 11  
-10  
-25  
-50  
-100  
803 tr()  
Rise Time Current Source ACO I(ACO): 0 % 90 % of setpoint  
1
ms  
µs  
804  
tset()  
Settling Time Current Source  
ACO  
square control active,  
400  
I(ACO): 50 % 100 % of setpoint  
Vscq() = Vpp(V(PSO) - V(NSO)), respectively  
Vscq() = Vpp(V(PCO) - V(NCO));  
ACOC = 0x19  
805  
Vscq()  
Regulated Mean Target  
Amplitude with Square Control  
500  
mV  
806  
Vdc()  
Regulated Mean Setpoint with  
Sum Control  
ACOD = 0x00  
ACOD = 0x7F  
166  
551  
mV  
mV  
807 It()min  
808 It()max  
809 Vt()min  
810 Vt()max  
Signal Filter  
Monitoring of ACO Output Cur-  
rent, lower threshold  
referenced to current range ACOR  
referenced to current range ACOR  
referenced to Vscq()  
3
%Isc  
%Isc  
%
Monitoring of ACO Output Cur-  
rent, upper threshold  
90  
Monitoring of Signal Level 1,  
lower threshold  
40  
Monitoring of Signal Level 2,  
upper threshold  
referenced to Vscq()  
135  
%
901  
fc()  
Cut-off Frequency  
Phase Shift  
ENF = 1, SELBP = 0; fin < 10 Hz  
fin > 100 kHz  
15  
2400  
kHz  
kHz  
902  
PHI()  
ENF = 1, SELBP = 0,  
1.5  
°
fin = 100 kHz for sine and cosine  
Analog Outputs PSO, NSO, PCO and NCO  
A01  
Vpk()max Permissible Maximum Output  
Amplitude  
VDDA = 4.5 V, DC level VDDA/2,  
RL = 50 vs. VDDA/2  
300  
275  
mV  
mV  
A02 Vpk()  
Output Amplitude with Sensor  
Tracking by Output ACO  
ACOC = 0x19  
CL = 250 pF  
225  
500  
250  
A03 fc  
Cut-off Frequency  
kHz  
µV  
A04 Vos  
Output Offset Voltage  
Short-Circuit Current hi  
Short-Circuit Current lo  
Slew Rate  
±200  
-20  
20  
A05 Isc()hi  
A06 Isc()lo  
A07 SR()  
A08 Rout()  
A09 fout()cal  
V() = 0 V  
-40  
15  
-15  
40  
mA  
mA  
V/µs  
kΩ  
V() = VDD  
RLdiff = 100 , CL = 25 pF  
MODE = 0x01 (Analog 1)  
MODE = 0x01 (Analog 1), CL = 200 pF  
5
Test Signal Source Resistance  
5
Permissible Test Signal Output  
Frequency  
2
kHz  
Signal Level Monitoring  
B01 Vpp()max Signal Level Monitoring,  
upper threshold  
referenced to target amplitude of converter and  
analog output, see Figure 1  
110  
10  
150  
50  
%Vpp  
%Vpp  
mV  
B02 Vpp()min Signal Level Monitoring,  
lower threshold  
referenced to target amplitude of converter and  
analog output, see Figure 1  
B03 Vpp()hys Signal Level Monitoring,  
Hysteresis  
referenced to Vpp()min, Vpp()max  
referenced to VPAH, see Figure 2  
referenced to VPAH, see Figure 2  
30  
140  
70  
B04 Vdc()max Mean Value Monitoring,  
upper threshold  
120  
50  
%VPAH  
%VPAH  
B05 Vdc()min Mean Value Monitoring,  
lower threshold  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 9/44  
ELECTRICAL CHARACTERISTICS  
Operating conditions:  
VDDA = VDD = 4.5...5.5 V, GNDA = GND = 0 V, IBP calibrated to 200 µA, Tj = -40...125 °C, unless otherwise noted.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
13-bit Interpolator  
C01 tipo  
Conversion Time  
ACQMODE = 00, see Figure 5  
Vpk() = 250 mV  
2
2
µs  
C02 AAabs  
Absolute Conversion Accuracy  
LSB  
Reset Input / Reset Indication Output NRES  
K01 VDDon  
K02 VDDoff  
K03 VDDhys  
K04 Vt()hi  
K05 Vt()lo  
K06 Vt()hys  
K07 Ipu()  
VDD Turn-on Threshold  
VDD Turn-off Threshold  
VDD Hysteresis  
increasing voltage at VDD vs. GND  
decreasing voltage at VDD vs. GND  
VDDhys = VDDon - VDDoff  
2.6  
2.3  
400  
4.3  
4.0  
V
V
mV  
V
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
2
0.8  
300  
-750  
V
Vt()hys = Vt()hi - Vt()lo  
500  
mV  
µA  
mV  
mA  
Pull-up Current  
-300  
-60  
400  
80  
K08 Vs()lo  
K09 Isc()lo  
Oscillator  
Output Saturation Voltage lo  
Output Short-Circuit Current lo  
I() = 4 mA  
V() = 0.4 V...VDD  
4
M01 fosc  
Internal Oscillator Frequency  
15  
MHz  
EEPROM Interface SCL, SDA  
N01 Vs()lo  
N02 Isc()  
N03 Vt()hi  
N04 Vt()lo  
N05 Vt()hys  
N06 Ipu()  
N07 Vpu()  
N08 fclk()  
Saturation voltage lo  
I() = 4 mA  
400  
80  
2
mV  
mA  
V
Short-Circuit Current lo  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
4
0.8  
100  
-750  
V
Vt()hys = Vt()hi - Vt()lo  
V() = 0 V...VDD - 1 V  
250  
mV  
µA  
V
Input Pull-up Current  
-300  
-60  
0.4  
Input Pull-up Voltage  
Vpu() = VDD - V(), I() = -5 µA  
Clock Frequency at SCL  
100  
120  
130  
kHz  
N09  
tbusy()cfg Duration of Configuration Phase  
IBP not adjusted;  
read in of EEPROM  
no EEPROM connected  
5
1
ms  
ms  
Serial Interface MAI, SLO, SLI  
O01 Vt()hi  
O02 Vt()lo  
O03 Vt()Hys  
O04 Ipu()  
O05 Ipd()  
Threshold Voltage hi at SLI, MAI  
2
V
V
Threshold Voltage lo at SLI, MAI  
Hysteresis at SLI, MAI  
0.8  
300  
-150  
8
Vt()hys = Vt()hi - Vt()lo  
500  
-60  
60  
mV  
µA  
µA  
Pull-up Current at MAI  
-8  
Pull-down Current at SLI  
150  
O06  
fclk()  
Permissible Clock Frequency at  
MAI  
SSI protocol  
BiSS C protocol  
SPI  
4
10  
10  
MHz  
MHz  
MHz  
O07 tp()  
Propagation Delay at SLO versus  
Clock Edge MAI  
10  
50  
ns  
O08 tbusy()  
Processing Time  
Adaptive Timeout  
ACQMODE = 00, see Figure 5  
t()ipo  
O09  
ttimeout  
1/fosc  
1.5*tMAS  
+
3/fosc  
O10 Vs()hi  
O11 Vs()lo  
O12 Isc()hi  
O13 Isc()lo  
Saturation Voltage hi at SLO  
Saturation Voltage lo at SLO  
Short-circuit Current hi at SLO  
Short-circuit Current lo at SLO  
Vs()hi = VDD - V(), I() = -4 mA  
I() = 4 mA  
400  
400  
-4  
mV  
mV  
mA  
mA  
V() = 0 V...VDD - 0.4 V  
V() = 0.4 V...VDD  
-80  
4
80  
Parallel Interface D(7...0), NWR, NRD, NL, NCS  
P01 Vt()hi  
P02 Vt()lo  
P03 Vt()hys  
P04 Ipu()  
Threshold Voltage hi  
Threshold Voltage lo  
Input Hysteresis  
D(7...0) as input  
2
V
V
D(7...0) as input  
0.8  
300  
-70  
D(7...0) as input, Vt()hys = Vt()hi - Vt()lo  
500  
-30  
mV  
µA  
Pull-up Current at D(7...0)  
-5  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 10/44  
ELECTRICAL CHARACTERISTICS  
Operating conditions:  
VDDA = VDD = 4.5...5.5 V, GNDA = GND = 0 V, IBP calibrated to 200 µA, Tj = -40...125 °C, unless otherwise noted.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
P05 Ipu()  
Pull-up Current at NWR, NRD,  
NL, NCS  
-150  
-60  
-8  
µA  
mV  
mV  
mA  
mA  
P06  
Vs()hi  
Saturation Voltage hi  
at D(7...0) Outputs  
Vs()hi = VDD - V(), I() = -1.6 mA  
I() = 1.6 mA  
400  
400  
-1.6  
50  
P07 Vs()lo  
P08 Isc()hi  
P09 Isc()lo  
Saturation Voltage lo  
at D(7...0) Outputs  
Short-circuit Current hi  
at D(7...0) Outputs  
V() = 0 V...VDD - 0.4 V  
V() = 0.4 V...VDD  
-50  
1.6  
Short-circuit Current lo  
at D(7...0) Outputs  
Absolute Data Interface ASLI, AMAO  
Q01 Vt()hi  
Q02 Vt()lo  
Q03 Vt()hys  
Q04 Ipu()  
Threshold Voltage hi at ASLI  
2
V
Threshold Voltage lo at ASLI  
Hysteresis at ASLI  
0.8  
300  
-150  
V
Vt()hys = Vt()hi - Vt()lo  
500  
-60  
mV  
µA  
mV  
mV  
mA  
mA  
Pull-up Current at ASLI  
-8  
Q05 Vs()hi  
Q06 Vs()lo  
Q07 Isc()hi  
Q08 Isc()lo  
Saturation Voltage hi at AMAO  
Saturation Voltage lo at AMAO  
Vs()hi = VDD - V(), I() = -1.6 mA  
I() = 1.6 mA  
400  
400  
-1.6  
50  
Short-circuit Current hi at AMAO V() = 0 V...VDD - 0.4 V  
Short-circuit Current lo at AMAO V() = 0.4 V...VDD  
-50  
1.6  
Q09  
fclk()  
Clock Frequency at AMAO  
GET_ADI = 0, SSI_ADI = 1 (SSI protocol)  
GET_ADI = 0, SSI_ADI = 0 (BiSS C protocol)  
1/16  
1/2  
fosc  
fosc  
Error Signal Input/Output NERR  
R01 Vt()hi  
R02 Vt()lo  
R03 Vt()hys  
R04 Ipu()  
Threshold Voltage hi  
2
V
Threshold Voltage lo  
Input Hysteresis  
0.8  
100  
-750  
V
Vt()hys = Vt()hi - Vt()lo  
150  
mV  
µA  
mV  
mA  
Pull-up Current  
-300  
-60  
400  
60  
R05 Vs()lo  
R06 Isc()lo  
Saturation Voltage lo  
Short-circuit Current lo  
I() = 4 mA  
V() = 0.4 V...VDD  
4
1 Vpp  
V(PCOS) - V(NCOS)  
V(PSIN) - V(NSIN)  
90°  
VDDA  
Vdc()max  
180°  
0°  
φ
V(PSIN)  
V(PCOS)  
V(NCOS)  
V(NSIN)  
270°  
0°  
270°  
360°  
90°  
180°  
Vdc()min  
0V  
Vpp()min  
Vpp()max  
Figure 1: Differential voltage thresholds for maximum Figure 2: Maximum and minimum voltage thresholds  
and minimum alarm for DC check  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 11/44  
OPERATING CONDITIONS: PARALLEL I/O INTERFACE  
Operating conditions: VDDA = VDD = 4.5...5.5 V, GNDA = GND = 0 V, IBP calibrated to 200 µA, Tj = -40...125 °C  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
I001 tsAW  
I002 thWA  
I003 tsDW  
I004 thWD  
I005 tWL  
I006 tRL  
Setup Time:  
addresses stable before NWR hi lo  
Hold Time:  
addresses stable after NWR lo hi  
Setup Time:  
data stable before NWR hi lo  
Hold Time:  
data stable after NWR lo hi  
Signal Duration:  
NWR at low level  
50  
50  
50  
50  
80  
80  
50  
80  
80  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Signal Duration:  
NRD at low level  
I007 tpRD1  
I008 tpRD2  
I009 tWW  
I010 tWR  
Propagation Delay:  
data stable after NRD hi lo  
Propagation Delay:  
data bus high ohmic after NRD lo hi  
Signal Duration:  
between NWR lo hi and hi lo  
Signal Duration:  
CL = 10 pF  
between NWR lo hi and NRD hi lo  
or NRD lo hi and NWR hi lo  
I011 tRR  
I012 tCL  
Signal Duration:  
80  
80  
ns  
ns  
between NRD lo hi and hi lo  
Signal Duration:  
between NCS hi lo and NRD hi lo  
or NCS hi lo und NWR hi lo  
Signal Duration:  
I013 tCH  
80  
ns  
between NRD lo hi and NCS lo hi  
NCS  
tCH  
tCL  
ADDRESS  
DATA_IN  
DATA_OUT  
D(7:0)  
NWR  
NRD  
t AW  
h
t DW  
s
t DW  
h
t RD1  
p
t RD2  
p
t AW  
s
tWL  
tWW  
tWR  
tRL  
tRR  
Figure 3: Parallel interface timing.  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 12/44  
OPERATING CONDITIONS: SERIAL I/O INTERFACE  
Operating conditions: VDDA = VDD = 4.5...5.5 V, GNDA = GND = 0 V, IBP calibrated to 200 µA Tj = -40...125 °C  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
SSI protocol (INTCFG = 00, NESSI = 0)  
I111 tMAS  
I112 tMASh  
I113 tMASl  
I114 treq  
Permissible Clock Period  
250  
125  
125  
125  
ns  
ns  
ns  
ns  
Clock Signal Hi Level Duration  
Clock Signal Lo Level Duration  
REQ Signal Lo Level Duration  
BiSS C protocol (INTCFG = 00, NESSI = 1)  
I115 tMAS  
I116 tMASh  
I117 tMASl  
Permissible Clock Period  
100  
50  
ns  
ns  
ns  
Clock Signal Hi Level Duration  
Clock Signal Lo Level Duration  
50  
SPI protocol (INTCFG = 10)  
I118 tMAS  
I119 tMASh  
I120 tMASl  
I121 tCL  
Permissible Clock Period  
100  
50  
ns  
ns  
ns  
ns  
Clock Signal Hi Level Duration  
Clock Signal Lo Level Duration  
50  
Signal Duration:  
50  
between NCS hi lo and MAI hi lo  
Signal Duration:  
I122 tCH  
50  
ns  
between MAI lo hi and NCS lo hi  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 13/44  
t
t
MAS  
req  
REQ  
MAI  
DATA  
DATA  
DATA  
DATA  
SLO  
t
timeout  
t
t
t
pMASLO  
MASh MASl  
Figure 4: SSI protocol timing.  
MAI  
START  
DATA  
DATA  
SLO  
t
busy  
Figure 5: BiSS C protocol timing with conversion time t()IPO (ACQMODE = 00)  
t
MAS  
MAI  
START  
DATA  
DATA  
SLO  
t
timeout  
t
t
t
pMASLO  
MASh MASl  
t
timeout  
Figure 6: BiSS C protocol timing without conversion time t()IPO (ACQMODE = 00)  
NCS  
MAI  
SLI  
SLO  
t
MAS  
t
t
t
CH  
t
CL  
MASh  
MASl  
Figure 7: SPI protocol timing.  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 14/44  
CONFIGURATION PARAMETERS  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 15 EEPROM Interface . . . . . . . . . . . . . . . . . . . . . . . . Page 29  
CFG_E2P  
BSEL  
INTCFG  
EDS range selection  
Bank selection  
Interface selection  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . Page 18  
MODE Operating mode  
Bias Current Source and Filter . . . . . . . . . . . . page 18  
Parallel I/O Interface . . . . . . . . . . . . . . . . . . . . . . Page 31  
FULL_CYC Cyclic telegram length  
CFGBIAS  
ENF  
SELBP  
NEFDR  
Bias calibration  
Signal filter activation  
Signal filter cut-off frequency  
Signal filter dead band  
Serial I/O Interface: BiSS C . . . . . . . . . . . . . . . Page 34  
NESSI  
ENLC  
SSI protocol selection  
Life counter enable  
Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . page 19  
INMODE  
Input mode  
ENXCRC  
CRCS  
TMPSCD  
Extended CRC protection  
CRC start value  
Temperature data enable (BiSS)  
differential/single-ended  
Current/voltage operation  
Input resistance  
UIN  
RIN  
TUIN  
DCPOS  
SELREF  
GR  
GFS  
GFC  
Input voltage divider  
Reference voltage input  
Input reference voltage selection  
Coarse gain  
Fine gain sine  
Fine gain cosine  
Serial I/O Interface: SSI . . . . . . . . . . . . . . . . . . . Page 36  
NESSI  
SSI protocol selection  
SSI ring mode selection  
SSI with error bit  
SSIRING  
SSIERR  
SSIMODE  
SSI protocol options  
REFVOS  
MPS  
MPC  
ORS  
ORC  
OFS  
OFC  
PH  
DIAG  
Offset reference source  
Center potential sine  
Center potential cosine  
Offset adjustment range sine  
Offset adjustment range cosine  
Offset adjustment sine  
Offset adjustment cosine  
Phase correction sin/cos  
Diagnosis register  
Serial I/O Interface: SPI . . . . . . . . . . . . . . . . . . . Page 37  
Absolute Data Interface (ADI) . . . . . . . . . . . . . Page 38  
STP_ADI  
CYC_ADI  
DL_ADI  
Startup with absolute data  
Cyclic reading of absolute data  
Data length absolute data interface  
Synchronisation bits absolute data in-  
terface  
SYNC_ADI  
SSI_ADI  
GET_ADI  
Protocol of absolute data interface  
BiSS chain with absolute data inter-  
face  
Amplitude Control . . . . . . . . . . . . . . . . . . . . . . . . Page 23  
ACOT  
ACO Output control mode  
ACO Output current range  
Setpoint square control (amplitude)  
Setpoint sum control (DC value)  
Control mode  
ACOR  
ACOC  
ACOD  
LCMODE  
CHK_ADI  
Cyclic check of absolute data  
Safety Features . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 40  
CRCCFG  
NRDOK  
SEC_HI  
CRC test value of configuration  
Selection of read/write protection  
Safety register for configuration sec-  
tion  
Safety register for EDS memory sec-  
tion  
12 bit A/D Converter . . . . . . . . . . . . . . . . . . . . . . Page 24  
ADCSLOP  
ADCOFF  
TEMPHI  
Maximum ADC input voltage  
Digital temperature offset  
Upper temperature threshold  
Lower temperature threshold  
SEC_LO  
TEMPLO  
STATUS  
CMD  
ERROR  
EMSK  
Status byte  
Command register  
Error byte  
Interpolator and Cycle Counter . . . . . . . . . . . Page 26  
CODERES  
DIR  
Cycle counter resolution  
Code inversion  
Error mask  
MTOFF  
Multiturn offset  
WMSK  
Warning mask  
STOFF  
Singleturn offset  
RES_ERR  
THR_FAMP  
TO_FAMP  
EN_FAMP  
Error reset  
STRESO  
MTRESO  
ACQMODE  
Singleturn resolution  
Multiturn resolution  
Position data acquisition  
Amplitude error filter threshold  
Amplitude error filter timeout  
Amplitude error filtering  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 15/44  
REGISTER MAP  
Configuration and output data register  
Addr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Amplitude control (configuration)  
0x00  
0x01  
ACOT(0)  
ACOR(1:0)  
ACOC(4:0)  
ACOD(6:0)  
ACOT(1)  
Signal conditioning (configuration)  
GFS(3:0)  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
LCMODE  
GFS(10:4)  
GR(2:0)  
-
GFC(7:0)  
MPS(3:0)  
-
GFC(10:8)  
-
-
-
-
-
MPS(9:4)  
MPC(7:0)  
ORS(1:0)  
ORC(1:0)  
-
-
-
MPC(9:8)  
OFS(7:0)  
OFC(7:0)  
0
OFS(10:8)  
OFC(10:8)  
PH(3:0)  
NEFDR  
SELREF(1:0)  
PH(9:4)  
INMODE  
DCPOS  
CFGBIAS(3:0)  
REFVOS(1:0)  
TUIN  
SELBP  
0
RIN(1:0)  
UIN  
ENF  
0
MODE(1:0)  
0
0
1
1
0
0
12-bit A/D converter and temperature monitoring (configuration)  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
ADCSLOP(7:0)  
ADCOFF(7:0)  
ADCOFF(15:8)  
TEMPLO(7:0)  
TEMPLO(15:8)  
TEMPHI(7:0)  
TEMPHI(15:8)  
Interfaces (configuration)  
0x18  
0x19  
0x1A  
INTCFG(1:0)  
FULL_CYC  
ENLC  
GET_ADI  
STP_ADI  
ENXCRC  
CYC_ADI  
TMPSCD  
SSIRING  
SSIERR  
ACQMODE(1:0)  
NESSI  
SSIMODE(1:0)  
DL_ADI(4:0)  
SYNC_ADI(1:0)  
SSI_ADI  
Offset & interpolator (configuration)  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
STOFF(1:0)  
0
0
0
DIR  
CODERES(1:0)  
STOFF(9:2)  
STOFF(17:10)  
STOFF(25:18)  
MTOFF(7:0)  
MTOFF(15:8)  
MTOFF(23:16)  
Mask register for error and warning (configuration)  
0x22  
0x23  
EMSK_EXT  
EMSK_ABS  
EMSK_IPO  
WMSK_IPO  
EMSK_KNF  
EMSK_SYN  
EMSK_TMP  
EMSK_AMP  
EMSK_RGL  
WMSK_EXT WMSK_ABS  
WMSK_KNF WMSK_SYN WMSK_TMP WMSK_AMP WMSK_RGL  
Data resolution (configuration)  
0x24 MTRESO(2:0)  
STRESO(4:0)  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 16/44  
Configuration and output data register  
Addr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Safety register (configuration)  
0x25  
0x26  
NRDOK  
CFG_E2P(1:0)  
SEC_HI(6:0)  
SEC_LO(5:0)  
CRC configuration (configuration)  
0x27  
0x28  
0x29  
0
0
0
0
0
0
0
0
CRCS(15:8)  
CRCS(7:0)  
Extended configuration  
0x2A  
0x2B  
0x2C  
. . .  
0
0
0
0
0
0
0
0
0
0
0
0
TO_FAMP  
0
0
EN_FAMP  
0
0
0
THR_FAMP(1:0)  
0
0
CRC sum (EEPROM) (configuration)  
0x2E  
0x2F  
. . .  
CRCCFG(15:8)  
CRCCFG(7:0)  
Bank select (configuration)  
0x40  
-
BSEL(4:0)  
Device data (configuration)  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
. . .  
EDSBANK(7:0)  
PROFILE(15:8) (Position)  
PROFILE(7:0) (Position)  
SERIAL_ID(31:24)  
SERIAL_ID(23:16)  
SERIAL_ID(15:8)  
SERIAL_ID(7:0)  
PROFILE(15:8) (Temperature)  
PROFILE(7:0) (Temperature)  
Diagnostic data (output data)  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
RG_MAX  
AMP_MAX  
DC_MAX  
CMP_MAX  
RG_MIN  
AMP_MIN  
DC_MIN  
CMP_MIN  
reserved  
reserved  
reserved  
reserved  
reserved  
Status byte / command register (output data)  
0x60 INIT ERR WARN  
Position (output data)  
EWKH  
EWKL  
BUSY  
ADV  
PDV  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
ST(1:0)  
-
ST(9:2)  
ST(17:10)  
ST(25:18)  
MT(7:0)  
MT(15:8)  
MT(23:16)  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 17/44  
Configuration and output data register  
Addr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Life counter (output data)  
0x68  
LC(7:0)  
Error byte (output data)  
0x69  
ERR_EXT  
ERR_ABS  
ERR_IPO  
ERR_KNF  
ERR_SYN  
ERR_TMP  
ERR_AMP  
ERR_RGL  
Temperature (output data)  
0x6A  
0x6B  
TEMP(7:0)  
TEMP(15:8)  
CRC sum of output data (output data)  
0x6C  
0x6D  
. . .  
CRCPOS(7:0)  
CRCPOS(15:8)  
Device data (configuration)  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
DEV_ID(47:40) (Temperature)  
DEV_ID(39:32) (Temperature)  
DEV_ID(31:24) (Temperature)  
DEV_ID(23:16) (Temperature)  
DEV_ID(15:8) (Temperature)  
DEV_ID(7:0) (Temperature)  
DEV_ID(47:40) (Position)  
DEV_ID(39:32) (Position)  
DEV_ID(31:24) (Position)  
DEV_ID(23:16) (Position)  
DEV_ID(15:8) (Position)  
DEV_ID(7:0) (Position)  
MNFCT_ID(15:8)  
MNFCT_ID(7:0)  
Table 6: Register map  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 18/44  
OPERATING MODES  
In order to calibrate iC-MR, to adjust the input signals, ing the register MODE. The output functions of PSO,  
as well as to test iC-MR the operation mode must be NSO, PCO and NCO change according to the various  
altered. The operating mode can be selected by us- operating modes.  
MODE(1:0)  
MODE(4:2)  
ADR 0x0F; bit 1:0  
ADR 0x10; bit 2:0  
Code  
0x00  
0x01  
0x02  
0x03  
0x04  
...  
Operating mode  
Normal operation *  
Analog 1  
Analog 2  
Bypass  
Pin PSO  
PSO  
PS_W  
SVDC  
PSI  
Pin NSO  
NSO  
NS_W  
CVDC  
NSI  
Pin PCO  
PCO  
PC_W  
VREFI  
PCI  
Pin NCO  
NCO  
NC_W  
IBP  
NCI  
iC-Haus internal  
0x1F  
iC-Haus internal  
Note: *) Measurement condition: ENOCC = 1, ENOCM = 1, TIIN = 0, TIPOL = 0, TLDOS = 0  
Table 7: Operating mode  
Calibration modes  
rent source (IBP), reference potential input (VREFI),  
In operation mode Analog 1 the adjusted sine and co- as well as center potentials of calibration circuits for  
sine signals are being provided (PS_W, NS_W, PC_W sine (SVDC) and cosine (CVDC) can be measured.  
und NC_W). In operation mode Analog 2 bias cur-  
BIAS CURRENT SOURCE AND SIGNAL FILTER  
Bias current source  
Signal filter  
The calibration of the bias current source in operating In order to decrease the adjusted analog signals’ noise  
mode Analog 2 is required for adherence to the given iC-MR uses a signal filter which can be activated  
Electrical Characteristics and instrumental in the deter- through register bit ENF.  
mination of the chip timing (e.g. SCL clock frequency).  
For adjusting the bias current source, the voltage drop  
is being measured using a 10 kresistor from pin NCO  
to pin GNDA. The setpoint of 200 µA is reached with a  
measurement voltage of 2 V.  
ENF  
Code  
0
Addr 0x0F, bit 2  
Function  
Signal filter deactivated  
Signal filter active  
1
Table 9: Signal filter activation  
Low pass cutoff frequencies can be adjusted using  
SELBP.  
SELBP  
Addr. 0x0F; bit 3  
Function  
CFGBIAS Addr 0x0F, bit 7:4  
Code  
31  
31  
31k  
Code k  
IBP ∼  
Code k  
(signed)  
IBP ∼  
31k  
0
1
7.5 kHz  
15 kHz  
(signed)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
100 %  
103 %  
107 %  
111 %  
115 %  
119 %  
124 %  
129 %  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
79 %  
81 %  
84 %  
86 %  
88 %  
91 %  
94 %  
97 %  
Table 10: Signal filter cutoff frequency (fin < 10 Hz)  
The filter’s dead band can be activated using NEFDR.  
NEFDR  
Addr. 0x0C; bit 3  
Function  
Code  
0
1
Filter dead band active  
Table 8: Adjustment of bias current source  
Filter dead band deactivated  
Table 11: Signal filter dead band  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 19/44  
SIGNAL CONDITIONING  
Input configuration  
Signal adjustment is possible only in operating modes  
All input stages are configured as instrumentation am- Analog 1 and Analog 2. Figure 8 shows the sine chan-  
plifiers and thus directly suitable for differential input nel’s conditioning unit; the cosine channel’s set-up is  
signals. Referenced input signals can be processed equivalent to it.  
by applying the input signals’ reference voltage to neg-  
ative inputs.  
PSIN1  
PSI  
GFS  
0.5 V  
PSIN2  
0.25 V  
x
x
GR  
OR  
OF  
0.05 x V(ACO)  
VDC  
NSIN2  
NSIN1  
NSI  
GFS  
VPAH  
SVDC  
k
VREF  
SELREF  
VREFI  
Figure 8: Signal-conditioning unit (sine channel)  
INMODE  
Addr 0x0E, bit 7  
are typical, refer to Electrical Characteristics for toler-  
ances.  
Code  
Function  
0
1
Differential input signals  
Single-ended input signals  
The input resistance should be set so that center po-  
tentials SVDC and CVDC are between 125 mV and  
250 mV (testable in operating mode Analog 2).  
Table 12: Input mode differential/single-ended  
Both voltage and current signals can be accepted as  
input signals. For selection use register bit UIN.  
RIN  
Code  
00  
Addr 0x0E, bit 2:1  
Nominal Rin() Internal Rui()  
Mode  
UIN  
Code  
0
Addr 0x0E, bit 0  
Function  
1.7 kΩ  
2.5 kΩ  
3.5 kΩ  
4.9 kΩ  
1.6 kΩ  
2.3 kΩ  
3.2 kΩ  
4.6 kΩ  
Current input  
Current input  
Current input  
Current input  
01  
Current input  
Voltage input  
10  
1
11  
Table 13: Operating mode current/voltage  
Table 14: Input resistance  
In current mode an input restistor Rin() becomes ac-  
tive at each input pin, converting the current signal into In voltage mode a voltage divider can be selected for  
a voltage signal. The input resistance Rin() consists high input amplitudes. This voltage divider reduces the  
of a pin resistor and the resistor Rui(), which is con- input signal’s amplitude to about 25%. The internal cir-  
nected to the adjustable bias source VREFI. Tab. 14 cuit corresponds to the circuit in current mode, just the  
shows the selection options. Indicated values of Rin() resistor connecting the pin is altered.  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 20/44  
1.5  
1.5  
TUIN  
Code  
0
Addr 0x0E, bit 3  
Nominal Rin() Internal Rui()  
Mode  
high  
high  
Voltage input  
impedance  
impedance  
1
20 kΩ  
5 kΩ  
Voltage input  
Px  
Nx  
Table 15: Input voltage divider  
VPNx  
R0  
VPx  
DCPOS  
Addr 0x0E, bit 6  
VNx  
Code  
VREFI  
2.5 V  
Sensor type  
GND  
0
1
Lowside current drain (I Mode)  
Highside current source (I Mode)  
1.5 V  
Figure 9: Measuring the differential signal ampli-  
tudes  
Table 16: Input reference voltage  
3. Using fine gain factor GFS the sine signal amplitude  
is then adjusted to 6 Vpp.  
Parameter DCPOS determines the input reference  
voltage. In the generation of center potentials SVDC  
and CVDC it also determines whether the reference  
voltage VREFin() is being subtracted from the sum of  
the particular input signals or the sum is being sub-  
tracted from VREFin().  
4. The cosine signal amplitude can then be adjusted  
to the sine signal amplitude using fine gain factor GFC.  
GR  
Addr 0x02, bit 2:0  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Factor  
2.0  
Parameter SELREF configures the input voltage refer-  
ence.  
4.1  
5.3  
6.7  
SELREF  
Code  
Addr 0x0D, bit 7:6  
8.7  
VREFin()  
internal  
internal  
external  
Pin function VREF  
10.5  
13.2  
16.0  
0x0, 0x1  
0x2  
high impedance  
Output*: output of VREFI  
0x3  
Input**: external reference  
replaces VREFI  
Table 18: Coarse gain  
Notes  
*) Do not load, buffer recommended.  
**) See Elec.Char. No.105 for permissible input  
voltage.  
GFS  
GFC  
Code  
0x000  
0x001  
...  
Addr 0x03, bit 6:0, Addr 0x02, bit 7:4  
Addr 0x05, bit 2:0, Addr 0x04, bit 7:0  
Table 17: Input reference source selection  
Factor  
1.0  
1.0009  
6.25(GFx/1984)  
6.6245  
Gain settings SIN and COS  
The gain is set in four steps:  
0x7FF  
Table 19: Fine gain sine, cosine  
1. The sensor supply controller is shut down and  
the constant current source for the ACO output set to  
a suitable output current (register ADJ; current value  
close to the later operating point).  
Offset calibration SIN and COS  
In order to calibrate the offset the reference source  
must first be selected using register REFVOS. Two  
fixed voltages and two dependent sources are avail-  
able for this purpose. The fixed voltage sources should  
be selected for external sensors which provide stable,  
self-regulated signals.  
2. The coarse gain range is selected so that differen-  
tial signal amplitudes of ca. 6 Vpp are produced at the  
core of the converter (signal PS_W versus NS_W and  
PC_W versus NC_W).  
So that photosensors can be operated in optical en-  
coders iC-MR tracks changes in offset voltages via the  
signal-dependent source VDC when used in conjunc-  
The signals at the converter core output in calibration  
mode Analog 1 are amplified by factor 3.  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 21/44  
tion with the controlled sensor current source for LED is reached when the DC rate of the differential signals  
supply (output ACO). The VDC potential automatically V(PSO)-V(NCO) and V(PCO)-V(NCO) is zero.  
tracks higher photocurrents. In order to use this func-  
tion intermediate potentials SVDC and CVDC have to  
ORS  
ORC  
Code  
0x0  
Addr 0x08, bit 5:4  
be adjusted to a minimal AC ripple using the selectable  
k factor of parameters MPS and MPC (see Table 21).  
If the gain setting is altered, this calibration has to be  
repeated. When single-ended operating mode is se-  
lected via register bit INMODE (see Table 12) MPS  
and MPC have no impact and the applied voltage at  
the negative input replaces the configurable sum volt-  
age in the VDC generation.  
Addr 0x0A, bit 5:4  
Range  
maxVOS = 3 * VOSREF  
maxVOS = 6 * VOSREF  
maxVOS = 18 * VOSREF  
maxVOS = 36 * VOSREF  
0x1  
0x2  
0x3  
Note  
The maximum offset calibration range refers to the  
internal calibrated signals (calibration mode Analog  
1, see page 18)  
The feedback of pin voltage V(ACO) fulfills the same  
task as source VDC when MR bridge sensors are sup-  
plied by the controlled sensor current source. In this  
case the justification of intermediate potentials MPS  
and MPC is unnecessary.  
Table 22: Offset calibration range sine, cosine  
The principle interpolation accuracy of the sine/cosine  
signals in dependancy with the selected calibration  
range as well as the size of an LSB are exemplarily  
illustrated for some values in the following table.  
REFVOS  
Code  
Addr 0x0E, bit 5:4  
Source type  
0x0  
Feedback of pin voltage V(ACO): V(ACO)/20  
for supply-dependent diff. voltage signals  
for Wheatstone measuring bridges  
to measure VDDS  
Range  
x Source  
maxVOS  
Cal. step  
size (LSB)  
Limitation of  
angle precision  
@ 100 % (6 Vpp)  
@ 50 % (3 Vpp)  
0x1, 0x2  
Fixed reference:  
3 x 0.25 V  
6 x 0.25 V  
6 x 0.5 V  
750 mV  
1.5 V  
3 V  
733 µV  
none (>13 bit)  
none (>13 bit)  
0x1 = V05 of 500 mV, 0x2 = V025 of 250 mV  
for single-ended current or voltage signals  
for single-ended or differential stabilized signals  
(regulated sensors, frequency generator)  
1466 µV  
2933 µV  
8798 µV  
0.03°, >13 bit  
0.06°, ca. 12 bit  
0.06°, ca. 12.5 bit  
0.11°, ca. 11.7 bit  
0x3  
Self-tracking sources VDC1, VDC2 (125...250 mV)  
for differential current signals  
for differential voltage signals*  
18 x 0.5 V  
9 V  
0.17°, ca. 11 bit  
0.34°, ca. 10 bit  
Note  
*) Requires SELREF = 0x3 and the supply of pin  
VREF with the sensor’s reference potential (see  
Elec. Char. No. 105 for acceptable input voltage).  
Table 23: Offset calibration and impact on the angle  
precision  
Table 20: Offset reference source  
OFS  
OFC  
Code  
0x000  
0x001  
...  
Addr 0x09, bit 7:0, Addr 0x0A, bit 2:0  
Addr 0x0B, bit 7:0, Addr 0x0C, bit 2:0  
MPS  
MPC  
Code  
0x000  
0x001  
...  
Addr 0x06, bit 5:0, Addr 0x05, bit 7:4  
Addr 0x08, bit 1:0, Addr 0x07, bit 7:0  
VDC = k VPi + (1 k) VNi  
k = 0.33  
Factor OF  
Code  
0x400  
0x401  
...  
Factor OF  
0
0
0.00098  
0.00098  
0.00098 OFx  
1  
0.00098 OFx  
1
k = 0.33032  
0x3FF  
0x7FF  
...  
k = 0.33 + Code · 0.00032  
0x200  
...  
k = 0.50 (center setting)  
Table 24: Offset calibration sine, cosine  
...  
0x3FF  
Note  
k = 0.66  
Adjustment required only if VOSREF = 0x3  
The calibrated offset is generated through  
VOS() = maxVOS OF  
Table 21: Intermediate potentials sine, cosine  
Phase correction SIN vs. COS  
The offset calibration range is dependent on the se- The phase shift between sine and cosine can be ad-  
lected REFVOS source and is adjusted using registers justed using register value PH. If the phase error is  
ORS and ORC. The actual offset calibration happens too high, some calibration parameters may have to be  
through adjusting factors OFS and OFC after having adjusted again (those are amplitudes, intermediate po-  
selected the calibration range. The calibration target tentials and offset voltages).  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 22/44  
PH  
Addr 0x0D, bit 5:0, Addr 0x0C, bit 7:4  
DIAG  
Bit  
Addr. 0x5A; bit 7...0  
Description  
R
Code  
0x000  
0x001  
...  
Correction angle  
+0  
Code  
0x200  
0x201  
...  
Correction angle  
0  
Name  
7
RG_MAX  
Transmit current control maximum  
error  
+0.0204  
0.0204  
6
AMP_MAX  
Amplitude monitoring maximum  
error  
+0.0204 PH  
+10.42  
0.0204 PH  
10.42  
0x1FF  
0x3FF  
5
4
DC_MAX  
Offset monitoring maximum error  
CMP_MAX  
Cont. amplitude monitoring  
maximum error  
Table 25: Phase correction sine vs. cosine  
3
2
RG_MIN  
Transmit current control minimum  
error  
AMP_MIN  
Amplitude monitoring minimum  
error  
Diagnostic data  
1
0
DC_MIN  
Offset monitoring minimum error  
The address 0x5A contains diagnosis data. Errors in  
signal conditioning (amplitude monitoring) and trans-  
mitter current control (ACO) are also reported in er-  
ror byte 0x69 as ERR_AMP and ERR_RGL (see page  
41).  
CMP_MIN  
Cont. amplitude monitoring  
minimum error  
Table 26: Diagnostic register 0x5A  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 23/44  
AMPLITUDE CONTROL  
iC-MR allows the amplitude of the output signals at Square control mode keeps the sum of the sine/cosine  
pins PSO, NSO, PCO, and NCO to be kept constant amplitude squares at a constant value. Register ACOC  
- regardless of temperature and ageing effects - by adjusts the setpoint for analog output ACO according  
tracking the sensor supply. For this purpose iC-MR to Table 31.  
has a controlled current source at pin ACO which can  
ACOC  
Code  
0x00  
Addr 0x00, bit 4:0  
power the external sensor. The driver capability of this  
current source is selected by ACOR (Table 27), the  
control modes by ACOT (Table 28).  
Square mode ACOT = 00  
Vpp() 300 mV (60 %)  
Vpp() 305 mV (61 %)  
0x01  
ACOR  
Code  
00  
Addr 0x00, bit 6:5  
Function  
77  
...  
Vpp() 300 mV  
77(1.25Code)  
5 mA - range  
10 mA - range  
25 mA - range  
50 mA - range  
0x19  
...  
Vpp() 500 mV (98 %)  
...  
01  
10  
0x1F  
Vpp() 600 mV (120 %)  
11  
Table 31: AC Setpoint square control  
Table 27: ACO Output current range (for control oper-  
ation and constant current source)  
~
Vpp() 500 mV  
~
ACOT  
Code  
00  
Addr 0x01, bit 0; Addr 0x00, bit 7  
Function  
~
Vpk() 250 mV  
~
SIN/COS square control  
Sum control  
01  
ϕ
10  
Combined Sum and SIN/COS square control  
Constant current source  
As cos(ϕ)  
11  
Table 28: ACO Output control principle  
LCMODE  
Addr 0x02, bit 3  
Function  
Vt(max)  
Vt(min)  
Code  
0
1
Optimized control  
Standard control  
Figure 10: Signal monitoring with square control  
(example: ACOC = 0x19; for Vt()min or  
Vt()max; see Elec. Char. Nos. 809 and  
810).  
Table 29: Control mode  
In sum control mode the sine and cosine DC values  
(SVDC and CVDC) are added together and regulated  
to the setpoint. The setpoint is configured using regis-  
ter ACOD according to Table 30.  
As opposed to square mode, sum mode gives a higher  
accuracy. However, at higher signal frequencies it can-  
not compensate for a reduction in the signal amplitude  
caused by the amplifier cut-off frequency of the sen-  
sors. The device thus has a combined control mode  
which utilizes both control modes, sum and square  
(see Table 28). In this mode sum control is applied at  
low frequencies, with square control coming into play  
at frequencies exceeding the cut-off frequency of the  
sensor’s amplifiers. So that this control mode functions  
correctly, the set signal amplitude for square control  
mode must be lower than that for sum control.  
ACOD  
Code  
0x00  
Addr 0x01, bit 7:1  
Sum mode ACOT = 01  
VDC1 + VDC2 166 mV  
VDC1 + VDC2 167 mV  
0x01  
109  
...  
VDC1 + VDC2 166 mV  
VDC1 + VDC2 551 mV  
109(0.6Code)  
0x7F  
Table 30: DC Setpoint sum control  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 24/44  
ACOC  
Code  
0x00  
Addr 0x00, bit 4:0  
Constant current source ACOT = 11  
The control’s operating range and the input signal am-  
plitudes supplied to the control unit are both monitored.  
Should any error occur during monitoring, these can be  
output.  
I(ACO) 3.125 % Isc(ACO)  
I(ACO) 6.250 % Isc(ACO)  
0x01  
...  
I(ACO) 3.125 % * (Code + 1) * Isc(ACO)  
So that the signals at the input pins PSO, NSO, PCO,  
and NCO can be calibrated without control interfer-  
ence, the current source at pin ACO can be set to a  
constant current (Table 28).  
0x1F  
Note  
I(ACO) 100 % Isc(ACO)  
Isc(ACO) see characteristics no. 802  
Table 32: Setpoint current source (ACO output cur-  
rent)  
12-BIT A/D CONVERTER  
The IC features a 12-bit A/D converter, which output Registers TEMPHI and TEMPLO define the upper and  
data is stored in the TEMP register and can be read lower thresholds for error output. If the current con-  
out from here through the interfaces. The A/D con- verter value is above TEMPHI or below TEMPLO, the  
verter operates constantly, updating the data in regis- ERR_TMP alarm bit is set in the error register. The  
ter TEMP after each conversion. The TEMP register internal ADC can be utilized to continuously record  
cannot be read by bytewise access to addresses 0x6A an external temperature, for which a temperature-  
and 0x6B, as otherwise it is not guaranteed that a con- dependent voltage is applied at pin ADC. This can be  
tiguous data word is read out. The temperature data generated by a KTY temperature sensor. A tempera-  
must be read out by the cyclic telegram.  
ture monitor can be created using thresholds TEMPHI  
and TEMPLO. By way of example, the following de-  
The A/D converter can be calibrated using registers scribes the evaluation of temperature sensor KTY 84.  
ADCSLOP and ADCOFF. Register ADCSLOP has 8  
bits and is used to set the maximum voltage the con-  
verter can process at pin ADC. The allocation of the  
register data in ADCSLOP to the maximum voltage is  
expressed in Table 33. Using the second calibration  
register ADCOFF, which has 16 bits, an offset can be  
added to the converter’s digital output data.  
TEMPLO  
TEMPHI  
Code  
Addr. 0x14...0x15;  
R/W  
Addr. 0x16...0x17;  
R/W  
Temperature threshold  
0x7FFF  
...  
+3276.7 °C  
...  
0x07D0  
...  
+200.0 °C  
...  
ADCSLOP  
Code  
0x00  
Addr. 0x11; bit 7...0  
Full scale level for VDDA = 5V  
2.0 V  
R/W  
0x0001  
0x0000  
0xFFFF  
...  
+0.1 °C  
0.0 °C  
-0.1 °C  
0x01  
2.00196 V  
...  
...  
2.0 V + 1.96 mV * ADCSLOP  
2.5 V  
0xFE70  
...  
-40 °C  
0xFF  
...  
0x8000  
Note  
-3276.8 °C  
Table 33: Maximum ADC input voltage ADC  
Thresholds for example KTY 84  
Table 35: Temperature thresholds  
ADCOFF  
Addr. 0x12...0x13;  
Function  
R/W  
Code  
0x7FFF  
...  
TEMP = TEMP(int) + 32767  
Figure 11 shows a schematic circuit diagram for the  
evaluation of the KTY. A resistor of approximately 2.3  
kis switched in series with the KTY sensor to lin-  
earize the voltage supplied by the KTY. This results in  
a linear temperature voltage.  
0x0001  
0x0000  
0xFFFF  
...  
TEMP = TEMP(int) + 1  
TEMP = TEMP(int)  
TEMP = TEMP(int) - 1  
0x8000  
TEMP = TEMP(int) - 32768  
Table 34: Digital temperature offset value  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 25/44  
+5V  
V(ADCSLOP)  
2,3kΩ  
12kΩ  
VDDA  
ADC  
V(KTY84)  
KTY84  
12 Bit  
16 Bit  
TEMP  
12 Bit  
ADC  
16 Bit  
ADCOFF  
Figure 11: Schematic circuit diagram for the evaluation of KTY sensors.  
The temperature is output according to Table 36 as a To obtain the output given in Table 36 the evaluation  
16-bit value in two’s complement format with a resolu- circuitry is calibrated as follows:  
tion of 1/10°C.  
1. The maximum convertible voltage is set and thus  
the increase in the converter using register AD-  
CSLOP. ADCSLOP’s register is set so that there  
is a difference of 2,400 between the converter  
values at R(KTY84) = 359 and R(KTY84) =  
1,722 .  
TEMP  
Code  
0x7FFF  
...  
Addr 0x6B, 0x6A, bits: 15..8, 7..0  
Temperature  
+3276.7 °C  
...  
Validity  
Out of  
measuring range  
0x07D0  
...  
+200.0 °C  
...  
0x0001  
0x0000  
0xFFFF  
...  
+0.1 °C  
0.0 °C  
-0.1 °C  
...  
2. To map ADC’s output onto the range of values  
given in Table 36, an offset is added through reg-  
ister ADCOFF. The data in register ADCOFF is  
set so that 0xFE70 is read at R(KTY84) = 359 Ω  
and, correspondingly, 0x07D0 at R(KTY84) =  
1,722 .  
Measuring range  
0xFE70  
...  
-40 °C  
...  
Out of  
0x8000  
-3276.8 °C  
measuring range  
(a) Read out converter data from regis-  
ter TEMP with ADCOFF = 0x0000 at  
R(KTY84) = 359 .  
Table 36: Temperature data output format  
(b) Calibration data = converter data + 400  
(c) Write the calibration data to register AD-  
COFF.  
Figure 12: Calibrating the temperature sensor to the  
output format  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 26/44  
INTERPOLATOR AND CYCLE COUNTER  
The configurable 37-bit cycle counter comparates the at 13-bit interpolation, the value ’10’ is accrued as the  
sine and cosine signals and counts the signal cycles configuration for CODERES.  
independent of requests for position data. The inter-  
polator resolves one signal cycle of the calibrated sine  
and cosine signals to 13 bits for each position data re-  
quest and synchronizes this with the cycle counter in  
order to ensure a consistent position data word at all  
times.  
Using register CODERES it is possible to adapt the  
bit length of the cycle counter to the output format. If,  
for example, a total data length of 48 bits is required  
CODERES  
Addr. 0x1B; bit 1...0  
R/W  
Code  
00  
Counter depth  
37 bit (24 bit MT, 13 bit ST)  
36 bit (24 bit MT, 12 bit ST)  
35 bit (24 bit MT, 11 bit ST)  
34 bit (24 bit MT, 10 bit ST)  
01  
10  
11  
Table 37: Cycle counter resolution  
36  
3
12  
0
0
0
0
Period Counter (36:3)  
Interpolation (12:0)  
CODERES  
Period Counter (36:0)  
Interpolation (12:0)  
36  
0
12  
0
Figure 13: Adjusting the counter depth  
STOFF  
Addr. 0x1E; bit 7...0  
Addr. 0x1D; bit 7...0  
Addr. 0x1C; bit 7...0  
Addr. 0x1B; bit 7...6  
R/W  
iC-MR’s output code direction can be inverted by bit  
DIR.  
Code  
0x00  
Function  
Offset value  
DIR  
Code  
0
Addr. 0x1B; bit 2  
Code direction  
R/W  
0x3FFFFFF  
Code direction not inverted  
Code direction inverted  
1
Table 39: Singleturn offset  
Table 38: Inversion of code direction  
MTOFF  
Addr. 0x21; bit 7...0  
Addr. 0x20; bit 7...0  
Addr. 0x1F; bit 7...0  
Function  
R/W  
Code  
0x00  
Offset value  
An offset for singleturn (STOFF) and multiturn  
(MTOFF) data can be defined to adapt the absolute  
position data. These offsets are subtracted from the  
existing data.  
0xFFFFFF  
Table 40: Multiturn offset  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 27/44  
Interpolation  
Period Counter  
-
MTOFF  
STOFF  
Multiturn  
Singleturn  
24 bit  
26 bit  
Figure 14: Setting the offset  
STRESO selects the internal resolution of the single- If required, MTRESO selects the internal resolution of  
turn data for the serial interface in SPI protocol and the multiturn data for the serial interface in SPI proto-  
the parallel interface. If the internal resolution is re- col and the parallel interface. If the internal resolution  
duced, the data is output flush left. Should a longer is reduced, the multiturn data is output flush right. The  
output data length thus be required, the data is filled upper bits are zeroed. The output data length is de-  
with zeros. This generates a permanently contiguous pendent on the selected output interface.  
position data word from the right-aligned multiturn data  
and the left-aligned singleturn data. The interpolator  
data resolution of 13 bits is fixed; only its length in the  
position data word can be selected using CODERES  
(Table 37).  
MTRESO  
Code  
0x0  
Addr. 0x24; bit 7...5  
R/W  
Multiturn resolution  
24 bit  
20 bit  
16 bit  
12 bit  
8 bit  
0x1  
0x2  
STRESO  
Code  
0x00  
0x01  
...  
Addr. 0x24; bit 4...0  
Singleturn resolution  
R/W  
0x3  
0x4  
26 bit  
25 bit  
...  
0x5  
4 bit  
0x6  
0 bit  
0x7  
0 bit  
0x0E  
...  
12 bit  
...  
Note  
Not valid for serial interface with BiSS/SSI protocol  
Table 42: Multiturn resolution  
0x19  
0x1A  
...  
1 bit  
0 bit  
...  
0x1F  
Note  
0 bit  
Not valid for serial interface with BiSS/SSI protocol  
Table 41: Singleturn resolution  
24 bit  
26 bit  
Multiturn  
Singleturn  
MTRESO  
STRESO  
Position Data  
Figure 15: Reducing the internal data length  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 28/44  
Acquiring position data  
able to both the parallel and serial interfaces with SSI  
There are three different operating modes for acquiring and BiSS C protocol.  
position data which are selected by ACQMODE.  
In continuous conversion mode position data is gen-  
erated continuously regardless of external requests  
for position data. The data output is the last data to  
be converted (the processing time is therefore also  
hidden; the exact moment of conversion remains un-  
known, however).  
ACQMODE  
Addr. 0x19; bit 7...6  
Function  
R/W  
Code  
00  
Normal conversion with processing time  
Pipeline conversion without processing time  
01  
10  
Continuous conversion without processing time  
11  
Continuous conversion with  
interpolated interim values *  
In continuous conversion mode with interpolated inter-  
mediate data, interpolated position data is output at all  
times (as opposed to the last data converted). This  
conversion mode is only available to the serial inter-  
face with SSI protocol, as no waiting period is possible  
in SSI protocol.  
Note  
*) Only for serial interface with SSI protocol  
Table 43: Position data acquisition  
In normal converter mode, new data is generated for  
each request for position data and this only output at  
the end of conversion.  
If a continuous conversion mode is active (ACQ-  
MODE = 10 or 11), conversion can be temporarily in-  
terrupted by pin NL using the enable acquire function.  
In pipeline mode data is also generated on each re-  
quest; however, with each new request the data from  
the last conversion is output in order to hide the pro-  
cessing time. In this mode the PDV bit is set stati-  
cally in the status byte; the ERR_IPO bit in the error  
byte, however, continues to signal the status or pro-  
cessing time of the interpolator. Pipeline mode is avail-  
NL (Enable Acquire Function)  
Function  
Convert as soon as the interpolator is free  
Do not convert  
Level  
1
0
Table 44: Special Function of Pin NL  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 29/44  
EEPROM INTERFACE  
Address range  
The CONF section includes addresses 0x00-0x7F, i.e.  
The address range on iC-MR is divided into three con- memory banks 0 and 1. The length of area EDS can be  
secutive areas:  
configured using register CFG_E2P. The USER sec-  
tion comes directly after the EDS area. The allocation  
thereof is described in Figure 16.  
• CONF: the iC-MR configuration register  
• EDS: Electronic-Data-Sheet  
• USER: user area to be configured as required.  
iC-MR internal  
linear address-  
space divided into n  
banks of size 64  
byte  
address-space visible via I/O interface  
bank n-1  
bank 3  
bank 2  
bank 1  
bank 0  
ADR  
ADR  
0x00  
0x00  
0x3F  
0x40  
0x7F  
0x80  
0x3F  
0x40  
BSEL  
selects  
0xBF  
0xC0  
EDSBANK  
profile ID  
serial number  
0xFF  
SLAVE-registers  
STATUS  
BiSS-ID  
0x7F  
Figure 16: Schematic diagram of the bankwise memory addressing  
Memory areas CONF and EDS are protected by sep- The BSEL register is used to switch to other mem-  
arate write-protection mechanisms (see Safety Fea- ory banks on the external EEPROM. After an iC-MR  
tures). The memory banks beyond the selected EDS startup bank 0 is selected which mirrors the internal  
area (USER section) are not write-protected.  
registers. If a different memory bank is selected to  
provide access to EEPROM data, this is displayed at  
addresses 0x00-0x3F.  
CFG_E2P  
Addr. 0x26; bit 7...6  
Banks per range  
(64 byte each)  
R/W  
BSEL  
Code  
00000  
00001  
00010  
...  
Addr. 0x40; bit 4...0  
R/W  
Bank at addresses 0x00...0x3F  
Bank 0*  
Code  
00  
01  
10  
11  
Bytes  
256  
512  
1024  
2048  
CONF EDS  
USER EEPROM, Type  
Bank 1  
2
2
2
2
1
4
12  
24  
1
2
2
6
2 kbit, as of C02  
4 kbit, as of C04  
8 kbit, as of C08  
16 kbit, as of  
C016  
Bank 2  
...  
11111  
Note  
Bank 31  
*) Corresponds to internal registers  
Table 45: EDS range selection  
Table 46: Bank selection  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 30/44  
Accessing external memory banks  
Read and write accesses to data in the external EEP-  
Register banks 2 to 31 store data in an external EEP- ROM may only be made if an EEPROM is connected  
ROM. If an address is accessed which is not physically up when iC-MR is started. Autoincrement accesses  
present on iC-MR (see Figure 16), communication with to external addresses are not possible. Error bit  
the external EEPROM is initiated. If the parallel inter- ERR_KNF is updated following each external access  
face or serial interface is active in SPI mode, the end (e.g. it is set if the storage time on the EEPROM is  
of I²C communication can be recognized by reading undershot, or cancelled if access was successful).  
out the status byte (address 0x60, bit 2 BUSY). Only  
after this is it possible to again access the internal reg-  
isters or external EEPROM registers. When the serial  
Startup and selection of I/O interface  
Register INTCFG defines which I/O interface is used.  
interface is run in BiSS protocol, iC-MR automatically  
Either a parallel or serial interface is available. The se-  
requests the processing time necessary for EEPROM  
rial interface can be run on BiSS, SSI, or SPI protocol.  
Only one of the two interfaces may be active. During  
access.  
the startup phase register INTCFG is set by the con-  
nected EEPROM being read out. During operation the  
register can be altered, for example to write an EEP-  
ROM which iC-MR starts with a different I/O interface.  
If an EEPROM data CRC is invalid (after up to 3 read-  
out trials) all registers are zeroed and the serial in-  
terface is activated with SSI protocol, but pin SLO is  
kept permanently high (at VDD). This state is main-  
tained until the CRC verification of renewed configu-  
ration data was executed successfully (in SSI mode  
register write access is permitted).  
Figure 17: EEPROM read access  
Two read accesses are needed to read out data from  
an address on the EEPROM (for the parallel interface  
and serial interface in SPI mode only). The first read  
access initiates communication with the EEPROM; at  
the end of communication the read data is stored in a  
temporary register on iC-MR. This temporary register  
data is supplied on the next read access to an exter-  
nal address. At the same time communication with the  
EEPROM is again started on this access. This enables  
a large area to be read out quickly, as the next readout  
address can already be created to read out the tempo-  
rary register.  
INTCFG  
Code  
11  
Addr. 0x18; bit 7...6  
Function  
(R/W)  
Parallel interface  
10  
Serial interface with SPI protocol  
Invalid value  
01  
00  
Serial interface with BiSS/SSI protocol*  
*) Switching BiSS/SSI with register NESSI  
Note  
Table 47: Interface selection  
Without an EEPROM the pin state of SCL and SDA is  
evaluated on startup; INTCFG(1) takes on the value  
at pin SCL, with INTCFG(0) assuming the value at pin  
SDA.  
Startup without EEPROM  
SCL level  
SDA level  
Activated interface  
1
1
0
0
1
0
1
0
Parallel interface  
Serial interface with SPI protocol  
Invalid value  
Serial interface with BiSS/SSI proto-  
col  
Figure 18: EEPROM write access  
Table 48: Interface selection without EEPROM  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 31/44  
PARALLEL I/O INTERFACE  
The parallel interface enables sensor and register data the register content. The second write access writes  
to be read out through pins NCS, NRD, NWR, NL, the data at the bus to the addressed register.  
and D0 to D7. After a reset or when inactive the in-  
terface is in read mode (data pins D(7:0) are tristate,  
NCS  
address transfer is expected). If the internal data bus  
is busy due to an EEPROM readout after the reset,  
NWR  
for instance (i.e. if the BUSY bit is active in the status  
byte), all read accesses are answered by the status  
byte through the parallel interface.  
NRD  
ADDR1  
DATA1  
ADDR2  
DATA2  
D(7:0)  
Notice: The parallel interface can not be simultane-  
ously operational with a serial I/O interface.  
Figure 20: Write process  
A simultaneous low signal for NRD and NWR is not  
permissible; the interface behavior is not defined for  
this configuration.  
Reading out registers  
iC-MR’s parallel interface enables internal registers to  
be accessed for readout. To this end the required reg-  
ister address must first be written to, after which the  
data at this address can be read out.  
Reading out position data  
Position data can be requested through the parallel in-  
terface in two different ways:  
NCS  
NWR  
NRD  
• by an implemented command  
• by a low signal through pin NL.  
To read out position data on an implemented com-  
mand, command register CMD must be written with the  
request command 0x00. Depending on the set config-  
uration, singleturn, multiturn, and interpolator data is  
then provided for readout. Each request command in-  
creases the life counter by one.  
ADDR1  
DATA1  
ADDR2  
DATA2  
D(7:0)  
Figure 19: Readout process  
Writing to registers  
The internal registers can be written through the paral- Position data is marked as valid by bit PDV being set  
lel interface. To this end the required register address in the status byte. Only after this has occurred posi-  
and then the relevant data word must be written to. tion data should be read out at the relevant register  
Write mode is selected by NWR = 0. The first write ac- addresses. Here, data is read out on a normal read  
cess sets the register address and has no effect on register access.  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 32/44  
NL  
NCS  
NWR  
NRD  
STATUS  
0x60  
0x00  
0x60  
0x62  
ST  
0x63  
ST  
D(7:0)  
Request Position  
Wait for PDV=1  
Read Data  
Figure 21: Position data output at request by command  
If it is not possible to extend the NRD pulse to wait When reading out position data through pin NL,  
for data validity, the status register must be continually the request is made directly on the falling edge  
read out anew until pin D0 supplies a high (PDV = 1). at pin NL. While NL = low, the status and posi-  
After this, the position data can be read out on a read tion data are output on consecutive read accesses  
register access.  
(NRD = high low high).  
As the position data registers are read out individu-  
ally following a request for position data by command, It is not necessary to write to the register addresses  
no CRC is formed across the position data. The life in this operating mode, as this is only used for the fast  
counter function continues to be active, however.  
readout of sensor data.  
NL  
NCS  
NRD  
Status  
ST  
ST  
ST  
ST  
MT  
MT  
MT  
LC  
ERR  
TMP  
TMP  
CRC  
CRC  
D(7:0)  
Statusbit PDV  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
ADDR int  
Wait for PDV=1  
Read Data  
PosData  
Request  
Figure 22: Position data output at request by pin NL  
The status register data is output first. During the sta- out with each low signal at NRD.  
tus register readout NRD should remain low until pin  
D0 (in this case, PDV) switches to high, as this indi-  
cates the validity of the position data.  
The various ways of outputting position data in this  
operating mode are set in register FULL_CYC. If bit  
On each rising edge at NRD the internal address is FULL_CYC is set (Table 49), registers 0x60-0x6D are  
increased, after which the position data can be read output on each cyclic access. If this bit is disabled,  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 33/44  
Data sequence shortened format (FULL_CYC = 0)  
registers 0x61 and 0x67 are bypassed; only 24 bits of  
singleturn and 16 bits of multiturn data are output.  
Byte No.  
1
2
Data  
Status byte  
Register  
STAT(7:0)  
ST(9:2)  
Address  
0x60  
0x62  
0x63  
0x64  
0x65  
0x66  
0x68  
0x69  
0x6A  
Singleturn Lo byte  
Singleturn Mid byte  
Singleturn Hi byte  
Multiturn Lo byte  
Multiturn Mid byte  
Life counter  
FULL_CYC  
Addr. 0x18; bit 5  
Function  
R/W  
3
4
5
ST(17:10)  
ST(25:18)  
MT(7:0)  
Code  
0
1
24-bit ST / 16-bit MT  
26-bit ST / 24-bit MT  
6
7
MT(15:8)  
LC(7:0)  
8
9
10  
11  
12  
Error byte  
ERR(7:0)  
TEMP(7:0)  
Table 49: Cyclic telegram length  
Temperature Lo byte  
Temperature Hi byte  
CRC Lo byte  
TEMP(15:8) 0x6B  
A CRC is formed across the output data (with the poly-  
nomial x16 + x14 + x11 + x10 + x9 + x7 + x5 + x3 + x1 + 1  
(0x14EAB), start value 0xFFFF). The check sum is re-  
formed for each cyclic transmission and is only valid  
for the duration of this transmission. The follow-  
ing sequence applies to the shortened output format  
(FULL_CYC = 0):  
CRC(7:0)  
CRC(15:8)  
0x6C  
0x6D  
CRC Hi byte  
Table 50: Data sequence shortened output format  
If more bytes are read out in cyclic operation, a zero  
is always output. In full output format (FULL_CYC = 1)  
the data is output in the following order:  
Data sequence complete format (FULL_CYC = 1)  
Byte No.  
1
2
3
4
5
6
7
Data  
Status byte  
Register  
STAT(7:0)  
ST(1:0)  
Address  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
Singleturn Ext byte  
Singleturn Lo byte  
Singleturn Mid byte  
Singleturn Hi byte  
Multiturn Lo byte  
Multiturn Mid byte  
Multiturn Hi byte  
Life counter  
ST(9:2)  
ST(17:10)  
ST(25:18)  
MT(7:0)  
MT(15:8)  
MT(23:16)  
LC(7:0)  
ERR(7:0)  
TEMP(7:0)  
TEMP(15:8) 0x6B  
8
9
10  
11  
12  
13  
14  
Error byte  
Temperature Lo byte  
Temperatur Hi byte  
CRC Lo byte  
CRC(7:0)  
CRC(15:8)  
0x6C  
0x6D  
CRC Hi byte  
Table 51: Data sequence complete output format  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 34/44  
SERIAL I/O INTERFACE: BiSS C  
Configuration  
The following parameters define the serial interface in  
The serial I/O interface operates in BiSS C proto- BiSS C protocol:  
col and allows sensor data to be output in repeated  
cycles without any termination (data channels POS  
and TMP). At the same time parameters can be ex-  
changed through bidirectional register communication  
(data channel CD).  
NESSI  
Addr 0x19, bit 4  
Code  
Protocol  
Information  
0
1
SSI  
BiSS C  
www.biss-interface.com  
Depending on the configuration, the sensor data sup-  
plied by iC-MR contains the cycle counter and interpo-  
lation data (MT + ST) of up to 50 bits, a life counter  
of up to 6 bits, two error bits (ERR and WARN), and  
6 or 16 CRC bits (CRC). Another data channel can be  
switched in to transmit the temperature data from the  
12-bit A/D converter at a length of 16 bits. Registers  
PROFILE and DEV_ID can be programmed separately  
for the data channels.  
Table 53: BiSS/SSI protocol selection  
ENLC  
Code  
0
Addr. 0x19; bit 5  
Function  
R/W  
R/W  
R/W  
No transmission of life counter  
Transmission of 6-bit life counter  
1
Table 54: Life counter enable  
Single-cycle data channel: POS  
Bits  
Type  
Label  
TMPSCD  
Addr. 0x19; bit 2  
Function  
0/12/24  
24/26  
1
DATA  
DATA  
ERROR  
Multiturn data MT  
Singleturn data ST  
Code  
0
1
No cyclic output of temperature value  
Cyclic output of temperature value  
Error bit nE (see ERR)  
(inverted bit output)  
1
ERROR  
Error bit nW (see WARN)  
(inverted bit output)  
Table 55: Temperature data enable (BiSS)  
0/6  
DATA  
CRC  
Life counter LC  
ENXCRC  
Addr. 0x19; bit 3  
Function  
6/16  
Polynomial 0x43 or 0x190D9  
(inverted bit output)  
Code  
0
6-bit CRC with polynomial  
0x43 = x6 + x1 + 1  
Single-cycle data channel: TMP  
Bits  
16  
5
Type  
DATA  
CRC  
Label  
1
16-bit CRC with polynomial  
Temperature data TEMP  
Polynomial 0x25 = x5 + x2 + 1  
(inverted bit output)  
0x190D9 = x16 + x15 + x12 + x7 + x6 + x4 + x3 + 1  
Table 56: Selecting extended CRC  
Table 52: BiSS data channels  
Figure 23: Example of line signals (BiSS C)  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 35/44  
CRCS(15:8)  
CRCS(7:0)  
Code  
Addr. 0x28; bit 7...0  
Addr. 0x29; bit 7...0  
R/W  
Configuration examples  
Function  
POS: Singleturn data  
0x00  
Bits  
Type  
Label  
...  
Start value for CRC calculation  
24  
DATA  
ERROR  
CRC  
Singleturn value ST(23:0)  
Error nE and warning nW  
Polynomial 0x43  
0xFF  
2
Note  
For ENXCRC = ’0’ only CRCS(5:0) is applied.  
Table 57: CRC start value  
6
Config.  
NESSI = 1, ENLC = 0, TMPSCD = 0, ENXCRC = 0,  
STRESO = 0x02, MTRESO = 0x7  
In addition, bit ENLC enables the life counter to be  
transmitted on the single-cycle data channel. The  
counter data (6 bits) is sent directly after the nE/nW  
bits. Register ENXCRC defines the CRC polynomial  
used and the number of CRC bits transmitted. Here,  
CRCS allows a free start value to be programmed for  
CRC calculation. If the 6-bit CRC is chosen, only  
CRCS bits 5 to 0 are used. The temperature can be  
transmitted as an additional single-cycle data channel.  
This can be controlled by bit TMPSCD. The timeout  
is always formed adaptively and thus does not require  
configuration.  
Table 59: Format example 1 for BiSS profile BP1  
POS: Single- and multiturn data  
Bits  
Type  
Label  
24  
DATA  
DATA  
ERROR  
CRC  
Multiturn value MT(23:0)  
Singleturn value ST(11:0) & x"000"  
Error nE and warning nW  
Polynomial 0x43  
24  
2
6
Config.  
NESSI = 1, ENLC = 0, TMPSCD = 0, ENXCRC = 0,  
STRESO = 0x0E, MTRESO = 0x0  
Table 60: Format example 2 for BiSS profile BP1  
Register communication  
POS: Single- and multiturn data with life counter  
According to BiSS C protocol slave registers are di-  
rectly addressed in a reserved address area (0x40 to  
0x7F). Other memory areas are addressed dynami-  
cally and in blocks. For this purpose BiSS addresses  
0x00 to 0x3F target a register bank consisting of 64  
bytes, whose physical storage address determines  
bank selection n. iC-MR supports up to 32 memory  
banks, enabling a 16-kbit EEPROM to be fully ex-  
ploited. This means that there is sufficient storage  
space for an ID plate (EDS) and OEM data. Page  
29 provides information on memory allocation and ad-  
dressing through BiSS. If the internal bus is busy in  
BiSS C mode (due to a CRC, configuration being writ-  
ten to the EEPROM, or absolute data being read out  
through the ADI, for example), zeroes are sent on the  
single-cycle data channel.  
Bits  
12  
26  
2
Type  
Label  
DATA  
DATA  
ERROR  
DATA  
CRC  
Multiturn value MT(11:0)  
Singleturn value ST(25:0)  
Error nE and warning nW  
Life counter LC  
6
16  
Polynomial 0x190D9  
TMP: Temperature data  
16  
DATA  
CRC  
Temperature value TEMP(15:0)  
Polynomial 0x25  
5
Config.  
NESSI = 1, ENLC = 1, TMPSCD = 1, ENXCRC = 1,  
STRESO = 0x00, MTRESO = 0x3  
Table 61: Format example 3  
Commands  
The following BiSS interface commands are imple-  
mented. These commands cannot be listed in the  
broadcast.  
Opcode  
10  
Function  
Readout new data via absolute data interface  
CRC verification of internal configuration  
11  
Table 58: BiSS commands  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 36/44  
SERIAL I/O INTERFACE: SSI  
Configuration  
cesses in write form are possible in SSI mode. As in  
iC-MR can transmit position data in SSI protocol, for BiSS mode, the timeout is formed adaptively and thus  
which purpose the following parameters give the nec- does not require configuration.  
essary settings and options. In addition, register ac-  
Figure 24: Example of line signals (SSI)  
NESSI  
Addr 0x19, bit 4  
Protocol  
Configuration examples  
Code  
Information  
POS: Singleturn data  
Bits  
Type  
Label  
0
1
SSI  
BiSS C  
13  
DATA  
Singleturn value ST(23:11)  
www.biss-interface.com  
Config.  
NESSI = 0, ENLC = 0, TMPSCD = 0, ENXCRC = 0,  
SSIERR = 0, SSIMODE = 00,  
STRESO = 0x0D, MTRESO = 0x7  
Table 62: BiSS/SSI protocol selection  
Table 64: Format example 1 for 13-bit SSI  
Register NESSI must be zeroed so that data can be  
transmitted in SSI protocol. SSI ring mode can be acti-  
vated by SSIRING. SSIMODE(1:0) sets the data length  
of the serial interface in SSI protocol. Possible values  
are a 13-bit SSI, a 25-bit SSI, or an extended mode,  
the data length of which can be configured as in BiSS  
C protocol. In 13-bit or 25-bit SSI mode the error bit  
can be attached to the data by SSIERR.  
POS: Single- and multiturn data  
Bits  
12  
Type  
Label  
DATA  
DATA  
ERROR  
Multiturn value MT(11:0)  
Singleturn value ST(23:11)  
Error nE  
13  
1
Config.  
NESSI = 0, ENLC = 0, TMPSCD = 0, ENXCRC = 0,  
SSIERR = 1, SSIMODE = 01,  
STRESO = 0x0D, MTRESO = 0x3  
Table 65: Format example 2 for 25-bit SSI  
SSIRING  
Addr. 0x18; bit 1  
Function  
R/W  
Code  
0
SSI ring mode deactivated  
SSI ring mode activated  
Addr. 0x18; bit 0  
POS: Single- and multiturn data with life counter  
1
Bits  
24  
26  
2
Type  
Label  
SSIERR  
R/W  
R/W  
DATA  
DATA  
ERROR  
DATA  
CRC  
Multiturn value MT(23:0)  
Singleturn value ST(25:0)  
Error nE and warning nW  
Life counter LC  
0
Standard SSI output without error bit  
Standard SSI output with error bit  
Addr. 0x19; bit 1...0  
1
SSIMODE  
6
00  
01  
10  
13-bit SSI protocol  
16  
Polynomial 0x190D9  
25-bit SSI protocol  
TMP: Temperature data  
Extended SSI protocol (8-85 bit)  
16  
DATA  
CRC  
Temperature value TEMP(15:0)  
Polynomial 0x25  
5
Table 63: SSI Configuration  
Config.  
NESSI = 0, ENLC = 1, TMPSCD = 1, ENXCRC = 1,  
SSIERR = 0, SSIMODE = 10,  
STRESO = 0x00, MTRESO = 0x0  
Table 66: Format example 3 for extended SSI  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 37/44  
SERIAL I/O INTERFACE: SPI  
Register access  
The third byte concludes the transmission, with which  
SPI protocol can also be used for communication the register data (WRITEDATA) is written through pin  
through the serial interface. Data changes at pins SLI SLI on a register write access. On a register read ac-  
and SLO respectively on a falling edge at MAI and is cess the requested register data (READDATA) can be  
accepted on a rising edge at MAI. If the internal data read out at pin SLO. To access the command register  
bus is busy due to an EEPROM readout after the reset, the protocol can be shortened to two bytes, as the op-  
for instance (i.e. if the BUSY bit is active in the status code already contains the command to be executed.  
byte), all read accesses are answered by the status  
Command  
byte through the serial interface in SPI mode.  
The protocol for the register read or write access con-  
MAI  
sists of a 3-byte transmission.  
NCS  
SLI  
OPC  
- - -  
CYC & x60  
- - -  
- - -  
- - -  
MAI  
NCS  
SLI  
SLO  
OPC  
- - -  
CYC & ADR(6:0)  
- - -  
WRITEDATA  
READDATA  
Figure 26: Command register access  
SLO  
Figure 25: Register access  
Cyclic readout  
The decision is made as to whether a cyclic transmis-  
sion or a register access takes place on the first sent  
CYC bit. If registers are to be accessed, a 0 is trans-  
mitted.  
In order to generate new position data, either  
• parallel interface pin NL can be used, or  
• the command register can be written to prior to cyclic  
access (opcode 0x00: request for new position data).  
CYC  
Code  
Function  
The position data is read out on a read access from ad-  
dress 0x60 when CYC = 1. The output data (addresses  
0x60 to 0x6D) can be read out directly in sequence.  
0
1
Register access  
Cyclic readout  
Table 67: Selecting cyclic transmission  
MAI  
The address is then sent as a 7-bit value. The next  
transmitted byte contains the OPC transmission op-  
code. This opcode comprises one bit for register read  
(RD) and one bit for register write (WR) access, plus  
the data for the command register (CMD).  
NCS  
SLI  
CYC & x60  
- - -  
- - -  
STATUS  
0x60  
SLO  
ST(1:0)  
0x61  
...  
...  
CRC(7:0)  
0x6C  
CRC(15:8)  
0x6D  
- - -  
ADDR int  
OPC  
Figure 27: Cyclic readout  
Code  
Function  
RD WR CMD  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0000 Request new Position data  
0001 Write configuration in EEPROM  
0010 Readout absolute data interface  
0011 Trigger software reset  
0100 CRC verification of internal configuration  
0101 Activate error simulation ERR bit  
0110 Deactivate error simulation ERR bit  
0000 Writing register access  
A CRC is formed across the output data (with the poly-  
nomial x16 + x14 + x11 + x10 + x9 + x7 + x5 + x3 + x1 + 1  
(0x14EAB), start value 0xFFFF). The check sum is re-  
formed for each cyclic transmission and is only valid  
for the duration of this transmission.  
0000 Reading register access  
Table 68: Opcode of transmission  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 38/44  
ABSOLUTE DATA INTERFACE (ADI)  
DL_ADI  
Code  
0x00  
0x01  
...  
Addr. 0x1A; bit 7...3  
R/W  
Through the absolute data interface the cycle counter  
can be preloaded to a required value. The absolute  
data interface is a BiSS master and operates on either  
BiSS C or SSI protocol. Pin AMAO outputs the master  
clock, with slave data read in at pin ASLI.  
Function  
0 bit MT / 0 bit ST  
0 bit MT / 1 bit ST  
...  
0x0C  
...  
0 bit MT / 12 bit ST  
...  
The following registers define the use of the absolute  
data interface. Bit STP_ADI controls the readin of ab-  
solute data during startup. If set, and after the EEP-  
ROM has been successfully read out, absolute data  
is read in by the absolute data interface. Alternatively,  
absolute data can be read in at a later stage by the  
command register.  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
...  
0 bit MT / 23 bit ST  
0 bit MT / 24 bit ST  
8 bit MT / 24 bit ST  
12 bit MT / 24 bit ST  
16 bit MT / 24 bit ST  
24 bit MT / 24 bit ST  
...  
0x1F  
24 bit MT / 24 bit ST  
STP_ADI  
Addr. 0x18; bit 3  
Function  
R/W  
Table 72: Data length absolute data interface  
Code  
0
1
Do not read absolute data during start-up  
Read absolute data during start-up  
Register SYNC_ADI sets the number of synchroniza-  
tion bits used to synchronize the data on the internal  
cycle counter.  
Table 69: Startup with absolute data  
SYNC_ADI  
Addr. 0x1A; bit 2...1  
Function  
R/W  
Code  
00  
Bit CYC_ADI controls the cyclic readin of absolute  
data. If set, absolute data is read in every 550 µs, pro-  
vided the absolute data interface is not busy. Should  
the absolute data interface be busy, the reading is suit-  
ably delayed. If this bit is disabled, absolute data must  
be read in through the command register.  
Use 0 bit for synchronisation  
Use 1 bit for synchronisation  
Use 2 bit for synchronisation  
Use 3 bit for synchronisation  
01  
10  
11  
Table 73: Synchronisation bits absolute data interface  
CYC_ADI  
Addr. 0x18; bit 2  
Function  
R/W  
The transmission protocol used for the absolute data  
interface is selected by bit SSI_ADI.  
Code  
0
1
Do not read absolut data cyclically  
Read absolute data cyclically  
SSI_ADI  
Addr. 0x1A; bit 0  
Function  
R/W  
Code  
Table 70: Cyclic reading of absolute data  
0
1
BiSS C protocol  
SSI protocol  
CHK_ADI is used to check the counted value versus a  
cyclically read absolute value. If the two values differ,  
error bit ERR_ABS will be set.  
Table 74: Protocol of absolute data interface  
In order to access the sensor connected up to the  
absolute data interface through the serial interface in  
BiSS C protocol, bit GET_ADI permits the interface  
signals to be looped through to the absolute data in-  
terface. To this end the master clock received at pin  
MAI is output at pin AMAO and the data read at ASLI  
is used internally in place of SLI. The sensor con-  
nected up to the absolute data interface is then allocat-  
ing slave ID 0 in BiSS C protocol, and iC-MR is taking  
slave ID 1.  
CHK_ADI  
Addr. 0x27; bit 5  
Funktion  
R/W  
Code  
0
1
Do not check data cyclically  
Check data cyclically versus ADI reading  
Table 71: Cyclic check of absolute data  
Register DL_ADI defines the length of the data read in When routing signals in this manner it is not possible  
at the absolute data interface. to read in the absolute data of the connected sensor  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 39/44  
for internal calculation. Bit GET_ADI must first be dis-  
abled.  
GET_ADI  
Addr. 0x18; bit 4  
Function  
R/W  
Code  
0
1
Normal operation, no loop through of BiSS signals  
BiSS signal routing altered  
(readout of absolute data not possible)  
Table 75: BiSS chain with absolute data interface  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 40/44  
SAFETY FEATURES  
CRC Verification  
Safety register  
The configuration check sum CRCCFG is stored in If safety register SEC_HI does not equal 0x00, NR-  
registers 0x2E-0x2F. The CRC polynomial used is DOK can be used to select whether write or read/write  
x16 + x12 + x5 + 1 (CRC-16), the start value is 0x0000.  
protection is valid for memory area CONF - in the lat-  
ter case the configuration registers can then be neither  
If an EEPROM is available, the check sum read out is read out nor overwritten. On read access 0x00 is out-  
stored to the CRCCFG register and is used for verifica- put.  
tion. If no EEPROM is connected, or if the check sum In both cases bit EWKH of status byte 0x60 is disabled.  
read in is incorrect, renewed configuration data with Safety register SEC_HI can be reset and protection  
check sum must be written and the CRC verification deleted only if the current register key data is again  
executed on command (to register 0x60).  
written.  
NRDOK  
Addr. 0x25; bit 7  
Function  
R/W  
If the configuration is written to the EEPROM by com-  
mand, the current check sum in addresses 0x2E-0x2F  
is not used but the CRCCFG register is calculated  
again.  
Code  
0
1
Only write protection active  
Read and write protection active  
Table 77: Selecting read/write protection  
CRCCFG(15:8)  
CRCCFG(7:0)  
Addr. 0x2E; bit 7...0  
Addr. 0x2F; bit 7...0  
R/W  
Code  
0x0000  
...  
Function  
SEC_HI  
Addr. 0x25; bit 6...0  
Function  
No read/write protection active  
R/W  
Code  
0x00  
Test value generated with CRC polynomial 0x1021,  
Start value is 0x0000  
0xFFFF  
Otherwise Read/write protection active depending on NRDOK  
value  
Table 76: CRC test value for configuration  
Table 78: Safety register for configuration  
Example of CRC calculation routine:  
If safety register SEC_LO does not equal 0x00, write  
protection is active for memory area EDS (indicated by  
the disabled EWKL bit in status byte 0x60). All regis-  
ters in this area can be read out but not overwritten.  
Safety register SEC_LO can be reset and protection  
deleted only if the current register key data is again  
written.  
unsigned char ucDataStream  
int iCRCPoly 0x1021 ;  
unsigned char ucCRC=0;  
int 0;  
= 0;  
=
i
=
ucCRC = 0; / / s t a r t value ! ! !  
for ( iReg  
= 0; iReg <46; iReg ++)  
{
ucDataStream  
for ( i =0; i <=7; i ++)  
i f ( (ucCRC & 0x80 ) != ( ucDataStream & 0x80 ) )  
ucCRC = (ucCRC << 1) iCRCPoly ;  
else  
ucCRC = (ucCRC << 1 ) ;  
ucDataStream ucDataStream << 1;  
= ucGetValue ( iReg ) ;  
{
^
SEC_LO  
Code  
Addr. 0x26; bit 5...0  
Function  
No write protection active  
R/W  
=
0x00  
}
Otherwise Only write protection active  
}
Table 79: Safety register for EDS memory area  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 41/44  
Status and command register  
ADV and error bit ERR_ABS are updated. If the pro-  
Read access to the status byte provides the current cess is successful, the cycle counter is set.  
system status.  
Command 0x03 initiates a software reset which is also  
messaged at pin NRES.  
ERR and WARN indicate internal errors which are se-  
lected using mask registers 0x22 and 0x23. EWKH  
and EWKL signal that write protection is active for  
memory areas CONF and/or EDS. The BUSY bit  
shows that the internal bus is busy, such as when data  
is being read out from or written to the EEPROM. Bit  
ADV (absolute data valid) indicates that absolute data  
has been successfully read out through the absolute  
data interface (ADI); bit PDV (position data valid) sig-  
nals that position data is valid. If the configuration  
register has been successfully CRCed and if absolute  
data has been correctly read out through the absolute  
data interface (ADI), the INIT bit is also set.  
Command 0x04 triggers a CRC of the internal configu-  
ration, during which all configuration registers are read  
out and verified by the check sum in registers 0x2E-  
0x2F. During this process the BUSY bit in the status  
byte and the ERR_KNF bit are set in the error byte.  
If the process ends successfully, the ERR_KNF bit is  
cancelled.  
Commands 0x05 and 0x06 simulate errors for the ERR  
bit in the status byte, with 0x05 setting the bit and 0x06  
disabling it.  
STATUS  
Bit  
Addr. 0x60; bit 7...0  
Status message  
R
CMD  
Code  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
Addr. 0x60; bit 7...0  
Function  
W
INIT  
Configuration complete  
Request new position data  
ERR  
Signalizes error as per mask register EMASK  
Write current configuration in EEPROM  
Readout new data via absolute data interface  
Trigger software reset  
WARN  
EWKH  
EWKL  
BUSY  
ADV  
Signalizes warning as per mask register WMASK  
Writing memory area CONF permitted  
Writing memory area EDS permitted  
Internal data bus busy  
CRC check of internal configuration  
Activate error simulation ERR bit  
Deactivate error simulation ERR bit  
Absolute data valid  
PDV  
Position data valid  
Note  
All bits signal active high.  
Table 81: Command register  
Table 80: Status byte  
Error mask  
On write access register 0x60 acts as a command reg-  
ister.  
Error byte 0x69 (Table 82) signals internal and external  
errors.  
ERR_EXT is activated by input pin NERR and con-  
veys errors which occur in external devices. Error  
bits ERR_EXT, ERR_SYN, ERR_TMP, ERR_AMP, and  
ERR_RGL are stored and only cancelled if the error  
byte is read accessed. This information is stored for  
the parallel interface and for the serial interface in SPI  
mode. The following errors are reported:  
If command 0x00 is written, new position data is re-  
quested. As long as this new data is not yet available,  
the PDV (position data valid) bit is disabled in the sta-  
tus byte.  
Command 0x01 writes the current configuration to the  
EEPROM. If no EEPROM is connected up on startup,  
this commend has no effect. The configuration - up to  
and including register 0x2D - and a newly generated  
check sum are otherwise written to the EEPROM. For  
the duration of the write process the BUSY bit in the  
status byte and the ERR_KNF bit (configuration er-  
ror) are set in the error byte. If an error occurs, the  
ERR_KNF bit is not cancelled at the end of the pro-  
cess.  
ERROR  
Addr. 0x69; bit 7...0  
Error message  
R
Bit  
ERR_EXT Externally signalized error *  
ERR_ABS Error in readout of absolute value  
ERR_IPO  
Fallen below conversion time of interpolator  
ERR_KNF Configuration error  
ERR_SYN Synchronisation error counter/interpolator *  
ERR_TMP Temperature beyond thresholds *  
ERR_AMP Amplitude error *  
ERR_RGL Beyond control range of transmit current control *  
Command 0x02 triggers a new readout of absolute  
data through the absolute data interface. Should this  
readout not prove successful, it is set to zero for in-  
ternal calculation. At the end of the process status bit  
Note  
*) Stored message, reset after read access  
Table 82: Error byte  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 42/44  
Error bits ERR_EXT, ERR_SYN, ERR_TMP, Register EMASK defines a mask for the ERR bit in the  
ERR_AMP and ERR_RGL are stored internally. status byte. If the relevant bit is set in the mask reg-  
RES_ERR is used to choose which action resets the ister, the corresponding error bit in the error register is  
error bit.  
signaled as ERR in the status byte. In the same man-  
ner, register WMASK defines a mask for the WARN bit  
in the status byte.  
RES_ERR  
Addr. 0x27; bit 6  
Function  
R/W  
Code  
0
1
Reset by readout position data  
Reset by readout error register  
EMASK  
Bit  
Addr. 0x22; bit 7...0  
Message  
EM_EXT  
EM_ABS  
EM_IPO  
EM_KNF  
EM_SYN  
EM_TMP  
EM_AMP  
EM_RGL  
Externally signalized error  
Table 83: Error reset  
Error in readout of absolute value  
Fallen below conversion time of interpolator  
Configuration error  
Error bit ERR_AMP can be assigned with a digital filter.  
The filter is implemented as an integrator with timeout.  
If required a bypass can be configured (EN_FAMP).  
The timeout resets the integrator cyclically (config-  
urable by using TO_FAMP). The error output’s thresh-  
old value is configurable and the error output is being  
set at a duty cycle of a timeout period of 17, 34, 51 or  
68 µs.  
Synchronisation error counter/interpolator  
Temperature beyond thresholds  
Amplitude error  
Beyond control range of transmit current control  
Table 87: Mask for error ERR (Addr. 0x60, bit 6)  
WMASK  
Addr. 0x23; bit 7...0  
Message  
THR_FAMP  
Code  
0x0  
Addr. 0x2B; bit 3...2  
Function  
R/W  
Bit  
WM_EXT  
WM_ABS  
WM_IPO  
WM_KNF  
WM_SYN  
WM_TMP  
Externally signalized error  
Threshold at 17 µs duty cycle of timeout period  
Threshold at 34 µs duty cycle of timeout period  
Threshold at 51 µs duty cycle of timeout period  
Threshold at 68 µs duty cycle of timeout period  
Error in readout of absolute value  
Fallen below conversion time of interpolator  
Configuration error  
0x1  
0x2  
0x3  
Synchronisation error counter/interpolator  
Temperature beyond thresholds  
Table 84: Amplitude error filter threshold  
WM_AMP Amplitude error  
WM_RGL  
Beyond control range of transmit current control  
TO_FAMP  
Addr. 0x2B; bit 1  
Function  
R/W  
Table 88: Mask for warning WARN (Addr. 0x60, bit 5)  
Code  
0
1
Timeout after 273 µs  
Timeout after 546 µs  
Life counter  
Life counter LC counts the position data generated and  
is zeroed on a reset. In normal operation, however,  
zero is bypassed and cannot occur (order: 0xFE, 0xFF,  
0x01, 0x02 ...).  
Table 85: Amplitude error filter timeout  
EN_FAMP  
Addr. 0x2B; bit 0  
Function  
R/W  
Code  
0
1
Filter for amplitude error deactivated  
Filter for amplitude error active  
Table 86: Amplitude error filtering  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 43/44  
DESIGN REVIEW: Application notes  
iC-MR Y1  
No.  
1
Function, parameter/code  
Description and application notes  
NEFDR, LCMODE,  
CHK_ADI  
These functions are not available. Mandatory programming of the corresponding  
register bits is zero.  
2
3
4
RES_ERR,  
THR_FAMP, TO_FAMP, EN_FAMP  
These functions are not available. Mandatory programming of the corresponding  
register bits is zero.  
PROFILE(15:0),  
Addr 0x48, 0x49  
These addresses are not assigned. The recommended programming value is  
zero.  
DEV_ID(47:0),  
Addr 0x72 to 0x77  
These addresses are not assigned. The recommended programming value is  
zero.  
Table 89: Notes on chip functions regarding iC-MR chip release Y1  
iC-MR X  
No.  
1
Function, parameter/code  
Description and application notes  
None at time of printing.  
Table 90: Notes on chip functions regarding iC-MR chip release X  
REVISION HISTORY  
Rel  
Rel.Date Chapter  
Modification  
Page  
A1  
13-11-21  
Initial release  
all  
iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the  
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by  
email.  
Copying – even as an excerpt – is only permitted with iC-Haus’ approval in writing and precise reference to source.  
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these  
materials.  
The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, tness  
for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no  
guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of  
the product.  
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade  
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.  
iC-MR 13-BIT S&H SIN/COS  
INTERPOLATOR WITH CONTROLLER INTERFACES  
Rev A1, Page 44/44  
ORDERING INFORMATION  
Type  
Package  
Order Designation  
iC-MR  
48-pin QFN 7x7 mm  
iC-MR QFN48  
Evaluation Board  
iC-MR EVAL MR1D  
For technical support, information about prices and terms of delivery please contact:  
iC-Haus GmbH  
Tel.: +49 (0) 61 35 - 92 92 - 0  
Fax: +49 (0) 61 35 - 92 92 - 192  
Web: http://www.ichaus.com  
E-Mail: sales@ichaus.com  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
Appointed local distributors: http://www.ichaus.com/sales_partners  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY