IC-MSB2TSSOP20 [ICHAUS]

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER; SIN / COS信号调理与1Vpp典型DRIVER
IC-MSB2TSSOP20
型号: IC-MSB2TSSOP20
厂家: IC-HAUS GMBH    IC-HAUS GMBH
描述:

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
SIN / COS信号调理与1Vpp典型DRIVER

驱动
文件: 总29页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 1/29  
FEATURES  
APPLICATIONS  
PGA inputs to 500 kHz for differential and single-ended sensor  
signals  
Selectable adaptation to voltage or current signals  
Flexible pin assignment due to signal path multiplexers  
Sine/Cosine signal conditioning for offset, amplitude and  
phase  
Programmable sensor interface  
for optical and magnetic position  
sensors  
Linear gauges and incremental  
encoders  
Linear scales  
Separate index signal conditioning  
Short-circuit-proof and reverse polarity tolerant output drivers  
(1 Vpp to 100 )  
Stabilized output signal levels due to sensor control  
Signal and system monitoring with configurable alarm output  
Supply voltage monitoring with integrated switches for  
reversed-polarity-safe systems  
PACKAGES  
Excessive temperature protection with sensor calibration  
I2C multimaster interface  
Supply from 4.3 to 5 V, operation within -25(-40) to +100 °C  
Suitable for SAFETY applications  
TSSOP20, TSSOP20-TP  
Verifyable chip release code  
Version iC-MSB2 with output multiplexer (not for SAFETY)  
BLOCK DIAGRAM  
Copyright © 2006, 2010 iC-Haus  
http://www.ichaus.com  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 2/29  
DESCRIPTION  
iC-MSB is a signal conditioner with line drivers for compensated for and the set signal amplitude main-  
sine/cosine sensors which are used to determine po- tained with absolute accuracy. At the same time the  
sitions in linear and angular encoders, for example.  
control circuitry monitors both whether the sensor is  
functioning correctly and whether it is properly con-  
Programmable instrumentation amplifiers with se- nected; signal loss due to wire breakage, short cir-  
lectable gain levels permit differential or referenced cuiting, dirt or aging, for example, is recognized when  
input signals; at the same time the modes of op- control thresholds are reached and indicated at alarm  
eration differentiate between high and low input output ERR.  
impedance. This adaptation of the iC to voltage or  
current signals enables MR sensor bridges or photo- iC-MSB is protected against a reversed power supply  
sensors to be directly connected up to the device.  
voltage; the integrated voltage switch for loads of up  
to 20 mA extends this protection to cover the overall  
The integrated signal conditioning unit allows signal system. The analog output drivers are directly cable-  
amplitudes and offset voltages to be calibrated accu- compatible and tolerant to false wiring; if supply volt-  
rately and also any phase error between the sine and age is connected up to these pins, the device is not  
cosine signals to be corrected. Separate zero signal destroyed.  
conditioning settings can be made for the gain and  
offset; data is then output either as an analog or a The device configuration and calibration parameters  
differential square-wave signal (low/high level analo- are CRC protected and stored in an external EEP-  
gous to the sine/cosine amplitude).  
ROM; they are loaded automatically via the I2C in-  
terface once the supply voltage has been connected  
For the stabilization of the sine and cosine output sig- up.  
nal levels a control signal is generated from the con-  
ditioned and calibrated input signals which can power A safety-technical analysis of iC-MSB on device level  
the transmitting LED of optical systems via the inte- with the inclusion of layout and internal/external cir-  
grated 50 mA driver stage (output ACO). If MR sen- cuitry has been carried out together with the BGIA,  
sors are connected this driver stage also powers the St. Augustin. The result proved iC-MSB’s capability  
measuring bridges.  
for safety oriented applications with Siemens Sinu-  
merik Controls.  
By tracking the sensor energy supply any signal vari-  
ations and temperature and aging effects can be  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 3/29  
CONTENTS  
PACKAGES  
4
5
SIGNAL PATH MULTIPLEXING: iC-MSBSAFETY  
18  
EXTENDED SIGNAL PATH MULTIPLEXING:  
ABSOLUTE MAXIMUM RATINGS  
THERMAL DATA  
( not for safety applications )  
iC-MSB2  
19  
21  
5
SIGNAL CONDITIONING CH1, CH2  
Gain Settings CH1, CH2 . . . . . . . . . . . . 21  
Offset Calibration CH1, CH2 . . . . . . . . . 22  
Phase Correction CH1 vs. CH2 . . . . . . . . 22  
ELECTRICAL CHARACTERISTICS  
PROGRAMMING  
6
10  
SIGNAL CONDITIONING CH0  
23  
SERIAL CONFIGURATION INTERFACE  
(EEPROM)  
13  
Gain Settings CH0 . . . . . . . . . . . . . . . 23  
Offset Calibration CH0 . . . . . . . . . . . . . 23  
Example of CRC Calculation Routine . . . . . 13  
EEPROM Selection . . . . . . . . . . . . . . 13  
I2C Slave Mode (ENSL = 1) . . . . . . . . . . 14  
SIGNAL LEVEL CONTROL and SIGNAL  
MONITORING  
24  
25  
BIAS SOURCE AND TEMPERATURE  
ERROR MONITORING AND ALARM OUTPUT  
SENSOR CALIBRATION  
15  
16  
Error Protocol . . . . . . . . . . . . . . . . . . 25  
I/O pin ERR . . . . . . . . . . . . . . . . . . . 25  
OPERATING MODES  
Calibration Op. Modes . . . . . . . . . . . . . 16  
Special Device Test Functions . . . . . . . . 16  
Signal Filter . . . . . . . . . . . . . . . . . . . 16  
TEMPERATURE MONITORING  
26  
26  
27  
REVERSE POLARITY PROTECTION  
TEST MODE  
17 APPLICATION HINTS  
Connecting MR sensor bridges for  
INPUT CONFIGURATIONS  
18  
safety-related applications . . . . . . . . 27  
Input Configurations . . . . . . . . . . . . . . 18  
PLC Operation . . . . . . . . . . . . . . . . . 27  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 4/29  
PACKAGES  
PIN CONFIGURATION TSSOP20, TSSOP20-TP  
PIN FUNCTIONS  
No. Name Function  
1 X1  
2 X2  
3 X3  
4 X4  
Signal Input 1 (Index +)  
Signal Input 2 (Index -)  
Signal Input 3  
Signal Inout 4  
5 VDDS Switched Supply Output  
(reverse polarity proof, load to 20 mA  
max.)  
6 GNDS Switched Ground  
(reverse polarity proof)  
7 X5  
8 X6  
Signal Input 5  
Signal Input 6  
9 ACO Signal Level Controller,  
high-side current source output  
10 SDA Serial Configuration Interface,  
data line  
11 SCL  
Serial Configuration Interface,  
clock line  
12 NC  
13 PC  
14 NS  
15 PS  
Neg. Cosine Output  
Pos. Cosine Output  
Neg. Sine Output  
Pos. Sine Output  
16 GND Ground  
17 VDD +4.5 to +5.5 V Supply Voltage  
18 NZ  
19 PZ  
Neg. Index Output  
Pos. Index Output  
20 ERR Error Signal (In/Out),  
Test Mode Trigger Input  
To improve heat dissipation the thermal pad of the TSSOP20-TP package (bottom side) should be joined  
to an extended copper area which must have GNDS potential.  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 5/29  
ABSOLUTE MAXIMUM RATINGS  
These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
G001 V()  
Voltage at VDD, GND, PC, NC, PS, NS,  
PZ, NZ, ACO  
-6  
6
V
G002 V()  
G003 V()  
Voltage at ERR  
-6  
8
6
V
V
Pin-To-Pin Voltage between VDD,  
GND, PC, NC, PS, NS, PZ, NZ, ACO,  
ERR  
G004 V()  
Voltage at X1...X6, SCL, SDA  
-0.3  
VDDS +  
0.3  
V
G005 I(VDD)  
G006 I()  
Current in VDD  
-100  
-50  
100  
50  
mA  
mA  
mA  
Current in VDDS, GNDS  
G007 I()  
Current in X1...X6, SCL, SDA, ERR,  
PC, NC, PS, NS, PZ, NZ  
-20  
20  
G008 I(ACO)  
G009 Vd()  
G010 Ptot  
Current in ACO  
-100  
20  
2
mA  
kV  
ESD Susceptibility at all pins  
Permissible Power Dissipation  
HBM 100 pF discharged through 1.5 k  
TSSOP20  
TSSOP20-TP  
300  
400  
mW  
mW  
G011 Tj  
G012 Ts  
Junction Temperature  
-40  
-40  
150  
150  
°C  
°C  
Storage Temperature Range  
THERMAL DATA  
Item Symbol  
No.  
Parameter  
Operating Ambient Temperature Range  
Conditions  
Unit  
Min. Typ. Max.  
T01 Ta  
iC-MSB TSSOP20, iC-MSB2 TSSOP20  
iC-MSB TSSOP20-TP  
-25  
-40  
100  
115  
°C  
°C  
T02 Rthja  
T03 Rthja  
Thermal Resistance Chip to Ambient TSSOP20 surface mounted to PCB  
according to JEDEC 51  
80  
35  
K/W  
Thermal Resistance Chip to Ambient TSSOP20-TP surface mounted to PCB  
according to JEDEC 51  
K/W  
All voltages are referenced to Pin GNDS unless otherwise stated.  
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 6/29  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Total Device  
001  
VDD  
Permissible Supply Voltage  
Load current I(VDDS) < -10 mA  
Tj = 27 °C, no load  
4.3  
4.5  
5.5  
5.5  
V
V
002 I(VDD)  
003 I(VDDS)  
004 Vcz()hi  
005 Vc()hi  
Supply Current in VDD  
25  
50  
0
mA  
mA  
V
Permissible Load Current VDDS  
Clamp Voltage hi at all pins  
-20  
11  
1.5  
Clamp Voltage hi at inputs  
SCL, SDA  
Vc()hi = V() V(VDDS), I() = 1 mA  
Vc()hi = V() V(VDDS), I() = 4 mA  
I() = -4 mA  
0.4  
0.3  
V
006 Vc()hi  
007 Vc()lo  
Clamp Voltage hi at inputs  
X1...X6  
1.2  
V
V
Clamp Voltage lo at all pins  
-1.2  
-0.3  
Signal Conditioning, Inputs X3...X6  
101  
Vin()sig  
Permissible Input Voltage Range  
RIN12(3:0) = 0x01  
RIN12(3:0) = 0x09  
0.75  
0
VDDS  
1.5  
VDDS  
V
V
102  
Iin()sig  
Permissible Input Current Range  
RIN12(0) = 0, BIAS12 = 0  
RIN12(0) = 0, BIAS12 = 1  
-300  
10  
-10  
300  
µA  
µA  
103 Iin()  
104  
Input Current  
RIN12(3:0) = 0x01  
-10  
10  
µA  
Rin()  
Input Resistance vs. VREFin  
Tj = 27 °C;  
RIN12(3:0) = 0x09  
RIN12(3:0) = 0x00  
RIN12(3:0) = 0x02  
RIN12(3:0) = 0x04  
RIN12(3:0) = 0x06  
16  
1.1  
1.6  
2.2  
3.2  
20  
1.6  
2.3  
3.2  
4.6  
24  
2.1  
3.0  
4.2  
6.0  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
105 TCRin()  
Temperature Coefficient Rin  
0.15  
%/K  
106  
VREFin12 Reference Voltage  
RIN12(0) = 0, BIAS12 = 1  
RIN12(0) = 0, BIAS12 = 0  
1.35  
2.25  
1.5  
2.5  
1.65  
2.75  
V
V
107  
G12  
Selectable Gain Factors  
RIN12(3:0) = 0x01, GR12 and GF12 = 0x0  
RIN12(3:0) = 0x01, GR12 and GF12 = max.  
2
100  
RIN12(3:0) = 0x09, GR12 and GF12 = 0x0  
RIN12(3:0) = 0x09, GR12 and GF12 = max.  
0.5  
25  
108 Gdiff  
109 Gabs  
Differential Gain Accuracy  
Absolute Gain Accuracy  
calibration range 11 bit  
-0.5  
-1  
0.5  
1
LSB  
LSB  
calibration range 11 bit, guaranteed monotony  
110  
Vin()diff  
Recommended Differential Input  
Voltage  
Vin()diff = V(CHPx) - V(CHNx),  
RUIN12(3) = 0  
10  
40  
500  
2000  
mVpp  
mVpp  
RUIN12(3) = 1  
111 Vin()os  
112  
Input Offset Voltage  
refered to side of input  
0
20  
µV  
VOScal  
Offset Calibration Range  
referenced to the selected source (VOS12);  
ORx = 00  
ORx = 01  
ORx = 10  
ORx = 11  
±100  
±200  
±600  
±1200  
%V()  
%V()  
%V()  
%V()  
113 VOSdiff Differential Linearity Error of  
calibration range 11 bit  
-0.5  
-1  
0.5  
1
LSB  
Offset Correction  
114 VOSint Integral Linearity Error of Offset calibration range 11 bit  
LSB  
Correction  
115 PHIkorr  
Phase Error Calibration Range  
CH1 versus CH2  
±10.4  
°
116 PHIdiff  
Differential Linearity Error of  
Phase Calibration  
calibration range 10 bit  
-0.5  
-1  
0.5  
1
LSB  
117 PHIint  
Integral Linearity Error of Phase calibration range 10 bit  
Calibration  
LSB  
119 fin()max  
120 fhc()  
Permissible Input Frequency  
500  
250  
kHz  
kHz  
Input Amplifier Cut-off Frequency  
(-3dB)  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 7/29  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Signal Conditioning, Inputs X1, X2  
201  
Vin()sig  
Permissible Input Voltage Range  
RIN0(3:0) = 0x01  
RIN0(3:0) = 0x09  
0.75  
0
VDDS  
1.5  
VDDS  
V
V
202  
Iin()sig  
Permissible Input Current Range  
RIN0(0) = 0, BIAS0 = 0  
RIN0(0) = 0, BIAS0 = 1  
-300  
10  
-10  
300  
µA  
µA  
203 Iin()  
Input Current  
RIN0(3:0) = 0x01  
-10  
95  
10  
µA  
%
V
204 Vout(X2)  
205 Vin(X2)  
Output Voltage at X2  
BIASEX = 10, I(X2) = 0, referenced to VREFin12  
100  
27  
105  
Permissible Input Voltage at X2 BIASEX = 11  
0.5  
VDDS  
2  
30  
206 Rin(X2)  
Input Resistance at X2  
BIASEX = 11, RIN0(3:0) = 0x01,  
20  
kΩ  
RIN12(3:0) = 0x01  
207  
Rin()  
Input Resistance vs. VREFin  
Tj = 27 °C;  
RIN0(3:0) = 0x09  
RIN0(3:0) = 0x00  
RIN0(3:0) = 0x02  
RIN0(3:0) = 0x04  
RIN0(3:0) = 0x06  
16  
1.1  
1.6  
2.2  
3.2  
20  
1.6  
2.3  
3.2  
4.6  
24  
2.1  
3.0  
4.2  
6.0  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
208 TCRin()  
Temperature Coefficient Rin  
0.15  
%/K  
209  
VREFin0 Reference Voltage  
RIN0(0) = 0, BIAS0 = 1  
RIN0(0) = 0, BIAS0 = 0  
1.35  
2.25  
1.5  
2.5  
1.65  
2.75  
V
V
210  
G0  
Selectable Gain Factors  
RIN0(3:0) = 0x01, GR0 and GF0 = 0x0  
RIN0(3:0) = 0x01, GR0 and GF0 = max.  
2
100  
RIN0(3:0) = 0x09, GR0 and GF0 = 0x0  
RIN0(3:0) = 0x09, GR0 and GF0 = max  
0.5  
25  
211 Gdiff  
212 Gabs  
Differential Gain Accuracy  
Absolute Gain Accuracy  
calibration range 5 bit  
-0.5  
-1  
0.5  
1
LSB  
LSB  
calibration range 5 bit, guaranteed monotony  
213  
Vin()diff  
Recommended Differential Input  
Voltage  
Vin()diff = V(CHP0) - V(CHN0),  
RIN0(3:0) = 0x01  
10  
40  
500  
2000  
mVpp  
mVpp  
RIN0(3:0) = 0x09  
214 Vin()os  
215  
Input Offset Voltage  
referred to side of input  
0
75  
µV  
VOScal  
Offset Calibration Range  
referenced to the selected source (REFVOS);  
OR0 = 00  
OR0 = 01  
OR0 = 10  
OR0 = 11  
±100  
±200  
±600  
±1200  
%V()  
%V()  
%V()  
%V()  
216 VOSdiff Differential Linearity Error of  
calibration range 6 bit  
-0.5  
-1  
0.5  
1
LSB  
Offset Correction  
217 VOSint Integral Linearity Error of Offset calibration range 6 bit  
LSB  
Correction  
Signal Filter  
301  
4000  
10  
kHz  
°
fg  
Cut-off Frequency  
Phase Shift  
302  
fin 500 kHz for sine/cosine  
phi  
Index Pulse Comparator Output PZ, NZ  
401 Vpk()  
Output Amplitude With Sensor  
Tracking via ACO  
EAZ = 1, ADJ(4:0) = 0x19  
EAZ = 1  
225  
250  
1
275  
mV  
402 SR()  
Output Slew Rate  
V/µs  
Line Driver Outputs PS, NS, PC, NC, PZ, NZ  
501  
Vpk()max Permissible Output Amplitude  
VDD = 4.5 V, DC level = VDD / 2,  
RL = 50 vs. VDD / 2  
300  
275  
mV  
mV  
502 Vpk()  
Output Amplitude With Sensor  
Tracking via ACO  
ADJ (8:0) = 0x19  
CL = 250 pF  
225  
500  
250  
503 fg  
Cut-off Frequency  
Offset Voltage  
kHz  
µV  
504 Vos  
505 Isc()  
506 Ilk()  
±200  
30  
Short-circuit Current  
Tristate Leakage Current  
pin shorten to VDD or GND  
tristate or reversed supply  
10  
-1  
50  
1
mA  
µA  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 8/29  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Signal Level Controller ACO  
601  
Vs()hi  
Saturation Voltage hi  
at ACO vs. VDD  
Vs() = VDD - V();  
ADJ(8:0) = 0x11F, I() = -5 mA  
ADJ(8:0) = 0x13F, I() = -10 mA  
ADJ(8:0) = 0x15F, I() = -25 mA  
ADJ(8:0) = 0x17F, I() = -50 mA  
1
1
1
1
V
V
V
V
602  
Isc()hi  
Short-circuit Current hi in ACO  
V() = 0 ... VDD - 1 V;  
ADJ(8:0) = 0x11F  
ADJ(8:0) = 0x13F  
ADJ(8:0) = 0x15F  
ADJ(8:0) = 0x17F  
-10  
-20  
-50  
-5  
mA  
mA  
mA  
mA  
-10  
-25  
-50  
-100  
603 tr()  
Current Rise Time in ACO  
I(ACO): 0 90 % setpoint  
1
ms  
µs  
604 tset()  
Current Settling Time in ACO  
Square control active, I(ACO): 50 100 %  
400  
setpoint  
605 It()min  
606 It()max  
607 Vt()min  
608 Vt()max  
Control Range Monitoring 1:  
lower limit  
referenced to range ADJ(6:5)  
referenced to range ADJ(6:5)  
referenced to Vscq()  
3
%Isc  
%Isc  
Control Range Monitoring 2:  
upper limit  
90  
Signal Level Monitoring 1:  
lower limit  
40  
%Vpp  
%Vpp  
Signal Level Monitoring 2:  
upper limit  
referenced to Vscq()  
130  
Test Current ERR  
701 I(ERR)  
Permissible Test Current  
test mode activated  
0
1
mA  
Bias Current Source and Reference Voltages  
801 IBN()  
802 VPAH  
Bias Current Source  
MODE(3:0) = 0x01, I(NC) vs. VDDS  
referenced to GND  
180  
45  
200  
50  
220  
55  
µA  
%VDD  
mV  
Reference Voltage VPAH  
Reference Voltage V05  
Reference Voltage V025  
803 V05  
450  
500  
50  
550  
804 V025  
%V05  
Power-Down-Reset  
901 VDDon  
Turn-on Threshold  
(power-on release)  
increasing voltage at VDD vs. GND  
decreasing voltage at VDD vs. GND  
VDDhys = VDDon VDDoff  
3.7  
3.2  
0.3  
4
4.3  
3.8  
V
V
V
902 VDDoff  
Turn-off Threshold  
(power-down reset)  
3.5  
903 VDDhys  
Clock Oscillator  
A01 fclk()  
Threshold Hysteresis  
Internal Clock Frequency  
MODE(3:0) = 0x0A, fclk(NS)  
vs. GND, I() = 4 mA  
120  
160  
200  
0.4  
kHz  
V
Error Signal Input/Output, Pin ERR  
B01 Vs()lo  
B02  
Saturation Voltage lo  
Short-circuit Current lo  
Isc()  
vs. GND; V(ERR) VDD  
4
2
mA  
mA  
V(ERR) > VTMon  
B03 Vt()hi  
B04 Vt()lo  
B05 Vt()hys  
B06 Ipu()  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
vs. GND  
2
V
V
vs. GND  
0.8  
300  
-400  
Vt()hys = Vt()hi Vt()lo  
V() = 0...VDD 1 V, EPU = 1  
EPU = 0  
500  
-300  
500  
mV  
µA  
kΩ  
V
Input Pull-up Current  
Input Pull-Up Resistor  
Pull-up Voltage  
-200  
0.4  
B07 Rpu()  
B08 Vpu()  
B09 VTMon  
Vpu() = VDD - V(), I() = -5 µA, EPU = 1  
Test Mode Activation Threshold increasing voltage at ERR  
VDD +  
1.5  
V
B10 VTMoff  
Test Mode Disabling Threshold  
decreasing voltage at ERR  
VDD +  
0.5  
V
B11 VTMhys  
B12 Ilk()  
Test Mode Hysteresis  
Leakage Current  
VTMhys = VTMon VTMoff  
tristate or reversed supply voltage  
0.15  
-1  
0.3  
-10  
V
-50  
µA  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 9/29  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Supply Switch and Reverse Polarity Protection VDDS, GNDS  
C01  
Vs()  
Saturation Voltage  
VDDS vs. VDD  
Vs(VDDS) = VDD V(VDDS)  
I(VDDS) = -10 mA...0 mA  
I(VDDS) = -20 mA...-10 mA  
150  
250  
mV  
mV  
C02  
Vs()  
Saturation Voltage  
GNDS vs. GND  
Vs(GNDS) = V(GNDS) GND  
I(GNDS) = 0 mA...10 mA  
150  
250  
mV  
mV  
I(GNDS) = 10 mA...20 mA  
Serial Configuration Interface SCL, SDA  
D01 Vs()lo  
D02 Isc()  
Saturation Voltage lo  
Short-circuit Current lo  
I() = 4 mA  
400  
80  
2
mV  
mA  
V
4
D03 Vt()hi  
D04 Vt()lo  
D05 Vt()hys  
D06 Ipu()  
D07 Vpu()  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
0.8  
300  
-600  
V
Vt()hys = Vt()hi Vt()lo  
V() = 0...VDDS 1 V  
500  
mV  
µA  
V
Input Pull-up Current  
-300  
-60  
0.4  
Input Pull-up Voltage  
Vpu() = VDDS V(), I() = -5 µA  
D08  
fclk(SCL) Clock Frequency at SCL  
ENFAST = 0  
ENFAST = 1  
60  
240  
80  
320  
100  
400  
kHz  
kHz  
D09  
tbusy()cfg Duration of Startup Configuration  
IBN not calibated, EEPROM access without  
read failure, time to outputs operational;  
ENFAST = 0  
40  
25  
55  
35  
ms  
ms  
ENFAST = 1  
D10  
D11  
tbusy()err End Of I2C Communication;  
IBN not calibrated;  
Time Until I2C Slave Is Enabled V(SDA) = 0 V  
4
indef.  
45  
12  
ms  
ms  
ms  
ms  
V(SCL) = 0 V or arbitration lost  
no EEPROM  
CRC ERROR  
135  
285  
95  
td()  
Start Of Master Activity On I2C  
Protocol Error  
SCL without clock signal: V(SCL) = constant;  
IBN not calibrated  
IBN calibrated to 200 µA  
25  
64  
80  
80  
240  
120  
µs  
µs  
D12 td()i2c  
Delay for I2C-Slave-Mode Enable no EEPROM, V(SDA) = 0 V  
4
6.2  
ms  
Temperature Monitoring  
E01  
E02 TCs  
E03  
VTs  
Temperature Sensor Voltage  
VTs() = VDDS V(PS), Tj = 27 °C,  
600  
650  
-1.8  
700  
mV  
Calibration Mode 3, no load  
Temp. Co. of Temperature Sen-  
sor Voltage  
mV/K  
VTth  
Temperature Warning Activation  
Threshold  
VTth() = VDDS V(NS), Tj = 27 °C,  
Calibration Mode 3, no load;  
CFGTA(3:0) = 0x00  
260  
470  
310  
550  
360  
630  
mV  
mV  
CFGTA(3:0) = 0x0F  
E04 TCth  
Temp. Co. Temperature Warning  
Activation Threshold  
0.06  
%/K  
E05 Thys  
Temperature Warning Hysteresis  
4
4
12  
12  
20  
20  
°C  
°C  
E06 T  
Relative Shutdown Temperature T = Toff Twarn  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 10/29  
PROGRAMMING  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 11 Signal Conditioning CH1, CH2 (X3...X6) . . Page 21  
GR12:  
GF1:  
Gain Range CH1, CH2 (coarse)  
Gain Factor CH1 (fine)  
GF2:  
Gain Factor CH2 (fine)  
Configuration Interface . . . . . . . . . . . . . . . . . . . Page 13  
ENFAST:  
ENSL:  
I2C Fast Mode Enable  
VOS12:  
VDC1:  
VDC2:  
OR1:  
OF1:  
OR2:  
Offset Reference Source CH1, CH2  
Intermediate Voltage CH1  
Intermediate Voltage CH2  
Offset Range CH1 (coarse)  
Offset Factor CH1 (fine)  
Offset Range CH2 (coarse)  
Offset Factor CH2 (fine)  
Phase Correction CH1 vs. CH2  
I2C Slave Mode Enable  
DEVID:  
Device ID of EEPROM providing the  
chip configuration data (e.g. 0x50)  
CRC of chip configuration data  
(address range 0x00 to 0x1E)  
Chip Release  
CHKSUM:  
OF2:  
PH12:  
CHPREL:  
NTRI:  
Tristate Function and  
Op. Mode Change  
Signal Conditioning CH0 (X1, X2) . . . . . . . . . Page 23  
GR0:  
GF0:  
VOS0:  
OR0:  
OF0:  
Gain Range CH0 (coarse)  
Gain Factor CH0 (fine)  
Offset Reference Source CH0  
Offset Range CH0 (coarse)  
Offset Factor CH0 (fine)  
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 15  
CFGIBN:  
CFGTA:  
Bias Calibration  
Temperature Sensor Calibration  
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . Page 16  
MODE:  
ENF:  
Operation Mode  
Signal Filtering  
Signal Level Controller . . . . . . . . . . . . . . . . . . . . Page 24  
ADJ: Setup of ACO Output Function  
Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seite 17  
TMODE:  
TMEM:  
Test Mode Functions  
Test Mode Memory Selection  
Error Monitoring and Alarm Output . . . . . . Page 25  
EMTD:  
EPH:  
Minimal Alarm Indication Time  
Alarm Input/Output Logic  
Input Configuration and  
Signal Path Multiplexer . . . . . . . . . . . . . . . . . . . Page 18  
INMODE:  
RIN12:  
EPU:  
EMASKA:  
Alarm Output Pull-Up Enable  
Error Mask For Alarm Indication (pin  
ERR)  
Diff./Single-Ended Input Mode  
I/V Mode and Input Resistance CH1,  
CH2  
Reference Voltage CH1, CH2  
I/V Mode and Input Resistance CH0  
Reference Voltage CH0  
EMASKE:  
EMASKO:  
Error Mask For Protocol (EEPROM)  
Error Mask For Driver Shutdown  
BIAS12:  
RIN0:  
BIAS0:  
MUXIN:  
ERR1:  
ERR2:  
ERR3:  
Error Protocol: First Error  
Error Protocol: Last Error  
Error Protocol: History  
Input-To-Channel Assignment:  
X3...X6 to CH1, CH2  
INVZ:  
EAZ:  
MUXOUT:  
BIASEX:  
BYP  
Index Signal Inversion  
PDMODE:  
Driver Activation After Cycling Power  
Index Comparator Enable  
Output Multiplexer (iC-MSB2 only)  
Input Reference Selection  
Input-to-output Feedthrough  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 11/29  
OVERVIEW  
Adr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Configuration Interface  
0x00  
ENFAST  
DEVID(6:0)  
Calibration  
0x01  
CFGIBN(3:0)  
CFGTA(3:0)  
Operation Modes  
0x02 NTRI  
1
0
MODE(3:0)  
Input Configuration and Signal Path Multiplexer: iC-MSB  
0x03 EAZ  
Input Configuration and Signal Path Multiplexer: iC-MSB2  
0
0
0
INVZ  
INVZ  
INMODE  
MUXIN(1:0)  
0x03  
EAZ  
MUXOUT(2:0)  
INMODE  
MUXIN(1:0)  
Signal Conditioning CH1, CH2  
0x04  
0x05  
0x06  
GF2(4:0)  
GR12(2:0)  
GF1(7:0)  
VDC1(4:0)  
GF1(10:8)  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
VDC2(2:0)  
VDC1(9:5)  
OR1(0)  
VDC2(9:3)  
OF1(6:0)  
OR2(1:0)  
OR1(1)  
OF2(1:0)  
OF1(10:7)  
OF2(9:2)  
PH12(6:0)  
1
OF2(10)  
BIASEX(1:0)  
BYP  
1
0
PH12(9:7)  
RIN12(3:0)  
ENF  
BIAS12  
VOS12(1:0)  
Signal Level Controller  
0x0F  
0x10  
ADJ(0)  
0
1
0
0
0
ADJ(8:1)  
Signal Conditioning CH0  
0x11  
0x12  
GF0(4:0)  
GR0(2:0)  
OF0(5:0)  
VOS0(1:0)  
OR0(1:0)  
0x13  
0
BIAS0  
RIN0(3:0)  
Error Monitoring and Alarm Output  
0x14  
0x15  
0x16  
0x17  
0x18  
EMASKA(6:0)  
TMODE(1:0)  
EMTD(2:0)  
EPH  
EPU  
EMASKO(6:0)  
EMASKE(3:0)  
PDMODE  
ENSL  
TMEM  
EMASKE(6:4)  
0x19..  
0x1A  
not defined  
0x1B..  
0x1E  
OEM Data  
Check Sum  
/ Chip Release  
0x1F  
EEPROM: CHKSUM(7:0)  
/
ROM: CHPREL(7:0)  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 12/29  
OVERVIEW  
Adr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Error Register  
0x20  
0x21  
0x22  
0x23  
ERR1(6:0)  
ERR2(5:0)  
ERR3(3:0)  
ERR2(6)  
ERR3(6:4)  
Table 4: Register layout  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 13/29  
SERIAL CONFIGURATION INTERFACE (EEPROM)  
The serial configuration interface consists of the two Example of CRC Calculation Routine  
pins SCL and SDA and enables read and write access  
to an EEPROM with I2C interface. The readout speed  
can be adjusted using register bit ENFAST.  
unsigned char ucDataStream  
int iCRCPoly 0x11D ;  
unsigned char ucCRC=0;  
int 0;  
= 0;  
=
i
=
ENFAST  
Code  
0
Adr 0x00, bit 7  
ucCRC = 1; / / s t a r t value ! ! !  
Function  
for ( iReg  
= 0; iReg <31; iReg ++)  
{
Regular clock rate, f(SCL) approx. 80 kHz  
High clock rate, f(SCL) approx. 320 kHz  
ucDataStream  
for ( i =0; i <=7; i ++)  
i f ( (ucCRC & 0x80 ) != ( ucDataStream & 0x80 ) )  
ucCRC = (ucCRC << 1) iCRCPoly ;  
else  
ucCRC = (ucCRC << 1 ) ;  
ucDataStream ucDataStream << 1;  
= ucGetValue ( iReg ) ;  
1
{
Notes  
For in-circuit programming bus lines SCL and SDA  
require pull-up resistors.  
For line capacitances to 170 pF, adequate values  
are:  
4.7 kwith clock frequency 80 kHz  
2 kwith clock frequency 320 kHz  
^
=
}
}
The pull-up resistors may not be less than 1.5 k.  
To separate the signals a ground line between SCL  
and SDA is recommended.  
iC-MSB requires a supply voltage during EEPROM  
programming (5 V to VDD).  
EEPROM Selection  
The following minimal requirements must be fulfilled:  
• Operation from 3.3 to 5 V, I2C interface  
Table 5: Config. Interface Clock Frequency  
• Minimal 512 bit, 64x8  
Once the supply has been switched on (power down  
reset) the iC-MSB outputs are high impedance (tris-  
tate) until a valid configuration is read out from the  
EEPROM using device ID 0x50.  
(address range used is 0x00 to 0x3F)  
• Support of Page Write with Pages of at least 4  
bytes. Otherwise error events can not be saved  
to the EEPROM (EMASKE(9:0) = 0x000).  
Bit errors in the 0x00 to 0x1E memory section are  
pinpointed by the CRC deposited in register CHK-  
SUM(7:0) (address 0x1F; the CRC polynomial used is  
"1 0001 1101").  
• Device ID 0x50 "1010 000", no occupation of  
0x55 (A2...A0 = 0). Otherwise iC-MSB is not ac-  
cessible in I2C slave mode via 0x55 (ENSL = 0).  
Device recommendation: Atmel AT24C01B, 128x8  
Should no valid configuration data being available (in-  
correct CRC value or EEPROM missing), the readin  
process is repeated; the system aborts following a  
fourth faulty attempt and iC-MSB switches to I2C slave  
mode.  
For devices loading valid configuration data from the  
EEPROM, the register bit ENSL decides for enabling  
the I2C slave function.  
ENSL  
Code  
0
Adr 0x17, bit 3  
Function  
Normal operation  
1
I2C Slave Mode Enable (Device ID 0x55)  
Table 6: Config. Interface Mode  
The device ID for the EEPROM can be entered in reg-  
ister DEVID(6:0) (address 0x00), from which iC-MSB  
will take its configuration after exiting test mode (see  
page 17). The DEVID(6:0) stored therein is then ac-  
cepted.  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 14/29  
I2C Slave Mode (ENSL = 1)  
Register  
Read access in I2C slave mode (ENSL = 1)  
Content  
In this mode iC-MSB behaves like an I2C slave with the  
device ID 0x55 and the configuration interface permits  
write and read accesses to iC-MSB’s internal registers.  
Address  
0x00-0x18 Configuration: register addresses 0x00-0x18  
0x19-0x1A Not available  
0x1B-0x1E OEM data: register addresses 0x1B-0x1E  
0x1F  
Chip release (ROM)  
For chip release verification purposes an identification  
value is stored under ROM address 0x1F; a write ac-  
cess to this address is not permitted.  
0x20-0x23 Configuration: register addresses 0x20-0x23  
0x24-0x37 Not available  
0x38  
Configuration: register address 0x18  
0x39-0x3A Not available  
CHPREL  
Code  
0x00  
Adr 0x1F, bit 7:0 (ROM)  
Chip Release  
0x3B-0x3E OEM data: register addresses 0x1B-0x1E  
0x3F  
Chip release (ROM)  
Not available  
iC-MSB SAFETY v4  
iC-MSB SAFETY v5  
iC-MSB2 v5  
0x40-0x43 Current error memory  
0x44-0x7F Not available  
0x04  
0x05  
0x25  
Table 9: RAM Read Access  
Table 7: Chip Release  
Register  
Address  
0x00  
Write access in I2C slave mode (ENSL = 1)  
Access and conditions  
NTRI  
Code  
0
Adr 0x02, bit 7  
Changes possible, no restrictions  
Function  
0x01  
Changes possible (wrong entries for CFGIBN can  
limit functions)  
Output drivers disabled  
1
Setting the operating mode, output drivers active  
NTRI is evaluated only during I2C slave mode.  
0x02  
Bit 7 = 0 (NTRI): changes to bits (6:0) permitted  
A change of operating mode follows only on writing  
Bit 7 = 1 (NTRI); when doing so changes to bits  
(6:0) are not permitted.  
Notes  
Table 8: Tristate Function And Op. Mode Change  
0x03-0x16 Changes possible, no restrictions  
0x17  
Bit 3 = 1 (ENSL):  
changes to bits (7:4) and (2:0) permitted  
0x18  
Changes possible, no restrictions  
0x19-0x1A Not available  
0x1B-0x1E Changes possible, no restrictions  
others  
No changes permitted  
Table 10: RAM Write Access  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 15/29  
BIAS SOURCE AND TEMPERATURE SENSOR CALIBRATION  
Bias Source Calibration  
The necessary activation threshold voltage VTth(T1) is  
The calibration of the bias current source in operation then calculated. The required warning temperature T2,  
mode Calibration 1 (Tab. 13) is prerequisite for adher- temperature coefficients TCs and TCth (see Electrical  
ence to the given electrical characteristics and also in- Characteristics, Section E) and measurement value  
strumental in the determination of the chip timing (e.g. VTs(T1) are entered into this calculation:  
SCL clock frequency). For setup purposes the IBN  
value is measured using a 10 kresistor by pin VDDS  
connected to pin NC. The setpoint is 200 µA which is  
equivalent to a measurement voltage of 2 V.  
VTs(T1) + TCs · (T2 T1)  
VTth(T1) =  
1 + TCth · (T2 T1)  
CFGIBN  
Code k  
0x0  
Adr 0x01, bit 7:4  
Example: For T2 = T1 + 100 K, VTth(T1) must be pro-  
grammed to 443 mV.  
31  
39k  
31  
39k  
IBN ∼  
Code k  
0x8  
IBN ∼  
100 %  
103 %  
107 %  
111 %  
115 %  
119 %  
124 %  
129 %  
79 %  
81 %  
84 %  
86 %  
88 %  
91 %  
94 %  
97 %  
0x1  
0x9  
Activation threshold voltage VTth(T1) is provided for a  
high impedance measurement (10 M) at output pin  
NS (measurement versus VDDS) and must be set by  
programming CFGTA(3:0) to the calculated value.  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0x3  
0x4  
0x5  
0x6  
Example: Altering VTth(T1) from 310 mV (measured  
with CFGTA(3:0)= 0x0) to 443 mV is equivalent to  
143 %, the closest value for CFGTA is 0x9;  
0x7  
Table 11: Bias Current Source Calibration  
CFGTA  
Code k  
0x0  
Adr 0x01, bit 3:0  
65+3k  
VTth ∼  
65  
65+3k  
65  
Code k  
0x8  
VTth ∼  
140 %  
145 %  
150 %  
155 %  
160 %  
165 %  
170 %  
175 %  
Temperature Sensor  
The temperature monitor is calibrated in operating  
mode Calibration Mode 3.  
100 %  
105 %  
110 %  
115 %  
120 %  
125 %  
130 %  
135 %  
0x1  
0x9  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0x3  
To set the required warning temperature T2 the tem-  
perature sensor voltage VTs at which the warning is  
generated is first determined. To this end a volt-  
age ramp from VDDS towards GNDS is applied to  
pin PS until pin ERR triggers an error message (for  
EMASKA = 0x20 and EMTD = 0x00).  
0x4  
0x5  
0x6  
0x7  
Notes  
With CFGTA = 0xF Toff is 80 °C typ.,  
with CFGTA = 0x0 Toff is 155 °C typ.  
Example: VTs(T1) is ca. 650 mV, measured from  
VDDS versus PS, with T1 = 25 °C;  
Table 12: Calibration of Temperature Monitoring  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 16/29  
OPERATING MODES  
In order to calibrate iC-MSB, compensate for the input to the various operating modes; the line drivers and  
signals and test iC-MSB the mode of operation must protection against reverse polarity facility are only ac-  
be changed. The output function changes according tive in normal mode.  
MODE(3:0)  
BYP  
Addr. 0x02; bit 3:0  
Addr. 0x0D; bit 5  
Code  
0x00  
Operating Mode  
Normal operation  
Calibration 1  
Pin PS  
PS  
Pin NS  
NS  
Pin PC  
PC  
Pin NC  
NC  
Pin PZ  
PZ  
Pin NZ  
NZ  
Pin ERR  
ERR  
ERR  
0x01  
TANA0(2)  
PCH1  
VREFI0  
NCH1  
VPD  
VREFI12  
PCH2  
IBN  
PZI  
NZI  
0x02  
Calibration 2  
NCH2  
CGUCK  
NC_out  
NC_out  
VDC1  
IPF  
VDC2  
V05  
0x03  
iC-Haus Test 1  
iC-Haus Test 2  
iC-Haus Test 3  
VPAH  
IERR  
IERR  
ERR  
0x04  
PS_out  
PS_out  
NS_out  
NS_out  
PC_out  
PC_out  
PZ_out  
PZ_out  
NZ_out  
NZ_out  
0x05  
0x06  
iC-Haus Test 4, BYP = 0  
iC-Haus Test 4, BYP = 1  
TANA12(0) TANA12(1) TANA12(2) TANA12(3) TANA12(4) TANA12(5) IERR  
X4  
X6  
X3  
X5  
X1  
X2  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Calibration 3  
VTs  
VTth  
ERR  
Saturation low  
SCL, SDA and ERR low  
TP  
iC-Haus Test 5  
CLK6  
IDDQ-Test  
All PU/PD resistors, oscillator and supply voltage deactivated  
Table 13: Selection of Operating Modes  
Calibration Op. Modes  
Signal Filter  
In Calibration Mode 1 the user can measure the BIAS iC-MSB has a noise limiting signal filter to filter the con-  
current (IBN), input amplifier reference potential VREFI ditioned analog signals. This can be activated using  
and the analog signals from channel 0 following signal ENF.  
conditioning (PCH0 and NCH0).  
ENF  
Code  
0
Adr 0x0E, bit 7  
In Calibration Mode 2 the conditioned signals from  
channels 1 and 2 are output (PCH1, NCH1, PCH2  
and NCH2). In addition the intermediate potentials of  
the compensating circuits are also available for CH1  
(VDC1) and CH2 (VDC2).  
Function  
Noise limiter deactivated  
Noise limiter activated  
1
Table 14: Signal Filtering  
In Calibration Mode 3 the internal temperature moni-  
toring signals are provided.  
Special Device Test Functions  
IDDQ-Test, Saturation Low, Saturation High, and Test  
1 to 5 are test modes for iC-Haus device tests. With an  
activated bypass (BYP = 1), mode iC-Haus Test 4 per-  
mits the direct feedthrough of X1 - X6 input signals to  
the output pins; in this instance the output impedance  
is high-ohmic. Furthermore, if the input voltage divider  
is selected (by RINx = 1- -1), it reduces the signal am-  
plitudes to approx. 7/8.  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 17/29  
TEST MODE  
iC-MSB switches to test mode when a voltage greater When test mode is quit with TMODE > 0, then iC-  
than VTMon is applied to pin ERR (precondition: MSB again reads out its configuration from the EEP-  
TMODE(0) = 1). In response iC-MSB transmits its con- ROM, accessible at the device ID filed to DEVID(6:0)  
figuration settings as current-modulated data using er- of adr 0x00. In TMODE = 0x00 the EEPROM is read  
ror signal I/O pin ERR either directly from the RAM completely; in all other cases only the address range  
(for TMEM = 1) or after re-reading the EEPROM (for 0x00 to 0x21 is read to keep the configuration time  
TMEM = 0).  
for device testing short. When test mode is quit with  
TMODE = 0x00 iC-MSB continues operation without  
any interruption.  
TMEM  
Adr 0x18, bit 7  
0
1
EEPROM contents  
iC-MSB RAM contents  
TMODE  
Adr 0x15, bit 7:6  
Code  
Function during test  
mode  
Function following test  
mode  
Table 15: Test Mode Memory Selection  
00  
01  
Normal operation  
Normal operation  
TMEM = 0:  
Repeated read out of  
EEPROM  
Should the voltage at the ERR pin fall below  
VTMoff test mode is terminated and data transmission  
aborted.  
Transmission of  
EEPROM data, address  
range 0x1B-0x7F  
TMEM = 1:  
Transmission of RAM  
data, address range  
0x3B-0x43  
The clock rate for the data output is determined by  
ENFAST. Two clock rates can be selected: 780 ns for  
ENFAST = 1 or 3.125 µs for ENFAST = 0 (see Electri-  
cal Characteristics, D08, for clock frequency and toler-  
ances).  
10  
11  
Normal operation  
Repeated read out of  
EEPROM  
Transmission of  
Repeated read out of  
EEPROM data, address EEPROM  
range 0x0-0x7F  
Data is output in Manchester code via two clock pulses  
per bit. To this end the lowside current source switches  
between a Z state (OFF = 0 mA) and an L state (ON =  
2 mA).  
Table 16: Test Mode Functions  
VP  
U23-B  
VP LM393  
VP  
7
8
6
5
VP  
VP  
C21  
100nF  
C22  
100nF  
-
The bit information lies in the direction of the current  
source switch:  
U22-S  
AD8029  
VN  
U23-S  
LM393  
GND  
7
+
4
4
Zero bit: change of state Z L (OFF to ON)  
JP4  
R24  
470  
ERR  
One bit: Change of state L Z (ON to OFF)  
max. 5V  
VDD  
M22  
IRLML6401  
C24  
VP  
R26  
100pF  
100k  
R23  
2K  
C26  
100nF  
R28  
51k  
U22-A  
U23-A  
LM393  
R25  
2k  
2
Transmission consists of a start bit (a one bit), 8 data  
bits and a pause interval in Z state (the timing is iden-  
tical with an EEPROM access via the I2C interface).  
D21  
LL4148  
-
M21  
2N7002  
6
2
3
DATA_ON  
AD8029  
-
3
1
NDIS  
DATA_OUT  
+
8
+
R21  
475k  
8
4
R27  
100k  
U21  
LM285  
VP  
5
C25  
100nF  
R22  
365k  
VDD  
Example: byte value = 1000 1010  
C23  
100nF  
Transmission including the start bit: 1 1000 1010  
In Manchester code: LZ LZZL ZLZL LZZL LZZL  
dra_mq1d_error_schem  
Figure 1: Example circuit for the decoding and con-  
version of the current-modulated signals  
to logic levels.  
Decoding of the data stream:  
ZZZZZZ LZ LZ ZL ZL ZL LZ ZL LZ ZL ZZZZZZ  
Pause 1 1 0 0 0 1 0 1 0 Pause  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 18/29  
INPUT CONFIGURATIONS  
RIN12  
RIN0  
Code  
–000  
–010  
–100  
–110  
1—1  
0—1  
Adr 0x0E, bit 3:0  
Input Configurations  
Adr 0x13, bit 3:0  
All input stages are configured as instrumentation am-  
plifiers and thus directly suitable for differential input  
signals. Referenced input signals can be processed as  
an option; in this mode input X2 acts as a reference.  
Nominal Rin() Intern Rui()  
I/V Mode  
1.7 kΩ  
2.5 kΩ  
3.5 kΩ  
4.9 kΩ  
20 kΩ  
1.6 kΩ  
2.3 kΩ  
3.2 kΩ  
4.6 kΩ  
5 kΩ  
current input  
current input  
current input  
current input  
voltage input  
voltage input  
INMODE  
Adr 0x03, bit 2  
Code  
0
Function  
high  
impedance  
1 MΩ  
Differential input signals  
Single-ended input signals *  
* Input X2 is reference for all inputs.  
1
Note  
Table 18: I/V Mode and Input Resistance  
Table 17: Input Signal Mode  
BIAS12  
BIAS0  
Code  
0
Adr 0x0E, bit 6  
Adr 0x13, bit 6  
VREFin()  
2.5 V)  
Both current and voltage signals can be processed as  
input signals, selected using RIN12(0) and RIN0(0).  
In I Mode an input resistor Rin() becomes active at  
each input pin, converting the current signal into a volt-  
age signal. Input resistance Rin() consists of a pad  
wiring resistor and resistor Rui() which is linked to the  
adjustable bias voltage source VREFin(). The follow-  
ing table shows the possible selections, with Rin() giv-  
ing the typical resulting input resistance (see Electri-  
cal Characteristics for tolerances). The input resistor  
should be set in such a way that intermediate poten-  
tials VDC1 and VDC2 lie between 125 mV and 250 mV  
(verifiable in Calibration Mode 2).  
Type of sensor  
Lowside sink current (I Mode)  
Highside current source (I Mode)  
1
1.5 V)  
Table 19: Reference Voltage  
BIASEX  
Code  
0-  
Adr 0x0D, bit 7:6  
VREFin()  
internal  
Signal at X2  
Neg. Zero Signal (Index -), input  
Ref. Voltage VREFin12, output  
Ref. Voltage VREFin, input  
10  
internal *  
external *  
11  
Note  
*) The voltage at X2 is reference for all inputs.  
In V Mode an optional voltage divider can be selected  
which reduces unacceptably large input amplitudes to  
ca. 25%. The circuitry is equivalent to the resistor  
chain in I Mode; the pad wiring resistor is considerably  
larger here, however.  
Table 20: Input Reference Selection  
Figure 2: Input instrumentation amplifier and signal conditioning  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 19/29  
SIGNAL PATH MULTIPLEXING: iC-MSBSAFETY  
Figure 3: Multiplexer Schematics  
The signals for index channel CH0 are connected up to EAZ permits the activation of an analog comparator for  
pins X1 and X2. Pins X3 to X6 are allocated to internal index channel CH0.  
channels CH1 and CH2 via MUXIN. INMODE can be  
INVZ  
Code  
0
Adr 0x03, bit 3  
activated for referenced input signals; this then selects  
X2 as the reference input. For output purposes INVZ  
allows the index signal phase to be inverted.  
PZ_out  
NZ_out  
NCH0o  
PCH0o  
PCH0o  
1
NCH0o  
MUXIN  
Code  
00  
0x03, bit 1:0  
Table 24: Index Signal Inversion  
PCH1i  
X4  
NCH1i  
X6  
PCH2i  
X3  
NCH2i  
X5  
01  
X4  
X6  
X5  
X5  
10  
X4  
X5  
X3  
X6  
11  
X4  
X3  
X5  
X6  
Table 21: Input Multiplexer for INMODE = 0  
MUXIN  
0x03, bit 1:0  
PCH1i  
X4  
Code  
-0  
NCH1i  
X2  
PCH2i  
X3  
NCH2i  
X2  
-1  
X4  
X2  
X5  
X2  
Table 22: Input Multiplexer for INMODE = 1  
EAZ  
Code  
0
Adr 0x03, bit 7  
Function  
Comparator bypass  
Comparator active  
1
Table 23: Index Output  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 20/29  
( not for safety applications )  
EXTENDED SIGNAL PATH MULTIPLEXING: iC-MSB2  
Figure 4: Multiplexer Schematics  
The signals for index channel CH0 are connected up to EAZ permits the activation of an analog comparator for  
pins X1 and X2. Pins X3 to X6 are allocated to internal index channel CH0.  
channels CH1 and CH2 via MUXIN. INMODE can be  
EAZ  
Code  
0
Adr 0x03, bit 7  
activated for referenced input signals; this then selects  
X2 as the reference input. For output purposes INVZ  
allows the index signal phase to be inverted.  
Function  
Comparator bypass  
Comparator active  
1
MUXIN  
Code  
00  
0x03, bit 1:0  
Table 28: Index Output  
PCH1i  
X4  
NCH1i  
X6  
PCH2i  
X3  
NCH2i  
X5  
MUXOUT  
Code  
000  
Adr 0x03, bit 6:4  
01  
X4  
X6  
X5  
X5  
PS_Out  
NS_Out  
PC_Out  
NC_Out  
10  
X4  
X5  
X3  
X6  
Channel 1  
Channel 2  
11  
X4  
X3  
X5  
X6  
010  
Channel 1  
Channel 1 inverted  
Channel 1 inverted  
Channel 2  
Channel 2 inverted  
Channel 2  
Table 25: Input Multiplexer for INMODE = 0  
100  
110  
Channel 2 inverted  
Channel 1  
001  
MUXIN  
0x03, bit 1:0  
PCH1i  
X4  
011  
Channel 2  
Channel 1 inverted  
Channel 1  
Code  
-0  
NCH1i  
X2  
PCH2i  
X3  
NCH2i  
X2  
101  
Channel 2 inverted  
Channel 2 inverted  
111  
Channel 1 inverted  
-1  
X4  
X2  
X5  
X2  
Table 29: Output Multiplexer  
Table 26: Input Multiplexer for INMODE = 1  
INVZ  
Code  
0
Adr 0x03, bit 3  
PZ_out  
PCH0o  
NCH0o  
NZ_out  
NCH0o  
PCH0o  
1
Table 27: Index Signal Inversion  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 21/29  
SIGNAL CONDITIONING CH1, CH2  
GR12  
Code  
0x0  
Adr 0x04, bit 2:0  
The voltage signals necessary for the conditioning of  
channels 1 and 2 can be measured in operation mode  
Calibration 2.  
Range with RIN12=0x9  
Range with RIN12=0x9  
0.5  
1.0  
1.3  
1.7  
2.2  
2.6  
3.3  
4.0  
2.0  
0x1  
4.1  
0x2  
5.3  
Gain Settings CH1, CH2  
The gain is set in four stages:  
0x3  
6.7  
0x4  
8.7  
0x5  
10.5  
13.2  
16.0  
1. The sensor supply tracking is shut down and the  
constant current source for the ACO output set to a  
suitable output current (register ADJ; current value  
close to the later operating point).  
0x6  
0x7  
Table 30: Gain Range CH1, CH2  
2. The coarse gain is selected so that the differential  
signal amplitudes of ca. 1 Vpp are produced (signal Px  
vs. Nx, see Figure below).  
GF2  
Code  
0x00  
0x01  
...  
Adr 0x04, bit 7:3  
Factor  
1.00  
3. Using fine gain factor GF2 the CH2 signal amplitude  
is then adjusted to 1 Vpp.  
1.06  
6.25GF2  
31  
0x1F  
6.25  
4. The CH1 signal amplitude can then be adjusted to  
the CH2 signal amplitude via fine gain factor GF1.  
Table 31: Fine Gain Factor CH2  
GF1  
Adr 0x06, bit 2:0, Adr 0x05, bit 7:0  
Code  
0x000  
0x001  
...  
Factor  
1.0  
0.25 Vp  
0.25 Vp  
1 Vpp  
1.0009  
GF1  
1984  
6.25  
0x7FF  
6.6245  
iC-MSB  
Px  
Table 32: Fine Gain Factor CH1  
Vpeak-to-peak  
R0  
Vpk(Px)  
Nx  
Vpk(Nx)  
GND  
Figure 5: Definition of 1 Vpp signal. Termination R0  
must be high-ohmic during all Test and  
Calibration modes.  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 22/29  
The calibration range for the CH1/CH2 offset is depen-  
Offset Calibration CH1, CH2  
In order to calibrate the offset the reference source dent on the selected VOS12 source and is set using  
must first be selected using VOS12. Two fixed voltages OR1 and OR2. Both sine and cosine signals are then  
and two dependent sources are available for this pur- calibrated using factors OF1 and OF2. The calibration  
pose. The fixed voltage sources should be selected for target is reached when the DC fraction of the differen-  
external sensors which provide stable, self-regulating tial signals PCHx versus NCHx is zero.  
signals.  
OR1  
OR2  
Code  
0x0  
Adr 0x09, bit 0; Adr 0x08, bit 7  
So that photosensors can be operated in optical en-  
coders iC-MSB tracks changes in offset voltages via  
the signal-dependent source VDC when used in con-  
junction with the controlled sensor current source for  
LED supply (pin ACO). The VDC potential automati-  
cally tracks higher DC photocurrents. To this end inter-  
mediate potentials VDC1 and VDC2 must be adjusted  
to a minimal AC ripple using the selectable k factor (this  
calibration must be repeated when the gain setting is  
altered).  
Adr 0x0A, bit 5:4  
Range  
x1  
0x1  
x2  
0x2  
x6  
0x3  
x12  
Table 35: Offset Range CH1, CH2  
OF1  
Adr 0xA, bit 3:0; Adr 0x9, bit 7:1  
OF2  
Adr 0xC, bit 0; Adr 0xB, bit 7:0; Adr 0xA, bit 7:6  
The feedback of pin voltage V(ACO) fulfills the same  
task as source VDC when MR bridge sensors are sup-  
plied by the controlled power supply output. In this  
instance the VDC intermediate voltages do not need  
adjusting.  
Code  
0x000  
0x001  
...  
Factor  
Code  
0x400  
0x401  
...  
Factor  
0
0
0.00098  
0.00098  
0.00098 · OFx  
1  
0.00098 · OFx  
0x3FF  
1
0x7FF  
VOS12  
Code  
0x0  
Adr 0x0E, bit 5:4  
Type of source  
0.05 · V(ACO)  
0.5 V  
Table 36: Offset Factors CH1, CH2  
0x1  
Phase Correction CH1 vs. CH2  
0x2  
0.25 V  
The phase shift between CH1 and CH2 can be ad-  
justed using parameter PH12. Following phase cal-  
ibration other calibration parameters may have to be  
adjusted again (those as amplitude compensation, in-  
termediate potentials and offset voltages).  
0x3  
VDC (ie. VDC1, VDC2)  
Table 33: Offset Reference Source CH1, CH2  
VDC1  
Adr 0x07, bit 4:0; Adr 0x06, bit 7:3  
Adr 0x08, bit 6:0; Adr 0x07, bit 7:5  
VDC = k · VPi + (1 k) · VNi  
k = 0.33  
VDC2  
Code  
0x000  
0x001  
...  
PH12  
Code  
0x000  
0x001  
...  
Adr 0xD, bit 2:0; Adr 0xC, bit 7:1  
Correction angle  
+0  
Code  
0x200  
0x201  
Correction angle  
0  
k = 0.33032  
+0.0204  
0.0204  
k = 0.33 + MP2 · 0.00032  
k = 0.66  
+0.0204 · PH12 ...  
+10.42 0x3FF  
0.0204 · PH12  
10.42  
0x3FF  
0x1FF  
Table 34: Intermediate Voltages CH1, CH2  
Table 37: Phase Correction CH1 vs. CH2  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 23/29  
SIGNAL CONDITIONING CH0  
The voltage signals needed to calibrate channel 0 are Offset Calibration CH0  
available in Calibration Mode 1.  
To calibrate the offset the source of supply must first  
be selected using VOS0 (see Offset Calibration CH1  
and CH2 for further information). For the CH0 path the  
Gain Settings CH0  
Parallel to the conditioning process for the CH1 and dependent source VDC is identical to source VDC1.  
CH2 signals the CH0 gain is set in the following stages:  
VOSZ  
Code  
0x0  
Adr 0x13, bit 5:4  
1. The sensor supply tracking unit is shut down and the  
constant current source for the ACO output set to the  
same output current as in the compensation of CH1  
and CH2 (register ADJ; current value close to the later  
operating point).  
Source  
0.05 · V(ACO)  
0.5 V  
0x1  
0x2  
0.25 V  
0x3  
VDC (ie. VDC1)  
Table 40: Offset Reference Source CH0  
2. The coarse gain is selected so that a differential sig-  
nal amplitude of ca. 1 Vpp is produced internally (sig-  
nal PCHx versus NCHx).  
OR0  
Code  
0x0  
Adr 0x12, bit 1:0  
Range  
x1  
3. GF0 then permits fine gain adjustment to 1 Vpp.  
0x1  
x2  
GR0  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Adr 0x11, bit 2:0  
0x2  
x6  
Range with RIN0=0x9  
Range with RIN0=0x9  
0x3  
x12  
0.5  
1.0  
1.3  
1.7  
2.2  
2.6  
3.3  
4.0  
2.0  
4.1  
Table 41: Offser Range CH0  
5.3  
6.7  
OF0  
Code  
0x00  
0x01  
...  
Adr 0x12, bit 7:2  
8.7  
Factor  
Code  
0x20  
0x21  
...  
Factor  
10.5  
13.2  
16.0  
0
0
0.0322  
-0.0322  
-0.0322 · OFZ  
-1  
0.0322 · OFZ  
1
0x1F  
0x3F  
Table 38: Gain Range CH0  
Table 42: Offset Factor CH0  
GF0  
Code  
0x00  
0x01  
...  
Adr 0x11, bit 7:3  
Factor  
1.00  
1.06  
6.25GFZ  
31  
0x1F  
6.25  
Table 39: Fine Gain Factor CH0  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 24/29  
SIGNAL LEVEL CONTROL and SIGNAL MONITORING  
ADJ (6:5)  
Code  
00  
Adr 0x10, bit 5:4  
Function  
Via the controlled sensor current source (pin ACO)  
iC-MSB can keep the output signals for the ensuing  
sine/digital converter constant regardless of tempera-  
ture and aging effects by tracking the sensor supply.  
5 mA - Range  
10 mA - Range  
25 mA - Range  
50 mA - Range  
01  
10  
11  
Table 44: ACO Output Current Range (applies for con-  
trol modes and constant current source)  
Both the controller operating range and input signal  
amplitude for the controller are monitored and can  
be enabled for error messaging. A constant current  
source can be selected for the ACO output when set-  
ting the signal conditioning; the current range for the  
highside current source is adjusted using ADJ(6:5).  
ADJ (4:0)  
Code  
Adr 0x10, bit 3:0; Adr 0x0F, bit 7  
Square control ADJ(8:7) = 00  
Vpp() ca. 300 mV (60 %)  
0x00  
0x01  
Vpp() ca. 305 mV (61 %)  
77  
...  
Vpp() 300 mV 77(1.25Code)  
0x19  
...  
Vpp() ca. 500 mV (98 %)  
...  
0x1F  
Vpp() ca. 600 mV (120 %)  
Table 45: Vpp Setpoint For Square Control  
ADJ (4:0)  
Adr 0x10, bit 3:0; Adr 0x0F, bit 7  
Sum control ADJ(8:7) = 01  
VDC1 + VDC2 ca. 245 mV  
VDC1 + VDC2 ca. 249 mV  
Code  
0x00  
0x01  
77  
...  
VDC1 + VDC2 245mV 77(1.25Code)  
Figure 6: Signal level monitoring with square control  
(example for ADJ(8:0) = 0x19; see Elec.  
Char. Nos.607 and 608 regarding Vt()min  
resp. Vt()max)  
0x1F  
VDC1 + VDC2 ca. 490 mV  
Table 46: DC Setpoint For Sum Control  
ADJ (4:0)  
Code  
Adr 0x10, bit 3:0; Adr 0x0F, bit 7  
Constant current source ADJ(8:7) = 10  
I(ACO) ca. 3.125% Isc(ACO)  
0x00  
ADJ (8:7)  
Code  
00  
Adr 0x10, bit 7:6  
0x01  
I(ACO) ca. 6.25% Isc(ACO)  
Function  
...  
I(ACO) 3.125% (Code + 1) Isc(ACO)  
Sine/cosine square control  
Sum control  
01  
0x1F  
I(ACO) ca. 100% Isc(ACO)  
10  
Constant current source  
Not permitted (device test only)  
11  
Notes  
See Elec. Char. No. 602 for Isc(ACO)  
Table 43: Controller Operating Modes  
Table 47: I(ACO) With Constant Current Source  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 25/29  
ERROR MONITORING AND ALARM OUTPUT  
The following table gives the errors which can both I/O pin ERR  
be recognized by iC-MSB and enabled either for mes- Pin ERR is operated by a current-limited open drain  
saging, output shutdown or protocol in the EEPROM. output driver and has an internal pull-up which can be  
Mask EMASKA stipulates that errors should be sig- shutdown. The ERR pin also acts as an input for ex-  
naled at pin ERR, mask EMASKO determines whether ternal system error messaging and for switching iC-  
the line driver outputs are to be shutdown or not MSB to test mode for which a voltage of greater than  
(with PDMODE setting a renewed power-on) and mask VTMon must be applied. Interpretation of external  
EMASKE governs the storage of error events in the system error messaging and the phase length of the  
EEPROM.  
message output can be set using EPH; the minimum  
signaling duration for internal errors is adjusted using  
EMTD(2:0).  
EMASKA  
EMASKO  
EMASKE  
Bit  
Adr 0x14, bit 6:0  
Adr 0x16, bit 6:0  
Adr 0x18, bit 2:0; Adr 0x17, bit 7:4  
Error Event  
EPU  
Code  
0
Adr 0x17, bit 2  
Function  
6
Configuration error*: SDA or SCL pin error, no Ack  
signal from EEPROM or invalid check sum  
without internal pull-up at ERR  
internal pull-up at ERR active  
1
5
4
3
2
1
0
Excessive temperature warning  
External system error  
Table 50: Alarm Output Pull-up Enable  
Level controller out of range (max. limit)  
Level controller out of range (min. limit)  
Signal clipping (excessive input level)  
PDMODE  
Adr 0x18, bit 6  
Code  
Function  
Loss of signal (poor input level or CH1/CH2 phase  
out of range)  
0
1
Line driver active when no error persists  
Line driver active after power-on  
Note  
*) The line drivers remain high impedance (tristate)  
when cycling power.  
Table 51: Driver Activation  
Table 48: Error Event Masks  
EPH  
Code  
0
Adr 0x15, bit 2  
ERR pin function  
Ext. error message  
Error Protocol  
with error low,  
otherwise Z  
with error low,  
otherwise pull-up active  
Out of the errors pinpointed by EMASKE both the first  
(ERR1) and last error (ERR2) which occur after the  
iC-MSB is turned on are stored in the EEPROM. The  
EEPROM also has a memory area in which all occur-  
ring errors can be stored (ERR3). Only the fact that an  
error has occurred can be recorded, with no informa-  
tion as to the time and frequency of that error given.  
The EEPROM memory can be used to statistically  
evaluate the causes of system failure, for example.  
1
with error Z,  
otherwise low  
with error pull-up active,  
otherwise low  
Table 52: Alarm Input/Output Logic  
EMTD  
Code  
0x0  
Adr 0x15, bit 5:3  
Indication Time  
0 ms  
Code  
0x4  
0x5  
0x6  
0x7  
Indication Time  
50 ms  
0x1  
12.5 ms  
25 ms  
62.5 ms  
75 ms  
0x2  
ERR1  
ERR2  
ERR3  
Bit  
Adr 0x20, bit 6:0  
0x3  
37.5 ms  
87.5 ms  
Adr 0x22, bit 0; Adr 0x21, bit 7:2  
Adr 0x23, bit 2:0; Adr 0x22, bit 7:4  
Error Event  
Table 53: Minimum Alarm Indication Time  
9:0  
Assignation according to EMASKE  
Code  
Function  
0
1
No event  
Registered error event  
Table 49: Error Protocol  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 26/29  
TEMPERATURE MONITORING  
iC-MSB has an integrated temperature monitor. If the can be signaled at pin ERR or used to shut down the  
temperature threshold is exceeded an excessive tem- line drivers. If temperature Toff = Twarn + T is ex-  
perature message is generated which is processed in ceeded the line drivers are shut down independent of  
the temperature monitor block. The warning threshold EMASKO(6:0).  
REVERSE POLARITY PROTECTION  
The line drivers in iC-MSB are protected against re- are also reverse polarity protected: PC, NC, PS, NS,  
verse polarity and short-circuiting. A defective device PZ, NZ, ERR, VDD, GND and ACO (as long as GNDS  
cable or one wrongly connected cause damage neither is only loaded versus VDDS). The maximum voltage  
to iC-MSB nor to the components protected against re- difference between the pins should not be greater than  
verse polarity by VDDS and GNDS. The following pins 6 V, the exception here being pin ERR.  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 27/29  
APPLICATION HINTS  
Connecting MR sensor bridges for safety-related applications  
For safety-related applications iC-MSBSAFETY requires an external overvoltage protection of supply VDD (Zener  
diode with fuse, for instance) and external pull-down resistors at the inputs X3 to X6 towards GNDS (of up to  
100 k).  
F1  
+5V  
C1  
100nF  
C2  
100nF  
R6  
R5  
2.2kS 2.2kS  
D1  
5.6V  
VP  
SCL  
VDDS  
VDD  
SCL  
I2C  
ERR  
24xx  
ERR  
SDA  
ACO  
SDA  
VN  
iC-MSB  
SIGNAL  
LEVEL  
PZ  
NZ  
PC  
NC  
PS  
NS  
CONTROL  
RL  
MR0  
100S  
X1  
X2  
+
-
INPUT ZERO  
MR1  
RL  
100S  
X3  
X5  
+
-
R1  
R2  
100kS  
INPUT COS  
100kS  
MR2  
X4  
X6  
+
RL  
100S  
-
R3  
R4  
INPUT SIN  
100kS 100kS  
GNDS  
GND  
0V  
TVS diode array  
Figure 7: Example circuit for safety-related applications with iC-MSBSAFETY  
.
PLC Operation  
ther the supply VDD nor the output pins, which are  
There are PLCs with a remote sense supply which re- also monitored, must fall to below ground potential (pin  
quire longer for the voltage regulation to settle. At the GND); otherwise the device is not configured and the  
same time the PLC inputs can have high-impedance outputs remain permanently set to tristate.  
resistances versus an internal, negative supply voltage  
which define the input potential for open inputs.  
In order to ensure that iC-MSB starts with the PLCs  
In this instance iC-MSB’s reverse polarity protection mentioned above pull-up resistors can be used in the  
feature can be activated as the outputs are tristate dur- encoder. Values of 100 kare usually sufficient; it  
ing the start phase and the resistances in the PLC de- is, however, recommended that PLC specifications be  
termine the pin potential. During the start phase nei- specifically referred to here.  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 28/29  
iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the  
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by  
email.  
Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.  
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions  
in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of  
merchantability, tness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which  
information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or  
areas of applications of the product.  
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade  
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.  
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical  
applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of  
use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued  
annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in  
Hanover (Hannover-Messe).  
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations  
of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can  
be put to.  
iC-MSBSAFETY, iC-MSB2  
SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER  
Rev D2, Page 29/29  
ORDERING INFORMATION  
Type  
Package  
Order Designation  
iC-MSBSAFETY  
TSSOP20  
iC-MSB TSSOP20  
TSSOP20 with thermal pad  
iC-MSB TSSOP20-TP  
iC-MSB EVAL MSB1D  
Evaluation Board iC-MSBSAFETY  
iC-MSB2  
TSSOP20  
iC-MSB2 TSSOP20  
Evaluation Board iC-MSB2  
iC-MSB2 EVAL MSB1D  
For technical support, information about prices and terms of delivery please contact:  
iC-Haus GmbH  
Tel.: +49 (61 35) 92 92-0  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
Fax: +49 (61 35) 92 92-192  
Web: http://www.ichaus.com  
E-Mail: sales@ichaus.com  
Appointed local distributors: http://www.ichaus.com/sales_partners  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY