ICS813001AGIT [ICSI]

DUAL VCXO W/3.3V, 2.5V LVPECL FEMTOCLOCK-TM PLL; 双VCXO W / 3.3V , 2.5V LVPECL FEMTOCLOCK -TM PLL
ICS813001AGIT
型号: ICS813001AGIT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

DUAL VCXO W/3.3V, 2.5V LVPECL FEMTOCLOCK-TM PLL
双VCXO W / 3.3V , 2.5V LVPECL FEMTOCLOCK -TM PLL

石英晶振 压控振荡器
文件: 总18页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
ICS  
FEATURES  
The ICS813001I is a dual VCXO + FemtoClock™ • One 3.3V or 2.5V LVPECL output pair  
Multiplier designed for use in Discrete PLL  
Two selectable crystal oscillator interfaces for the VCXO,  
one differential clock or one LVCMOS/LVTTL clock inputs  
HiPerClockS™  
loops. Two selectable external VCXO crystals  
allow the device to be used in multi-rate appli-  
cations, where a given line card can be  
• CLK1/nCLK1 supports the following input types:  
LVPECL, LVDS, LVHSTL, SSTL, HCSL  
switched, for example, between 1Gb Ethernet (125MHz  
system reference clock) and 1Gb Fibre Channel  
(106.25MHz system reference clock) modes. Of course,  
a multitude of other applications are also possible such  
as switching between 74.25MHz and 74.175824MHz  
for HDTV, switching between SONET, FEC and non FEC  
rates, etc.  
• Crystal operating frequency range: 14MHz - 24MHz  
• VCO range: 490MHz - 640MHz  
• Output frequency range: 40.83MHz - 640MHz  
• VCXO pull range: 100ppm (typical)  
• Supports the following applications (among others):  
SONET, Ethernet, Fibre Channel, HDTV, MPEG  
The ICS813001I is a two stage device – a VCXO followed  
by a FemtoClock PLL. The FemtoClock PLL can multiply  
the crystal frequency of the VCXO to provide an output  
frequency range of 40.83MHz to 640MHz, with a random  
rms phase jitter of less than 1ps (12kHz – 20MHz). This  
phase jitter performance meets the requirements of 1Gb/  
10Gb Ethernet, 1Gb, 2Gb, 4Gb and 10Gb Fibre Channel,  
and SONET up to OC48. The FemtoClock PLL can also be  
bypassed if frequency multiplication is not required. For  
testing/debug purposes, de-assertion of the output enable  
pin will place both Q and nQ in a high impedance state.  
• RMS phase jitter @ 622.08MHz (12kHz - 20MHz):  
0.84 (typical)  
• Supply voltage modes:  
VCC/VCCO  
3.3V/3.3V  
3.3V/2.5V  
2.5V/2.5V  
• -40°C to 85°C ambient operating temperature  
• Available in both, Standard and RoHS/Lead-Free  
compliant packages  
BLOCK DIAGRAM  
Pullup  
VCO_SEL  
Pulldown  
CLK_SEL0  
Pullup  
CLK_SEL1  
Pulldown  
CLK0  
0 0  
Pulldown  
0
Output Divider N  
CLK1  
Pullup  
0 1  
N2:N0  
nCLK1  
000 ÷1  
001 ÷2  
010 ÷3  
VCO  
490-640MHz  
1
PD  
XTAL_IN0  
Q
nQ  
1 0  
011 ÷4 (default)  
100 ÷5  
(default)  
XTAL_OUT0  
XTAL_IN1  
Feedback Divider M  
101 ÷6  
110 ÷8  
111 ÷12  
VCXO  
PIN ASSIGNMENT  
M2:M0  
VCO_SEL  
1
CLK_SEL1  
CLK_SEL0  
OE  
24  
23  
22  
21  
20  
19  
18  
17  
000 ÷16  
001 ÷20  
010 ÷22  
011 ÷24  
100 ÷25 (default)  
101 ÷32  
110 ÷40  
111 MR  
N0  
2
1 1  
N1  
N2  
3
XTAL_OUT1  
4
M2  
5
6
VCCO  
Q
M1  
M0  
nQ  
7
CLK1  
VC  
M2  
M1  
VEE  
VCCA  
VCC  
8
nCLK1  
CLK0  
Pullup  
9
16  
15  
14  
13  
Pulldown  
Pulldown  
Pulldown  
Pullup  
10  
11  
12  
VC  
XTAL_OUT1  
XTAL_IN0  
XTAL_OUT0  
M0  
N2  
XTAL_IN1  
ICS813001I  
24-LeadTSSOP  
4.40mm x 7.8mm x 0.92mm  
package body  
N1  
Pullup  
N0  
Pullup  
OE  
G Package  
Top View  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
1
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Νυμ βερ  
Ναμ ε  
VCO_SEL  
N0, N1  
N2  
Τψπε  
Δεσχριπτιον  
1
2, 3  
4
Input  
Input  
Pullup  
Pullup  
VCO select pin. LVCMOS/LVTTL interface levels.  
Output divider select pins. Default value = ÷4.  
LVCMOS/LVTTL interface levels.  
Pulldown  
Input  
5
VCCO  
Power  
Ouput  
Power  
Power  
Power  
Output supply pin.  
6, 7  
8
Q, nQ  
VEE  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
9
VCCA  
Analog supply pin.  
10  
VCC  
Core supply pin.  
11  
12  
13  
14  
XTAL_OUT1,  
XTAL_IN1  
XTAL_OUT0,  
XTAL_IN0  
Parallel resonant crystal interface. XTAL_OUT1 is the output,  
XTAL_IN1 is the input.  
Parallel resonant crystal interface. XTAL_OUT0 is the output,  
XTAL_IN0 is the input.  
Input  
Input  
15  
16  
VC  
Input  
Input  
Input  
Input  
Input  
Input  
VCXO control voltage input.  
CLK0  
nCLK1  
CLK1  
M0, M1  
M2  
Pulldown LVCMOS/LVTTL clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
17  
18  
19, 20  
21  
Pulldown  
Pullup  
Feedback divider select pins. Default value = ÷25.  
LVCMOS/LVTTL interface levels.  
Output enable. When HIGH, the output is active. When LOW, the output  
is in a high impedance state. LVCMOS/LVTTL interface levels.  
22  
OE  
Input  
Pullup  
23  
24  
CLK_SEL0  
CLK_SEL1  
Input  
Input  
Pulldown  
Pullup  
Clock select pin. LVCMOS/LVTTL interface levels. Refer to Table 3.  
NOTE: Pulldown and Pullup refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
4
pF  
kΩ  
kΩ  
RPULLDOWN Input Pulldown Resistor  
RPULLUP Input Pullup Resistor  
51  
51  
TABLE 3. CONTROL INPUT FUNCTIONTABLE  
Inputs  
CLK_SEL1  
CLK_SEL0  
Selected Input  
CLK0  
0
0
1
1
0
1
0
1
CLK1, nCLK1  
XTAL0  
XTAL1  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
2
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
70°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC =VCCA =VCCO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.135  
3.135  
3.135  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
130  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
10  
TABLE 4B. POWER SUPPLY DC CHARACTERISTICS, VCC =VCCA = 3.3V 5ꢀ, VCCO = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.135  
3.135  
2.375  
3.3  
3.3  
2.5  
3.465  
3.465  
2.625  
130  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
10  
TABLE 4C. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA =VCCO = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
2.375  
2.375  
2.375  
2.5  
2.5  
2.5  
2.625  
2.625  
2.625  
125  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
10  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
3
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4C. LVCMOS / LVTTL DC CHARACTERISTICS, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
CC = 3.3V  
Minimum Typical Maximum Units  
V
2.0  
1.7  
-0.3  
-0.3  
0
VCC + 0.3  
VCC + 0.3  
0.8  
V
V
V
V
V
VIH  
Input High Voltage  
VCC = 2.5V  
VCC = 3.3V  
VCC = 2.5V  
VIL  
Input Low Voltage  
0.7  
VC  
VCXO Control Voltage  
VCC  
V
CC = VIN = 3.465V  
or 2.625V  
N2, M0, M1,  
CLK0, CLK_SEL0  
150  
5
µA  
µA  
Input  
High Current  
IIH  
VCC = VIN = 3.465V  
N0, N1, M2,  
VCO_SEL, CLK_SEL1  
or 2.625V  
VCC = 3.465V or 2.625V,  
VIN = 0V  
N2, M0, M1,  
CLK0, CLK_SEL0  
-5  
µA  
Input  
Low Current  
IIL  
VCC = 3.465V or 2.625V,  
N0, N1, M2,  
VCO_SEL, CLK_SEL1  
-150  
-100  
µA  
µA  
VIN = 0V  
IVC  
Input Current cƒVc pin  
VCC = 3.465V or 2.625V  
100  
TABLE 4D. DIFFERENTIAL DC CHARACTERISTICS, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
V
IN = VCC = 3.465V  
or 2.625V  
CLK1  
150  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
VIN = VCC = 3.465V  
or 2.625V  
VIN = 0V, VCC = 3.465V  
or 2.625V  
nCLK1  
CLK1  
-5  
IIL  
Input Low Current  
V
IN = 0V, VCC = 3.465V  
nCLK1  
-150  
or 2.625V  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended appliations, the maximum input voltage for CLK1, nCLK1 is VCC + 0.3V.  
TABLE 4E. LVPECL DC CHARACTERISTICS, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
4
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
TABLE 5A. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fOUT  
Output Frequency  
VCO_SEL = 1  
40.83  
640  
MHz  
RMS Phase Jitter, (Random);  
NOTE 1  
tjit(Ø)  
622.08MHz (12kHz - 20MHz)  
0.84  
ps  
fVCO  
PLL VCO Lock Range  
Output Rise/Fall Time  
490  
250  
43  
640  
500  
57  
MHz  
ps  
tR / tF  
20ꢀ to 80ꢀ  
N ÷ 1  
odc  
Output Duty Cycle  
N ÷1  
48  
52  
NOTE 1: Phase jitter using a crystal interface.  
TABLE 5B. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, VCCO = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fOUT  
Output Frequency  
VCO_SEL = 1  
40.83  
640  
MHz  
RMS Phase Jitter, (Random);  
NOTE 1  
tjit(Ø)  
622.08MHz (12kHz - 20MHz)  
0.87  
ps  
fVCO  
PLL VCO Lock Range  
Output Rise/Fall Time  
490  
250  
43  
640  
500  
57  
MHz  
ps  
tR / tF  
20ꢀ to 80ꢀ  
N ÷ 1  
odc  
Output Duty Cycle  
N ÷1  
48  
52  
NOTE 1: Phase jitter using a crystal interface.  
TABLE 5C. AC CHARACTERISTICS, VCC = VCCA = VCCO = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fOUT  
Output Frequency  
VCO_SEL = 1  
40.83  
640  
MHz  
RMS Phase Jitter, (Random);  
NOTE 1  
tjit(Ø)  
622.08MHz (12kHz - 20MHz)  
1.2  
ps  
fVCO  
PLL VCO Lock Range  
Output Rise/Fall Time  
490  
250  
43  
640  
500  
57  
MHz  
ps  
tR / tF  
20ꢀ to 80ꢀ  
N ÷ 1  
odc  
Output Duty Cycle  
N ÷1  
48  
52  
NOTE 1: Phase jitter using a crystal interface.  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
5
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
TYPICAL PHASE NOISE AT 622.08MHZ @ 3.3V  
0
-10  
-20  
-30  
-40  
OC-12 Filter  
622.08MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 0.84ps (typical)  
-50  
-60  
-70  
Raw Phase Noise Data  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
Phase Noise Result by adding  
Sonet OC-12 Filter to raw data  
-150  
-160  
-170  
-180  
-190  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (HZ)  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
6
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
2.8V 0.04V  
2V  
SCOPE  
SCOPE  
VCC,  
VCCA,  
VCCO  
VCC,  
VCCA  
Qx  
Qx  
VCCO  
LVPECL  
LVPECL  
VEE  
nQx  
nQx  
VEE  
-0.5V 0.125V  
-1.3V 0.165V  
3.3V CORE/3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
3.3V CORE/2.5V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
2V  
VCC  
SCOPE  
VCC,  
VCCA,  
VCCO  
Qx  
nCLK1  
VPP  
VCMR  
Cross Points  
LVPECL  
CLK1  
VEE  
nQx  
VEE  
-0.5V 0.125V  
DIFFERENTIAL INPUT LEVELS  
2.5V CORE/2.5V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
Q
Phase Noise Plot  
nQ  
tPW  
tPERIOD  
Phase Noise Mask  
tPW  
tPERIOD  
odc =  
x 100ꢀ  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
RMS PHASE JITTER  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
80ꢀ  
tF  
80ꢀ  
tR  
VSWING  
20ꢀ  
Clock  
Outputs  
20ꢀ  
OUTPUT RISE/FALL TIME  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
7
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
POWER SUPPLY FILTERINGT ECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS813001I provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 1 illustrates how  
a 10Ω resistor along with a 10µF and a .01μF bypass  
3.3V or 2.5V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
capacitor should be connected to each VCCA  
.
FIGURE 1. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position the V_REF  
single ended levels. The reference voltage V_REF = VCC/2 is in the center of the input voltage swing. For example, if the  
generated by the bias resistors R1, R2 and C1.This bias circuit input clock swing is only 2.5V and VCC = 3.3V, V_REF should be  
should be located as close as possible to the input pin.The ratio 1.25V and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
CLK  
V_REF  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
8
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
VCXO CRYSTAL SELECTION  
Choosing a crystal with the correct characteristics is one of range and accuracy of a VCXO. Below are the key variables  
the most critical steps in using a Voltage Controlled Crystal and an example of using the crystal parameters to calculate  
Oscillator (VCXO). The crystal parameters affect the tuning the tuning range of the VCXO.  
VC  
- Control voltage used to tune  
frequency  
VC  
ControlVoltage  
Oscillator  
CV  
- Varactor capacitance, varies due to  
change in control voltage  
the  
C
C
V
V
CL1, CL2 - Load tuning capacitance used for fine  
tuning or centering nominal  
frequency  
VCXO (Internal)  
CS1, CS2  
- Stray Capacitance caused by pads,  
vias, and other board parasitics  
XTAL  
CS1  
CS2  
CL1  
CL2  
Optional  
FIGURE 3. VCXO OSCILLATOR CIRCUIT  
TABLE 6.EXAMPLE CRYSTAL PARAMETERS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fN  
fT  
fS  
Nominal Frequency  
Frequency Tolerance  
Frequency Stability  
Operating Temperature Range  
Load Capacitance  
Shunt Capacitance  
Pullability Ratio  
14  
24  
20  
20  
70  
MHz  
ppm  
ppm  
°C  
0
CL  
12  
4
pF  
CO  
pF  
C1, C2  
ESR  
220  
240  
20  
1
Equivalent Series Resistance  
Drive Level  
mW  
ppm  
Aging @ 25°C  
3 per year  
Mode of Operation  
Fundamental  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
9
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
TABLE 7.VARACTOR PARAMETERS  
Symbol Parameter  
Test Conditions  
VC = 0V  
Minimum Typical Maximum Units  
CV_LOW  
CV_HIGH  
Low Varactor Capacitance  
High Varactor Capacitance  
15  
pF  
pF  
VC = 3.3V  
27.4  
FORMULAS  
(
CL1 + CS1 + CV _ High  
)
+
(
CL2 + CS 2 + CV _ High  
)
(
CL1 + CS1 + CV _ Low  
)
+
(
CL2 + CS 2 + CV _ Low  
)
CHigh  
=
CLow  
=
(
CL1 + CS1 + CV _ High  
)
(
CL2 + CS 2 + CV _ High  
)
(
CL1 + CS1 + CV _ Low  
)
(
CL2 + CS 2 + CV _ Low  
)
• CLow is the effective capacitance due to the low varactor capacitance, load capacitance and stray capacitance.  
CLow determines the high frequency component on the TPR.  
• CHigh is the effective capacitance due to the high varactor capacitance, load capacitance and stray capacitance.  
CHigh determines the low frequency component on the TPR.  
1
1
Total Pull Range (TPR) =  
106  
CLow  
CHigh  
C
0 C  
1
C
0
C
0 C  
1
C
0
2⋅  
1+  
2⋅  
1+  
Absolute Pull Range (APR) = Total Pull Range – (Frequency Tolerance + Frequency Stability + Aging)  
EXAMPLE CALCULATIONS  
is 5 years; hence the inaccuracy due to aging is 15ppm.  
Third, though many boards will not require load tuning  
capacitors (CL1, CL2), it is recommended for long-term  
consistent performance of the system that two tuning  
capacitor pads be placed into every design. Typical values  
for the load tuning capacitors will range from 0 to 4pF.  
Using the tables and figures above, we can now calculate the  
TPR and APR of the VCXO using the example crystal  
parameters. For the numerical example below there were  
some assumptions made. First, the stray capacitance (CS1,  
CS2), which is all the excess capacitance due to board  
parasitic, is 4pF. Second, the expected lifetime of the project  
(0 + 4pƒ + 15pƒ ) · (0 + 4pƒ + 15pƒ )  
(0 + 4pƒ + 27.4pƒ ) · (0 + 4pƒ + 27.4pƒ )  
CLow  
=
CHigh =  
= 9.5pƒ  
= 15.7pƒ  
(0 + 4pƒ + 15pƒ ) · (0 + 4pƒ + 15pƒ )  
(0 + 4pƒ + 27.4pƒ ) · (0 + 4pƒ + 27.4pƒ )  
1
1
= · 106 · = 212ppm  
TPR=  
1  
9.5pƒ  
15.7pƒ  
2· 220 ·  
(
1 +  
)
2· 220 ·  
(
1 +  
)
4pƒ  
4pƒ  
TPR = 106ppm  
APR = 106ppm – (20ppm + 20ppm + 15ppm) = 51ppm  
The example above will ensure a total pull range of with better pullability (C0/C1 ratio) can be used. Also, with the  
equations above, one can vary the frequency tolerance,  
106 ppm with an APR of 51ppm. Many times, board  
designers may select their own crystal based on their temperature stability, and aging or shunt capacitance to  
application. If the application requires a tighter APR, a crystal achieve the required pullability.  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
10  
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING andVOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to4E show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
11  
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUT:  
OUTPUTS:  
LVPECL OUTPUT  
For applications not requiring the use of the crystal oscillator All unused LVPECL outputs can be left floating. We  
input, both XTAL_IN and XTAL_OUT can be left floating. recommend that there is no trace attached. Both sides of the  
Though not required, but for additional protection, a 1kΩ differential output pair should either be left floating or  
resistor can be tied from XTAL_IN to ground.  
terminated.  
CLK INPUT:  
For applications not requiring the use of a clock input, it can  
be left floating. Though not required, but for additional  
protection, a 1kΩ resistor can be tied from the CLK input to  
ground.  
CLK/nCLK INPUT:  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required,  
but for additional protection, a 1kΩ resistor can be tied from  
CLK to ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
VC input pin - do not float, must be biased.  
TERMINATION FOR 3.3V LVPECL OUTPUT  
The clock layout topology shown below is a typical ter-  
mination for LVPECL outputs. The two different layouts  
mentioned are recommended only as guidelines.  
Matched impedance techniques should be used to maxi-  
mize operating frequency and minimize signal distor-  
tion. Figures 5A and 5B show two different layouts which  
are recommended only as guidelines. Other suitable  
clock layouts may exist and it would be recommended  
that the board designers simulate to guarantee compat-  
ibility across all printed circuit and clock component pro-  
cess variations.  
FOUT and nFOUT are low impedance follower outputs  
that generate ECL/LVPECL compatible outputs. There-  
fore, terminating resistors (DC current path to ground)  
or current sources must be used for functionality. These  
outputs are designed to drive 50Ω transmission lines.  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 5B. LVPECL OUTPUTT ERMINATION  
www.icst.com/products/hiperclocks.html  
FIGURE 5A. LVPECL OUTPUTTERMINATION  
813001AGI  
REV.A SEPTEMBER 2, 2005  
12  
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 6A and Figure 6B show examples of termination for close to ground level. The R3 in Figure 6B can be eliminated  
2.5V LVPECL driver.These terminations are equivalent to ter- and the termination is shown in Figure 6C.  
minating 50Ω to VCC - 2V. For VCCO = 2.5V, the VCCO - 2V is very  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
R3  
250  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 6A. 2.5V LVPECL DRIVERTERMINATION EXAMPLE  
FIGURE 6B. 2.5V LVPECL DRIVERTERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 6C. 2.5V LVPECLTERMINATION EXAMPLE  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
13  
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS813001I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS813001I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 130mA = 450.45mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
Total Power_MAX (3.465V, with output switching) = 450.45mW + 30mW = 480.5mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 70°C/W per Table 8 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.481W * 65°C/W = 116.3°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 8.THERMAL RESISTANCE θJA FOR 24-PIN TSSOP, FORCED CONVECTION  
θJA byVelocity (Meters per Second)  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
70°C/W  
65°C/W  
62°C/W  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
14  
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT ANDT ERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
CCO_MAX  
OH_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V ) =  
OH_MAX  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
CCO  
OH_MAX  
CCO_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
CCO  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
15  
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 9. θJAVS. AIR FLOWT ABLE FOR 24 LEAD TSSOP  
θJA byVelocity (Meters per Second)  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
70°C/W  
65°C/W  
62°C/W  
TRANSISTOR COUNT  
The transistor count for ICS813001I is: 3948  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
16  
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP  
TABLE 10. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
24  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
7.90  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
7.70  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
17  
ICS813001I  
DUAL VCXO W/3.3V, 2.5V LVPECL  
FEMTOCLOCKPLL  
Integrated  
Circuit  
Systems, Inc.  
TABLE 11. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS813001AGI  
ICS813001AGIT  
ICS813001AGILF  
ICS813001AGILFT  
ICS813001AGI  
ICS813001AGI  
ICS813001AGIL  
ICS813001AGIL  
24 Lead TSSOP  
24 Lead TSSOP  
2500 tape & reel  
tube  
24 Lead "Lead-Free" TSSOP  
24 Lead "Lead-Free" TSSOP  
2500 tape & reel  
NOTE: Parts that are ordered with an LF suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademarks, HiPerClockS and FemtoClocks are trademarks of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended  
without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in  
life support devices or critical medical instruments.  
813001AGI  
www.icst.com/products/hiperclocks.html  
REV.A SEPTEMBER 2, 2005  
18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY