ICS8344AY-01T [ICSI]

LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER; 低偏移, 1至24差分至LVCMOS扇出缓冲器
ICS8344AY-01T
型号: ICS8344AY-01T
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER
低偏移, 1至24差分至LVCMOS扇出缓冲器

文件: 总16页 (文件大小:142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
GENERAL DESCRIPTION  
FEATURES  
The ICS8344-01 is a low voltage, low skew 24 LVCMOS outputs, 7typical output impedance  
fanout buffer and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
2 selectable CLKx, nCLKx inputs  
HiPerClockS™  
ICS. The ICS8344-01 has two selectable clock  
inputs. The CLK0, nCLK0 and CLK1, nCLK1 pairs  
CLK0, nCLK0 and CLK1, nCLK1 pairs can accept the  
following input levels: LVDS, LVPECL, LVHSTL, SSTL,  
HCSL  
can accept most standard differential input levels. The  
ICS8344-01 is designed to translate any differential signal  
levels to LVCMOS levels. The low impedance LVCMOS out-  
puts are designed to drive 50series or parallel terminated  
transmission lines. The effective fanout can be increased to  
48 by utilizing the ability of the outputs to drive two series  
terminated lines. Redundant clock applications can make use  
of the dual clock input. The dual clock inputs also facilitate  
board level testing. The clock enable is internally synchro-  
nized to eliminate runt pulses on the outputs during asyn-  
chronous assertion/deassertion of the clock enable pin. The  
outputs are driven low when disabled. The ICS8344-01 is  
characterized at full 3.3V, full 2.5V and mixed 3.3V input and  
2.5V output operating supply modes.  
Output frequency up to 250MHz  
Translates any single ended input signal to LVCMOS with  
resistor bias on nCLK input  
Synchronous clock enable  
Output skew: 200 ps (maximum)  
Part-to-part skew: 900ps (maximum)  
Bank skew: 85ps (maximum)  
Propagation delay: 5ns (maximum)  
3.3V, 2.5V or mixed 3.3V, 2.5V operating supply modes  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
Guaranteed output and part-to-part skew characteristics  
make the ICS8344-01 ideal for those clock distribution  
applications demanding well defined performance and  
repeatability.  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
CLK_SEL  
CLK0  
nCLK0  
1
48 47 46 45 44 43 42 41 40 39 38 37  
Q16  
Q17  
VDDO  
GND  
Q18  
Q19  
Q20  
Q21  
VDDO  
GND  
Q22  
Q23  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
Q7  
CLK1  
nCLK1  
0
2
Q6  
3
VDDO  
GND  
Q5  
Q0 - Q7  
4
5
6
Q4  
Q8 - Q15  
Q16 - Q23  
ICS8344-01  
7
Q3  
8
Q2  
9
VDDO  
GND  
Q1  
10  
11  
12  
LE  
nD  
Q0  
13 14 15 16 17 18 19 20 21 22 23 24  
Q
CLK_EN  
OE  
48-Lead LQFP  
7mm x 7mm x 1.4mm  
Y Package  
Top View  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
1
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 2, 5, 6  
7, 8, 11, 12  
Q16, Q17, Q18, Q19  
Q20, Q21, Q22, Q23  
Output  
Q16 thru Q23 outputs. 7typical output impedance.  
3, 9, 28,  
34, 39, 45  
4, 10, 14,18,  
27, 33, 40, 46  
VDDO  
Power  
Power  
Output supply pins. Connect 3.3V or 2.5V.  
GND  
Power supply ground. Connect to ground.  
Clock select input. When HIGH, selects CLK1, nCLK inputs,  
13  
CLK_SEL  
Input  
Pulldown When LOW, selects CLK0, nCLK0 inputs.  
LVCMOS / LVTTL interface levelss.  
15, 19  
16  
VDD  
Power  
Input  
Input  
Input  
Input  
Positive supply pins. Connect 3.3V or 2.5V.  
nCLK1  
CLK1  
nCLK0  
CLK0  
Pullup  
Pulldown Non-inverting differential LVPECL clock input.  
Pullup Inverting differential LVPECL clock input.  
Inverting differential LVPECL clock input.  
17  
20  
21  
Pulldown Non-inverting differential LVPECL clock input.  
Synchronizing control for enabling and disabling clock outputs.  
LVCMOS interface levels.  
22  
CLK_EN  
Input  
Pullup  
Output enable. Controls enabling and disabling of outputs  
Q0 thru Q23.  
23  
24  
OE  
nc  
Input  
Unused  
Output  
Pullup  
No connect.  
25, 26, 29, 30  
31, 32, 35, 36  
37, 38, 41, 42  
Q0, Q1, Q2, Q3  
Q4, Q5, Q6, Q7  
Q8, Q9, Q10, Q11  
Q0 thru Q7 outputs. 7typical output impedance.  
Output  
Q8 thru Q15 outputs. 7typical output impedance.  
43, 44, 47, 48 Q12, Q13, Q14, Q15  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK0, nCLK0,  
CLK1, nCLK1  
CLK-SEL,  
4
4
pF  
pF  
CIN  
Input Capacitance  
CLK_EN, OE  
pF  
pF  
pF  
K  
KΩ  
Power Dissipation Capacitance  
(per output)  
CPD  
RPULLUP  
RPULLDOWN  
ROUT  
Input Pullup Resistor  
Input Pulldown Resistor  
Output Impedance  
51  
51  
7
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
2
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 3A. OUPUT ENABLE FUNCTION TABLE  
Bank 1  
Bank 2  
Bank 3  
Input  
OE  
0
Output  
Q0-Q7  
Hi-Z  
Input  
OE  
0
Output  
Q8-Q15  
Hi-Z  
Input  
OE  
0
Output  
Q16-Q23  
Hi-Z  
1
Enabled  
1
Enabled  
1
Enabled  
TABLE 3B. CLOCK SELECT FUNCTION TABLE  
Control Input  
Clock  
CLK_SEL  
CLK0, nCLK0  
CLK1, nCLK1  
0
1
Selected  
De-selected  
Selected  
De-selected  
TABLE 3C. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Q0 thru Q23  
LOW  
Input to Output Mode  
Polarity  
OE  
1
CLK0, CLK1  
nCLK0, nCLK1  
0
1
Differential to Single Ended  
Differential to Single Ended  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
1
0
HIGH  
1
0
Biased; NOTE 1  
LOW  
1
1
Biased; NOTE 1  
HIGH  
1
Biased; NOTE 1  
Biased; NOTE 1  
0
1
HIGH  
1
LOW  
Inverting  
NOTE 1: Please refer to the Application Information section on page 11, Figure 8, which discusses wiring the differential  
input to accept single ended levels.  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
3
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
Supply Voltage, VDDx  
4.6V  
Inputs, VI  
-0.5V to VDD + 0.5V  
-0.5V to VDDO + 0.5V  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
47.9°C/W (0lfpm)  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in  
the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect product reliability.  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VDD  
VDDO  
IDD  
Positive Supply Voltage  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
95  
V
V
Output Supply Voltage  
Quiescent Power Supply Current  
mA  
TABLE 4B. LVCMOS DC CHARACTERISTICS, VDD = VDDO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK_SEL, CLK_EN,  
OE  
CLK_SEL, CLK_EN,  
OE  
VIH  
VIL  
Input High Voltage  
2
3.8  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
CLK_EN, OE  
CLK_SEL  
VDD = VIN = 3.465V  
5
µA  
µA  
µA  
µA  
IIH  
V
DD = VIN = 3.465V  
DD = 3.465, VIN = 0V  
VDD = 3.465, VIN = 0V  
150  
CLK_EN, OE  
CLK_SEL  
V
-150  
-5  
IIL  
Input Low Current  
V
DD = VDDO = 3.135V  
IOH = -36mA  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
2.7  
V
V
VDD = VDDO = 3.135V  
IOL = 36mA  
0.5  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum  
Typical  
Maximum Units  
nCLK0, nCLK1  
CLK0, CLK1  
nCLK0, nCLK1  
CLK0, CLK1  
VDD = VIN = 3.465V  
5
µA  
µA  
µA  
µA  
V
VDD = VIN = 3.465V  
150  
VDD = 3.465V, VIN = 0V  
VDD = 3.465V, VIN = 0V  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-toPeak Input Voltage  
0.3  
0.9  
1.3  
2
VCMR  
Common Mode Input Voltage: NOTE 1, 2  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK0, nCLK0 and CLK1, nCLK1 is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
4
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 4D. POWER SUPPLY DC CHARACTERISTICS, VDD = 3.3V±5%, VDDO = 2.5V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VDD  
VDDO  
IDD  
Positive Supply Voltage  
3.135  
2.375  
3.3  
2.5  
3.465  
2.625  
95  
V
V
Output Supply Voltage  
Quiescent Power Supply Current  
mA  
TABLE 4E. LVCMOS DC CHARACTERISTICS, VDDI = VDD = 3.3V±5%, VDDO = 2.5V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK_SEL, CLK_EN,  
OE  
CLK_SEL, CLK_EN,  
OE  
VIH  
VIL  
Input High Voltage  
2
3.8  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
CLK_EN, OE  
CLK_SEL  
VDD = VIN = 3.465V  
5
µA  
µA  
µA  
µA  
IIH  
V
DD = VIN = 3.465V  
150  
CLK_EN, OE  
CLK_SEL  
VDD = 3.465, VIN = 0V  
-150  
-5  
IIL  
Input Low Current  
VDD = 3.465, VIN = 0V  
VDD = 3.135V  
VOH  
Output High Voltage  
V
DDO = 2.375V  
1.9  
V
V
IOH = -27mA  
VDD = 3.135V  
VOL  
Output Low Voltage  
VDDO = 2.375V  
0.4  
I
OL = 27mA  
TABLE 4F. DIFFERENTIAL DC CHARACTERISTICS, VDD = 3.3V±5%, VDDO = 2.5V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
Minimum Typical Maximum Units  
nCLK0, nCLK1  
CLK0, CLK1  
5
µA  
µA  
150  
VDD = 3.465V,  
VIN = 0V  
VDD = 3.465V,  
VIN = 0V  
nCLK0, nCLK1  
CLK0, CLK1  
-150  
-5  
µA  
µA  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.3  
0.9  
1.3  
2
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
NOTE 1: For single ended applications, the maximum input voltage for CLK0, nCLK0 and CLK1, nCLK1 is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
5
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 4G. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDO = 2.5V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VDD  
VDDO  
IDD  
Positive Supply Voltage  
2.375  
2.375  
2.5  
2.5  
2.625  
2.625  
95  
V
V
Output Supply Voltage  
Quiescent Power Supply Current  
mA  
TABLE 4H. LVCMOS DC CHARACTERISTICS, VDD = VDDO = 2.5V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK_SEL, CLK_EN,  
OE  
CLK_SEL, CLK_EN,  
OE  
VIH  
VIL  
Input High Voltage  
2
2.9  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
CLK_EN, OE  
CLK_SEL  
VDD = VIN = 2.625V  
5
µA  
µA  
µA  
µA  
IIH  
VDD = VIN = 2.625V  
150  
CLK_EN, OE  
CLK_SEL  
VDD = 2.625, VIN = 0V  
VDD = 2.625, VIN =0V  
VDD = VDDO = 2.375V  
-150  
-5  
IIL  
Input Low Current  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
1.9  
V
V
I
OH = -27mA  
VDD = VDDO = 2.375V  
IOL = 27mA  
0.4  
TABLE 4I. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDO = 2.5V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum Typical Maximum Units  
nCLK0, nCLK1  
CLK0, CLK1  
nCLK0, nCLK1  
CLK0, CLK1  
VDD = VIN = 2.625V  
5
µA  
µA  
µA  
µA  
V
V
DD = VIN = 2.625V  
150  
V
DD = 2.625V, VIN = 0V  
DD = 2.625V, VIN = 0V  
-150  
-5  
IIL  
Input Low Current  
V
VPP  
Peak-to-Peak Input Voltage  
0.3  
0.9  
1.3  
2
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK0, nCLK0 and CLK1, nCLK1 is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
6
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 5. AC CHARACTERISTICS, VDD = VDDO = 3.3V±5%; VDD = 3.3V ± 5%, VDDO = 2.5V ± 5%;  
DD = VDDO = 2.5V ± 5%, TA = 0°C TO 70°C  
V
Symbol Parameter  
fMAX Maximum Output Frequency  
tPD Propagation Delay, NOTE 1  
Q0 - Q7  
Test Conditions  
Minimum  
Typical  
Maximum Units  
250  
5
MHz  
ns  
0MHz f 200MHz  
2.5  
85  
ps  
Bank Skew;  
NOTE 2, 6  
Measured on the rising edge of  
VDDO/2  
tsk(b)  
Q8 - Q15  
180  
100  
ps  
Q16 - Q23  
ps  
Measured on the rising edge of  
VDDO/2  
tsk(o)  
Output Skew; NOTE 3, 6  
200  
900  
ps  
ps  
Measured on the rising edge of  
VDDO/2  
tsk(pp) Part-to-Part Skew; NOTE 4, 6  
tR  
tF  
Output Rise Time; NOTE 5  
Output Fall Time; NOTE 5  
30% to 70%  
30% to 70%  
200  
200  
800  
800  
ps  
ps  
tCYCLE/2  
- 0.25  
tCYCLE/2  
+ 0.25  
0MHz f 200MHz  
tCYCLE/2  
2.5  
%
odc  
Output Duty Cycle  
f = 200MHz  
f = 10MHz  
f = 10MHz  
2.25  
2.75  
5
ns  
ns  
ns  
tEN  
Output Enable Time; NOTE 5  
Output Disable TIme; NOTE 5  
tDIS  
4
All parameters measured at 200MHz and VPPtyp unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the output crossing point.  
NOTE 2: Defined as skew within a bank of outputs at the same voltages and with equal load conditions.  
NOTE 3: Defined as skew across banks of outputs at the same supply voltages and with equal load conditions.  
NOTE 4: Defined as between outputs at the same supply voltages ane with equal load conditions. Measured at the  
output differential cross points.  
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.  
NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
7
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
PARAMETER MEASUREMENT INFORMATION  
VDDO  
VDD  
SCOPE  
LVCMOS  
VDD = +1.65V  
VDDO = 1.65V  
Qx  
GND = -1.65V  
FIGURE 1A - 3.3V OUTPUT LOAD TEST CIRCUIT  
VDDO  
SCOPE  
LVCMOS  
Qx  
VDDO = +1.25V  
GND = -1.25V  
FIGURE 1B - 2.5V OUTPUT LOAD TEST CIRCUIT  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
8
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
VDD  
CLK0, CLK 1  
VPP  
VCMR  
Cross Points  
nCLK0, nCLK1  
GND  
FIGURE 2 - DIFFERENTIAL INPUT LEVEL  
Qx  
Qy  
tsk(o)  
FIGURE 3 - OUTPUT SKEW  
PART 1  
Qx  
PART 2  
Qy  
tsk(pp)  
FIGURE 4 - PART-TO-PART SKEW  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
9
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
70%  
70%  
VSWING  
30%  
30%  
Clock Inputs  
and Outputs  
trise  
tfall  
FIGURE 5 - INPUT AND OUTPUT RISE AND FALL TIME  
nCLK0, nCLK1  
CLK0, CLK1  
Q0 - Q23  
tPD  
FIGURE 6 - PROPAGATION DELAY  
CLK0, CLK1,  
Q0 - Q23  
nCLK0, nCLK1  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
FIGURE 7 - odc & tPERIOD  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
10  
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 8 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF ~ VDD/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VDD = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.  
VDD  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 8 - SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
11  
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8344-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8344-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 95mA = 329.2mW  
Power (outputs)MAX = 32mW/Loaded Output pair  
If all outputs are loaded, the total power is 24* 32mW = 768mW  
Total Power_MAX (3.465V, with all outputs switching) = 329.2mW + 768mW = 1097.2mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = junction-to-ambient thermal resistance  
Pd_total = Total device power dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.1097W * 42.1°C/W = 74.6°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 6. Thermal Resistance qJA for 48-pin LQFP, Forced Convection  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W  
55.9°C/W  
50.1°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
12  
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVCMOS output driver circuit and termination are shown in Figure 9.  
VDDO  
Q1  
VOUT  
RL  
50  
FIGURE 9 - LVCMOS DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
DD  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (V  
Pd_L = (V  
/R ) * (V  
- V  
)
OH_MAX  
OH_MAX  
L
DD_MAX  
/R ) * (V  
- V  
)
OL_MAX  
L
DD_MAX  
OL_MAX  
For logic high, V = V  
= V  
– 1.2V  
OUT  
OH_MAX  
DD_MAX  
For logic low, V = V  
= V  
– 0.4V  
OUT  
OL_MAX  
DD_MAX  
Pd_H = (1.2V/50) * (2V - 1.2V) = 19.2mW  
Pd_L = (0.4V/50) * (2V - 0.4V) = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L= 32mW  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
13  
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
200  
0
500  
50.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W  
55.9°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8344-01 is: 1503  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
14  
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
PACKAGE OUTLINE - Y SUFFIX  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBC  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
48  
--  
--  
--  
1.60  
0.15  
1.45  
0.27  
0.20  
A1  
A2  
b
0.05  
1.35  
0.17  
0.09  
1.40  
0.22  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
0.50 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
q
--  
0°  
7°  
ccc  
--  
--  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
15  
ICS8344-01  
LOW SKEW, 1-TO-24  
DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS8344AY-01  
Marking  
Package  
48 Lead LQFP  
Count  
250 per tray  
1000  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8344AY-01  
ICS8344AY-01  
ICS8344AY-01T  
48 Lead LQFP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8344AY-01  
www.icst.com/products/hiperclocks.html  
REV. B AUGUST 6, 2001  
16  

相关型号:

ICS8344AYI-01

LOW SKEW, 1-TO-24 DIFFERENTIAL -TO-LVCMOS/LVTTL FANOUT BUFFER
IDT

ICS8344AYI-01LF

LOW SKEW, 1-TO-24 DIFFERENTIAL -TO-LVCMOS/LVTTL FANOUT BUFFER
IDT

ICS8344AYI-01LFT

LOW SKEW, 1-TO-24 DIFFERENTIAL -TO-LVCMOS/LVTTL FANOUT BUFFER
IDT

ICS8344AYI-01T

LOW SKEW, 1-TO-24 DIFFERENTIAL -TO-LVCMOS/LVTTL FANOUT BUFFER
IDT

ICS8344BY

LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER
ICSI

ICS8344BY-01

Low Skew Clock Driver, 24 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026, LQFP-48
IDT

ICS8344BY-01LF

Low Skew Clock Driver, 24 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026, LQFP-48
IDT

ICS8344BY-01T

Buffer/Driver
ETC

ICS8344BYI

LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER
ICSI

ICS8344BYI-T

LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-LVCMOS FANOUT BUFFER
ICSI

ICS8344BYILF

Low Skew Clock Driver, 8344 Series, 24 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

ICS8344BYILF-T

Low Skew Clock Driver, 24 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-48
IDT