ICS8430-51 [ICSI]

600MHZ, LOW JITTER LVCMOS/ LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER; 600MHZ ,低抖动LVCMOS / LVTTL - TO- 3.3V LVPECL频率合成器
ICS8430-51
型号: ICS8430-51
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

600MHZ, LOW JITTER LVCMOS/ LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
600MHZ ,低抖动LVCMOS / LVTTL - TO- 3.3V LVPECL频率合成器

文件: 总16页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/ LVTTL-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8430-51 is a general purpose, dual output Dual differential 3.3V LVPECLoutputs  
Crystal-to-3.3V Differential LVPECLHigh Frequency  
Selectable crystal oscillator interface  
HiPerClockS™  
Synthesizer and a member of the HiPerClockS™  
or LVCMOS/LVTTL TEST_CLK  
family of High Performance Clock Solutions from  
ICS. The ICS8430-51 has a selectable TEST_CLK  
Maximum output frequency: 600MHz  
Crystal input frequency range: 14MHz to 25MHz  
VCO range: 200MHz to 700MHz  
or crystal inputs. The VCO operates at a frequency range of  
200MHz to 700MHz. With FOUT0 configured to divide the  
VCO frequency by 2, output frequency steps as small as  
2MHz can be achieved using a 16MHz crystal or reference clock.  
FOUT1 provides an additional divide by 16 and 180° phase shift.  
Output frequencies up to 600MHz can be programmed using  
the serial or parallel interfaces to the configuration logic. The low  
jitter and frequency range of the ICS8430-51 make it an ideal  
clock generator for most clock tree applications.  
Parallel or serial interface for programming counter  
and output dividers  
RMS period jitter: 2.6ps (typical)  
Cycle-to-cycle jitter: 17ps (typical)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
XTAL_SEL  
32 31 30 29 28 27 26 25  
TEST_CLK  
0
M5  
M6  
M7  
M8  
N0  
N1  
N2  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
XTAL1  
XTAL1  
1
TEST_CLK  
XTAL_SEL  
VCCA  
OSC  
XTAL2  
÷ 16  
ICS8430-51  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
PLL  
PHASE DETECTOR  
VEE  
0
1
9
10 11 12 13 14 15 16  
MR  
VCO  
FOUT0  
nFOUT0  
FOUT1  
÷ N  
÷ M  
÷ 2  
nFOUT1  
÷16  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
Y Package  
Top View  
M0:M8  
N0:N2  
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
1
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes operation using a 16MHz crystal. Valid PLL loop divider values for  
different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 5, NOTE 1.  
The ICS8430-51 features a fully integrated PLL and therefore requires no external components for setting the loop band-  
width. A parallel-resonant, fundamental crystal is used as the input to the on-chip oscillator. The output of the oscillator is  
divided by 16 prior to the phase detector. With a 16MHz crystal, this provides a 1MHz reference frequency. The VCO of the  
PLL operates over a range of 200MHz to 700MHz. The output of the M divider is also applied to the phase detector.  
The phase detector and the M divider force the VCO output frequency to be 2M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the  
VCO is scaled by a divider prior to being sent to each of the LVPECL output buffers. The divider provides a 50% output duty cycle.  
The programmable features of the ICS8430-51 support two input modes, programmable M divider and N output divider.  
The two input operational modes are parallel and serial. Figure 1 shows the timing diagram for each mode. In parallel mode,  
the nP_LOAD input is initially LOW. The data on inputs M0 through M8 and N0 through N2 is passed directly to the M divider  
and N output divider. On the LOW-to-HIGH transition of the nP_LOAD input, the data is latched and the M divider remains  
loaded until the next LOW transition on nP_LOAD or until a serial event occurs. As a result, the M and N bits can be  
hardwired to set the M divider and N output divider to a specific default state that will automatically occur during power-up.  
The TEST output is LOW when operating in the parallel input mode. The relationship between the VCO frequency, the crystal  
frequency and the M divider is defined as follows:  
fxtal  
16  
x 2M  
fVCO =  
The M value and the required values of M0 through M8 are shown in Table 3B, Programmable VCO Frequency Function Table.  
Valid M values for which the PLL will achieve lock for a 16MHz reference are defined as 100 M 350. The frequency out is  
defined as follows:  
fVCO fxtal 2M  
fout  
x
=
=
N
16  
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M divider and N output divider  
when S_LOAD transitions from LOW-to-HIGH. The M divide and N output divide values are latched on the HIGH-to-LOW  
transition of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the M divider and N output  
divider on each rising edge of S_CLOCK. The serial mode can be used to program the M and N bits and test bits T1 and T0.  
The internal registers T0 and T1 determine the state of the TEST output as follows:  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data  
Output of M divider  
CMOS Fout  
S
ERIAL LOADING  
S_CLOCK  
S_DATA  
S_LOAD  
T1  
t
T0  
N2  
N1  
N0 M8 M7 M6 M5 M4 M3 M2 M1 M0  
t
S
H
t
nP_LOAD  
S
P
ARALLEL LOADING  
M0:M8, N0:N2  
nP_LOAD  
M, N  
t
t
H
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
S
*NOTE: The NULL timing slot must be observed.  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
2
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/ LVTTL-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pulldown  
Description  
1, 2, 3,  
28, 29, 30  
31, 32,  
M5, M6, M7,  
M0, M1, M2,  
M3, M4  
Input  
M divider inputs. Data latched on LOW-to-HIGH transition  
of nP_LOAD input. LVCMOS / LVTTL interface levels.  
4
5, 6  
7
M8  
N0, N1  
N2  
Input  
Input  
Input  
Power  
Pullup  
Pulldown  
Pullup  
Determines output divider value as defined in Table 3C  
Function Table. LVCMOS / LVTTL interface levels.  
8, 16  
VEE  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode. LVCMOS/ LVTTL interface levels.  
9
TEST  
VCC  
Output  
Power  
Output  
Power  
Output  
10  
Core power supply pin.  
FOUT1,  
nFOUT1  
Differential output for the synthesizer with shifted divide by 16.  
3.3V LVPECL interface levels.  
11, 12  
13  
VCCO  
Output supply pin.  
FOUT0,  
nFOUT0  
14, 15  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs FOUTx to go low and the inverted  
17  
MR  
Input  
Pulldown outputs nFOUTx to go high. When logic LOW, the internal dividers  
and the outputs are enabled. Assertion of MR does not affect loaded  
M, N, and T values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift regiser  
on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS / LVTTL interface levels.  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
Pulldown  
Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input  
Pulldown  
Power  
Analog supply pin.  
Selects between the crystal oscillator or test clock as the PLL  
22  
XTAL_SEL  
Input  
Pullup  
reference source. Selects XTAL inputs when HIGH. Selects  
TEST_CLK when LOW. LVCMOS / LVTTL interface levels.  
23  
TEST_CLK  
Input  
Input  
Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
Crystal oscillator interface. XTAL1 is the input. XTAL2 is the output.  
24, 25  
XTAL1, XTAL2  
Parallel load input. Determines when data present at M8:M0 is  
Pulldown loaded into the M divider, and when data present at N2:N0 sets  
the N output divider value. LVCMOS / LVTTL interface levels.  
26  
nP_LOAD  
Input  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
27  
VCO_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
3
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
L
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
L
L
X
X
H
H
X
X
X
X
Data  
Data  
L
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE (NOTE 1)  
256  
M8  
0
128  
M7  
0
64  
M6  
1
32  
M5  
1
16  
M4  
0
8
M3  
0
4
M2  
1
2
M1  
0
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
200  
202  
204  
206  
100  
101  
102  
103  
0
0
1
1
0
0
1
0
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
1
696  
698  
700  
348  
349  
350  
1
0
1
0
1
1
1
0
0
1
0
1
0
1
1
1
0
1
1
0
1
0
1
1
1
1
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency of  
16MHz.  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
4
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/ LVTTL-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
FOUT0, nFOUT0 Output Frequency  
(MHz)  
N Divider Value  
N2  
0
N1  
0
N0  
0
Minimum  
100  
50  
Maximum  
350  
2
4
0
0
1
175  
0
1
0
8
25  
87.5  
0
1
1
16  
1
12.5  
200  
100  
50  
43.75  
600  
1
0
0
1
0
1
2
350  
1
1
0
4
175  
1
1
1
8
25  
87.5  
nFOUT0  
FOUT0  
nFOUT1  
FOUT1  
FIGURE 2. FOUTX TIMING DIAGRAM  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
5
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
-0.5V to VCCO + 0.5V  
I
Outputs, VO  
Package Thermal Impedance, θJA 47.9°C/W (0 lfpm)  
Storage Temperature, T -65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
3.465  
3.465  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
3.135  
3.3  
V
120  
10  
mA  
mA  
ICCA  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
TEST_CLK  
2
VCC + 0.3  
VCC + 0.3  
1.3  
V
V
V
V
Input  
High Voltage  
VCO_SEL, S_LOAD, S_DATA,  
S_CLOCK, nP_LOAD, MR,  
M0:M8, N0:N2, XTAL_SEL  
VIH  
2
TEST_CLK  
-0.3  
-0.3  
Input  
Low Voltage  
VCO_SEL, S_LOAD, S_DATA,  
S_CLOCK, nP_LOAD,  
M0:M8, N0:N2, XTAL_SEL  
M0-M7, N0, N1, MR,  
VIL  
0.8  
S_CLOCK, S_DATA, S_LOAD,  
TEST_CLK, nP_LOAD  
M8, N2, XTAL_SEL,  
VCO_SEL  
M0-M7, N0, N1, MR,  
VCC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
VCC = VIN = 3.465V  
VCC = 3.465V,  
S_CLOCK, S_DATA, S_LOAD,  
TEST_CLK, nP_LOAD  
-5  
V
IN = 0V  
VCC = 3.465V,  
IN = 0V  
Input  
Low Current  
IIL  
M8, N2, XTAL_SEL,  
VCO_SEL  
-150  
2.6  
µA  
V
Output  
High Voltage  
Output  
VOH  
VOL  
TEST; NOTE 1  
TEST; NOTE 1  
V
V
0.5  
Low Voltage  
NOTE 1: Outputs terminated with 50to VCCO/2.  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
6
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/ LVTTL-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCC - 1.0  
VCC - 1.7  
1.0  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCCO - 2V. See "Parameter Information" section,  
"3.3V Output Load Test Circuit" figure.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
14  
14  
25  
25  
MHz  
MHz  
MHz  
fIN  
Input Frequency XTAL1, XTAL2; NOTE 1  
S_CLOCK  
TBD  
NOTE 1: For the input crystal and reference frequency range, the M value must be set for the VCO to operate within the  
200MHz to 700MHz range. Using the minimum input frequency of 14MHz, valid values of M are 115 M 400.  
Using the maximum frequency of 25MHz, valid values of M are 64 M 224.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
14  
50  
25  
70  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
TABLE 7. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
FMAX  
tjit(cc)  
tjit(per)  
tsk(o)  
tR  
Output Frequency  
600  
MHz  
ps  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
%
Cycle-to-Cycle Jitter; NOTE 1, 3  
Period Jitter, RMS; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise Time  
17  
2.6  
50  
200  
200  
5
700  
700  
tF  
Output Fall Time  
M, N to nP_LOAD  
tS  
Setup Time  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
5
5
tH  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
odc  
Output Duty Cycle  
PLL Lock Time  
47  
53  
1
tLOCK  
ms  
Parameter Measurement Information section.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
7
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
VCC, VCCA, VCCO = 2V  
SCOPE  
nFOUTx  
Qx  
FOUTx  
LVPECL  
nFOUTy  
nQx  
FOUTy  
tsk(o)  
VEE = -1.3V ± 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
OUTPUT SKEW  
VOH  
nFOUTx  
FOUTx  
VREF  
tcycle n  
tcycle n+1  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
CYCLE-TO-CYCLE JITTER  
nFOUTx  
FOUTx  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
odc & tPERIOD  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
8
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/ LVTTL-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8430-51 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 3 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10 µF  
FIGURE 3. POWER SUPPLY FILTERING  
CRYSTAL INPUT AND OSCILLATOR INTERFACE  
The ICS8430-51 features an internal oscillator that uses an ppm performance over various parallel resonant crystals.  
external quartz crystal as the source of its reference frequency. Figure 4C shows the recommended tuning capacitance for  
A 16MHz crystal divided by 16 before being sent to the phase various parallel resonant crystals.  
detector provides the reference frequency. The oscillator is a  
series resonant, multi-vibrator type design. This design provides  
better stability and eliminates the need for large on chip capacitors.  
Though a series resonant crystal is preferred, a parallel resonant  
crystal can be used. A parallel resonant mode crystal used in a  
series resonant circuit will exhibit a frequency of oscillation a few  
hundred ppm lower than specified. A few hundred ppm translates  
to KHz inaccuracy. In general computing applications this level  
of inaccuracy is irrelevant. If better ppm accuracy is required, an  
external capacitor can be added to a parallel resonant crystal in  
series to pin 24. Figure 4A shows how to interface with a crystal.  
ICS8430-51  
XTAL2  
(Pin 25, LQFP)  
XTAL1  
(Pin 24, LQFP)  
Optional  
Figures 4A, 4B, and 4C show various crystal parameters  
which are recommended only as guidelines. Figure 4A shows  
how to interface a capacitor with a parallel resonant crystal.  
Figure 3B shows the capacitor value needed for the optimum  
FIGURE 4A. CRYSTAL INTERFACE  
FIGURE 4B. Recommended tuning capacitance for various parallel  
FIGURE 4C. Recommended tuning capacitance for various  
resonant crystals.  
parallel resonant crystals.  
60  
100  
80  
60  
40  
20  
0
14.318  
50  
15.000  
40  
16.667  
19.440  
30  
20.000  
20  
-20  
-40  
0
10  
20  
30  
40  
50  
60  
24.000  
10  
-60  
0
-80  
14 15 16 17 18 19 20 21 22 23 24 25  
-100  
Crystal Frequency (MHz)  
19.44MHz  
16MHz  
Series Capacitor, C1 (pF)  
15.00MHz  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
9
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- drive 50transmission lines. Matched impedance techniques  
tion for LVPECL outputs. The two different layouts mentioned should be used to maximize operating frequency and minimize  
are recommended only as guidelines.  
signal distortion. Figures 5A and 5B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources circuit and clock component process variations.  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
5
2
5
Zo  
Zo  
2
FIN  
FOUT  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
50Ω  
FOUT  
FIN  
50Ω  
Zo = 50Ω  
VCC - 2V  
RTT  
1
3
2
3
Zo  
RTT =  
Zo  
Zo  
2
(VOH + VOL / VCC –2) –2  
FIGURE 5A. LVPECL OUTPUT TERMINATION  
FIGURE 5B. LVPECL OUTPUT TERMINATION  
LAYOUT GUIDELINE  
The schematic of the ICS8430-51 layout example used in  
this layout guideline is shown in Figure 6A. The ICS8430-51  
line. The layout in the actual system will depend on the  
selected component types, the density of the components,  
recommended PCB board layout for this example is shown the density of the traces, and the stack up of the P.C. board.  
in Figure 6B. This layout example is used as a general guide-  
X1  
R7  
VDD  
U1  
10  
C11  
1
24  
23  
22  
21  
20  
19  
18  
17  
0.01u  
C16  
22u  
M5  
M6  
M7  
M8  
N0  
N1  
N2  
XTAL1  
REF_IN  
nXTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
REF_IN  
XTAL_SEL  
2
3
4
5
6
7
8
S_LOAD  
S_DATA  
S_CLOCK  
MR  
GND  
Termination A  
Termination  
B (Not shown  
in the layout)  
VDD  
8430-01  
IN+  
R1  
R3  
125  
125  
Zo = 50 Ohm  
IN+  
IN-  
IN-  
TL1  
Zo = 50 Ohm  
R2  
50  
R1  
50  
C14  
0.1u  
C15  
0.1u  
TL2  
R2  
84  
R4  
84  
R3  
50  
FIGURE 6A. SCHEMATIC OF RECOMMENDED LAYOUT  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
10  
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/ LVTTL-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
• The traces with 50transmission lines TL1 and TL2 at  
FOUT and nFOUT should have equal delay and run ad-  
jacent to each other.Avoid sharp angles on the clock trace.  
Sharp angle turns cause the characteristic impedance to  
change on the transmission lines.  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15 as close as pos-  
sible to the power pins. If space allows, placing the decoupling  
capacitor at the component side is preferred. This can reduce  
unwanted inductance between the decoupling capacitor and the  
power pin generated by the via.  
• Keep the clock trace on the same layer. Whenever pos-  
sible, avoid any vias on the clock traces. Any via on the  
trace can affect the trace characteristic impedance and  
hence degrade signal quality.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor. Maximize the number of vias between power (ground)  
and the pads. This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
• Make sure no other signal trace is routed between the  
clock trace pair.  
If VCCA shares the same power supply with VCC, insert the RC  
filter R7, C11, and C16 in between. Place this RC filter as close  
to the VCCA as possible.  
The matching termination resistors R1, R2, R3 and R4 should  
be located as close to the receiver input pins as possible. Other  
termination schemes can also be used but are not shown in  
this example.  
CLOCK TRACES AND TERMINATION  
The component placements, locations and orientations should be  
arranged to achieve the best clock signal quality. Poor clock signal  
quality can degrade the system performance or cause system fail-  
ure. In the synchronous high-speed digital system, the clock signal  
is less tolerable to poor signal quality than other signals. Any ring-  
ing on the rising or falling edge or excessive ring back can cause  
system failure. The trace shape and the trace delay might be re-  
stricted by the available space on the board and the component  
location. While routing the traces, the clock signal traces should be  
routed first and should be locked prior to routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
24 (XTAL1) and 25 (XTAL2). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
X1  
GND  
VCC  
VIA  
U1  
PIN 1  
C11  
C16  
VCCA  
R7  
Close to the input  
pins of the  
receiver  
R4  
R3  
TL1N  
C15  
C14  
TL1  
R2  
R1  
TL1, TL2 are 50 Ohm traces and  
equal length  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS8430-51  
www.icst.com/products/hiperclocks.html  
8430AY-51  
REV. D FEBRUARY 11, 2003  
11  
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8430-51.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8430-51 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 120mA = 416mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.2mW = 60.4mW  
Total Power_MAX (3.465V, with all outputs switching) = 416mW + 60.4mW = 476.4mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 8 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.476W * 42.1°C/W = 90°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 8. THERMAL RESISTANCE qJA FOR 32-PIN LQFP, FORCED CONVECTION  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
12  
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/ LVTTL-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
/R ] * (V  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
/R ] * (V  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
13  
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 9. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8430-51 is: 4,534  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
14  
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/ LVTTL-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
PACKAGE OUTLINE - Y SUFFIX  
TABLE 10. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
D
9.00 BASIC  
7.00 BASIC  
5.60  
D1  
D2  
E
9.00 BASIC  
7.00 BASIC  
5.60  
E1  
E2  
e
0.80 BASIC  
0.60  
L
0.45  
0.75  
q
0°  
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
15  
PRELIMINARY  
ICS8430-51  
Integrated  
Circuit  
Systems, Incꢀ  
600MHZ, LOW JITTER  
LVCMOS/LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 11. ORDERING INFORMATION  
Part/Order Number  
ICS8430AY-51  
Marking  
Package  
32 Lead LQFP  
Count  
250 per tray  
1000  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8430AY-51  
ICS8430AY-51  
ICS8430AY-51T  
32 Lead LQFP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements  
are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8430AY-51  
www.icst.com/products/hiperclocks.html  
REV. D FEBRUARY 11, 2003  
16  

相关型号:

ICS8430-61

500MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430-61

500MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430-62

500MHz, Crystal-to-3.3V, 2.5V Differential LVPECL Frequency Synthesizer
IDT

ICS8430-71B

700MHZ, LOW JITTER, CRYSTAL INTERFACE / LVCMOS-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430002

High-Performance Fractional-N Frequency Synthesizer
IDT

ICS843001

FEMTO CLOCKS CRYSTAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001-21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001A21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001A21L

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001AG

FEMTO CLOCKS CRYSTAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001AG-21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001AG-21LF

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI