ICS84324EMT [ICSI]

CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER WITH FANOUT BUFFER; 与扇出缓冲器CRYSTAL - TO- 3.3V LVPECL频率合成器
ICS84324EMT
型号: ICS84324EMT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER WITH FANOUT BUFFER
与扇出缓冲器CRYSTAL - TO- 3.3V LVPECL频率合成器

晶体 外围集成电路 光电二极管 时钟
文件: 总14页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS84324 is a Crystal-to-3.3V LVPECL Fre- 6 differential 3.3V LVPECLoutputs  
,&6  
quency Synthesizer with Fanout Buffer and a mem-  
Crystal oscillator interface  
HiPerClockS™  
ber of the HiPerClockS™ family of High Performance  
Clock Solutions from ICS. Output frequency can be  
programmed using frequency select pins. The low  
phase noise characteristics of the ICS84324 make it an ideal clock  
source for Fibre Channel 1 and Gigabit Ethernet applications.  
Output frequency range: 53.125MHz to 125MHz  
Crystal input frequency: 25MHz and 25.5MHz  
RMS phase jitter at 106.25MHz, using a 25.5MHz crystal  
(637KHz to 10Mhz): 2.69ps  
Phase noise:  
Offset  
Noise Power  
FUNCTION TABLE  
100Hz ................. -96 dBc/Hz  
1KHz ................. -115 dBc/Hz  
10KHz ................. -125 dBc/Hz  
100KHz ................. -127 dBc/Hz  
Inputs  
XTAL  
Output Frequency  
F_OUT  
MR F_SEL1 F_SEL0  
1
0
0
0
0
X
0
0
1
1
X
0
1
0
1
LOW  
3.3V supply voltage  
25.5MHz  
25.5MHz  
25MHz  
53.125MHz  
106.25MHz  
62.5MHz  
0°C to 70°C ambient operating temperature  
Industrial termperature information available upon request  
25MHz  
125MHz  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
nQ1  
Q2  
nQ2  
Q3  
nQ3  
Q4  
1
2
3
4
24  
23  
22  
VCCO  
F_SEL0  
F_SEL1  
MR  
XTAL1  
XTAL2  
VEE  
XTAL1  
OSC  
XTAL2  
6
Q0:Q5  
21  
20  
19  
18  
17  
16  
15  
14  
13  
0
/
Output  
Divider  
5
6
7
6
/
nQ0:nQ5  
1
PLL  
8
9
10  
11  
12  
VCCA  
VCC  
PLL_SEL  
VEE  
nQ4  
Q5  
nQ5  
Feedback  
Divider  
VCCO  
ICS84324  
24-Lead, 300-MIL SOIC  
7.5mm x 15.33mm x 2.3mm body package  
M Package  
Top View  
F_SEL1  
MR  
PLL_SEL  
F_SEL0  
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
1
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Q4, nQ4  
Q5, nQ5  
VCCO  
Type  
Description  
Output  
Output  
Output  
Output  
Output  
Output  
Power  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Output supply pins.  
3, 4  
5, 6  
7, 8  
9, 10  
11, 12  
13, 24  
16  
VCC  
Core supply pin.  
14, 18  
VEE  
PLL_SEL  
VCCA  
Negative supply pins.  
Selects between the PLL and crystal inputs as the input to the dividers.  
When HIGH, selects PLL. When LOW, selects XTAL1, XTAL2.  
LVCMOS / LVTTL interface levels.  
15  
Input  
Pullup  
17  
Power  
Analog supply pin.  
19, 20  
XTAL2, XTAL1 Input  
Crystal oscillator interface. XTAL1 is the input. XTAL2 is the output.  
Active High Master Reset. When logic HIGH, the internal dividers are  
reset causing the true outputs Qx to go low and the inverted outputs  
nQx to go high. When logic LOW, the internal dividers and the outputs  
are enabled. LVCMOS / LVTTL interface levels.  
21  
MR  
Input Pulldown  
22  
23  
F_SEL1  
F_SEL0  
Input Pulldown Feedback frequency select pin. LVCMOS / LVTTL interface levels.  
Input Pullup Output frequency select pin. LVCMOS / LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
K
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
K
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
2
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA 50°C/W (0 lfpm)  
Storage Temperature, T -65°C to 150°C  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
IEE  
Core Supply Voltage  
3.465  
3.465  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
135  
20  
mA  
mA  
ICCA  
TABLE 3B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
PLL_SEL, MR,  
F_SEL0, F_SEL1  
PLL_SEL, MR,  
F_SEL0, F_SEL1  
VIH  
VIL  
Input High Voltage  
2
V
CC + 0.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
MR, F_SEL1  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
µA  
IIH  
PLL_SEL, F_SEL0  
MR, F_SEL1  
V
-5  
IIL  
Input Low Current  
PLL_SEL, F_SEL0  
VCC = 3.465V, VIN = 0V  
-150  
TABLE 3C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 1.0  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 to VCCO - 2V.  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
3
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Inc.  
C
RYSTAL  
-
TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
TABLE 4. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
25  
25.5  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
TABLE 5. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
FOUT  
tsk(o)  
tR  
Output Frequency  
53.125  
125  
MHz  
ps  
Output Skew; NOTE 1, 2  
Output Rise Time  
Output Fall Time  
TBD  
20% to 80%  
20% to 80%  
200  
200  
650  
650  
ps  
tF  
ps  
odc  
tPW  
Output Duty Cycle  
Output Pulse Width  
PLL Lock Time  
50  
%
tPERIOD/2 - TBD  
tPERIOD/2 + TBD  
1
ps  
tLOCK  
ms  
See Parameter Measurement Information section.  
NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at VCCO/2.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
4
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
TYPICAL PHASE NOISE AT 106.25MHZ  
USING A 25.5MHZ QUARTZ CRYSTAL  
0
-10  
-20  
-30  
Jitter  
Process Result  
10.000  
Source  
-40  
-50  
Start Freq.  
Hz  
Hz  
Stop Freq.  
40.000M  
106.250M  
Freq. carrier  
Hz  
-60  
-70  
Mode  
Integral  
Noise only  
sec. rms  
2.69p  
-80  
Execute  
Plot  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
637KHz to 10MHz, 2.69ps  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
5
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
PARAMETER MEASUREMENT INFORMATION  
VCC, VCCA = 2V  
SCOPE  
Qx  
nQx  
Qx  
LVPECL  
nQy  
Qy  
nQx  
tsk(o)  
VEE = -1.3V ± 0.165  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
OUTPUT SKEW  
nQ0:nQ5  
80%  
tF  
80%  
Q0:Q5  
Pulse Width  
20%  
20%  
tPERIOD  
Clock  
Outputs  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
6
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Inc.  
C
RYSTAL  
-
TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS84324 provides sepa-  
rate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 24resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
24Ω  
VCCA  
10 µF  
FIGURE 2. POWER SUPPLY FILTERING  
T
ERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- drive 50transmission lines. Matched impedance techniques  
tion for LVPECL outputs.The two different layouts mentioned should be used to maximize operating frequency and minimize  
are recommended only as guidelines.  
signal distortion. Figures 3A and 3B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs.Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
(VOH + VOL / VCC – 2) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
7
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
CRYSTAL INPUT INTERFACE  
A crystal can be characterized for either series or parallel mode  
operation. The ICS84324 has a built-in crystal oscillator circuit.  
This interface can accept either a series or parallel crystal without  
additional components and generate frequencies with accuracy  
suitable for most applications. Additional accuracy can be  
achieved by adding two small capacitors C1 and C2 as shown in  
Figure 4.  
19  
XTAL2  
C1  
18pF  
25MHz X1  
20  
XTAL1  
C2  
22pF  
ICS84324  
Figure 4. CRYSTAL INPUt INTERFACE  
SCHEMATIC EXAMPLE  
Figure 5A shows a schematic example of using an ICS84324. In recommended to have one decouple capacitor per power pin.  
this example, the input is a 25MHz parallel resonant crystal with Each decoupling capacitor should be located as close as pos-  
load capacitor CL=18pF. The frequency fine tuning capacitors sible to the power pin. The low pass filter R7, C11 and C16 for  
C1 and C2 is 22pF and 18pF respectively. This example also clean analog supply should also be located as close to the VCCA  
shows logic control input handling. The configuration is set at pin as possible.  
F_SEL[1:0]=11 therefore the output frequency is 125MHz. It is  
VCC  
U2  
VCC  
R4  
1K  
VCC  
Zo = 50  
Zo = 50  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
8
7
6
5
4
3
VCCO  
VEE  
PLL_SEL  
VCC  
VCCA  
VEE  
XTAL2  
XTAL1  
MR  
nQ5  
Q5  
nQ4  
Q4  
nQ3  
Q3  
nQ2  
Q2  
nQ1  
Q1  
nQ0  
Q0  
-
R7  
24  
VCCA  
22p  
+
C11  
0.1u  
C16  
10u  
C1  
R2  
50  
R1  
50  
F_SEL1  
F_SEL0  
X1  
F_SEL1  
F_SEL0  
VCCO  
25MHz,18pF  
R5  
1K  
2
1
C2  
R3  
50  
VCC  
18p  
ICS84324  
RU2  
1K  
RU3  
1K  
VCC=3.3V  
F_SEL1  
F_SEL0  
VCC  
(U1,13)  
(U1,16)  
(U1,24)  
C6  
0.1u  
C5  
0.1u  
C3  
0.1u  
e.g. F_SEL[1:0]=11  
RD2  
SP  
RD3  
SP  
SP = Spare, Not Installed  
FIGURE 5A. ICS84324 SCHEMATIC EXAMPLE  
www.icst.com/products/hiperclocks.html  
84324EM  
REV. A SEPTEMBER 18, 2003  
8
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
The differential 50output traces should have the  
same length.  
The following component footprints are used in this layout  
example:  
Avoid sharp angles on the clock trace. Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND  
G
ROUNDING  
Place the decoupling capacitors C14 and C15, as close as pos-  
sible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling ca-  
pacitor and the power pin caused by the via.  
Keep the clock traces on the same layer. Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VCCA pin as possible.  
Make sure no other signal traces are routed between the  
clock trace pair.  
CLOCK  
T
RACES AND  
T
ERMINATION  
The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
C
RYSTAL  
The crystal X1 should be located as close as possible to the pins  
20 (XTAL1) and 19(XTAL2). The trace length between the X1 and  
U1 should be kept to a minimum to avoid unwanted parasitic in-  
ductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
C6  
GND  
VCC  
C1  
C5  
Signals  
VIA  
R7  
VCCA  
C16  
C11  
X1  
C3  
C2  
50 Ohm Traces  
Pin1  
U1 ICS84324  
F
IGURE 5B. PCB BOARD LAYOUT FOR ICS84324  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
9
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS84324.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84324 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 135mA = 468mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 6 * 30.2mW = 181mW  
Total Power_MAX (3.465V, with all outputs switching) = 468mW + 181mW = 649mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 43°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.649W * 43°C/W = 98°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 24-PIN SOIC, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
200  
43°C/W  
500  
38°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
10  
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
/R ] * (V  
Pd_H = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 1V)/50) * 1V = 20.0mW  
))  
/R ] * (V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50) * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
11  
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 24 LEAD SOIC  
θJA by Velocity (Linear Feet per Minute)  
0
200  
43°C/W  
500  
38°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84324 is: 3500  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
12  
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
PACKAGE OUTLINE - M SUFFIX FOR 24 LEAD SOIC  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
24  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
15.20  
7.40  
2.55  
0.51  
0.32  
15.85  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
Reference Document: JEDEC Publication 95, MS-013, MO-119  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
13  
PRELIMINARY  
ICS84324  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER  
W
ITH  
FANOUT  
BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS84324EM  
Marking  
Package  
Count  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS84324EM  
ICS84324EM  
24 Lead SOIC  
30 per tube  
1000  
ICS84324EMT  
24 Lead SOIC on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
84324EM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
14  

相关型号:

ICS84325

CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER WITH FANOUT BUFFER
ICSI

ICS843251-04

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843251AG-04

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843251AG-04LF

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843251AG-04LFT

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843251AG-04T

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843251AGI-04

Clock Generator, 187.5MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, MO-153, TSSOP-8
IDT

ICS843251AGI-04LF

Clock Generator, 187.5MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-8
IDT

ICS843251AGI-04T

Clock Generator, 187.5MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, MO-153, TSSOP-8
IDT

ICS843251AGI-14

Clock Generator, 680MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, MO-153, TSSOP-8
IDT

ICS843251AGI-14LF

Clock Generator, 680MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-8
IDT

ICS843251AGI-14LFT

Clock Generator, 680MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-8
IDT