ICS8432CY-11 [ICSI]

700MHZ/350MHZ, LOW PHASE NOISE, CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER; 700MHZ / 350MHZ ,低相位噪声, CRYSTAL - TO- 3.3V LVPECL频率合成器
ICS8432CY-11
型号: ICS8432CY-11
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

700MHZ/350MHZ, LOW PHASE NOISE, CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER
700MHZ / 350MHZ ,低相位噪声, CRYSTAL - TO- 3.3V LVPECL频率合成器

文件: 总16页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8432-11 is a general purpose, dual output  
Dual differential 3.3V LVPECL outputs  
ICS  
Crystal-to-3.3V Differential LVPECL High Frequency  
Selectable crystal oscillator interface or  
LVCMOS/LVTTLTEST_CLK  
HiPerClockS™  
Synthesizer and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
ICS.The ICS8432-11 has a selectable TEST_CLK  
TEST_CLK can accept the following input levels:  
LVCMOS or LVTTL  
or crystal inputs. The TEST_CLK input accepts LVCMOS or  
LVTTL input levels and translates them to 3.3V LVPECL  
levels. The VCO operates at a frequency range of 200MHz  
to 700MHz. The VCO frequency is programmed in steps  
equal to the value of the input reference or crystal frequency.  
Output frequencies up to 700MHz for FOUT and 350MHz  
for FOUT/2 can be programmed using the serial or parallel  
interfaces to the configuration logic. The low phase noise  
characteristics and the multiple frequency outputs of the  
ICS8432-11 makes it an ideal clock source for Fiber Channel  
1 and 2, and Infiniband applications.  
Maximum FOUT frequency: 700MHz  
Maximum FOUT/2 frequency: 350MHz  
VCO range: 200MHz to 700MHz  
Parallel interface for programming counter and  
VCO frequency multiplier and dividers  
Cycle-to-cycle jitter: 25ps (maximum)  
RMS period jitter: TBD  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
XTAL_SEL  
TEST_CLK  
XTAL_IN  
32 31 30 29 28 27 26 25  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
XTAL_IN  
TEST_CLK  
XTAL_SEL  
VCCA  
XTAL_OUT  
ICS8432-11  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
VEE  
MR  
FOUT  
9
10 11 12 13 14 15 16  
nFOUT  
FOUT/2  
nFOUT/2  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
Y Package  
TopView  
M0:M8  
N0:N1  
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
1
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes nP_LOAD or until a serial event occurs. As a result, the M and  
operation using a 25MHz clock input. Valid PLL loop divider N bits can be hardwired to set the M divider and N output divider  
values for different input frequencies are defined in the Input to a specific default state that will automatically occur during  
Frequency Characteristics, Table 5, NOTE 1.  
power-up.TheTEST output is LOW when operating in the paral-  
lel input mode. The relationship between the VCO frequency,  
The ICS8432-11 features a fully integrated PLL and there- the input frequency and the M divider is defined as follows:  
fore requires no external components for setting the loop  
bandwidth. A differential clock input is used as the input to the  
fVCO = fxtal x M  
ICS8432-11.This input is fed into the phase detector.A 25MHz The M value and the required values of M0 through M8 are  
clock input provides a 25MHz phase detector reference fre- shown in Table 3B, Programmable VCO Frequency Function  
quency.The VCO of the PLL operates over a range of 200MHz Table. Valid M values for which the PLL will achieve lock are  
to 700MHz. The output of the M divider is also applied to the defined as 8 M 28.The frequency out is defined as follows:  
phase detector.  
fOUT = fVCO = fxtal x M  
N
N
The phase detector and the M divider force the VCO output Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
frequency to be M times the reference frequency by adjust- is LOW.The shift register is loaded by sampling the S_DATA  
ing the VCO control voltage. Note, that for some values of M bits with the rising edge of S_CLOCK. The contents of the  
(either too high or too low), the PLL will not achieve lock. The shift register are loaded into the M divider and N output  
output of the VCO is scaled by a divider prior to being sent divider when S_LOAD transitions from LOW-to-HIGH. The  
to each of the LVPECL output buffers. The divider provides M divide and N output divide values are latched on the HIGH-  
a 50% output duty cycle.  
to-LOW transition of S_LOAD. If S_LOAD is held HIGH, data  
at the S_DATA input is passed directly to the M divider and  
The programmable features of the ICS8432-11 support two N output divider on each rising edge of S_CLOCK.The serial  
input modes to program the PLL M divider and N output mode can be used to program the M and N bits and test bits  
divider. The two input operational modes are parallel and T1 and T0.The internal registersT0 and T1 determine the state  
serial. Figure1 shows the timing diagram for each mode. In of the TEST output as follows:  
parallel mode, the nP_LOAD input is initially LOW. The data  
T1 T0  
TEST Output  
LOW  
on inputs M0 through M8 and N0 and N1 is passed directly  
to the M divider and N output divider. On the LOW-to-HIGH  
transition of the nP_LOAD input, the data is latched and the  
M divider remains loaded until the next LOW transition on  
0
0
1
1
0
1
0
1
S_Data, Shift Register Input  
Output of M divider  
CMOS Fout/2  
SERIAL  
L
OADING  
S_CLOCK  
T1  
T0 *NULL N1  
N0  
M8  
M7  
M6  
M5  
M4 M3  
M2  
M1  
M0  
S_DATA  
S_LOAD  
nP_LOAD  
P
ARALLEL LOADING  
M0:M8, N0:N1  
nP_LOAD  
M, N  
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
*NOTE: The NULL timing slot must be observed.  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
2
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pullup  
Description  
1
M5  
Input  
Input  
M divider inputs. Data latched on LOW-to-HIGH transistion of  
nP_LOAD input. LVCMOS / LVTTL interface levels.  
2, 3, 4,  
28, 29,  
M6, M7, M8,  
M0, M1,  
Pulldown  
30, 31, 32  
M2, M3, M4  
Determines N output divider value as defined in Table 3C  
Function Table. LVCMOS / LVTTL interface levels.  
5, 6  
N0, N1  
Input  
Pulldown  
7
nc  
Unused  
Power  
No connect.  
8, 16  
VEE  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode. LVCMOS interface levels.  
9
TEST  
VCC  
Output  
Power  
10  
Core supply pin.  
Half frequency differential output for the synthesizer.  
3.3V LVPECL interface levels.  
11, 12  
13  
FOUT/2, nFOUT/2 Output  
VCCO  
Power  
Output  
Output supply pin.  
Differential output for the synthesizer.  
3.3V LVPECL interface levels.  
14, 15  
FOUT, nFOUT  
Active High Master Reset. When logic HIGH, the internal dividers  
are rset causing the true outputs (FOUTx) to go low and the  
inverted outputs (nFOUTx) to go high. When logic LOW, the  
internal dividers and the outputs are enabled. Assertion of MR  
does not affect loaded M, N, and T values.  
17  
MR  
Input  
Pulldown  
LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
Pulldown on the rising edge of S_CLOCK.  
LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge of  
Pulldown  
S_CLOCK. LVCMOS / LVTTL interface levels.  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input  
Pulldown  
Power  
Analog supply pin.  
Selects between crystal or test inputs as the PLL reference  
22  
XTAL_SEL  
Input  
Pullup  
source. LVCMOS / LVTTL interface levels. Selects XTAL inputs  
when HIGH. Selects TEST_CLK when LOW.  
23  
TEST_CLK  
Input  
Input  
Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
24,  
25  
XTAL_IN,  
XTAL_OUT  
Crystal oscillator inputs. XTAL_IN is the input.  
XTAL_OUT is the output.  
Parallel load input. Determines when data present at M8:M0 is  
Pulldown loaded into M divider, and when data present at N1:N0 sets the  
N output divider value. LVCMOS / LVTTL interface levels.  
26  
nP_LOAD  
Input  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
27  
VCO_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
3
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODES FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset. M and N counters reset.  
Data on M and N inputs passed directly to the  
M divider. TEST output forced LOW.  
Data is latched into input registers and remains  
loaded until next LOW transition or until a serial  
event occurs.  
L
L
Data Data  
X
X
X
L
Data Data  
L
X
X
Serial input mode. Shift register is loaded with  
data on S_DATA on each rising edge of  
S_CLOCK.  
Contents of the shift register are passed to the  
M divider.  
L
L
H
H
X
X
X
X
L
Data  
Data  
L
L
L
H
H
X
X
X
X
L
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
L
X
S_DATA passed directly to M divider as it is  
clocked.  
L
H
X
X
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
0
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
200  
225  
250  
275  
8
9
0
0
0
0
0
1
0
0
1
10  
11  
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency of  
25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Output Frequency (MHz)  
Inputs  
N Divider Value  
FOUT  
FOUT/2  
N1  
0
N0  
0
Minimum  
200  
Maximum  
700  
Minimum  
125  
Maximum  
350  
1
2
4
8
0
1
100  
350  
62.5  
175  
1
0
50  
175  
31.25  
15.625  
87.5  
1
1
25  
87.5  
43.75  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
4
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Positive Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.135  
3.135  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
110  
V
V
VCCA  
VCCO  
IEE  
V
mA  
mA  
ICCA  
15  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
M0-M4, M6-M8, N0, N1, MR,  
2
VCC + 0.3  
0.8  
V
V
-0.3  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
VCC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
M5, XTAL_SEL, VCO_SEL  
VCC = VIN = 3.465V  
VCC = 3.465V,  
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
-5  
V
IN = 0V  
Input  
Low Current  
IIL  
VCC = 3.465V,  
VIN = 0V  
M5, XTAL_SEL, VCO_SEL  
TEST; NOTE 1  
-150  
2.6  
µA  
V
Output  
High Voltage  
VOH  
VOL  
Output  
Low Voltage  
TEST; NOTE 1  
0.5  
V
NOTE 1: Outputs terminated with 50Ω to VCCO/2. See “Parameter Measurement Informationsection,  
“3.3V Output LoadTest Circuit” figure.  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
5
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO - 1.4  
VCCO - 2.0  
0.6  
Typical  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 Ω to VCCO - 2V.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
12  
25  
MHz  
MHz  
MHz  
XTAL_IN, XTAL_OUT;  
NOTE 1  
fIN  
Input Frequency  
12  
25  
S_CLOCK  
TBD  
NOTE 1: For the input crystal and TEST_CLK frequency range, the M value must be set for the VCO to operate within the  
200MHz to 700MHz range. Using the minimum input frequency of 12MHz, valid values of M are 17 M 58. Using the  
maximum frequency of 25MHz, valid values of M are 8 M 28.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
12  
25  
70  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
TABLE 7. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol  
FOUT  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Output Frequency  
25  
700  
25  
MHz  
ps  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
%
tjit(cc)  
tjit(per)  
tsk(o)  
tR  
Cycle-to-Cycle Jitter; NOTE 1, 3  
Period Jitter, RMS; NOTE 1, 3  
Output Skew; NOTE 2, 3  
Output Rise Time  
TBD  
TBD  
700  
700  
20% to 80% @ 50MHz  
20% to 80% @ 50MHz  
300  
300  
5
tF  
Output Fall Time  
M, N to nP_LOAD  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
tS  
Setup Time  
Hold Time  
5
5
tH  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
odc  
Output Duty Cycle  
PLL Lock Time  
47  
53  
10  
tLOCK  
ms  
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
6
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VOH  
SCOPE  
VCC  
VCCA, VCCO  
,
Qx  
VREF  
VOL  
LVPECL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
nQx  
VEE  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
PERIOD JITTER  
nFOUT  
FOUT  
nFOUT,  
nFOUT/2  
FOUT,  
FOUT/2  
nFOUT/2  
tcycle n  
tcycle n+1  
FOUT/2  
tsk(o)  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
nFOUT,  
nFOUT/2  
80%  
tF  
80%  
FOUT,  
FOUT/2  
tPW  
VSWING  
20%  
Clock  
20%  
tPERIOD  
Outputs  
tR  
tPW  
odc =  
x 100%  
tPERIOD  
OUPUT DUTY CYCLE/OUTPUT PULSE WIDTH/PERIOD  
OUTPUT RISE/FALL TIME  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
7
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
APPLICATIONS  
STORAGE AREA NETWORKS  
A variety of technologies are used for interconnection of the  
elements within a SAN. The tables below list the common  
application frequencies as well as the ICS8432-11 configu-  
rations used to generate the appropriate frequency.  
Table 8. COMMON SANS APPLICATIONS FREQUENCIES  
Interconnect Technology  
Clock Rate  
Reference Frequency to SERDES (MHz) Crystal Frequency (MHz)  
Gigabit Ethernet  
1.25 GHz  
125, 250, 156.25  
106.25, 53.125, 132.8125  
125, 250  
25, 19.53125  
16.6015625, 25  
25  
FC1 1.0625 GHz  
FC2 2.1250 GHz  
Fibre Channel  
Infiniband  
2.5 GHz  
Table 9. CONFIGURATION DETAILS FOR SANS APPLICATIONS  
ICS8432-11  
ICS8432-11  
Interconnect  
Technology  
Crystal Frequency  
(MHz)  
Output Frequency  
M & N Settings  
to SERDES  
(MHz)  
M8 M7 M6 M5 M4 M3 M2 M1 M0 N1 N0  
25  
125  
250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
0
0
0
1
25  
Gigabit Ethernet  
25  
156.25  
156.25  
53.125  
106.25  
132.8125  
125  
19.53125  
25  
Fiber Channel 1  
Fiber Channel 2  
Infiniband  
25  
16.6015625  
25  
25  
250  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
8
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8432-11 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 2. POWER SUPPLY FILTERING  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
9
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
LAYOUT GUIDELINE  
The schematic of the ICS8432-11 layout example used in this out in the actual system will depend on the selected component  
layout guideline is shown in Figure 4A. The ICS8432-11 recom- types, the density of the components, the density of the traces,  
mended PCB board layout for this example is shown in Figure and the stacking of the P.C.board.  
4B.This layout example is used as a general guideline.The lay-  
C1  
C2  
X1  
U1  
VCC  
1
24  
R7  
10  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
X_IN  
T_CLK  
XTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
REF_IN  
XTAL_SEL  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
C11  
C16  
10u  
0.01u  
VEE  
ICS8432-11  
VCC  
R1  
R3  
125  
125  
Zo = 50 Ohm  
IN+  
C14  
0.1u  
TL1  
+
-
C15  
0.1u  
Zo = 50 Ohm  
IN-  
TL2  
VCC=3.3V  
R2  
84  
R4  
84  
FIGURE 4A. SCHEMATIC OF RECOMMENDED LAYOUT  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
10  
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
• The differential 50Ω output traces should have same  
length.  
The following component footprints are used in this layout  
example:  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15, as close as pos-  
sible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling ca-  
pacitor and the power pin caused by the via.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a spearation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VCCA pin as possible.  
• Make sure no other signal traces are routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure.The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
24 (XTAL_IN) and 25 (XTAL_OUT).The trace length between the  
X1 and U1 should be kept to a minimum to avoid unwanted para-  
sitic inductance and capacitance. Other signal traces should not  
be routed near the crystal traces.  
X1  
GND  
VCC  
VIA  
U1  
PIN 1  
C11  
C16  
VCCA  
R7  
Close to the input  
pins of the  
receiver  
R4  
R3  
TL1N  
C15  
C14  
TL1  
R2  
R1  
TL1, TL2 are 50 Ohm traces and  
equal length  
FIGURE 4B. PCB BOARD LAYOUT FOR ICS8432-11  
www.icst.com/products/hiperclocks.html  
8432CY-11  
REV. E MAY 20, 2005  
11  
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8432-11.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8432-11 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 110mA = 381.2mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.465V, with all outputs switching) = 381.2mW + 60.4mW = 441.2mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θ
JA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 10 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.441W * 42.1°C/W = 88.6°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 10. THERMAL RESISTANCE Θ FOR 32-PIN LQFP, FORCED CONVECTION  
JA  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
12  
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 1V)/50Ω) * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
[(2V - 1.7V)/50Ω) * 1.7V = 10.2mW L  
L
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
13  
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 11. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8432-11 is: 3765  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
14  
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 12. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
15  
PRELIMINARY  
ICS8432-11  
Integrated  
Circuit  
Systems, Inc.  
700MHZ/350MHZ, LOW PHASE NOISE,  
CRYSTAL-TO- 3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 13. ORDERING INFORMATION  
Part/Order Number  
ICS8432CY-11  
Marking  
Package  
Shipping Packaging Temperature  
ICS8432CY-11  
ICS8432CY-11  
32 Lead LQFP  
32 Lead LQFP  
tray  
0°C to 70°C  
0°C to 70°C  
ICS8430CY-11T  
1000 tape & reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8432CY-11  
www.icst.com/products/hiperclocks.html  
REV. E MAY 20, 2005  
16  

相关型号:

ICS8432CY-111

700MHZ/350MHZ DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432CY-111LF

PLL Based Clock Driver, 8432 Series, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

ICS8432CY-111LFT

PLL Based Clock Driver, 8432 Series, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

ICS8432CY-111T

700MHZ/350MHZ DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432CY-11T

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8432CY111

700MHZ/350MHZ DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432CYI-01

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8432CYI-01LF

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8432D-101

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432D101L

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432DI-101

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DY-01

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT