ICS8432DI-101 [ICSI]

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER; 700MHZ ,差分至3.3V的LVPECL频率合成器
ICS8432DI-101
型号: ICS8432DI-101
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
700MHZ ,差分至3.3V的LVPECL频率合成器

文件: 总18页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS8432I-101 is a general purpose, dual out- Dual differential 3.3V LVPECL outputs  
ICS  
put Differential-to-3.3V LVPECL high frequency  
Selectable CLK, nCLK or LVCMOS/LVTTLTEST_CLK  
HiPerClockS™  
synthesizer and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
ICS. The ICS8432I-101 has a selectable  
TEST_CLK can accept the following input levels:  
LVCMOS or LVTTL  
TEST_CLK or CLK, nCLK inputs.TheTEST_CLK input accepts  
LVCMOS or LVTTL input levels and translates them to 3.3V  
LVPECL levels.The CLK, nCLK pair can accept most standard  
differential input levels.TheVCO operates at a frequency range  
of 250MHz to 700MHz.The VCO frequency is programmed in  
steps equal to the value of the input differential or single ended  
reference frequency. The VCO and output frequency can be  
programmed using the serial or parallel interfaces to the  
configuration logic.The low phase noise characteristics of the  
ICS8432I-101 makes it an ideal clock source for Gigabit  
Ethernet and SONET applications.  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
CLK, nCLK orTEST_CLK maximum input frequency: 40MHz  
Output frequency range: 25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
Accepts any single-ended input signal on CLK input  
with resistor bias on nCLK input  
Parallel interface for programming counter  
and output dividers  
RMS period jitter: 5ps (maximum)  
Cycle-to-cycle jitter: 25ps (maximum)  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Lead-Free package fully RoHS compliant  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
CLK_SEL  
TEST_CLK  
0
32 31 30 29 28 27 26 25  
CLK  
nCLK  
1
M5  
M6  
M7  
M8  
N0  
N1  
nc  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
CLK  
TEST_CLK  
CLK_SEL  
VCCA  
ICS8432I-101  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
PLL  
PHASE DETECTOR  
MR  
0
VEE  
÷1  
÷2  
÷4  
÷8  
VCO  
FOUT0  
nFOUT0  
FOUT1  
nFOUT1  
9
10 11 12 13 14 15 16  
÷ M  
1
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
M0:M8  
N0:N1  
Y Package  
TopView  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
1
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
FUNCTIONAL DESCRIPTION  
NOTE:The functional description that follows describes op-  
eration using a 25MHz clock input.Valid PLL loop divider val-  
rial event occurs. As a result, the M and N bits can be hardwired  
to set the M divider and N output divider to a specific default  
ues for different input frequencies are defined in the Input Fre- state that will automatically occur during power-up.The TEST  
quency Characteristics, Table 5, NOTE 1.  
output is LOW when operating in the parallel input mode. The  
relationship between the VCO frequency, the input frequency  
and the M divider is defined as follows:  
The ICS8432I-101 features a fully integrated PLL and there-  
fore requires no external components for setting the loop band-  
width. A differential clock input is used as the input to the  
fVCO = fIN x M  
The M value and the required values of M0 through M8 are  
ICS8432-101. This input is fed into the phase detector. A shown in Table 3B, Programmable VCO Frequency Function  
25MHz clock input provides a 25MHz phase detector refer- Table.Valid M values for which the PLL will achieve lock for a  
25MHz reference are defined as 8 M 28. The frequency  
ence frequency. The VCO of the PLL operates over a range  
of 250MHz to 700MHz. The output of the M divider is also  
applied to the phase detector.  
fOUT = fVCO = fIN x M  
out is defined as follows:  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is  
The phase detector and the M divider force the VCO output LOW. The shift register is loaded by sampling the S_DATA  
frequency to be M times the reference frequency by adjust- bits with the rising edge of S_CLOCK. The contents of the shift  
register are loaded into the M divider and N output divider when  
S_LOAD transitions from LOW-to-HIGH.The M divide and N out-  
put divide values are latched on the HIGH-to-LOW transition of  
S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is  
passed directly to the M divider and N output divider on each rising  
edge of S_CLOCK. The serial mode can be used to  
program the M and N bits and test bitsT1 andT0.The internal reg-  
istersT0 andT1 determine the state of theTEST output as follows:  
ing the VCO control voltage. Note, that for some values of M  
(either too high or too low), the PLL will not achieve lock. The  
output of the VCO is scaled by a divider prior to being sent to  
each of the LVPECL output buffers. The divider provides a  
50% output duty cycle.  
The programmable features of the ICS8432I-101 support two  
input modes to program the PLL M divider and N output divider.  
The two input operational modes are parallel and serial. Figure1  
shows the timing diagram for each mode. In parallel mode, the  
nP_LOAD input is initially LOW.The data on inputs M0 through  
M8 and N0 and N1 is passed directly to the M divider and  
N output divider. On the LOW-to-HIGH transition of the  
nP_LOAD input, the data is latched and the M divider remains  
loaded until the next LOW transition on nP_LOAD or until a se-  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data, Shift Register Input  
Output of M divider  
CMOS Fout  
S
ERIAL  
LOADING  
S_CLOCK  
T1  
T0 *NULL N1  
N0  
M8  
M7  
M6  
M5  
M4 M3  
M2  
M1  
M0  
S_DATA  
S_LOAD  
nP_LOAD  
t
t
H
S
t
S
PARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
S
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
*NOTE: The NULL timing slot must be observed.  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
2
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
M5  
Input  
Input  
Pullup  
M divider inputs. Data latched on LOW-to-HIGH transistion  
of nP_LOAD input. LVCMOS / LVTTL interface levels.  
2, 3, 4  
28, 29  
M6, M7, M8,  
M0, M1,  
Pulldown  
30, 31, 32  
M2, M3, M4  
Determines output divider value as defined in Table 3C,  
Function Table. LVCMOS / LVTTL interface levels.  
5, 6  
N0, N1  
Input  
Pulldown  
7
nc  
Unused  
Power  
No connect.  
8, 16  
VEE  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation. Output  
driven LOW in parallel mode. LVCMOS / LVTTL interface levels.  
9
TEST  
VCC  
Output  
Power  
10  
Core supply pin.  
11, 12  
13  
FOUT1, nFOUT1 Output  
VCCO Power  
FOUT0, nFOUT0 Output  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Output supply pin.  
14, 15  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs FOUTx to go low and the inverted  
17  
MR  
Input  
Pulldown outputs nFOUTx to go high. When logic LOW, the internal dividers  
and the outputs are enabled. Assertion of MR does not affect loaded  
M, N, and T values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS / LVTTL interface levels.  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
Pulldown  
Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input  
Pulldown  
Power  
Analog supply pin.  
Clock select input. Selects between differential clock input or  
TEST_CLK input as the PLL reference source. When HIGH,  
selects CLK, nCLK inputs. When LOW, selects TEST_CLK input.  
22  
CLK_SEL  
Input  
Pullup  
LVCMOS / LVTTL interface levels.  
23  
24  
25  
TEST_CLK  
CLK  
Input  
Input  
Input  
Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
Pulldown Non-inverting differential clock input.  
nCLK  
Pullup  
Inverting differential clock input.  
Parallel load input. Determines when data present at M8:M0 is  
26  
nP_LOAD  
Input  
Pulldown loaded into M divider, and when data present at N1:N0 sets the  
N output divider value. LVCMOS / LVTTL interface levels.  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
27  
VCO_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characterisitics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
RPULLDOWN  
51  
51  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
3
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data on M and N inputs passed directly to the  
M divider and N output divider. TEST output  
forced LOW.  
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
Data Data  
Data Data  
X
X
X
L
L
L
L
L
L
X
L
L
X
H
H
H
X
X
X
X
X
X
Data  
Data  
Data  
M divider and N output divider values are latched.  
L
L
H
H
X
X
X
X
L
X
X
Parallel or serial inputs do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
250  
275  
10  
11  
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to differential input or TEST_CLK input frequency  
of 25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
0
N0  
0
Minimum  
250  
Maximum  
700  
1
2
4
8
0
1
125  
350  
1
0
62.5  
175  
1
1
31.25  
87.5  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
4
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
3.465  
3.465  
120  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
3.135  
3.3  
V
mA  
mA  
ICCA  
15  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VCO_SEL, CLK_SEL, MR,  
S_LOAD, S_DATA,  
S_CLOCK, nP_LOAD,  
M0:M8, N0:N1  
2
V
CC + 0.3  
V
V
V
Input  
VIH  
High Voltage  
TEST_CLK  
2
VCC + 0.3  
0.8  
VCO_SEL, CLK_SEL, MR,  
S_LOAD, S_DATA,  
S_CLOCK, nP_LOAD,  
M0:M8, N0:N1  
-0.3  
-0.3  
Input  
VIL  
Low Voltage  
TEST_CLK  
1.3  
150  
5
V
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
V
CC = VIN = 3.465V  
µA  
µA  
µA  
Input  
IIH  
High Current  
M5, CLK_SEL, VCO_SEL  
VCC = VIN = 3.465V  
VCC = 3.465V,  
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
-5  
V
IN = 0V  
VCC = 3.465V,  
IN = 0V  
Input  
IIL  
Low Current  
M5, CLK_SEL, VCO_SEL  
-150  
2.6  
µA  
V
V
VCC = 3.135V,  
IOH = -36mA  
Output  
VOH  
TEST  
TEST  
High Voltage  
VCC = 3.135V,  
IOL = 36mA  
Output  
VOL  
0.5  
V
Low Voltage  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
5
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
CLK  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
150  
5
IIH Input High Current  
nCLK  
CLK  
V
-5  
-150  
IIL  
Input Low Current  
nCLK  
VCC = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage  
Common Mode Input Voltage  
0.15  
1.3  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 Ω to VCCO - 2V.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
14  
14  
25  
25  
25  
MHz  
MHz  
MHz  
fIN  
Input Frequency CLK, nCLK; NOTE 1  
S_CLOCK  
NOTE 1: For the differential input and TEST_CLK frequency range, the M value must be set for the VCO to operate within  
the 250MHz to 700MHz range. Using the minimum input frequency of 14MHz, valid values of M are 18 M 50.  
Using the maximum frequency of 25MHz, valid values of M are 10 M 28.  
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ps  
FOUT  
Output Frequency  
31.25  
700  
25  
tjit(cc)  
tjit(per)  
tsk(o)  
tR / tF  
Cycle-to-Cycle Jitter; NOTE 1, 3  
Period Jitter, RMS; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
fVCO > 350MHz  
fOUT > 100MHz  
5
ps  
15  
ps  
20% to 80%  
200  
700  
ps  
M, N to nP_LOAD  
5
ns  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
ns  
M, N to nP_LOAD  
5
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
47  
ns  
odc  
tPW  
Output Duty Cycle  
Output Pulse Width  
PLL Lock Time  
N > 1  
N = 1  
53  
%
tPERIOD/2 - 150  
tPERIOD/2 + 150  
1
ps  
tLOCK  
ms  
See Parameter Measurement Information section.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
6
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
,
Qx  
VCCA  
,
VCCO  
nCLK  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
CLK  
VEE  
nQx  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
VOH  
nFOUTx  
FOUTx  
VREF  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
tcycle n+1  
tcycle n  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
CYCLE-TO-CYCLE JITTER  
nFOUTx  
FOUTx  
80%  
tF  
80%  
tR  
VSWING  
20%  
Clock  
Outputs  
20%  
nFOUTy  
FOUTy  
tsk(o)  
OUTPUT SKEW  
OUTPUT RISE/FALL TIME  
nFOUTx  
FOUTx  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
7
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
STORAGE AREA NETWORKS  
A variety of technologies are used for interconnection of the  
elements within a SAN.The tables below list the common appli-  
cation frequencies as well as the ICS8432I-101 configurations  
used to generate the appropriate frequency.  
Table 7. Common SANs Application Frequencies  
Reference Frequency to SERDES  
(MHz)  
Crystal Frequency  
(MHz)  
Interconnect Technology  
Gigabit Ethernet  
Fibre Channel  
Clock Rate  
1.25 GHz  
125, 250, 156.25  
106.25, 53.125, 132.8125  
125, 250  
25, 19.53125  
16.6015625, 25  
25  
FC1 1.0625 GHz  
FC2 2.1250 GHz  
Infiniband  
2.5 GHz  
Table 8. Configuration Details for SANs Applications  
ICS8432I-101  
ICS8432I-101  
Interconnect  
Technology  
CLK, nCLK Input  
(MHz)  
Output Frequency  
to SERDES  
(MHz)  
M & N Settings  
M8 M7 M6 M5 M4 M3 M2 M1 M0 N1 N0  
25  
125  
250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
0
0
0
1
25  
Gigabit Ethernet  
25  
156.25  
156.25  
53.125  
106.25  
132.8125  
125  
19.53125  
25  
Fiber Channel 1  
Fiber Channel 2  
Infiniband  
25  
16.6015625  
25  
25  
250  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8432I-101 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 2. POWER SUPPLY FILTERING  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
8
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
of R1 and R2 might need to be adjusted to position theV_REF in  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
designed to drive 50Ω transmission lines. Matched impedance  
techniques should be used to maximize operating frequency  
and minimize signal distortion. Figures 4A and 4B show two  
different layouts which are recommended only as guidelines.  
Other suitable clock layouts may exist and it would be rec-  
ommended that the board designers simulate to guarantee  
compatibility across all printed circuit and clock component  
process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs.Therefore, termi-  
nating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
9
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 5A to 5D show inter- For example in Figure 5A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 5A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 5B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiver  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
10  
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
LAYOUT GUIDELINE  
The schematic of the ICS8432I-101 layout example used in The layout in the actual system will depend on the selected com-  
this layout guideline is shown in Figure 6A. The ICS8432I-101 ponent types, the density of the components, the density of the  
recommended PCB board layout for this example is shown in  
Figure 6B.This layout example is used as a general guideline.  
traces, and the stack up of the P.C. board.  
nCLK  
CLK  
R7  
VCC  
U1  
10  
C11  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
0.01u  
C16  
10u  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
CLK  
REF_IN  
nCLK_SEL  
VDDA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
XTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
VEE  
Termination A  
Termination B  
(not shown in  
the layout)  
VCC  
8432-101  
IN+  
R1  
R3  
125  
125  
Zo = 50 Ohm  
IN+  
IN-  
IN-  
TL1  
Zo = 50 Ohm  
R2  
50  
R1  
50  
C14  
0.1u  
C15  
0.1u  
TL2  
R2  
84  
R4  
84  
R3  
50  
FIGURE 6A. SCHEMATIC OF RECOMMENDED LAYOUT  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
11  
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
system failure. The trace shape and the trace delay might be re-  
stricted by the available space on the board and the component  
location.While routing the traces, the clock signal traces should be  
routed first and should be locked prior to routing other signal traces.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15 as close as pos-  
sible to the power pins. If space allows, placing the decoupling  
capacitor at the component side is preferred. This can reduce  
unwanted inductance between the decoupling capacitor and the  
power pin generated by the via.  
• The traces with 50Ω transmission linesTL1 and TL2 at  
FOUT and nFOUT should have equal delay and run ad-  
jacent to each other.Avoid sharp angles on the clock trace.  
Sharp angle turns cause the characteristic impedance to  
change on the transmission lines.  
• Keep the clock trace on same layer.Whenever possible,  
avoid any vias on the clock traces. Any via on the trace  
can affect the trace characteristic impedance and hence  
degrade signal quality.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor.Maximize the number of vias between power (ground)  
and the pads.This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
If VCCA shares the same power supply with VCC, insert the RC  
filter R7, C11, and C16 in between. Place this RC filter as close  
to theVCCA as possible.  
• Make sure no other signal trace is routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
The component placements, locations and orientations should be  
arranged to achieve the best clock signal quality.Poor clock signal  
quality can degrade the system performance or cause system fail-  
ure. In the synchronous high-speed digital system, the clock signal  
is less tolerable to poor signal quality than other signals. Any ring-  
ing on the rising or falling edge or excessive ring back can cause  
The matching termination resistors R1, R2, R3 and R4 should  
be located as close to the receiver input pins as possible. Other  
termination schemes can also be used but are not shown in this  
example.  
GND  
VCC  
U1  
PIN 1  
VIA  
C11  
C16  
VCCA  
R7  
Close to the input  
pins of the  
receiver  
R4  
R3  
TL1N  
C15  
C14  
TL1  
R2  
R1  
TL1, TL2 are 50 Ohm traces and  
equal length  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS8432I-101  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
12  
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8432I-101.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8432I-101 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 120mA = 416mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.465V, with all outputs switching) = 416mW + 60mW = 476mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 9 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.476W * 42.1°C/W = 105°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 9. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
13  
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mWL  
L
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
14  
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 10. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8432I-101 is: 3712  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
15  
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
D
9.00 BASIC  
7.00 BASIC  
5.60  
D1  
D2  
E
9.00 BASIC  
7.00 BASIC  
5.60  
E1  
E2  
e
0.80 BASIC  
0.60  
L
0.45  
0.75  
θ
0°  
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
16  
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
ICS8432DYI-101  
Marking  
Package  
Shipping Packaging  
250  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS8432DI-101  
ICS8432DI-101  
ICS432DI101L  
ICS432DI101L  
32 Lead LQFP  
ICS8432DYI-101T  
ICS8432DYI-101LF  
ICS8432DYI-101LFT  
32 Lead LQFP  
1000 tape & reel  
250  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
17  
ICS8432I-101  
700MHZ,  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
T12  
Page  
1
17  
Description of Change  
Features Section - added Lead-Free bullet.  
Ordering Information Table - add Lead-Free parts.  
Date  
A
5/23/05  
8432DYI-101  
www.icst.com/products/hiperclocks.html  
REV. A MAY 23, 2005  
18  

相关型号:

ICS8432DY-01

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS8432DY-01LF

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS8432DY-01LFT

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS8432DY-01T

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS8432DY-101

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DY-101

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432DY-101LF

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DY-101LF

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432DY-101LFT

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DY-101LFT

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432DY-101T

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DY-101T

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
IDT