ICS84330-03 [ICSI]

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER; 700MHZ ,低抖动,水晶- TO- 3.3V的差分LVPECL频率合成器
ICS84330-03
型号: ICS84330-03
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
700MHZ ,低抖动,水晶- TO- 3.3V的差分LVPECL频率合成器

文件: 总20页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
Fully integrated PLL, no external loop filter requirements  
Two differential 3.3V LVPECL output  
The ICS84330-03 is a general purpose, dual  
ICS  
HiPerClockS™  
output high frequency synthesizer and a mem-  
ber of the HiPerClockS™ family of High Perfor-  
mance Clock Solutions from ICS. The VCO  
operates at a frequency range of 250MHz to  
Crystal oscillator interface: 10MHz to 25MHz  
Output frequency range: 41.67MHz to 700MHz  
VCO range: 250MHz to 700MHz  
700MHz. The VCO and output frequency can be pro-  
grammed using the I2C interface. The output can be config- Parallel or I2C interface for programming M and N dividers  
during power-up  
ured to divide the VCO frequency by 1, 2, 3, 4, and 6.  
Supports Spread Spectrum Clocking (SSC)  
Additionally, the device supports spread spectrum clock-  
ing (SSC) for minimizing Electromagnetic Interference  
(EMI). The low cycle-cycle jitter and broad frequency  
range of the ICS84330-03 make it an ideal clock gen-  
erator for a variety of demanding applications which  
require high performance.  
Center spread: selectable 0.5ꢀ, 1.0ꢀ, 1.5ꢀ, 2ꢀ  
Up/Down spread: selectable 0.5ꢀ, 1.0ꢀ, 1.5ꢀ, 2ꢀ,  
2.5ꢀ, 3ꢀ, 3.5ꢀ, 4ꢀ  
RMS Period jitter: 9ps (maximum)  
Cycle-to-cycle jitter: 40ps (maximum)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
Available in both standard and lead-free RoHS-compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Pullup  
OE  
32 31 30 29 28 27 26 25  
Pullup  
VCO_SEL  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SCL  
SDA  
VCO_SEL  
N1  
XTAL_IN  
OSC  
ICS84330-03  
32-Lead LQFP  
Y package  
7mm x 7mm x 1.4mm  
body package  
Top View  
ADDR_SEL  
VCCA  
N0  
1
M8  
XTAL_OUT  
VCCA  
M7  
Pulldown  
FREF_EXT  
XTAL_SEL  
0
FREF_EXT  
XTAL_SEL  
M6  
M5  
÷16  
M4  
Pullup  
XTAL_IN  
9
10 11 12 13 14 15 16  
PLL  
VCO  
Phase Detector  
0
1
÷1  
÷2  
1
0
Q0  
÷M  
÷2  
nQ0  
÷2  
÷3  
1
0
Q1  
nQ1  
÷4  
÷6  
Pulldown  
ADDR_SEL  
SDA  
I2C Parallel Interface  
SCL  
Pullup  
nP_LOAD  
M0:M7 = Pulldown, M8 = Pullup  
M0:M8  
Pulldown  
Pulldown  
N0  
N1  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
1
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
The ICS84330-03 uses either a parallel interface or indus- The programming mode is controlled by the nP_LOAD pin.  
try standard I2C interface to control the programming of the When this pin is low, The M, N values are set by the logic  
internal dividers. The power on defaults are summarized as values on the M, N pins. If nP_LOAD is HIGH, the M, N  
follows:  
dividers can be changed using the I2C serial programming  
interface.  
M
Output  
Q0/nQ0 output at 267MHz  
The I2C control registers are defined below:  
Parallel Mode: 256  
(using a 16.667MHz crystal)  
Q1/nQ1 output at 133MHz  
(using a 16.667MHz crystal)  
SSC Mode:  
Off  
Data Byte 0  
Control Bit  
N1  
0
N0  
0
M8  
1
M7  
0
M6  
0
M5  
0
M4  
0
M3  
0
Power-up Default Value  
Data Byte 1  
Control Bit  
Not  
Used  
Not  
Used  
Not  
Used  
Not  
Used  
Not  
Used  
M2  
0
M1  
0
M0  
0
Power-up Default Value  
X
X
X
X
X
Data Byte 2  
Control Bit  
Up  
0
Down SSC5 SSC4 SSC3 SSC2 SSC1 SSC0  
Power-up Default Value  
0
0
0
0
0
0
0
I2C ADDRESSING  
The ICS84330-03 can be set to decode one of two addresses  
to minimize the chance of address conflict on the I2C bus.The  
address that is decoded is controlled by the setting of the  
ADDR_SEL pin (pin 3).  
ADDR_SEL (pin 3) = 0 Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
1
0
1
1
0
0
R/W  
ADDR_SEL (pin 3) = 1  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
1
0
1
1
1
0
R/W  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
2
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
I2C INTERFACE - PROTOCOL  
The ICS84330-03 is a slave-only device and uses the stan- mum SCL frequency is greater than 10MHz which is more  
dard I2C protocol as shown in the below diagrams. The maxi- than sufficient for standard I2C clock speeds.  
SCL  
SDA  
START  
Valid Data  
Acknowledge  
STOP  
START (ST) – defined as high-to-low transition on SDA while holding SCL HIGH.  
DATA - Between START and STOP cycles, SDA is synchronous with SCL.  
Data may change only when SCL is LOW and must be stable when SCL is HIGH.  
ACKNOWLEDGE (AK) – SDA is driven LOW before the SCL rising edge and  
held LOW until the SCL falling edge.  
STOP (SP) – defined as low-to-high transition on SDA while holding SCL HIGH.  
I2C INTERFACE - AWRITE EXAMPLE  
A serial transfer to the ICS84330-03 always consists of an and the master generates a stop condition, the values in the  
address cycle followed by 4 data bytes: 1 dummy byte fol- serial control register are latched into the M divider, N divider,  
lowed by 3 data bytes. Any additional bytes beyond the 4 data and control bits and the device will smoothly slew to the new  
bytes will not be acknowledged and the ICS84330-03 will frequency and any changes to the state of the control bits will  
leave the data bus HIGH. These extra bits will not be loaded take effect.  
into the serial control register.Once the 4 Data bytes are loaded  
ST  
Slave Address: 7 Bits  
R/W  
AK  
1 Bit Refer to page 2 for address choices based on ADDR_SEL pin setting  
1 Bit  
1 Bit  
Dummy Byte 0: 8 Bits  
AK  
1 Bit  
Data Byte 0: 8 Bits  
AK  
N1  
M2  
N0  
M8  
M7  
M6  
M5  
M4  
M3  
1 Bit  
Data Byte 1: 8 Bits  
Not  
Used  
AK  
Not  
Used  
Not  
Used  
Not  
Used  
Not  
Used  
M1  
M0  
1 Bit  
Data Byte 2: 8 Bits  
SSC4 SSC3  
AK  
SP  
1 Bit  
Up  
Down  
SSC5  
SSC2  
SSC1  
SSC0  
1 Bit  
Data Byte values latched into control registers here.  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
3
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
SPREAD SPECTRUM OPERATION  
NOTE: The functional description that follows used a has been selected and the M-divider value will toggle be-  
16.6667MHz crystal with an M divide value of 160.  
tween the programmed M value, and M-SS at a 32kHz rate.  
When both the UP and DN bits are HIGH, then center-  
Spread Spectrum operation is controlled by I2C Data Byte spread has been selected and the M-divider will toggle  
2, Spread Spectrum Control Register. Bits SSC0 – SSC5 between M+SS and M-SS at a 32kHz rate. The table below  
(SS) of the register are a subtrahend to the M-divider for shows the desired SS value to achieve 0.5ꢀ, 1ꢀ and 1.5ꢀ  
down-spread, and they are an addend and a subtrahend to spread at selected VCO frequencies. To disable Spread  
the M-divider for center-spread. When the UP bit is HIGH, Spectrum operation, program both the UP and DN bits to  
then up-spread has been selected and the M-divider value LOW. Spread Spectrum operation will also be disabled when  
will toggle between the programmed M value, and M+SS at the nP_LOAD input is LOW.  
a 32kHz rate. When the DN bit is HIGH, then down-spread  
TABLE 1A. SS MODE FUNCTIONT ABLE  
Register Bits  
SSC7  
SSC6  
SS Mode  
0
0
Off  
0
1
1
1
0
1
Down-Spread  
Up-Spread  
Center-Spread  
TABLE 1B. UP/DOWN SPREAD CONFIGURATION  
Up- or Down-Spread SS Value  
SSC5  
SSC4  
SSC3  
SSC2  
SSC1  
SSC0  
Spread %  
0
0
0
0
0
1
0.50  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
TABLE 1C. CENTER SPREAD CONFIGURATION  
Center-Spread SS Value  
SSC5  
SSC4  
SSC3  
SSC2  
SSC1  
SSC0  
Spread ( ) %  
0
0
0
0
0
1
0.50  
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
0
0
1.00  
1.50  
2.00  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
4
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
FUNCTIONAL DESCRIPTION  
The programmable features of the ICS84330-03 support  
two input modes to program the M divider and N output  
divider. The two input operational modes are parallel and  
I2C. Figure 1 shows the timing diagram for parallel mode. In  
parallel mode the nP_LOAD input is LOW. The data on  
inputs M0 through M8 and N0 through N1 is passed  
directly to the M divider and N output divider. On the LOW-  
to-HIGH transition of the nP_LOAD input, the data is latched  
and the M divider remains loaded until the next LOW tran-  
sition on nP_LOAD or until an I2C event occurs. The rela-  
tionship between the VCO frequency, the crystal frequency  
NOTE: The functional description that follows describes op-  
eration using a 16.6667MHz crystal. Valid PLL loop divider  
values for different crystal or input frequencies are defined  
in the Input Frequency Characteristics, Table 7, NOTE 1.  
The ICS84330-03 features a fully integrated PLL and  
therefore requires no external components for setting the  
loop bandwidth. A quartz crystal is used as the input to the  
on-chip oscillator. The output of the oscillator is divided by  
16 prior to the phase detector.  
fxtal  
16  
and the M divider is defined as follows:  
The phase detector and the M divider force the VCO output  
frequency to be 2M times the reference frequency by  
adjusting the VCO control voltage. Note that for some  
values of M (either too high or too low), the PLL will not  
achieve lock. The output of the VCO is scaled by a divider  
prior to being sent to each of the LVPECL output buffers.  
The divider provides a 50ꢀ output duty cycle.  
x
fVCO =  
2M  
The M value and the required values of M0 through M8 are  
shown in Table 3B, Programmable VCO Frequency Func-  
tion Table. Valid M values for which the PLL will achieve  
lock are defined as 120 M 336. The frequency out is  
fVCO fxtal 2M  
defined as follows:  
fout  
x
=
=
N
N
16  
PARALLEL  
LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
Time  
FIGURE 1. PARALLEL LOAD OPERATIONS  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
5
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 2. PIN DESCRIPTIONS  
Number  
Name  
SCL  
Type  
Description  
1
2
Input  
Input  
Input  
Power  
Input  
NOTE 1 I2C serial clock input.  
NOTE 1 I2C serial data input.  
SDA  
3
ADDR_SEL  
VCCA  
Pulldown Serial address select pin. LVCMOS / LVTTL interface levels.  
Analog supply pin.  
4, 5  
6
FREF_EXT  
Pulldown PLL reference input. LVCMOS / LVTTL interface levels.  
Selects between the crystal oscillator or FREF_EXT inputs as the PLL  
7
XTAL_SEL  
Input  
Pullup  
reference source. Selects XTAL inputs when HIGH. Selects FREF_EXT  
when LOW. LVCMOS / LVTTL interface levels.  
XTAL_IN,  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is an oscillator input.  
XTAL_OUT is an oscillator output.  
8, 9  
10  
Input  
Input  
OE  
Pullup  
Pullup  
Output enable. LVCMOS / LVTTL interface levels.  
Parallel load input. Determines when data present at M8:M0 is loaded  
into M divider, and when data present at N1:N0 sets the N output divide  
value. LVCMOS / LVTTL interface levels.  
11  
nP_LOAD  
Input  
Input  
12, 13, 14, M0, M1, M2  
15, 17, 18, M3, M4, M5  
Pulldown  
Pullup  
M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD  
input. LVCMOS / LVTTL interface levels.  
19, 20  
21  
M6, M7  
M8  
Input  
16  
nc  
Unused  
No connect.  
Determines N output divider value as defined in Table 4B Function  
Table. LVCMOS / LVTTL interface levels.  
When logic LOW, bypass PLL. When logic HIGH, PLL is active.  
LVCMOS/LVTTL interface levels.  
22, 23  
24  
N0, N1  
Input  
Input  
Pulldown  
Pullup  
VCO_SEL  
25, 29  
26, 32  
27, 28  
30, 31  
VEE  
Power  
Power  
Output  
Output  
Negative supply pins.  
VCC  
Core supply pins.  
nQ1, Q1  
nQ0, Q0  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 3, Pin Characteristics, for typical values.  
NOTE 1: Pullup resistor is only active in parallel mode.  
TABLE 3. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
6
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4A. PROGRAMMABLEVCO FREQUENCY FUNCTIONT ABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
1
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
0
2
M1  
0
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
250  
252  
254  
256  
120  
121  
122  
123  
0
0
1
1
1
1
0
0
1
0
0
1
1
1
1
0
1
0
0
0
1
1
1
1
0
1
1
696  
698  
700  
334  
335  
336  
1
0
1
0
0
1
1
1
0
1
0
1
0
0
1
1
1
1
1
0
1
0
1
0
0
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to a crystal frequency of 16.6667MHz.  
TABLE 4B. PROGRAMMABLE OUTPUT DIVIDER FUNCTIONTABLE  
Inputs  
Outputs  
N1  
0
N0  
0
Q0/nQ0  
÷2  
Q1/nQ1  
÷4  
0
1
÷1  
÷2  
1
0
÷2  
÷6  
1
1
÷1  
÷3  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
7
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.±V to VCC + 0.± V  
I
Outputs, IO  
Continuous Current  
Surge Current  
±0mA  
100mA  
Package Thermal Impedance, θJA 47.9°C/W (0 lfpm)  
Storage Temperature, T -6±°C to 1±0°C  
STG  
TABLE 5A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V±±5, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.13±  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
ICC  
Core Supply Voltage  
3.46±  
3.46±  
180  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.13±  
3.3  
V
mA  
mA  
ICCA  
1±  
TABLE 5B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V±±5, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
M8, N0, N1, OE,  
2
VCC + 0.3  
0.8  
V
V
-0.3  
V
CC = VIN = 3.46±V  
±
µA  
µA  
µA  
µA  
nP_LOAD, XTAL_SEL  
ADDR_SEL, SDA,  
SCL, FREF_EXT,  
VCO_SEL, M0:M7  
M8, N0, N1, OE,  
Input  
High Current  
IIH  
VCC = VIN = 3.46±V  
1±0  
VCC = 3.46±V, VIN = 0V  
VCC = 3.46±V, VIN = 0V  
-1±0  
-±  
nP_LOAD, XTAL_SEL  
ADDR_SEL, SDA,  
SCL, FREF_EXT,  
VCO_SEL, M0:M7  
Input  
Low Current  
IIL  
TABLE 5C. LVPECL DC CHARACTERISTICS, VCC =VCCA = 3.3V±±5, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with ±0Ω to VCC - 2V.  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
8
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
10  
25  
50  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
TABLE 7. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
fIN  
Test Conditions  
Minimum Typical Maximum Units  
XTAL; NOTE 1  
10  
25  
10  
MHz  
MHz  
MHz  
Input Frequency SCL  
FREF_EXT; NOTE 2  
10  
NOTE 1: For the crystal frequency range the M value must be set to achieve the minimum or maximum VCO frequency  
range of 250MHz to 700MHz. Using the minimum frequency of 10MHz, valid values of M are 200 M 511.  
Using the maximum frequency of 25MHz, valid values of M are 80 M 224.  
NOTE 2: Maximum frequency on FREF_EXT is dependent on the internal M counter limitations. See Application  
Information Section for recommendations on optimizing the performance using the FREF_EXT input.  
TABLE 8. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ps  
FOUT  
Output Frequency  
700  
9
tjit(per)  
tjit(cc)  
tsk(o)  
tR / tF  
Period Jitter, RMS; NOTE 1, 2  
Cycle-to-Cycle Jitter; NOTE 1, 2  
Output Skew; NOTE 3  
3
20  
40  
ps  
80  
900  
ps  
Output Rise/Fall Time  
20ꢀ to 80ꢀ  
200  
20  
ps  
SDA to SCL  
Setup Time  
ns  
tS  
M, N to nP_LOAD  
20  
ns  
SDA to SCL  
Hold Time  
20  
ns  
tH  
M, N to nP_LOAD  
20  
ns  
SSC Modulation Frequency;  
NOTE 4  
FM  
XTAL_IN = 16.6667MHz  
30  
-7  
32  
33.33  
kHz  
SSCred  
tL  
Spectral Reduction; NOTE 4  
PLL Lock Time  
-10  
dB  
ms  
10  
52  
odc  
tPW  
Output Duty Cycle  
N ÷1  
48  
Output Pulse Width  
N = ÷1  
tPERIOD/2 - 275 tPERIOD/2 tPERIOD/2 + 275  
ps  
See Parameter Measurement Information section.  
Characterized using a XTAL input.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65  
NOTE 2: See Applications section.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured from the output differential cross points.  
NOTE 4: Spread Spectrum clocking enabled.  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
9
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
VOH  
VREF  
SCOPE  
VCC  
Qx  
VCCA  
VOL  
1σ contains 68.26ꢀ of all measurements  
2σ contains 95.4ꢀ of all measurements  
LVPECL  
3σ contains 99.73ꢀ of all measurements  
4σ contains 99.99366ꢀ of all measurements  
6σ contains (100-1.973x10-7)ꢀ of all measurements  
nQx  
VEE  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
PERIOD JITTER  
nQ0, nQ1  
Q0, Q1  
nQx  
Qx  
tcycle n+1  
tcycle n  
nQy  
Qy  
tjit(cc) = tcycle n –tcycle n+1  
tsk(o)  
1000 Cycles  
CYCLE-TO-CYCLE JITTER  
OUTPUT SKEW  
nQ0, nQ1  
80ꢀ  
80ꢀ  
Q0, Q1  
VSWING  
tPW  
Clock  
20ꢀ  
20ꢀ  
tPERIOD  
Outputs  
tF  
tR  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT RISE/FALL TIME  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
10  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS84330-03 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC and VCCA  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VCCA pin. The 10Ω  
resistor can also be replaced by a ferrite bead.  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 2. POWER SUPPLY FILTERING  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
OUTPUTS:  
LVPECL OUTPUT  
INPUTS:  
SELECT PINS:  
All unused LVPECL outputs can be left floating. We  
recommend that there is no trace attached. Both sides of the  
differential output pair should either be left floating or  
terminated.  
All select pins have internal pull-ups and pull-downs;  
additional resistance is not required but can be added for  
additional protection. A 1kΩ resistor can be used.  
CRYSTAL INPUT INTERFACE  
The ICS84330-03 has been characterized with 18pF paral- parallel resonant crystal over the frequency range and other  
lel resonant crystals. The capacitor values, C1 and C2, parameters specified in this data sheet. The optimum C1  
shown in Figure 3 below were determined using an 18pF and C2 values can be slightly adjusted for different board  
parallel resonant crystal and were chosen to minimize the layouts.  
ppm error. These same capacitor values will tune any 18pF  
XTAL_IN  
C1  
22p  
X1  
18pF Parallel Cry stal  
XTAL_OUT  
C2  
22p  
Figure 3.CRYSTAL INPUt INTERFACE  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
11  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
LVCMOS TO XTAL INTERFACE  
The XTAL_IN input can accept a single-ended LVCMOS impedance of the driver (Ro) plus the series resistance  
(Rs) equals the transmission line impedance. In addition,  
signal through an AC couple capacitor. A general interface  
diagram is shown in Figure 4. The XTAL_OUT pin can matched termination at the crystal input will attenuate the  
be left floating. The input edge rate can be as slow as signal in half. This can be done in one of two ways. First,  
R1 and R2 in parallel should equal the transmission line  
10ns. For LVCMOS inputs, it is recommended that the  
amplitude be reduced from full swing to half swing in order impedance. For most 50Ω applications, R1 and R2 can be  
to prevent signal interference with the power rail and to 100Ω. This can also be accomplished by removing R1 and  
making R2 50Ω.  
reduce noise. This configuration requires that the output  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OU T  
Figure 4. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
50  
40  
30  
20  
10  
0
Spec Limit  
N = 1  
200  
300  
400  
500  
600  
700  
Output Frequency (MHz)  
FIGURE 5. CYCLE-TO-CYCLE JITTER VS. fOUT (using a 16MHz XTAL)  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
12  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
JITTER REDUCTION FOR FREF_EXT SINGLE END INPUT  
If the FREF_EXT input is driven by a 3.3V LVCMOS driver, the  
jitter performance can be improved by reducing the amplitude  
swing and slowing down the edge rate. Figure 6A shows an  
amplitude reduction approach for a long trace. The swing will  
be approximately 0.85V for logic low and 2.5V for logic high  
(instead of 0V to 3.3V). Figure 6B shows amplitude reduction  
approach for a short trace. The circuit shown in Figure 6C  
reduces amplitude swing and also slows down the edge rate  
by increasing the resistor value.  
VDD  
R1  
VDD  
100  
Zo = 50 Ohm  
Td  
Ro ~ 7 Ohm  
VDD  
GND  
RS  
43  
R2  
100  
FREF_EXT  
Driver_LVCMOS  
FIGURE 6A. AMPLITUDE REDUCTION FOR A LONGT RACE  
VDD  
VDD  
R1  
200  
Ro ~ 7 Ohm  
VDD  
GND  
RS  
100  
R2  
200  
FREF_EXT  
Driver_LVCMOS  
FIGURE 6B. AMPLITUDE REDUCTION FOR A SHORTT RACE  
VDD  
VDD  
R1  
400  
Ro ~ 7 Ohm  
VDD  
GND  
RS  
200  
R2  
400  
FREF_EXT  
Driver_LVCMOS  
FIGURE 6C. EDGE RATE REDUCTION BY INCREASING THE RESISTOR VALUE  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
13  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
SPREAD SPECTRUM  
Spread-spectrum clocking is a frequency modulation tech- It is important to note the ICS84330-03 7dB minimum  
nique for EMI reduction. When spread-spectrum is enabled, spectral reduction is the component-specific EMI reduc-  
a 32kHz triangle waveform is used from the nominal 333MHz tion, and will not necessarily be the same as the system  
clock frequency. An example of a triangle frequency modu- EMI reduction.  
lation profile is shown in Figure 7A below. The ramp profile  
can be expressed as:  
• Fnom = Nominal Clock Frequency in Spread OFF mode  
(333MHz with 16.6667MHz IN)  
• Fm = Nominal Modulation Frequency (32kHz)  
δ = Modulation Factor (0.25ꢀ down spread)  
1
(1 - δ) fnom + 2 fm x δ x fnom x t when 0 < t <  
,
2 fm  
1
1
fm  
(1 - δ) fnom - 2 fm x δ x fnom x t when  
< t <  
2 fm  
Δ − 10 dBm  
Fnom  
B
A
(1 - δ) Fnom  
δ = 0.25ꢀ  
0.5/fm  
1/fm  
FIGURE 7A. TRIANGLE FREQUENCY MODULATION  
FIGURE 7B. 333MHZ CLOCK OUTPUT IN FREQUENCY DOMAIN  
(A) SPREAD-SPECTRUM OFF  
(B) SPREAD-SPECTRUM ON  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
14  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
designed to drive 50Ω transmission lines. Matched imped-  
ance techniques should be used to maximize operating  
frequency and minimize signal distortion. Figures 8A and  
8B show two different layouts which are recommended only  
as guidelines. Other suitable clock layouts may exist and it  
would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and clock  
component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, ter-  
minating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 8A. LVPECL OUTPUTTERMINATION  
FIGURE 8B. LVPECL OUTPUTT ERMINATION  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
15  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS84330-03.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84330-03 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 180mA = 623.7mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.465V, with all outputs switching) = 623.7 + 60mW = 683.7mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 9 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.684W * 42.1°C/W = 98.8°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 9. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θ
JA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
16  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in the Figure 9.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 9. LVPECL DRIVER CIRCUIT ANDTERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CC_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
CC  
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
Pd_L = [(V – (V - 2V))/R ] * (V  
))  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
17  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 10. θJAVS. AIR FLOW 32 LEAD LQFPTABLE  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84330-03 is: 9304  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
18  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
19  
ICS84330-03  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
ICS84330AY-03  
Marking  
Package  
Shipping Packaging  
Tray  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS84330AY03  
ICS84330AY03  
ICS84330A03L  
ICS84330A03L  
32 Lead LQFP  
ICS84330AY-03T  
ICS84330AY-03LF  
ICS84330AY-03LFT  
32 Lead LQFP  
1000 Tape & Reel  
Tray  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
84330AY-03  
www.icst.com/products/hiperclocks.html  
REV.A FEBRUARY 2, 2006  
20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY