ICS8524AY [ICSI]

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-HSTL FANOUT BUFFER; 低偏移, 1到22差分至HSTL扇出缓冲器
ICS8524AY
型号: ICS8524AY
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
低偏移, 1到22差分至HSTL扇出缓冲器

文件: 总17页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8524 is a low skew, 1-to-22 Differential- 22 differential HSTL outputs  
ICS  
to-HSTL Fanout Buffer and a member of the  
HiPerClockSFamily of High Performance Clock  
Solutions from ICS.The ICS8524 has two select-  
able clock inputs.The CLK, nCLK pair can accept  
each with the ability to drive 50to ground  
HiPerClockS™  
Selectable differential CLK, nCLK or LVPECL clock inputs  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, HSTL, SSTL, HCSL  
most standard differential input levels.The PCLK, nPCLK pair  
can accept LVPECL, CML, or SSTL input levels.The device is  
internally synchronized to eliminate runt pulses on the outputs  
during asynchronous assertion/deassertion of the OE pin.The  
ICS8524’s low output and part-to-part skew characteristics  
make it ideal for workstation, server, and other high performance  
clock distribution applications.  
PCLK, nPCLK supports the following input types:  
LVPECL, CML, SSTL  
Maximum output frequency: 500MHz  
Translates any single-ended input signal (LVCMOS, LVTTL,  
GTL) to HSTL levels with resistor bias on nCLK input  
Output skew: 80ps (maximum)  
Part-to-part skew: 700ps (maximum)  
Jitter, RMS: 0.04ps (typical)  
LVPECL and HSTL mode operating voltage supply range:VDD  
= 3.3V 5ꢀ, VDDO = 1.6V to 2V, GND = 0V  
0°C to 85°C ambient operating temperature  
Pin compatible with the SY89824L and NB100EP223  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
CLK_SEL  
CLK  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VDDO  
Q14  
VDDO  
nQ6  
Q6  
0
1
nCLK  
22  
22  
nQ14  
Q15  
Q0:Q21  
nQ0:nQ21  
nQ5  
Q5  
PCLK  
nPCLK  
nQ15  
Q16  
nQ4  
Q4  
LE  
D
nQ16  
Q17  
Q
nQ3  
Q3  
ICS8524  
OE  
nQ17  
Q18  
nQ2  
Q2  
nQ18  
Q19  
nQ1  
Q1  
nQ19  
Q20  
nQ0  
Q0  
nQ20  
VDDO  
VDDO  
1
2
3
4
5
6
7 8 9 10 11 12 13 14 15 16  
64-LeadTQFP E-Pad  
10mm x 10mm x 1.0mm package body  
Y package  
TopView  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
1
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 16, 17, 32,  
33, 48, 49, 64  
VDDO  
Power  
Output supply pins.  
2, 3, 12, 13  
nc  
VDD  
CLK  
Unused  
Power  
Input  
No connect.  
4
5
Core supply pin.  
Pulldown Non-inverting differential clock input pair.  
Pullup/  
Pulldown  
6
nCLK  
Input  
Inverting differential clock input pair. Biased to 2/3 VCC.  
Clock select input. When HIGH, selects PCLK, nPCLK inputs.  
When LOW, selects CLK, nCLK inputs.  
7
CLK_SEL  
Input  
Pullup  
LVCMOS / LVTTL interface levels.  
8
PCLK  
nPCLK  
GND  
OE  
Input  
Input  
Power  
Input  
Pulldown Non-inverting differential LVPECL clock input pair.  
Pullup/  
9
Inverting differential LVPECL clock input pair. Biased to 2/3 VCC.  
Power supply ground.  
Pulldown  
Pullup  
10  
11  
Output enable. Controls enabling and disabling of outputs  
Q0:Q21, nQ0:nQ21. LVCMOS / LVTTL interface levels.  
14, 15  
18, 19  
20, 21  
22, 23  
24, 25  
26, 27  
28, 29  
30, 31  
34, 35  
36, 37  
38, 39  
40, 41  
42, 43  
44, 45  
46, 47  
50, 51  
52, 53  
54, 55  
56, 57  
58, 59  
60, 61  
62, 63  
nQ21, Q21  
nQ20, Q20  
nQ19, Q19  
nQ18, Q18  
nQ17, Q17  
nQ16, Q16  
nQ15, Q15  
nQ14, Q14  
nQ13, Q13  
nQ12, Q12  
nQ11, Q11  
nQ10, Q10  
nQ9, Q9  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
Differential clock outputs. HSTL interface levels.  
nQ8, Q8  
nQ7, Q7  
nQ6, Q6  
nQ5, Q5  
nQ4, Q4  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
2
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
K  
KΩ  
RPULLUP  
37  
75  
RPULLDOWN Input Pulldown Resistor  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
nQ0:nQ21  
HIGH  
OE  
0
CLK_SEL  
Q0:Q21  
LOW  
0
1
0
1
0
LOW  
HIGH  
1
CLK  
nCLK  
1
PCLK  
nPCLK  
nCLK,  
nPCLK  
Enabled  
Disabled  
CLK,PCLK  
OE  
nQ0 :nQ21  
Q0 :Q21  
FIGURE 1. OE TIMING DIAGRAM  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
3
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
22.3°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA=0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VDD  
VDDO  
IDD  
Core Supply Voltage  
3.135  
1.6  
3.3  
1.8  
3.465  
2.0  
V
Ouptut Power Supply Voltage  
Positive Supply Current  
Output Supply Current  
V
220  
mA  
mA  
IDDO  
No Load  
1
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA=0°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
2
VDD + 0.3  
V
V
Input Low Voltage  
-0.3  
0.8  
5
Input High Current OE, CLK_SEL  
Input Low Current OE, CLK_SEL  
µA  
µA  
IIL  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA=0°C TO 85°C  
Symbol Parameter  
Test Conditions  
VDD = VIN = 3.465V  
VDD = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
IIH  
Input High Current CLK, nCLK  
150  
µA  
µA  
V
IIL  
Input Low Current CLK, nCLK  
Peak-to-Peak Input Voltage  
-150  
0.15  
VPP  
VCMR  
1.3  
Common Mode Input Voltage; NOTE 1, 2  
GND + 0.5  
VDD - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK and nCLK is VDD + 0.3V.  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
4
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
TABLE 4D. LVPECL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA=0°C TO 85°C  
Symbol Parameter  
Test Conditions  
VDD = VIN = 3.465V  
VDD = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
IIH  
Input High Current PCLK, nPCLK  
150  
µA  
µA  
V
IIL  
Input Low Current PCLK, nPCLK  
Peak-to-Peak Input Voltage  
-150  
0.3  
VPP  
VCMR  
1
Common Mode Input Voltage; NOTE 1, 2  
GND + 1.5  
VDD  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for PCLK and nPCLK is VDD + 0.3V.  
TABLE 4E. HSTL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA=0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
1.0  
0
1.4  
0.4  
60  
V
V
VOL  
Output Low Voltage; NOTE 1  
VOX  
Output Crossover Voltage; NOTE 2  
Peak-to-Peak Output Voltage Swing  
40  
0.6  
V
VSWING  
1.1  
NOTE 1: Outputs terminated with 50to ground.  
NOTE 2: Defined with respect to output voltage swing at a given condition.  
TABLE 5. AC CHARACTERISTICS, VDD = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA=0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
fMAX  
Output Frequency  
500  
2.7  
80  
MHz  
ns  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
1.7  
tsk(o)  
tsk(pp)  
ps  
Part-to-Part Skew; NOTE 3, 4  
700  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
tjit  
0.04  
ps  
tR / tF  
tS  
Output Rise/Fall Time  
Setup Time  
20ꢀ to 80ꢀ  
300  
1.0  
0.5  
49  
700  
ps  
ns  
ns  
tH  
Hold Time  
ƒ133MHz  
51  
52  
odc  
Output Duty Cycle  
133 < ƒ266MHz  
48  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions at the same temperature. Using the same type of inputs on each device,  
the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
5
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
Input/Output Additive  
Phase Jitter at 156.25MHz  
= 0.04ps (typical)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
140  
-
-150  
160  
-
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
6
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
PARAMETER MEASUREMENT INFORMATION  
1.8V 0.2V  
3.3V 5ꢀ  
VDD  
SCOPE  
VDD  
Qx  
VDDO  
nCLK, nPCLK  
VPP  
VCMR  
Cross Points  
HSTL  
CLK, PCLK  
GND  
nQx  
GND  
0V  
3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nQx  
Qx  
Qx  
PART 2  
nQy  
nQy  
Qy  
nQy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nCLK, nPCLK  
CLK, PCLK  
nQ0:nQ21  
80ꢀ  
tF  
80ꢀ  
tR  
VSWING  
20ꢀ  
Clock  
Outputs  
20ꢀ  
Q0:Q21  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQ0:nQ21  
Q0:Q21  
VOX  
60ꢀ  
50ꢀ  
40ꢀ  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT CROSSOVER VOLTAGE  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
7
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF = VDD/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVDD = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VDD  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
8
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, HSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING andVOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 3A to 3E show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS HSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 3A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS HSTL DRIVER  
FIGURE 3B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 3E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
9
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other gested here are examples only. If the driver is from another  
differential signals. Both VSWING and VOH must meet the VPP vendor, use their termination recommendation. Please con-  
and VCMR input requirements. Figures 4A to 4E show inter- sult with the vendor of the driver component to confirm the  
face examples for the HiPerClockS PCLK/nPCLK input driven driver termination requirements.  
by the most common driver types. The input interfaces sug-  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
R1  
50  
R2  
50  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
nPCLK  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
120  
R2  
120  
FIGURE 4A. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A CML DRIVER  
FIGURE 4B. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
C1  
C2  
Zo = 50 Ohm  
Zo = 50 Ohm  
LVDS  
PCLK  
CLK  
R5  
100  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
nCLK  
HiPerClockS  
Input  
LVPECL  
R1  
1K  
R2  
1K  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
84  
R4  
84  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
FIGURE 4E. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
10  
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
S
CHEMATIC  
E
XAMPLE  
Figure 5 shows a schematic example of the ICS8524. In this power pin. For ICS8524, the unused clock outputs can be left  
example, the input is driven by an ICS HiPerClockS HSTL driver. floating.  
The decoupling capacitors should be physically located near the  
Zo = 50  
+
Zo = 50  
-
VDDO=1.8V  
U3  
R2  
50  
R1  
50  
1.8V  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDDO  
nc  
VDDO  
Q7  
nQ7  
Q8  
nQ8  
Q9  
nQ9  
Q10  
nQ10  
Q11  
nQ11  
Q12  
nQ12  
Q13  
nQ13  
VDDO  
nc  
VDD=3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
VDD  
CLK  
nCLK  
CLK_SEL  
PCLK  
nPCLK  
GND  
OE  
nc  
nc  
nQ21  
Q21  
VDDO  
C9  
0.1u  
R12 1K  
LVHSTL Driver  
R9  
50  
R10  
50  
VDD=3.3V  
R11 1K  
ICS8524  
Zo = 50  
+
-
Zo = 50  
(U1-1)VDDO=1.8V(U1-16)  
(U1-17) (U1-32) (U1-33) (U1-48) (U1-49) (U1-64)  
C1  
0.1uF  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C6  
0.1uF  
C7  
0.1uF  
C8  
0.1uF  
R8  
50  
R7  
50  
FIGURE 5. ICS8524 HSTL BUFFER SCHEMATIC EXAMPLE  
THERMAL RELEASE PATH  
The expose metal pad provides heat transfer from the device to solder as shown in Figure 6.For further information, please re-  
the P.C. board.The expose metal pad is ground pad connected fer to the Application Note on Surface Mount Assembly of  
to ground plane through thermal via. The exposed pad on the Amkor’sThermally /Electrically Enhance Leadframe Base Pack-  
device to the exposed metal pad on the PCB is contacted through age, Amkor Technology.  
EXPOSED PAD  
SOLDER  
SOLDER MASK  
SIGNAL  
TRACE  
SIGNAL  
TRACE  
GROUND PLANE  
Expose Metal Pad  
(GROUND PAD)  
THERMAL VIA  
F
IGURE 6. P.C. BOARD FOR  
EXPOSED  
PAD  
T
HERMAL  
R
ELEASE  
PATH  
EXAMPLE  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
11  
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8524.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8524 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 220mA = 762.3mW  
Power (outputs)MAX = 32.8mW/Loaded Output pair  
If all outputs are loaded, the total power is 22 * 32.8mW = 721.6mW  
Total Power_MAX (3.465V, with all outputs switching) = 762.3mW + 721.6mW = 1483.9mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming an  
air flow of 500 linear feet per minute and a multi-layer board, the appropriate value is 15.1°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 1.484W * 15.1°C/W = 107.4°C.This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 64-PIN TQFP, E-PAD FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
22.3°C/W  
17.2°C/W  
15.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
12  
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
HSTL output driver circuit and termination are shown in Figure 7.  
VDDO  
Q1  
VOUT  
RL  
50  
FIGURE 7. HSTL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load.  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (V  
Pd_L = (V  
/R ) * (V  
- V  
- V  
)
)
OH_MIN  
L
DDO_MAX  
OH_MIN  
/R ) * (V  
OL_MAX  
L
DDO_MAX  
OL_MAX  
Pd_H = (1V/50) * (2V - 1V) = 20mW  
Pd_L = (0.4V/50) * (2V - 0.4V) = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32.8mW  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
13  
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 64 LEAD TQFP, E-PAD  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
22.3°C/W  
17.2°C/W  
15.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8524 is: 1474  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
14  
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
PACKAGE OUTLINE - Y SUFFIX FOR 64 LEAD TQFP, E-PAD  
EXPOSED PAD  
D2  
E2  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BCD  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
64  
--  
--  
1.20  
0.15  
1.05  
0.27  
0.20  
A1  
A2  
b
0.05  
.95  
--  
1.0  
0.17  
0.09  
0.22  
c
--  
D
12.00 BASIC  
10.00 BASIC  
5.00 Ref.  
12.00 BASIC  
10.00 BASIC  
5.00 Ref.  
0.50 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
15  
ICS8524  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-HSTL FANOUT  
BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Count  
160 per tray  
500  
Temperature  
0°C to 85°C  
0°C to 85°C  
ICS8524AY  
ICS8524AY  
ICS8524AY  
64 lead TQFP, E-Pad  
ICS8524AYT  
64 lead TQFP, E-Pad on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
16  
ICS8524  
LOW SKEW, 1-TO-22  
DIFFERENTIAL-TO-HSTL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
T5  
Page  
Date  
1
5
6
Added Phase Jitter to Features section.  
B
AC Characteristics Table - added Phase Jitter row.  
Added Additive Phase Jitter section.  
9/18/03  
8524AY  
www.icst.com/products/hiperclocks.html  
REV. B SEPTEMBER 18, 2003  
17  

相关型号:

ICS8524AYLF

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
IDT

ICS8524AYLFT

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
IDT

ICS8524AYT

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
ICSI

ICS8524AYT

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
IDT

ICS8525

LOW SKEW, 1-TO-4 LVCMOS-TO-LVHSTL FANOUT BUFFER
ICSI

ICS8525AG

Low Skew Clock Driver, 4 True Output(s), 4 Inverted Output(s), PDSO20, MO-153, TSSOP-20
IDT

ICS8525AGLF

Low Skew Clock Driver, 4 True Output(s), 4 Inverted Output(s), PDSO20, MO-153, TSSOP-20
IDT

ICS8525AGT

Clock Driver, CMOS, PDSO20
IDT

ICS8525BG

LOW SKEW, 1-TO-4 LVCMOS-TO-LVHSTL FANOUT BUFFER
ICSI

ICS8525BG-T

LOW SKEW, 1-TO-4 LVCMOS-TO-LVHSTL FANOUT BUFFER
ICSI

ICS8525BGLF

Low Skew Clock Driver, 8525 Series, 4 True Output(s), 4 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS8525BGLF-T

LOW SKEW CLOCK DRIVER, 4 TRUE OUTPUT(S), 4 INVERTED OUTPUT(S), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT