ICS853001AM [ICSI]

1:1, DIFFERENTIAL LVPECL-TO-2.5V, 3.3V, 5V LVPECL/ECL BUFFER; 1 : 1 ,差分LVPECL - TO- 2.5V , 3.3V , 5V LVPECL / ECL缓冲液
ICS853001AM
型号: ICS853001AM
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

1:1, DIFFERENTIAL LVPECL-TO-2.5V, 3.3V, 5V LVPECL/ECL BUFFER
1 : 1 ,差分LVPECL - TO- 2.5V , 3.3V , 5V LVPECL / ECL缓冲液

文件: 总16页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS853001 is a 1:1 Differential LVPECL- 1:1 Differential LVPECL-to-LVPECL / ECL buffer  
ICS  
to-LVPECL Buffer and a member of the  
1 LVPECL clock output pair  
HiPerClockS™  
HiPerClockS™family of High Performance  
Clock Solutions from ICS. The ICS853001  
may be used to regenerate LVPECL clocks which  
1 Differential LVPECL PCLK, nPCLK input pair  
PCLK, nPCLK pair can accept the following  
differential input levels: LVPECL, LVDS, CML  
may have been attenuated, across a long trace, or may also  
be used as a differential-to-LVPECL translator.The differen-  
tial input can accept the following differential input types:  
LVPECL, LVDS and CML. The device also has an output en-  
able pin for debug/test purposes.When the output is disabled,  
it drives differential LOW (Q = LOW, nQ = HIGH). The  
ICS853001 is packaged in either a 3mm x 3mm 8-pin TSSOP  
or 3.9mm x 4.9mm 8-pin SOIC, making it ideal for use on  
space-constrained boards.  
Maximum output frequency: >2.5GHz  
Part-to-part skew: 100ps (maximum)  
Propagation delay: 500ps (maximum)  
Additive phase jitter, RMS: 0.03ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 5.25V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -5.25V to -2.375V  
-40°C to 85°C ambient operating temperature  
Lead-Free package RoHS compliant  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
OE  
D
Q
VCC  
Q
OE  
1
2
3
4
8
7
6
5
PCLK  
nPCLK  
VBB  
nQ  
VEE  
LE  
Q
PCLK  
ICS853001  
8-LeadTSSOP, 118 mil  
3mm x 3mm x 0.95mm package body  
G Package  
nQ  
nPCLK  
TopView  
VBB  
ICS853001  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
TopView  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
1
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
VCC  
Type  
Description  
1
2, 3  
4
Power  
Output  
Power  
Output  
Positive supply pin.  
Q, nQ  
VEE  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
5
VBB  
Nominal bias voltage at VCC - 1.38V.  
Pullup/ Inverting differential LVPECL clock input. VCC/2 default when left  
Pulldown floating. Can accept LVPECL, LVDS, CML interface levels.  
6
7
nPCLK  
PCLK  
Input  
Input  
Non-inverting differential LVPECL clock input.  
Pulldown  
Can accept LVPECL, LVDS, CML interface levels.  
Active HIGH output enable. When logic HIGH, the output is enabled  
8
OE  
Input  
Pullup  
and follows the input clock. When logic LOW, the output drives logic  
low (Q=LOW, nQ=HIGH). LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
RPULLDOWN Input Pulldown Resistor  
37.5  
37.5  
K  
KΩ  
RPULLUP  
Input Pullup Resistor  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
2
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
6V (LVPECL mode, VEE = 0) NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
-6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
VBB Sink/Source, IBB  
0.5mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG  
-65°C to 150°C  
PackageThermal Impedance, θJA  
8 Lead TSSOP  
8 Lead SOIC  
101.7°C/W (0 m/s)  
112.7°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 5.25V; VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
5.25  
27  
V
mA  
TABLE 3B. LVCMOS DC CHARACTERISTICS, VCC = 2.375V TO 5.25V; VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
0.7VCC  
-0.3  
Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
OE  
OE  
OE  
OE  
VCC + 0.3  
0.3VCC  
150  
V
V
Input Low Voltage  
Input High Current  
Input Low Current  
VCC = VIN  
VCC = VIN  
µA  
µA  
IIL  
-150  
TABLE 3C. LVCMOS DC CHARACTERISTICS, VCC = 0V; VEE = -5.25V TO -2.375V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
0.3VEE  
Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
OE  
OE  
OE  
OE  
0.3  
0.7VEE  
150  
V
V
Input Low Voltage  
Input High Current  
Input Low Current  
VEE - 0.3  
VCC = VIN  
VCC = VIN  
µA  
µA  
IIL  
-150  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
3
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
TABLE 3D. LVPECL DC CHARACTERISTICS, VCC = 2.375V TO 5.25V; VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN  
Minimum  
Typical  
Maximum Units  
PCLK  
200  
200  
µA  
µA  
µA  
µA  
V
nPCLK  
PCLK  
VCC = VIN  
VCC = 5.25, VIN = 0V  
VCC = 5.25V, VIN = 0V  
-200  
-200  
0.15  
1.2  
IIL  
Input Low Current  
nPCLK  
VPP  
Peak-to-Peak Input Voltage  
Common Mode Input Voltage; NOTE 1, 2  
Output High Voltage; NOTE 3  
Output Low Voltage; NOTE 3  
Peak-to-Peak Output Voltage Swing  
Bias Voltage  
1.2  
VCC  
VCMR  
VOH  
V
VCC - 1.005  
VCC - 1.78  
V
VOL  
V
VSWING  
VBB  
0.6  
1.0  
V
VCC - 1.44 VCC - 1.38 VCC - 1.32  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
NOTE 3: Outputs terminated with 50to VCC - 2V.  
TABLE 4. AC CHARACTERISTICS, VCC = 0V; VEE = -5.25V TO -2.375V OR VCC = 2.375 TO 5.25V; VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
>2.5  
500  
100  
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
250  
tsk(pp)  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
155.52MHz, Integration Range:  
12KHz - 20MHz  
tjit  
0.03  
ps  
tR / tF  
Output Rise/Fall Time  
20% to 80%  
50  
48  
250  
52  
ps  
%
V
CC = 2.375V to 3.6V, VEE = 0  
VCC > 3.6V to 5.25V, VEE = 0 or  
EE = -5.25V to -3.6V,VCC = 0  
All parameters are measured at ƒ1.7GHz, unless otherwise noted.  
odc  
Output Duty Cycle  
ƒ1GHz  
46  
54  
%
V
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
4
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
Additive Phase Jitter, RMS  
@ 155.52MHz (12KHz to 20MHz)  
= 0.03ps typical  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
5
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nPCLK  
PCLK  
VEE  
LVPECL  
VPP  
VCMR  
Cross Points  
nQx  
VEE  
-3.25V to -0.375V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nPCLK  
PCLK  
nQ  
nQx  
PART 1  
Qx  
nQy  
PART 2  
Qy  
Q
tPD  
tsk(pp)  
PART-TO-PART SKEW  
80%  
PROPAGATION DELAY  
nQ  
80%  
tF  
Q
VSWING  
20%  
Pulse Width  
Clock  
20%  
tPERIOD  
Outputs  
tR  
tPW  
tPERIOD  
odc =  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
6
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS LEVELS  
Figure 1A shows an example of the differential input that can  
be wired to accept single ended LVCMOS levels.The reference  
voltage level VBB generated from the device is connected to  
the negative input.The C1 capacitor should be located as close  
as possible to the input pin.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
PCLK  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1A. SINGLE ENDED LVCMOS SIGNAL DRIVING DIFFERENTIAL INPUT  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVPECL LEVELS  
Figure 1B shows an example of the differential input that can  
be wired to accept single ended LVPECL levels.The reference  
voltage level VBB generated from the device is connected to  
the negative input.  
VCC  
C1  
0.1u  
CLK_IN  
PCLK  
VBB  
nPCLK  
FIGURE 1B. SINGLE ENDED LVPECL SIGNAL DRIVING DIFFERENTIAL INPUT  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
7
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 2A and Figure 2B show examples of termination for 2.5V ground level. The R3 in Figure 2B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 2C.  
ing 50to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 2A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 2B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 2C. 2.5V LVPECLTERMINATION EXAMPLE  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
8
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
TERMINATION FOR 5V LVPECL OUTPUT  
This section shows examples of 5V LVPECL output termina-  
tion.Figure 4A shows standard termination for 5V LVPECL.The  
termination requires matched load of 50resistors pull down to  
VCC - 2V = 3V at the receiver.Figure 4B showsThevenin equiva-  
lence of Figure 4A. In actual application where the 3V DC power  
supply is not available, this approached is normally used.  
5V  
5V  
5V  
5V  
R3  
84  
R4  
84  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
PECL  
PECL  
R1  
125  
R2  
125  
R1  
50  
R2  
50  
3V  
FIGURE 4A. STANDARD 5V PECL OUTPUT TERMINATION  
FIGURE 4B. 5V PECL OUTPUT TERMINATION EXAMPLE  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
9
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other here are examples only. If the driver is from another vendor,  
differential signals. Both VSWING and VOH must meet the VPP use their termination recommendation. Please consult with the  
and VCMR input requirements. Figures 5A to 5F show interface vendor of the driver component to confirm the driver termina-  
examples for the HiPerClockS PCLK/nPCLK input driven by tion requirements.  
the most common driver types.The input interfaces suggested  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R1  
50  
R2  
50  
Zo = 50 Ohm  
Zo = 50 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
R1  
100  
nPCLK  
nPCLK  
HiPerClockS  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
CML Built-In Pullup  
FIGURE 5A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN OPEN COLLECTOR CML DRIVER  
FIGURE 5B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
125  
125  
C1  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
VBB  
PCLK  
C2  
nPCLK  
nPCLK  
HiPerClockS  
Input  
PCLK/nPCLK  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
50  
R2  
50  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
Zo = 50 Ohm  
R3  
R4  
120  
120  
C1  
LVDS  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
PCLK  
PCLK  
R5  
100  
VBB  
C2  
nPCLK  
Zo = 50 Ohm  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
R1  
1K  
R2  
1K  
R1  
120  
R2  
120  
FIGURE 5E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
FIGURE 5F. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
10  
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
APPLICATION SCHEMATIC EXAMPLE  
one termination example is shown in this schematic. For more  
termination approaches, please refer to the LVPECL Termina-  
tion Application Note.  
Figure 6 shows an example of ICS853001 application schematic.  
In this example, the device is operated at VCC = 3.3V. The  
decoupling capacitor should be located as close as possible to  
the power pin.The input is driven by a 3.3V LVPECL driver.Only  
VCC  
VCC  
VCC  
R7  
R5  
R3  
R1  
133  
133  
U1  
ICS853001  
133  
133  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
5
6
7
8
4
3
2
1
VBB  
VEE  
nQ  
Q
-
nPCLK  
PCLK  
OE  
VCC  
VCC  
+
LVPECL  
C5  
0.1u  
R8  
R6  
82.5  
82.5  
R4  
82.5  
R2  
82.5  
VCC=3.3V  
FIGURE 6. APPLICATION SCHEMATIC EXAMPLE  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
11  
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853001.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853001 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 5V + 5% = 5.25V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * ICC_MAX = 5.25V * 27mA = 141.75mW  
Power (outputs)MAX = 27.83mW/Loaded Output pair  
Total Power_MAX (3.465V) = 141.75mW + 27.83mW = 169.58mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = junction-to-ambient thermal resistance  
Pd_total =Total device power dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 90.5°C/W perTable 5A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.170W * 90.5°C/W = 100.4°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5A. THERMAL RESISTANCE θJA FOR 8-PIN TSSOP, FORCED CONVECTION  
θJA byVelocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
TABLE 5B. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
12  
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.005V  
OH_MAX  
CC_MAX  
)
= 1.005  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.78V  
OL_MAX  
CC_MAX  
)
= 1.78V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1.005V)/50] * 1.005V = 20mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.78V)/50] * 1.78V = 7.83mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 27.83mW  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
13  
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
RELIABILITY INFORMATION  
TABLE 6A θJAVS. AIR FLOW TABLE FOR 8 LEAD TSSOP  
θJA byVelocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
TABLE 6B. θJAVS. AIR FLOW TABLE 8 LEAD SOIC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853001 is: 141  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
14  
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
TABLE 7A. PACKAGE DIMENSIONS  
TABLE 7B. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Millimeters  
SYMBOL  
Minimum  
Maximum  
MINIMUN  
MAXIMUM  
N
A
8
N
A
A1  
B
C
D
E
e
8
--  
1.10  
0.15  
0.97  
0.38  
0.23  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
A1  
A2  
b
0
0.79  
0.22  
0.08  
c
D
3.00 BASIC  
4.90 BASIC  
3.00 BASIC  
0.65 BASIC  
1.95 BASIC  
E
1.27 BASIC  
E1  
e
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e1  
L
L
0.40  
0°  
0.80  
8°  
α
α
Reference Document: JEDEC Publication 95, MS-012  
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-187  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
15  
ICS853001  
Integrated  
Circuit  
Systems, Inc.  
1:1, DIFFERENTIAL LVPECL-TO  
-
2.5V, 3.3V, 5V LVPECL/ECL BUFFER  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS853001AG  
Marking  
001A  
Package  
8 lead TSSOP  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS853001AGT  
ICS853001AGLF  
ICS853001AGLFT  
ICS853001AM  
001A  
8 lead TSSOP  
2500 tape & reel  
tube  
01AL  
8 lead "Lead-Free" TSSOP  
8 lead "Lead-Free" TSSOP  
8 lead SOIC  
01AL  
2500 tape & reel  
tube  
853001A  
853001A  
ICS853001AMT  
8 lead SOIC  
2500 tape & reel  
tube  
ICS853001AMLF  
ICS853001AMLFT  
853001AL  
853001AL  
8 lead "Lead-Free" SOIC  
8 lead "Lead-Free" SOIC  
2500 tape & reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853001AG  
www.icst.com/products/hiperclocks.html  
REV. A JANUARY 29, 2005  
16  

相关型号:

ICS853001AMLF

1:1, DIFFERENTIAL LVPECL-TO-2.5V, 3.3V, 5V LVPECL/ECL BUFFER
ICSI

ICS853001AMLFT

1:1, DIFFERENTIAL LVPECL-TO-2.5V, 3.3V, 5V LVPECL/ECL BUFFER
ICSI

ICS853001AMT

1:1, DIFFERENTIAL LVPECL-TO-2.5V, 3.3V, 5V LVPECL/ECL BUFFER
ICSI

ICS853006

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853006

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853006AG

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853006AG

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853006AGLF

Low Skew Clock Driver, 853006 Series, 6 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MO-153, TSSOP-20
IDT

ICS853006AGLFT

Low Skew Clock Driver, 853006 Series, 6 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MO-153, TSSOP-20
IDT

ICS853006AGT

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853006AGT

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS85301

2:1 DIFFERENTIAL-TO-LVPECL MULTIPLEXER
ICSI