ICS853006 [ICSI]

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER; 差分至2.5V / 3.3V LVPECL / ECL扇出缓冲器
ICS853006
型号: ICS853006
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
差分至2.5V / 3.3V LVPECL / ECL扇出缓冲器

文件: 总16页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS853006 is a low skew, high performance 6 differential LVPECL outputs  
ICS  
1-to-6 Differential-to-2.5V/3.3V LVPECL/ECL  
1 differential PCLK, nPCLK input pair  
HiPerClockS™  
Fanout Buffer and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
ICS.The ICS853006 is characterized to operate  
PCLK, nPCLK pair can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
from a 2.5V or a 3.3V power supply. Guaranteed output and  
part-to-part skew characteristics make the ICS853006 ideal  
for those applications demanding well defined performance  
and repeatability.  
Maximum output frequency: > 2GHz  
Output skew: 30ps (maximum)  
Part-to-part skew: 150ps (maximum)  
Propagation delay: 510ps (maximum)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.465V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -2.375V to -3.465V  
-40°C to 85°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
PCLK  
nPCLK  
VCC  
nQ0  
Q0  
nQ1  
Q1  
nQ2  
Q2  
VCC  
Q0  
nQ0  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
Q5  
nQ5  
Q4  
nQ4  
Q3  
nQ3  
VCC  
VEE  
Q1  
nQ1  
VBB  
Q2  
nQ2  
9
10  
PCLK  
nPCLK  
Q3  
nQ3  
VBB  
Q4  
nQ4  
ICS853006  
20-LeadTSSOP  
Q5  
nQ5  
6.5mm x 4.4mm x 0.92mm package body  
G Package  
Top View  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
1
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 8, 13, 20  
2, 3  
Name  
VCC  
Type  
Description  
Power  
Output  
Output  
Output  
Input  
Positive supply pins.  
nQ0, Q0  
nQ1, Q1  
nQ2, Q2  
PCLK  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
4, 5  
6, 7  
9
Pulldown Non-inverting differential LVPECL clock input.  
Pullup/  
10  
nPCLK  
Input  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
11  
VBB  
Output  
Power  
Output  
Output  
Output  
Bias voltage.  
12  
VEE  
Negative supply pin.  
14, 15  
16, 17  
18, 19  
nQ3, Q3  
nQ4, Q4  
nQ5, Q5  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
RPULLDOWN Input Pulldown Resistor  
75  
50  
K  
KΩ  
RVCC/2  
Input Pullup/Pulldown Resistor  
TABLE 3. CLOCK INPUT FUNCTION TABLE  
Input  
Outputs  
nQ0:nQ5  
HIGH  
Input to Output Mode  
Polarity  
PCLK  
nPCLK  
Q0:Q5  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
0
1
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
LOW  
0
Biased; NOTE 1  
HIGH  
1
Biased; NOTE 1  
LOW  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
2
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
4.6V (LVPECL mode, VEE = 0)  
-4.6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
VBB Sink/Source, IBB  
0.5mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 73.2°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.465V; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.465  
115  
V
mA  
TABLE 4B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
2.175 2.275 2.38 2.225 2.295 2.37 2.295 2.33 2.365  
1.405 1.545 1.68 1.425 1.52 1.615 1.44 1.535 1.63  
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
2.075  
1.43  
1.86  
150  
2.36 2.075  
1.765 1.43  
2.36 2.075  
1.765 1.43  
2.36  
1.765  
1.98  
VIL  
1.98  
1.86  
150  
1.98  
1.86  
150  
VBB  
VPP  
800  
1200  
800  
1200  
800  
1200  
m
V
Input High Voltage  
Common Mode Range; NOTE 3, 4  
1.2  
3.3  
1.2  
3.3  
1.2  
3.3  
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
-10  
-10  
µA  
µA  
PCLK  
-10  
Input  
Low Current  
IIL  
-150  
-150  
nPCLK  
-150  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
3
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
1.375 1.475 1.58 1.425 1.495 1.57 1.495 1.53 1.565  
0.605 0.745 0.88 0.625 0.72 0.815 0.64 0.735 0.83  
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Peak-to-Peak Input Voltage  
1.275  
0.63  
150  
1.56 1.275  
0.965 0.63  
1.56 1.275  
0.965 0.63  
-0.83  
0.965  
1200  
800  
1200  
2.5  
150  
1.2  
800  
1200  
2.5  
150  
1.2  
800  
VPP  
mV  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
1.2  
2.5  
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK0, nPCLK  
High Current  
-10  
-10  
-10  
µA  
µA  
PCLK  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLK  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
TABLE 4D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -3.465V TO -2.375V  
-40°C  
Typ Max  
25°C  
Typ Max  
85°C  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
-1.225  
-1.87  
-1.44  
150  
Min  
-1.075  
-1.875  
-1.225  
-1.87  
-1.44  
150  
Min  
-1.005  
-1.86  
-1.225  
-1.87  
-1.44  
150  
Typ Max  
-1.025  
-1.755  
-0.92  
-1.62  
-0.94  
-1.535  
-1.32  
1200  
-1.005  
-1.78  
-0.93  
-1.685  
-0.94  
-1.535  
-1.32  
1200  
-0.97  
-0.935  
-1.67  
-0.94  
-1.535  
-1.32  
1200  
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
-1.765  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
VIL  
VBB  
VPP  
800  
800  
800  
mV  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
-10  
-10  
-10  
µA  
µA  
PCLK  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLK  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
4
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
TABLE 5. AC CHARACTERISTICS, VCC = 0V; VEE = -2.375V TO -3.465V OR VCC = 2.375 TO 3.465V; VEE = 0V  
-40°C 25°C  
Min Typ Max Min Typ  
85°C  
Max Min Typ  
Symbol Parameter  
Units  
Max  
fMAX  
Output Frequency  
>2  
340 400  
15  
>2  
350 410  
15  
>2  
390 450  
17  
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
460  
27  
470  
27  
510  
30  
tsk(o)  
tsk(pp)  
ps  
Part-to-Part Skew; NOTE 3, 4  
150  
150  
150  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
tjit  
0.03  
0.03  
0.03  
ps  
ps  
tR/tF  
Output Rise/Fall Time  
20% to 80%  
95  
150  
205  
95  
150  
205  
95  
150  
205  
All parameters are measured 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
5
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
Input/Output Additive  
Phase Jitter at 155.52MHz  
= 0.03ps (typical)  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
6
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nPCLK  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
PCLK  
VEE  
nQx  
-0.375V to -1.465V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
nQx  
Qx  
PART 1  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nPCLK  
PCLK  
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
nQ0:nQ5  
Outputs  
tR  
Q0:Q5  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
7
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows an example of the differential input that can be  
wired to accept single ended levels. The reference voltage level  
The C1 capacitor should be located as close as possible to the  
input pin.  
VBB generated from the device is connected to the negative input.  
VCC  
C1  
0.1u  
CLK_IN  
PCLK  
VBB  
nPCLK  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
8
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 3A and Figure 3B show examples of termination for 2.5V ground level. The R3 in Figure 3B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 3C.  
ing 50to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 3A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 3B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
9
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other here are examples only. If the driver is from another vendor,  
differential signals. Both VSWING and VOH must meet the VPP use their termination recommendation. Please consult with  
and VCMR input requirements. Figures 4A to 4F show interface the vendor of the driver component to confirm the driver ter-  
examples for the HiPerClockS PCLK/nPCLK input driven by mination requirements.  
the most common driver types.The input interfaces suggested  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R1  
50  
R2  
50  
Zo = 50 Ohm  
Zo = 50 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
R1  
100  
nPCLK  
HiPerClockS  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
CML Built-In Pullup  
FIGURE 4A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN OPEN COLLECTOR CML DRIVER  
FIGURE 4B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
125  
125  
C1  
Zo = 50 Ohm  
Zo = 50 Ohm  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
VBB  
PCLK  
C2  
nPCLK  
nPCLK  
HiPerClockS  
Input  
PCLK/nPCLK  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
50  
R2  
50  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
F
IGURE 4D. H  
I
P
ER  
C
LOCKS PCLK/nPCLK INPUT  
D
RIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
Zo = 50 Ohm  
R3  
R4  
120  
120  
C1  
LVDS  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
PCLK  
PCLK  
R5  
100  
VBB  
C2  
nPCLK  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
R1  
1K  
R2  
1K  
R1  
120  
R2  
120  
FIGURE 4E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
FIGURE 4F. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
10  
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
SCHEMATIC EXAMPLE  
Additional LVPECL driver termination approaches are shown in  
the LVPECL Termination Application Note. It is recommended  
at least one decoupling capacitor per power pin.The decoupling  
capacitors should be physically located near the power pins.  
For ICS853006, the unused output can be left floating.  
Figure 5 shows a schematic example of ICS853006. The  
ICS853006 input can accept various types of differential input  
signal. In this example, the inputs are driven by an LVPECL driv-  
ers. For the ICS853006 LVPECL output driver, an example of  
LVPECL driver termination approach is shown in this schematic.  
Zo = 50  
+
Zo = 50  
-
R2  
50  
R1  
50  
3.3V  
U1  
ICS853006  
R3  
50  
C5 (Optional)  
0.1u  
3.3V  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
nQ0  
Q0  
nQ1  
Q1  
nQ2  
Q2  
VCC  
PCLK  
nPCLK  
VCC  
Q5  
nQ5  
Q4  
nQ4  
Q3  
nQ3  
VCC  
VEE  
VBB  
3.3V  
Zo = 50  
Zo = 50  
+
-
Zo = 50  
Zo = 50  
R5  
50  
R4  
50  
3.3V LVPECL  
R9  
50  
R10  
50  
(U1, 1)  
(U1, 8)  
(U1, 13)  
(U1, 20)  
3.3V  
R6  
50  
C6 (Optional)  
0.1u  
R11  
50  
C7(Optional)  
0.1u  
C1  
0.1u  
C2  
0.1u  
C3  
0.1u  
C4  
0.1u  
FIGURE 5. ICS853006 LVPECL CLOCK OUTPUT BUFFER SCHEMATIC EXAMPLE  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
11  
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853006.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853006 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 115mA = 398.48mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 6 * 30.94mW = 185.64mW  
Total Power_MAX (3.465V, with all outputs switching) = 398.48mW + 185.64mW = 584.12mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.584W * 66.6°C/W = 123.9°C. This is below the limit of 125°C  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 20-PIN TSSOP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
12  
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown inFigure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.935V  
OH_MAX  
CC_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
OL_MAX  
CC_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.935V)/50] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.67V)/50] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
13  
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 20 LEAD TSSOP  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853006 is: 1340  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
14  
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
15  
ICS853006  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-6  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
BUFFER  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS853006AG  
Marking  
Package  
Count  
72 per tube  
2500  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
ICS853006AG  
ICS853006AG  
20 lead TSSOP  
ICS853006AGT  
20 lead TSSOP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853006AG  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 18, 2004  
16  

相关型号:

ICS853006AG

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853006AG

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853006AGLF

Low Skew Clock Driver, 853006 Series, 6 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MO-153, TSSOP-20
IDT

ICS853006AGLFT

Low Skew Clock Driver, 853006 Series, 6 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MO-153, TSSOP-20
IDT

ICS853006AGT

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853006AGT

DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS85301

2:1 DIFFERENTIAL-TO-LVPECL MULTIPLEXER
ICSI

ICS853011

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011AM

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 X 1.37 MM, SOIC-8
IDT

ICS853011AMLF

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 X 1.37 MM, SOIC-8
IDT

ICS853011AMLFT

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 X 1.37 MM, SOIC-8
IDT

ICS853011BG

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, MO-187, TSSOP-8
IDT