ICS853011AM [IDT]

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 X 1.37 MM, SOIC-8;
ICS853011AM
型号: ICS853011AM
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 X 1.37 MM, SOIC-8

光电二极管
文件: 总12页 (文件大小:137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS853011 is a low skew, high perfor- 2 differential 2.5V/3.3V LVPECL / ECL outputs  
mance 1-to-2 Differential-to-2.5V/3.3V LVPECL/  
ECL Fanout Buffer and a member of the  
1 differential PCLK, nPCLK input pair  
HiPerClockS™  
HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The ICS853011  
PCLK, nPCLK pair can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
is characterized to operate from either a 2.5V or a 3.3V  
power supply. Guaranteed output and part-to-part skew  
characteristics make the ICS853011 ideal for those  
clock distribution applications demanding well defined  
performance and repeatability.  
Maximum output frequency: 3GHz (typical)  
Translates any single ended input signal to 3.3V  
LVPECLlevels with resistor bias on nPCLK input  
Output skew: 5ps (typical)  
Part-to-part skew: 130ps (typical)  
Propagation delay: 240ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -2.375V to -3.8V  
-40°C to 85°C ambient operating temperature  
Pin compatible with MC100LVEP11 and SY100EP11U  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
Vcc  
1
2
3
4
8
7
6
5
Q0  
nQ0  
PCLK  
nPCLK  
VEE  
PCLK  
nPCLK  
Q1  
nQ1  
nQ1  
ICS853011  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
Top View  
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
1
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Q0, nQ0  
Q1, nQ1  
VEE  
Type  
Description  
1, 2  
3, 4  
5
Output  
Output  
Power  
Input  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
6
nPCLK  
PCLK  
VCC  
Clock input. VCC/2 default when left floating. LVPECL interface levels.  
7
Input  
Pulldown Clock input. Default LOW when left floating. LVPECL interface levels.  
Positive supply pin.  
8
Power  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
RPULLDOWN  
Input Pulldown Resistor  
75  
K  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
2
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
Negative Supply Voltage, VEE  
Inputs, VI  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
4.6V  
-4.6V  
-0.5V to VCC + 0.5 V  
0.5V to VEE - 0.5V  
Outputs, VO  
Operating Temperature Range, TA -40°C to +85°C  
Storage Temperature, TSTG -65°C to 150°C  
Package Thermal Impedance, θJA 112°C/W (0 lfpm)  
(Junction-to-Ambient)  
Package Thermal Impedance, θJC 41°C/W to 44°C/W  
(Junction-to-Case)  
Wave Solder, TSOL  
265°C  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.8  
25  
V
mA  
TABLE 4B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
Symbol Parameter  
25°C  
Typ  
85°C  
Units  
Min Typ Max  
Min  
Max Min Typ Max  
VOH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
Peak-to-Peak Input Voltage  
VCC - 0.9  
VCC - 1.7  
800  
V
V
V
V
VOL  
VSWING  
VPP  
0.15  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
PCLK  
Input High Current  
nPCLK  
VCMR  
IIH  
VEE + 1.2  
V
150  
µA  
PCLK  
Input Low Current  
nPCLK  
-5  
-150  
IIL  
µA  
NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has  
been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than  
500 lfpm is maintained.  
NOTE: Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
3
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 3C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
Symbol Parameter  
25°C  
Typ  
85°C  
Units  
Min Typ Max  
Min  
Max Min Typ Max  
VOH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
Peak-to-Peak Input Voltage  
VCC - 0.9  
VCC -1.7  
0.8  
V
V
V
V
VOL  
VSWING  
VPP  
0.15  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
PCLK  
Input High Current  
nPCLK  
VCMR  
IIH  
VEE + 1.2  
V
150  
µA  
PCLK  
Input Low Current  
nPCLK  
-5  
-150  
IIL  
µA  
NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has  
been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than  
500 lfpm is maintained.  
NOTE: Input and output parameters vary 1:1 with VCC. VEE can vary +0.125V to -1.3V.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
TABLE 3D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V  
-40°C  
25°C  
Typ  
85°C  
Symbol Parameter  
Units  
Min Typ Max  
Min  
Max Min Typ Max  
VOH  
Output High Voltage; NOTE 1  
VCC - 0.9  
VCC - 1.7  
0.8  
V
V
V
V
VOL  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
Peak-to-Peak Input Voltage  
VSWING  
VPP  
0.15  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
PCLK  
Input High Current  
nPCLK  
VCMR  
IIH  
VCC + 1.2  
V
150  
µA  
PCLK  
Input Low Current  
nPCLK  
-5  
-150  
IIL  
µA  
NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has  
been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than  
500 lfpm is maintained.  
NOTE: Input and output parameters vary 1:1 with VCC  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
.
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
4
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 4. AC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V OR VCC = 2.375 TO 3.8V; VEE = 0V  
-40°C 25°C  
Min Typ Max Min Typ  
85°C  
Max Min Typ  
Symbol Parameter  
Units  
Max  
fMAX  
Output Frequency  
3
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
TBD  
5
tsk(o)  
tsk(pp)  
tR/tF  
20  
ps  
Part-to-Part Skew; NOTE 3, 4  
130  
ps  
Output Rise/Fall Time  
20% to 80%  
120  
ps  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
5
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
VCC, VCCO = 2V  
VCC  
SCOPE  
Qx  
nPCLK  
LVPECL  
VPP  
VCMR  
Cross Points  
PCLK  
VEE  
nQx  
VEE = -0.375V to -1.8V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nPCLK  
PCLK  
80%  
80%  
VSWING  
20%  
20%  
nQ0, nQ1  
Clock Outputs  
t
t
F
R
Q0, Q1  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
6
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position the V_REF in  
single ended levels. The reference voltage V_REF ~ VCC/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1. This bias circuit clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin. The ratio and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECLcompatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
5
2
5
Zo  
Zo  
2
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
Zo = 50Ω  
RTT  
1
3
2
3
2
Zo  
RTT =  
Zo  
Zo  
(VOH + VOL / VCC 2) 2  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
7
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853011.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853011 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 25mA= 95mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.2mW = 60.4mW  
Total Power_MAX (3.8V, with all outputs switching) = 95mW + 60.4mW = 155.4mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.155W * 103.3°C/W = 101°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5. THERMAL RESISTANCE qJA FOR 8-PIN SOIC, FORCED CONVECTION  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
128.5°C/W  
115.5°C/W  
112.7°C/W  
103.3°C/W  
97.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
8
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 3.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 3. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, V = V  
= V  
1.0V  
OUT  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, V = V  
= V  
1.7V  
OUT  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
/R ] * (V  
Pd_H = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
/R ] * (V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
9
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
128.5°C/W  
103.3°C/W  
115.5°C/W  
97.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853011 is: 96  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
10  
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
PACKAGE OUTLINE - M SUFFIX  
TABLE 7. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MINIMUN  
MAXIMUM  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
11  
PRELIMINARY  
ICS853011  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS853011AM  
Marking  
853011A  
853011A  
Package  
8 lead SOIC  
Count  
96 per tube -40°C to 85°C  
2500 -40°C to 85°C  
Temperature  
ICS853011AMT  
8 lead SOIC on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853011AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 13, 2002  
12  

相关型号:

ICS853011AMLF

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 X 1.37 MM, SOIC-8
IDT

ICS853011AMLFT

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 X 1.37 MM, SOIC-8
IDT

ICS853011BG

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, MO-187, TSSOP-8
IDT

ICS853011BGLFT

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-187, TSSOP-8
IDT

ICS853011BGT

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, MO-187, TSSOP-8
IDT

ICS853011BM

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011BMLF

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011BMLFT

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011BMT

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011C

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011CG

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853011CGLF

Low Skew Clock Driver, 853011 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-187, TSSOP-8
IDT